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Abstract

In this paper an anisotropic damage model is proposed respecting discontinuous damage effects observed in a certain
range of over-expansion of arteries. The model is applied to a polyconvex stored energy function for transversely
isotropic hyperelasticity, which possesses the advantage of avoiding material instabilities in the elastic range. Numerical

examples are presented in order to provide an insight into the performance of the proposed model.
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1. Introduction

The development of optimized methods for the
resetting of artery stenosis, caused by atherosclerotic
plaques, demands simulation models that are able to

reflect the material behavior of arterial walls. For an
overview of arterial wall mechanics see Holzapfel et al.
[1] and Gasser and Holzapfel [2]. In this paper the

proposed damage model, formulated in the framework
of internal variables, is applied to the anisotropic poly-
convex model for soft tissues, introduced in Schröder

and Neff [3], which is embedded in the concept of
integrity bases, see Spencer [4], Boehler [5] and Betten
[6]. Polyconvexity in the sense of Ball [7,8], cf. Marsden
and Hughes [9] and Ciarlet [10], implies the fulfillment of

the Legendre–Hadamard condition. With respect to this,
a comparison of several constitutive models for soft
tissues is investigated in Schröder et al. [11].

2. Continuum-mechanical foundations

Let the body of interest be denoted by B 	 R
3 for the

undeformed reference configuration and S 	 R
3 for the

current configuration. The deformation of the body is

respected by the motion of points X 2 B, being trans-

formed to the actual position x 2 S by the deformation
map ’t : B ! S at time t 2 R+. The deformation gra-
dient F and the deformation measure, the right Cauchy–
Green deformation tensor C, are defined by

FðXÞ :¼ Grad’tðXÞ and C :¼ FTF; ð1Þ

respectively. Focusing on hyperelasticity the existence of
a stored energy function  is postulated, which is defined
per unit reference volume. In order to satisfy the prin-
ciple of material frame-indifference the constitutive

equations are formulated in the right Cauchy–Green
deformation tensor. Neglecting dissipative effects the
second Piola–Kirchhoff stresses S and the interrelation

of S and the Kirchhoff stresses � are given by

S ¼ 2@C and � ¼ FSFT ð2Þ

For taking into account anisotropic material behavior
additional argument tensors, the so-called structural
tensors, are necessary. The idea in this context is to

replace an anisotropic tensor function by an isotropic
one via suitable structural tensors. These tensors M are
invariant under transformations, say rigid body rota-

tions Q, being elements of the (transversely isotropic)
material symmetry group Gti and

M ¼ QTMQ 8 Q 2 Gti 	 SOð3Þ ð3Þ*Corresponding author. Tel.: +49 2011 833 142; Fax: +49
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holds with SO(3) denoting the special orthogonal group.
Let a be the preferred direction of the material with

kak = 1, then a suitable structural tensor is defined as
M:= a 6 a. This leads to an isotropic tensor function
fulfilling

 ¼  ðC; MÞ ¼  ðQTCQ; QTMQÞ 8 Q 2 SOð3Þ ð4Þ

Now we are able to express the functional dependence of

 in terms of the invariants of the argument tensors (C,
M):

I1 :¼ tr C; I2 :¼ tr½CofC�; I3 :¼ detC;

J4 :¼ tr½CM�; J5 :¼ tr½C2M� ð5Þ

These invariants form a possible polynomial basis for
the stored energy, i.e.  =  (I1, I2, I3, J4, J5).

3. Polyconvex hyperelastic model for arterial walls

In order to guarantee physically reasonable material
behavior several constitutive inequalities have been
proposed in the literature. A quite suitable condition is

the Legendre–Hadamard inequality, which investigates
the existence of positive wave speeds by analyzing the
acoustic tensor. If the acoustic tensor is positive definite
then the material is said to be materially stable; this does

not imply the existence of minimizers of the value-
boundary problem arising from the Finite-Element-
Method. A practicable framework, which guarantees the

existence of minimizers and fulfills the Legendre–
Hadamard condition, is the polyconvexity condition of
Ball [7, 8]. A basis for constitutive modeling using

polyconvex stored energies is given in Schröder and Neff
[12], where the proof of polyconvexity is exposed for a
variety of anisotropic stored energy functions.

Arterial walls are mainly stiffened by collagen fibers

which are arranged helically crosswise around the artery.
These fibers are embedded in an incompressible matrix
material, which can be represented by the isotropic

polyconvex function

 iso ¼ �1
I1

I
1=3
3

þ �2
I2

I
1=3
3

� �3 ln ðI3Þ þ �4ðI�5

3 þ
1

I�5

3

� 2Þ

ð6Þ

introduced in Schröder and Neff [3]. The fact that the

fibers, oriented mainly in two directions, do not differ
with the direction, leads to the assumption that the
material behavior remains the same for each fiber

orientation. For orthotropic materials with weak inter-
actions between the two preferred directions a1 and a2
the superposition of two transversely isotropic models

