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Abstract

This paper investigates whether random set inclusion is preserved by non-interactivity and by stochastic indepen-

dence. Let (X1, x1), (X2, x2) be two random sets on U1 and U2, respectively, and let (Y1, y1), (Y2, y2) be two consonant
inclusions of theirs. Let (Z1, z1) be the random relation on U1 � U2 obtained from (X1, x1) and (X2, x2) under the
hypothesis of stochastic independence, and let (Z2, z2) ((Z3, z3), resp.) be the random relation on U1 � U2 obtained from

(Y1, y1), (Y2, y2) under the hypothesis of non-interactivity (stochastic independence, resp.). We prove that these
hypotheses do not imply that (Z1, z1) 	 (Z2, z2), but imply that (Z1, z1) 	 (Z3, z3).

Keywords: Random set; Relation; Inclusion; Non-interactivity; Stochastic independence

1. Introduction

Random set theory [1,2,3,4,5,6,7,8] provides a general

paradigm for calculations with uncertain data. As illu-
strated in Fig. 1, let (Y1, y1), (Y2, y2) be two consonant
inclusions of (X1, x1), (X2, x2), two random sets on U1

and U2, respectively. (Z1, z1) is the random relation for

(X1, x1) and (X2, x2) using the hypothesis of stochastic
independence, (Z2, z2) is the random relation for (Y1, y1)
and (Y2, y2) using the hypothesis of non-interactivity

and (Z3, z3) is the random relation for (Y1, y1) and (Y2,
y2) using the hypothesis of stochastic independence. We
prove that non-interactivity does not necessarily pre-

serve inclusion and that stochastic independence
preserves inclusion. The result has important con-
sequences in the applications because consonant

Cartesian random relations (which are equivalent to
decomposable fuzzy relations) are much easier to handle
from a computational viewpoint.

2. Inclusion of random set

Inclusion of random sets is defined as follows. Let

(X1, m1) and (X2, m2) be two random sets: (X1, m1) 	
(X2, m2) if and if only three conditions hold:

ðiÞ 8A 2 X1; 9B 2 X2;A 	 B ð1Þ
ðiiÞ 8B 2 X2; 9A 2 X1;A 	 B ð2Þ

(iii) there is a non-negative assignment matrix W with

entries W(A, B), A E X1, B E X2 such that:

8A 2 X1;m1ðAÞ ¼
X

B:A	B
WðA;BÞ ð3Þ

8B 2 X2;m2ðBÞ ¼
X

A:A	B
WðA;BÞ ð4Þ

where W(A, B) = 0 as soon as A 6� B.

Fig. 1. Schematic of the random sets used in the paper.
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Dubois and Prade [6] showed that the inclusion of two
random sets implies the inclusion of the [Bel (.), Pl (.)]

interval:

ðxbm1Þ 	 ðx2;m2Þ ) ½Bel1ðAÞ;Pl1ðAÞ� 	 ½Bel2ðAÞ;
Pl2ðAÞ� ð5Þ

but the reverse is not necessarily true. Therefore:

½Bel1ðAÞ;Pl1ðAÞ� 6� ½Bel2ðAÞ;Pl2ðAÞ� ) ðX1; m1Þ
6� ðX2;m2Þ ð6Þ

3. Non-interactivity does not necessarily preserve

inclusion

Let (X1, x1) and (X2, x2) be two marginal random sets
respectively (Table 1). Following the procedure for

inclusion of 1-D random sets given by Tonon [9], one
obtains consonant random sets (Y1, y1) and (Y2, y2),
which include (X1, x1) and (X2, x2), respectively (Table

2). Since each consonant random set (Yi, yi) is equivalent
to a fuzzy set, Fi, focal elements A0 and B0 are also
considered as �-cuts with �-levels �F1

(A0) and �F2
, (B0)

for F1 and F2, respectively (Table 2).

Using the hypothesis of stochastic independence,
random relation (Z1, z1) for (X1, x1) and (X2, x2) was
calculated (Table 3). Using the hypothesis of non-

interactivity, consonant random relation (Z2, z2) for (Y1,
y1) and (Y2, y2) was also calculated and shown in Table
4.

