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Abstract

In spite of continuously growing efforts and associated developments in the field of superplastic deformation, the
limited predictive capabilities of deformation and failure remain a major obstacle that hampers the widespread use of

the superplastic forming process. This work focuses on the development of an anisotropic microstructure-based con-
stitutive model that can be used to accurately simulate the superplastic forming process. The model is capable of
describing the superplastic deformation under simple tension and pure shear loading conditions.
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1. Introduction

Superplasticity is the phenomenon associated with
certain classes of materials that have the ability to

undergo very large uniform ductility. Superplastic
forming (SPF) has been developed to utilize this phe-
nomenon, and form various components from titanium,

aluminum and other alloys for automotive and aero-
space applications. SPF has many advantages over
conventional forming processes; its ability to form very
complicated geometries with cost and weight saving

potentials. However, the industrial use of SPF is still
limited to low volume applications, because of a number
of issues that have been hampering its widespread use.

One of the most important issues is the limited predictive
capabilities due to lack of accurate constitutive models
for superplastic deformation.

Significant efforts have been made to develop con-
stitutive relations that describe the superplastic
deformation, but most of these efforts are based on the
uniaxial loading condition and/or assume isotropic

behavior. In addition, only few models take the effect of
microstructural evolution on the deformation into
account [1,2,3,4]. However, studying the deformation

under uniaxial loading condition does not give any

insight on possible directional effects that may result

from an anisotropic structure. Recent multiaxial
experiments on the Pb-Sn superplastic alloy have
showed a strong degree of deformation-induced aniso-

tropy and transient behavior, which can be associated
with development of internal (back) stresses [5,6].
In this work, we present a generalized microstructure-

based multiaxial constitutive model that can describe the
anisotropic superplastic deformation. The focus will be
on the anisotropic and microstructural aspects of the
model. The developed model is simplified to the uniaxial

and simple shear loading cases, and the predicted
stresses are compared with the experimental data. It is
shown that the model can accurately capture the mate-

rial behavior for the two loading cases, in addition to the
induced axial stresses measured in fixed-end torsion test.

2. Constitutive model

On the basis of the continuum theory of viscoplasti-
city with internal variables, the general associated flow
rule for superplastic deformation is given by the fol-

lowing tensor equation [7,8]:
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where Dij is the rate of deformation tensor, f is the
overstress function, J(�ij � �ij) is the anisotropic yield

function, �ij and �ij are the Cauchy and internal stress
tensors, respectively, R is the isotropic hardening, m is
the strain rate sensitivity index, n is the stress exponent,

d is the average grain diameter, p is the grain growth
exponent, and Ci, Cii and K0 are material parameters.
Equation (1) accounts for microstructural evolution

and the internal variables if these variables are updated
during deformation; this can be achieved by introducing
the evolution equations.

2.1. Grain growth equation

A grain growth model similar to the one used by
Johnson et al. [9] will be used here, by combining both
static and dynamic parts. The rate equation has the

following form:
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where t is time, and ks, g, kd and � are material
constants.

2.2. Evolution equations of internal variables

Equation (1) includes a set of internal variables: back
stress �, isotropic hardening R and the anisotropic angle
�. The evolution equations for these internal variables

are consistent with those used in viscoplasticity and
include hardening, dynamic recovery, and static recov-
ery terms:
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where H, CD and CS are the hardening, dynamic
recovery and static recovery coefficients, and a is the
static recovery exponent; h(�) has the form of the ani-
sotropic yield function, where h(�) = J(�).
Motivated by the work of Dafalias [10], the evolution

of � is given by:

_� ¼ �
ffiffiffi
3
p

_�"

2
x 1� � �11 � �22ð Þð Þ þ 1� xð Þ 1� � cosð2�Þð Þ½ �

ð5Þ

where _�" is the effective strain rate, and x, � and � are

material parameters.

2.3. Anisotropic yield function

To capture the anisotropic behavior during defor-
mation, a generalized anisotropic yield function is used

here [7,8]:
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where Sij is the deviatoric stress tensor, Mij, N1ij and N2ij

are directional tensors expressed in terms of � [8], and c1,
c2 and c3 are the anisotropic constants (for c1 = c2 =

c3 = 0, the anisotropic yield function reduces to the iso-
tropic von Mises one).

2.4. Solution

Equation (1) is a tensor equation that represents a
total of six equations for the six independent stress and

strain rate components. Yet, for any particular loading
case, the equation can be reduced to a certain number
(usually lesser) of independent equations; each relates a

strain rate component to the associated stress compo-
nent. The same applies to the back stress tensor in Eq.
(4).

For the given strain rate/s, the grain growth and the
evolution equations are first solved, and along with Eq.
(6), are fed into the constitutive model reduced from Eq.

(1). The constitutive model is solved for the stress
component/s corresponding to the given strain rate/s.

3. Results

The general constitutive model was reduced to both
simple tension and pure shear loading conditions, in

order to calibrate the model and fit the experimental
data. The different material parameters in the previous
equations were determined from a number of tests

conducted on the model Pb-Sn superplastic alloy [7].

3.1. Simple tension

Since there is one stress component (�11) associated
with uniaxial loading case, the tensor Eq. (1) reduces to
one equation that relates �11 to �11:
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A plot of the predicted axial stresses compared to the
experimental data at different strain rates is shown in

Fig. 1. The model is capable of describing the super-
plastic behavior of the material by capturing its strain
rate sensitivity and the hardening/softening behaviors.

The effect of anisotropy on the predicted stresses was
observed to be insignificant, which is expected, as the
uniaxial loading does not give any insight on possible

directional effects caused by an anisotropic structure. On
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the other hand, the effect of grain growth was proven
significant, as it is clearly depicted from Fig. 2. Incor-
porating grain growth into the constitutive model allows

it to capture the appropriate softening and hardening
behaviors at different strain rates.

3.2. Pure shear

A simple shear loading case is simulated by a pure
torsion test. But since anisotropy is taken into account,

induced axial stresses/strains are expected depending on

the type of test performed. For a fixed-end torsion test,
induced axial stresses appear in the stress tensor as

additional axial stress components, without affecting the
rate of deformation tensor. Consequently, Eq. (1)
becomes:
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Similarly, the model successfully captures the surface

shear stresses measured in fixed-end torsion tests at
different strain rates, as shown in Fig. 3. In addition, the
model with the employed anisotropic yield function

predicts the development of induced axial stresses, as
shown in Fig. 4. These induced stresses are indicative of
deformation-induced anisotropy, and follow the actual
trend of the experimentally recorded ones [8]. Capturing

these stresses was not feasible with an isotropic yield
function [7].

4. Conclusions

A multiaxial constitutive model for superplastic
deformation, which accounts for grain growth, aniso-
tropy and the evolution of internal variables, was

presented. The model was reduced to the uniaxial and

Fig. 1. Predicted and experimentally constructed stress–strain

curves in simple tension.

Fig. 2. Effect of grain growth on the axial stresses in simple

tension.

Fig. 3. Predicted and experimentally constructed shear stress–

strain curves in simple shear.
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pure shear loading cases, where it successfully captured
the experimentally observed superplastic behavior of the
model material.
Grain growth effect was clearly shown in simple ten-

sion, where the model captured the hardening/softening
behavior at different strain rates. Anisotropy had no
significant effect in simple tension; however, it enabled

the model to predict the induced axial stresses observed
in fixed-end torsion.
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Fig. 4. Predicted induced axial stresses in fixed-end torsion.
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