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Abstract

This paper presents an analytical formulation for buckling and post-buckling prediction of composite panels and

shells. Based on Donnel-Von Karman and Kirchhoff hypotheses, the formulation takes into account for an equilibrate
and symmetric composite laminate model. After introducing the Airy functions, the equilibrium and compatibility
equations are solved using the Galerkin method. The buckling and post-buckling solutions are obtained for flat panels,

loaded by compression or shear, and for cylindrical shells, loaded by compression. The effect of the initial geometric
imperfections is also considered. The analytical solutions are validated by non-linear finite element analyses.
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1. Introduction

The use of composite materials in aerospace structural
components is extremely attractive due to their con-
siderable strength-to-weight ratio, but unfortunately
their use is not yet very extensive and their design is

often overly conservative. For example, panels and
cylindrical shells in composite materials are not allowed
to work in the post-buckling field and also the predicted

buckling loads of shell structures are reduced by a
‘knock-down’ factor that takes into account the influ-
ence of imperfections and of unintended deviation from

nominal values.
To obtain widely applicable design criteria, the

methodology of integrating a reasonable number of

experiments with a complementary computational
activity seems to be the only viable approach. Indeed,
nowadays the improvements in the computational ana-
lysis tools make possible more sophisticated analytical

and numerical models for the non-linear response,
allowing also modeling the initial geometric imperfec-
tions. In any case, the analytical and numerical models

need to be validated with test results [1,2], before they
can be used with confidence.
Finite element models have been developed that allow

the post-buckling behavior of panels and shells in
composite materials [3] to be investigated efficiently, but

they are slow computational methods that require a long
time to calibrate the model and long CPU time. So
analytical methods that can give with good accuracy the
buckling loads and an idea of the post-buckling field are

of great interest from the industrial point of view,
especially during the preliminary design phase.
This paper presents an analytical formulation that

allows determining not only the buckling loads but also
the post-buckling field of flat panels subject to com-
pression or shear and of cylindrical shells subject to axial

compression.

2. Equilibrium and compatibility equations for composite

panels and shells

The equilibrium and compatibility equations are
written in tensor notation [4] for generical panels of
anysotropic materials, starting from an analytical theory

developed in the 1960s [5]. The equations are written
referring to the midplane x, y of the panels, having the
thickness h much smaller than the other two dimensions

and small curvature. The following approximations are
taken into account:
. approximation of Donnel-Von Karman, for which
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the displacements are considered infinitesimal except
the displacement w(x, y) normal to the midplane;

. hypothesis of Kirchhoff, for which the normals to
the midplane are maintained.

The buckling configuration is looked for starting from

an initial pre-loaded configuration, where the pre-stres-
ses are represented by the tensors Ep

ik. The initial
imperfections are taken into account through the tensor

ow/ ik and the panel curvature through the tensor bik. The
Airy function � = �(x, y) is introduced so that the
equation unknowns are the Airy function �(x, y) and the
normal displacement w(x, y).

The classical laminate theory [6] is then introduced,
considering a symmetric laminate:
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where {"o} represents the midplane strains, {k} the
midplane curvatures, {N} and {M} the stress resultants
(in the form of forces per unit length and moments per

unit length).
For simplicity only symmetric and equilibrate lami-

nates are considered, so that the matrix [A] that connects

{N} and {"o} becomes:
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while its inverse becomes:
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Another approximation in the laminate is considered:
the laminates that are symmetric and equilibrate present
also the terms D16 = D26 = 0.

So the equilibrium equation for flat laminate panels
gives:
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while the equilibrium equations for cylindrical shells,

where bik ¼ bxx ¼ � 1
R, gives:
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The compatibility equation for flat laminate panels
gives:
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while the compatibility equations for cylindrical shells
gives:
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3. Flat panels in composite materials subject to

compression or shear

Simply supported flat panels are considered subjected

to two different load conditions: compression and shear.
First, the expression of linear buckling load is

obtained, together with the buckling mode. Because of
the complexity of the closed-solution of the equilibrium

and compatibility equations, the method of Galerkin is
applied, representing the unknowns by the infinite
double trigonometrical series:
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where m is the number of half-waves in the x direction, n
the number of the half-waves in the y direction, a and b
are the length of panel sides in the x and y direction,

respectively, and the panel is loaded in compression
along the x direction.
In the case of compression, the expression of the lin-

ear buckling stress is given by:
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where D = (D12 + 2D66).
The buckling mode under compression is given by nc =

1 and mc ¼ a
b
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In the case of shear, the expression of the linear

buckling stress is given by:
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for the values of l and t that minimize � , where l is the
length of the single buckling wave, while t is the tangent
of the inclination angle � of the wave. Equation 11 is
minimized case by case using MATLAB.