Let us calculate the Belief–Plausibility intervals to
determine whether (Z1, z1) � (Z2, z2). For C1 = D1, one
obtains [Belz1 (C1), Plz1 (C1)] = [0.14,1] and [Belz2 (C1),

Plz2 (C1)] = [0.19998,1]. Since Belz2 (C1) > Belz1 (C1),
then [Belz1 (C1), Plz1 (C1)] 6� [Belz2 (C1), Plz2 (C1)], one

concludes that (Z1, z1) 6� (Z2, z2)(Eq. 6)

4. Stochastic independence preserves inclusion

Let (Z3, z3) be the random relation obtained from
marginals (Y1, y1), (Y2, y2) under the hypothesis of
stochastic independence (Fig. 1). In this section we first
show in general terms that (Z1, z1) 	 (Z3, z3), and then

give a numerical example.

4.1. General case

One needs to show that the definition of inclusion
given in Section 2 holds true.
(i) Recall that (Xi, xi) 	 (Yi, yi) (i = 1, 2) and that the

focal elements of (Z1, z1) ((Z3, z3), resp.) are Cartesian
products of the focal elements of (Xi, xi) ((Yi, yi), resp.)
under the hypothesis of stochastic independence, i.e.

Z1 ¼ fCkjCk ¼ Ai � Bj;Ai 2 XlBj 2 X2g ð7Þ
Z3 ¼ fEkjEk ¼ A0i � B0j;A

0
i 2 YlB

0
j 2 Y2g ð8Þ

Let C E Z1 be such that C = A � B, with A E X1, B E X2.
Since (Xi, xi) 	 (Yi, yi), 9 A0 E Y1, B

0 E Y2 such that A 	

Table 1

Random sets (X1, x1), (X2, x2) with focal elements A, B

(X1, x1) (X2, x2)

A x1(A) B x2 (B)

A1= [5, 8] 0.2 B1= [3, 7] 0.7

A2= [3, 7] 0.5 B2= [2, 5] 0.1

A3= [2, 4] 0.3 B3= [1, 8] 0.2

Table 2

Random sets (Y1, y1) and (Y2, y2) with focal element A0, B0, respectively, and �-levels of their corresponding fuzzy sets F1 and F2,

respectively

(Y1, y1) (Y2, y2)

A0 y1(A
0) �F1

(A0) B0 y2(B
0) �F2

(B0)

A1
0=[5, 8] 0.199998 1 B1

0=[3, 7] 0.699998 1

A2
0=[3, 8] 0.5 0.800002 B2

0=[2, 7] 0.1 0.300002

A3
0=[2, 8] 0.300002 0.300002 B3

0=[1, 8] 0.200002 0.200002

Table 3

Stochastically independent random Cartesian product (Z1, z1)

with focal elements C obtained from (X1, x1) and (X2, x2)

C=A�B z1 (C)=x1 (A) x2 (B)

C1=A1�B1= [5,8]� [3,7] 0.14

C2=A1�B2= [5,8]� [2,5] 0.02

C3=A1�B3= [5,8]� [1,8] 0.04

C4=A2�B1= [3,7]� [3,7] 0.35

C5=A2�B2= [3,7]� [2,5] 0.05

C6=A2�B3= [3,7]� [1,8] 0.1

C7=A3�B1= [2,4]� [3,7] 0.21

C8=A3�B2= [2,4]� [2,5] 0.03

C9=A3�B3= [2,4]� [1,8] 0.06
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A0 and B 	 B0. Therefore, C = A � B 	 A0 � B0 = E E
Z3.

(ii) Similar to (i).

(iii) First, the concept of convex sum of inclusion
relationships [6] must be introduced. Consider a set � of
3-tuples {(Ai, Bi, W(Ai, Bi)) i = 1,. . ., k}, in which W(Ai,
Bi)>0 for Ai 	 Bi and �iW(Ai, Bi) = 1. The two random

sets (X, m) and (X0, m0) defined by m (A) = �{W(Ai, Bi)
Ai = A} and m0(B) = �{W(Ai, Bi) Bi = B}, are such
that (X, m) 	 (X0, m0). Hence this notion of inclusion

corresponds to a convex sum of classical inclusion
relationships. Note that the 3-tuples (Ai, Bi, W(Ai, Bi))
need not be distinct.