with identical material parameters seems to be

appropriate, see e.g. Schröder et al. [11] and Holzapfel et
al. [1]. Thus, the material behavior of the fibers can be

represented by the polyconvex function

X2
a¼1

 ti;ðaÞ ¼
X2
a¼1
½�6ðJðaÞ5 � I1J

ðaÞ
4 þ I2Þ þ �7

J
ðaÞ�8

4

I
1=3
3

þ

�9ðI1JðaÞ4 � J
ðaÞ
5 Þ þ �10J

ðaÞ�11

4 � ð7Þ

see Schröder and Neff [3]. The mixed invariants
J
ðaÞ
4 ¼ C : MðaÞ and J

ðaÞ
5 ¼ C2 : MðaÞ are governed by the

structural tensors M(a) = a(a) 6 a(a) with the preferred
directions a(a), a= 1..2, representing the fiber directions.

In order to guarantee polyconvexity we have to respect
�8 5 1 and �11 5 1 and the remaining parameters have
to be greater than zero. With Eqs. (6) and (7) we obtain

the complete polyconvex stored energy function for
arterial walls in the form

 ¼  iso þ
X2
a¼1

 ti;ðaÞ ð8Þ

As a simple example for the material stability of the
polyconvex model a localization analysis is now per-
formed; for details on this subject we refer to Schröder

et al. [11], where the localization of several constitutive
models for soft tissues is investigated. The acoustic
tensor can be calculated by the formula

�QðNÞab ¼ Aa
A

b
B

NANB with Aa
A

b
B ¼ D2

FWðFÞ and

WðFÞ ¼  ðCÞ ð9Þ

given in index notation. Herein N denotes the normal

vector in spherical coordinates N (��, ��) = [sin( ��) cos(��),
sin( ��) sin (��), cos( ��)]T. A sufficient condition for mate-
rial stability is q := sign[min[q1, q2, q3]] jq3 j > 0 with

q1 = �Q11, q2 = �Q11
�Q22 � �Q12

�Q21 and q3 = det[ �Q] for all
directions of the cross-sectional area represented by N,
because then the acoustic tensor is positive definite. As a

numerical example a cube, consisting of the Media and
Adventitia of an arterial wall, is compressed up to the
stretch �1 = 0.4 by utilizing the polyconvex model. The

material parameters for the Media and Adventitia of an
artery have been fitted in Schröder et al. [11] and are
given in Table 1. The setup of the experiment is
demonstrated in Fig. 1(a) while the values of q are

plotted for each orientation of cross-sections within the
test materials in Figs 1(b) and (c). We observe only
positive values for q, therefore, the material is stable for

the considered experiment (and for all other possible
deformation states, whereas different often used models
proposed in the literature fail, see Schröder et al. [11]).

D. Balzani et al. / Third MIT Conference on Computational Fluid and Solid Mechanics56



4. Anisotropic discontinuous damage model

Breakage of micro fibrils induced by fracture of col-
lagen-crosslinks within arterial walls may be interpreted
as reason for discontinuous damage effects, which are

observed in experiments. This is the reason for the
assumption implying that damage occurs only in fiber
direction. Thus, the energy is subdivided into an unda-

maged isotropic part and a damaged anisotropic part,
leading to

 ðC; MðaÞ; DðaÞÞ ¼ ~ ðCÞ þ
X2
a¼1
ð1�DðaÞÞ ̂ 0

ðaÞðC; MðaÞÞ
h i

ð10Þ

where ~ ;  ̂ 0
ðaÞ and D(a) denote the isotropic energy,

transversely isotropic net-energy and the damage vari-
able for each preferred direction a(a) respectively. In
compliance with thermodynamic consistency the second

law of thermodynamics has to be fulfilled. Starting from
the Clausius–Duhem inequality for isothermal condi-
tions D ¼ 1

2S : _C� _ � 0 we receive the constitutive

equation for the stresses

S ¼ 2@C ¼ 2@C ~ þ
X2
a¼1
½ŜðaÞ�; with

ŜðaÞ ¼ 2ð1�DðaÞÞ@C ̂ 0
ðaÞ ð11Þ

and the reduced dissipation inequality

D ¼
X2
a¼1

 ̂ 0
ðaÞ

_DðaÞ

h i
� 0 ð12Þ

We assume the existence of a scalar-valued dissipation
potential ’(a) = ’̂(a) ( _D(a)), which is convex in the flux

variable _D(a). By partial differentiation the work-con-
jugated variable results in  ̂0

ðaÞ ¼ @ _DðaÞ
’ðaÞ. Legendre–

Fenchel transformation leads to the dual dissipation

potential ’
ð ̂0
ðaÞÞ ¼ sup _DðaÞ

ð ̂0
ðaÞ

_DðaÞ � ’ð _DðaÞÞÞ and the
dual work-conjugated variable _DðaÞ ¼ @ ̂ 0ðaÞ

’
, in this
context see Lemaitre and Chaboche [13]. Integration of
the damage variable yields D(a) as a function of  ̂0