Then, for the panels loaded in compression, the post-
buckling field is studied considering also the effect of the
initial geometric imperfections, that have the same shape

of the buckling mode:
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In this case, Eqs. (4) and (6) are considered taking into

account also the non-linear terms, applying the Galerkin
method and obtaining the value of the compression
stress � versus q:
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and the shortening ux versus q:
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4. Flat panels in composite materials subject to

compression or shear: application and comparison to finite

element analyses

An application of the formulation is given for flat
panel with a = b = 300 mm in carbon fiber and epoxy
matrix. Two panels with four layers and lay-up

sequences equal to [08/908]S and [08/458/�458/08] are
analyzed. The panel thickness is equal to 1.32 mm.
The � versus ux curves, for different values of the

adimensional parameter f of the initial geometric
imperfection, defined as f = d/h, is given in Fig. 1, for
the [08/908]S panel.

The analytical results are then compared with those
obtained from finite element analyses using the com-
mercial code ABAQUS. The buckling loads and the

buckling mode are obtained through eigenvalue ana-
lyses, while the stress-shortening curves are obtaining by
means of non-linear Riks method [3]. The differences

between the buckling loads obtained through the ana-
lytical formulation and the finite element analyses are
contained in 2% in the case of compression load and in
4% in the case of shear load. An example of the stress-

shortening curves is reported in Fig. 2. It represents the
comparison in the case of a panel [08/908]S with an initial
imperfection amplitude f = 0.1.

Fig. 1. Panel [08/908]S: stress-shortening curve for different

values of initial imperfections.
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5. Cylindrical shells in composite materials subjected to

compression

Cylindrical shells subjected to axial compression are

analyzed.
First, the expression of linear buckling load is

obtained, together with the buckling mode, applying the
Galerkin method where only the first term of the series

for the unknowns w and � is considered.
The expression of the linear buckling stress is given

by:
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for the values of m and n that minimize �, where m is the

number of waves in the circumferential direction and n
the number of waves in the axial direction. The mini-
mization is performed case by case using MATLAB.

Then, the post-buckling field is studied considering
the non-linear terms and also the effect of the initial
geometric imperfections. Two different analytical for-

mulations are developed: the first one for the cylindrical
shells that present an axialsymmetric buckling mode and
the second one for those that present a diamond buck-
ling mode.

For example, in the case of diamond buckling mode
the expression of the compression stress � and of the
shortening ux versus q, are given respectively by:
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â
1

�2
16

R
þ â

Nc

R

� �2
1

�4
512

3
d

" #
q2 þ â
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where NC is the number of diamond wave in a length

equal to the circumference in correspondence of the
buckling load.

6. Cylindrical shells in composite materials subjected to

compression: application and comparison to finite element

analyses

An application of the formulation is given for
cylindrical shells with radius R = 350 mm and the same
laminates of the already considered flat panels.

The � versus uy curves, for different values of the
adimensional parameter f of the initial geometric
imperfection, are given in Fig. 3, for the [08/458/�458/08]
shell.

The analytical results are then compared with those

obtained from ABAQUS analyses. The differences
between the buckling loads obtained through the ana-
lytical formulation and the finite element analyses are

lower than 4% when no initial geometric imperfections
are considered. They are a little bit higher in the case of
geometric imperfections, as shown in Fig. 4, where the

Fig. 3. Shell [08/458/�458/08]: stress-shortening curve for dif-

ferent values of initial imperfections.

Fig. 2. Panel [08/908]S: Comparison between analytical and

numerical stress-shortening curve for an initial imperfection

amplitude f = 0.1.
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knock-down factors are reported in the case of a [08/
908]S shell with diamond initial imperfections.

7. Conclusions

The analytical formulation here proposed appears
able to correctly predict both buckling loads and post-
buckling field for flat panels and cylindrical composite
shells. The comparisons with the finite element results

show a good agreement in the cases of two structural
configurations here analyzed. The obtained results
appear very promising for the extension of the proposed

formulation to generic composite laminates. As typical
aerospace structures such as wing and fuselage are
mainly based on panels and shells, the proposed analy-

tical formulation can be considered a very fast and
efficient tool. Indeed, especially during the preliminary

design phase, it is important to rapidly investigate dif-
ferent structural configurations, and detailed but

expensive non-linear finite element analyses can not be
applied, due to their requests in terms of computation
and mesh generation time.
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