Second, the inclusions (Xi, xi) 	 (Yi, yi) (i = 1, 2)
imply that there exist two matrices, say W1(Ai, Ai

0) and
W2(Bj, Bj

0), respectively, which satisfy the definition of

inclusion. Define the weight W3(Ai, Bj, Ai
0, Bj

0) as W1(Ai,
Ai
0) . W2(Bj, Bj

0) and consider the set

fððCk ¼ Ai � BjÞ; ðEk ¼ A0i � B0jÞ;WðAi;Bj;A
0
i;B
0
jÞÞ

jAi 2 X1;Bj 2 X2;A
0
i 2 Y1;B

0
j 2 Y2g ð9Þ

This set defines a convex sum of inclusion relationships

because W(Ai, Bj, Ai
0, Bj

0)>0 implies W1(Ai, Ai
0) > 0

and W2(Bj, Bj
0) > 0, which implies Ai 	 Ai

0 and Bj 	 Bj
0,

which finally implies Ai � Bj 	 Ai
0 � Bj

0. Now, one can

conclude that

X
A
i
�Bj¼Ck

ð
X

A0
i
:Ai	A0i

W1ðAi;A
0
iÞ�

X
B0j:Bj	B0j

W2ðBi;B
0
jÞÞ ¼

X
Ai�Bj¼Ck

x1 Aið Þ � x2 Bj

� �
¼ z1ðCkÞ ð10Þ

Similarly,

X
fWlðAi;A

0
iÞ 
W2ðBj;B

0
jÞjA0i � B0j ¼ Ek;Ai 2 Xl;Bj 2

X2g ¼ Z3ðC0kÞ ð11Þ

From (i–iii) above, one concludes that (Z1, z1) 	 (Z3, z3).

4.2. Numerical example

Requirements (i) and (ii) in the definition for random
set inclusion can be easily checked using the first col-
umns in Tables 3 and 5. A matrix W that satisfies

requirement (iii) was found using a MATLAB optimi-
zation toolbox. Table 6 gives the zero and non-zero
entries of matrix W. Table 7 is our exact W (Ci, Ej) that

meets the definition of inclusion of random sets (Z1, z1)
	 (Z3, z3).

5. Conclusion and discussion

This paper shows that inclusion is not necessarily
preserved by non-interactivity and that inclusion is

preserved by stochastic independence.
From our result, one can find it is not possible to use

the hypotheses of non-interactivity and stochastic inde-

pendence interchangeably. If the inclusions are true,
then the Belief–Plausibility intervals calculated with (Z2,
z2) and (Z3, z3) include the Belief–Plausibility intervals
calculated with (Z1, z1). If these bounds are interpreted

as upper and lower probabilities, then probability
bounds calculated with (Z2, z2) and (Z3, z3) include the
probability bounds calculated with (Z1, z1). These

bounds may be enough to make a decision on a system
of interest and may grant substantial computational
savings and robustness. For example, Tonon and Ber-

nardini [10,11] used the hypothesis of non-interactivity

Table 4

Non-interactive random Cartesian product (Z2, z2) with focal elements Di obtained from (Y1, y1) and (Y2, y2) and its equivalent fuzzy

sets

D=A0 �B0 �R(D) z2(D)

D1=A1
0 �B1

0=[5,8]� [3,7] 1 0.199998

D2=A2
0 �B1

0=[3,8]� [3,7] 0.800002 0.5

D3= (A1
0 �B2

0) [ (A2
0 �B2

0)

[ (A3
0 �B1

0) [ (A3
0 �B2

0)= [2,8]� [2,7]

0.300002 0.1

D4= (A1
0 �B3

0) [ (A2
0 �B3

0) [ (A3
0 �B3

0) = [2,8]� [1,8] 0.200002 0.200002

Table 5

Stochastically independent random Cartesian product (Z3, z3)

with focal elements Ei obtained from (Y1, y1) and (Y2, y2)

E=A0 �B0 z3 (E)= y1 (A
0) y2 (B

0)