ðaÞ.
With Eq. (12) we are able to construct a function for the
damage, which is given by

DðaÞð ̂0
ðaÞÞ ¼ �1ð1� eð��ðaÞ=�2ÞÞ ð13Þ

The discontinuity in damage evolution enforces a
special definition of the internal variable, beholding the
maximum value of the transversely isotropic net-energy
reached up to actual time. The explicit formulation of

the internal variable is defined as

�ðaÞ ¼ sup0�s�t  ̂
0
ðaÞ; s �  ̂ 0

ðaÞ; 0

h i
ð14Þ

A damage criterion is necessary in order to possess an

activating condition for the damage evolution. This
criterion is defined by

�ðaÞ :¼ �ðaÞ �  ̂0
ðaÞ �  ̂0

ðaÞ;0

� �
> 0 ð15Þ

Table 1

Material parameters for an artery

�1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11

[kPa] [kPa] [kPa] [kPa] [�] [kPa] [kPa] [�] [kPa] [kPa] [�]

Media 1.502 0.0015 0.328 6.019 10.223 0.310 0.0325 7.339 0.027 0.041 1.077

Adventitia 0.107 0.0002 0.132 4.278 5.940 0.066 0.0002 1.477 0.0003 0.012 5.381

Fig. 1. (a) Setup of experiment with preferred directions a(1) = (0.8746, 0.4848, 0.0)T and a(2) = (0.8746, �0.4848, 0.0)T and q at

stretch �1 = 0.4 gathered by the polyconvex model for the (b) Media and (c) Adventitia.
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inducing evolution of damage merely if the criterion is
fulfilled.  ̂0

ðaÞ;0 denotes the transversely isotropic net-

energy for the reference configuration (F = 1). With the
linearization of the damage variable

�DðaÞ ¼
@DðaÞ
@�ðaÞ

��ðaÞ ¼
@DðaÞ
@�ðaÞ

1

ð1�DðaÞÞ
Ŝ : �E ð16Þ

we obtain the linearized stresses in the form 4S = C
eD :

4E with the tangent moduli

C
eD ¼ ~Ce þ

X2
a¼1

Ĉ
e
ðaÞ þ C

D
ðaÞ

� �
; with ~Ce ¼ 4

@2 ~ 

@C@C
;

Ĉ
e
ðaÞ ¼ ð1�DðaÞÞ 4

@2 ̂0
ðaÞ

@C@C
ð17Þ

and

C
D
ðaÞ ¼

� @DðaÞ
@�ðaÞ

1
ð1�DðaÞÞ2

ŜðaÞ � ŜðaÞ ; if �trialðaÞ � 0

¼ 0 ; if �trialðaÞ > 0

(
ð18Þ

and the trial value

�trialðaÞ ¼ �ðaÞðtnÞ � ½ ̂0
ðaÞðtnþ1Þ �  ̂0

ðaÞ;0ðtoÞ� of the damage
criterion.

5. Numerical examples

In this section the material parameters of Table 1 and
�1 = 0.9, �2 = 0.3 kPa for the Media and �1 = 0.7,
�2 = 0.3 kPa for the Adventitia are utilized. In the first

numerical example a test cube of the Media of an artery
is exposed to the experiment shown in Fig. 1(a) and
loaded cyclically. The material response is illustrated in

Fig. 2, in which the discontinuous damage effect can be
observed.

The second example considers the inhomogeneous
deformation in the cross-section of an atherosclerotic
artery. The system is illustrated in Fig. 3 and solved via
the Finite-Element-Method using quadratic triangle

elements. The atherosclerotic plaque is modeled by an
isotropic Neo-Hooke material and consists of calcifica-
tion (treated as nearly rigid), an extracellular lipid pool

(E = 5.0 kPa, v = 0.499) and the plaque itself (E =
100.0 kPa, v = 0.499). In Fig. 3(b) the distribution of
damage D(1) is plotted for the deformed configuration. It

should be noted that the utilized material parameters are
relatively arbitrarily chosen.

6. Conclusion

In this paper an anisotropic discontinuous damage
model has been proposed, which was able to reflect
qualitatively experimental observations made in arterial

walls. The discontinuous damage effect was biomecha-
nically motivated by the breakage of collagen cross-
links, thus, damage was assumed to act only on the

stored energy describing the fibers. The weak interaction
between the two fiber directions has been considered by
the superposition of two transversely isotropic models.
Furthermore, material stability has been respected by

applying a polyconvex stored energy function, which has
been shown in a brief localization analysis. At the end
some numerical examples demonstrated the perfor-

mance of the proposed model.

Fig. 2. (a) Kirchhoff stresses �11 and (b) �22 versus stretch �1 in a cycled tension test (see experiment in Figure 1(a)) of the Media of an

artery.
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Fig. 3. (a) Mesh of the considered artery with hydrostatic pressure p in the inside and (b) undeformed (1) and deformed (2) artery with

distribution of D(1) when p = 1.00 kPa.
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