E1=A1
0 �B1

0=[5,8]� [3,7] 0.139998200004

E2=A1
0 �B2

0=[5,8]� [2,7] 0.0199998

E3=A1
0 �B3

0=[5,8]� [1,8] 0.039999999996

E4=A2
0 �B1

0=[3,8]� [3,7] 0.349999

E5=A2
0 �B2

0=[3,8]� [2,7] 0.05

E6=A2
0 �B3

0=[3,8]� [1,8] 0.100001

E7=A3
0 �B1

0=[2,8]� [3,7] 0.210000799996

E8=A3
0 �B2

0=[2,8]� [2,7] 0.0300002

E9=A3
0 �B3

0=[2,8]� [1,8] 0.060001000004
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Table 6

Zero and non-zero entries in matrix W(Ci,Ej)

C1 W(C1,E1) W(C1,E2) W(C1,E3) W(C1,E4) W(C1,E5) W(C1,E6) W(C1,E7) W(C1,E8) W(C1,E9) 0.14 z1(C1)

C2 0 W(C2,E2) W(C2,E3) 0 W(C2,E5) W(C2,E6) 0 W(C2,E8) W(C2,E9) 0.02 z1(C2)

C3 0 0 W(C3,E3) 0 0 W(C3,E6) 0 0 W(C3,E9) 0.04 z1(C3)

C4 0 0 0 W(C4,E4) W(C4,E5) W(C4,E6) W(C4,E7) W(C4,E8) W(C4,E9) 0.35 z1(C4)

C5 0 0 0 0 W(C5,E5) W(C5,E6) 0 W(C5,E8) W(C5,E9) 0.05 z1(C5)

C6 0 0 0 0 0 W(C6,E6) 0 0 W(C6,E9) 0.1 z1(C6)

C7 0 0 0 0 0 0 W(C7,E7) W(C7,E8) W(C7,E9) 0.21 z1(C7)

C8 0 0 0 0 0 0 0 W(C8,E8) W(C8,E9) 0.03 z1(C8)

C9 0 0 0 0 0 0 0 0 W(C9,E9) 0.06 z1(C9)

E1 E2 E3 E4 E5 E6 E7 E8 E9

z3(E) 0.139998200004 0.0199998 0.039999999996 0.349999 0.05 0.100001 0.210000799996 0.0300002 0.060001000004

Table 7

Exact W(Ci, Ej) that meets the definition of inclusion for random sets (Z1, z1) 	 (Z3, z3)

C1

0.139

9982

0000

4

0.000

00002

68624

3

0.000

0000

9562

753

0.000

0001

2088

093

0.000

0003

3094

530

0.000

0003

1375

302

0.000

0001

4774

336

0.000

0007

3732

100

0.000

0000

2686

243

0.14

z1(C1)

C2

0 0.019

99977

31375

7

0.000

0000

2686

243

0 0.000

0000

8173

371

0.000

0000

6454

143

0 0.000

0000

2686

243

0.000

0000

2686

243

0.02

z1(C2)

C3

0 0 0.039

9998

7750

604

0 0 0.000

0000

9563

153

0 0 0.000

0000

2686

243

0.04

z1 (C3)

C4

0 0 0 0.349

9988

7911

907

0.000

0002

8918

742

0.000

0000

7199

115

0.000

0007

0597

750

0.000

0000

2686

243

0.000

0000

2686

243

0.35

z1(C4)

C5

0 0 0 0 0.049

9992

9813

357

0.000

0004

8094

530

0 0.000

0000

2686

243

0.000

0001

9405

870

0.05

z1(C5)

C6

0 0 0 0 0 0.099

9999

7313

757

0 0 0.000

0000

2686

243

0.1

z1(C6)

C7

0 0 0 0 0 0 0.209

9999

4627

514

0.000

0000

2686

243

0.000

0000

2686

243

0.21

z1(C7)

C8

0 0 0 0 0 0 0 0.029

9993

5522

928

0.000

0006

4477

072

0.03

z1 (C8)

C9 0 0 0 0 0 0 0 0 0.06 0.06 z1(C9)

E1 E2 E3 E4 E5 E6 E7 E8 E9

z3(E)

0.139

9982

0000

4

0.019

9998

0.039

9999

9999

6

0.349

999

0.05 0.100

001

0.210

0007

9999

6

0.030

0002

0.060

0010

0000

4
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in the formulation of a single multi-objective optimiza-
tion of engineering systems. For more engineering

applications of inclusion properties, please refer to the
papers of Tonon et al. [9,12,13].
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