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Abstract

In this paper the need for a rational treatment of uncertainties in structural mechanics and analysis is reasoned. It is
shown that the traditional deterministic conception can be easily extended by applying statistical and probabilistic
concepts. The so-called Monte-Carlo simulation procedure is the key for those developments, as it allows the
straightforward use of the currently used deterministic analysis procedures. Two numerical examples exemplify the
methodology. It is concluded that uncertainty analysis may ensure robust predictions of variability, model verification,

safety assessment, etc.
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1. Introduction

Structural mechanics and analysis, up to this date,
generally is still based on a deterministic conception [1].
Observed variations in loading conditions, material
properties, geometry, etc., are taken into account by
either selecting extremely high or low or average values,
respectively, for representing the parameters. Hence, by
this, uncertainties inherent in almost every analysis
process are considered just intuitively. Observations and
measurements of physical processes, however, clearly
show their random characteristics. Statistical and
probabilistic procedures provide a sound framework for
a rational treatment of these uncertainties. Moreover
there are various types of uncertainties to be dealt with
(see Fig. 1). While the uncertainties in mechanical
modeling can be reduced as additional knowledge
becomes available, the physical or intrinsic uncertainties
can not. Furthermore, the entire spectrum of uncer-
tainties is also not known. In reality, neither the true
model nor the model parameters are deterministically
known. Assuming that by finite element (FE) procedures
structures and continua can be represented reasonably
well, the question of the effect of the discretization still
remains. It is generally expected that an increase in the
size of the structural models, in terms of degrees of
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Fig. 1. Spectrum of uncertainties.

freedom, will increase the level of realism of the model.
Comparisons with measurements, however, clearly show
that this expectation can not be confirmed. An ever-
refined FE model just decreases the discretization error,
but all other aspects contributing to the discrepancy
between prediction and measurement will not be
improved. There are several reasons for this. Among
them is the fact that the FE model, which is a mathe-
matical idealization, represents the physical behaviour
not exactly but with a certain accuracy only. Typical
examples for this are strongly non-linear interactions in
a linear model, ignoring flexibilities at joints, inaccurate
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modeling of the boundary conditions, ignoring the non-
linear interaction, etc. Furthermore, even if it is assumed
that the idealized mathematical FE model represents the
structural behavior, the model parameters do show
uncertainties. As already stated above, these uncertain-
ties refer to both loading — environmental loading such
as water waves, wind, earthquakes, etc., are good
examples of this — as well as to structural properties,
such as imperfections of geometry, thickness, Young’s
modulus, material strength, fracture toughness, damp-
ing characteristics, etc. It is also well known that the
results of experimental measurements are subjected to
uncontrollable random effects. This is the main reason
why they are so difficult to reproduce. This fact leads
directly to the claim as made before, i.e. that an increase
in the number of degrees of freedom does not compen-
sate for the insufficient modeling of physical
phenomena, such as not taking into account the uncer-
tainties in the boundary conditions, etc. Needless to say
that it is most important that the model reflects physical
phenomena. This of course includes the uncertainties in
both structural properties and loading conditions.

2. Modeling of uncertainties

While in the deterministic conception a single value is
considered to suffice for the representation of a parti-
cular variable, there are in fact a great number of values
— each associated with a certain probability of occur-
rence of a particular value — that are needed for a
realistic description (Fig. 2). Hence the variables in their
basic form may be described as so-called random vari-
ables X. Typical examples are, for example, the yield
strength of materials etc. The associated uncertainty is
quantified by probability measures, e.g. described as
probability density functions. In other words, the
probability that a parameter takes on values within an
interval is

b
Pla < X < b):/ Sf(x) dx (1)

This one-dimensional definition certainly can be
expanded easily for multi-dimensional cases. The dis-
tribution of the occurrence of the various values, i.e.
f(x), also denoted as the probability density function, is
generally characterized by certain types of function such
as the normal or Gaussian distribution, etc. The para-
meters, such as the central tendency or mean value as
well as the variance, are estimated by statistical proce-
dures. For time variant processes, the probability
density refers not only to one time instant, but to other
times as well, i.e. to a family of random variables X (¢,),
X(t;) more simply denoted by X(7). Again, if the
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Fig. 2. Deterministic conception versus concept including
uncertainties.

distributions of X(¢;), X(#,) are Gaussian, such a process
is denoted as a Gaussian process [2]. Typical examples
are wind, wave, earthquake records, etc. If the structural
randomness includes spatially correlated random fluc-
tuations of systems or load parameters as well (see, e.g.
wind pressure fluctuations on area-like structures), the
notion of a random field is used. A random field is
generally defined by its type of probability distribution
and the associated distribution parameters, such as
mean and variance, the autocorrelation function, and
other properties, such as homogeneity, etc. Homo-
geneity, for example, means that the statistical
properties are independent from the specific location,
which implies a constant mean value and a correlation
function that depends only on the relative distance in
space or time.

When specifying uncertainties, it is advisable to con-
sider all uncertain parameters instead of considering just
some ‘most influential’ uncertain parameters by a priori
engineering judgment. This would prejudice the result,
and high sensitivities of parameters not labeled as
‘important” would not be reflected by the response. It is
crucial to note that the computational effort for a single
FE-run is basically independent of the number of ran-
dom variables (uncertainties) introduced. Hence,
considering a large number of uncertain parameters by
using Monte-Carlo simulation, cf. Section 3, entails no
disadvantage, while considering all uncertainties ensures
a robust prediction of the variability. As a side effect, the
variability of the response might also serve as a tool to
verify, for example, the quality of the mathematical (FE-)
model. A large scatter of the response reveals either an
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Fig. 3. Stochastic analysis based on Monte-Carlo sampling.

unfavorable high sensitivity on input parameters that
are not sufficiently well known or indicates some mod-
eling errors that require further improvements to arrive
at robust predictions.

3. Methods and procedures

FE element models generally contain quite a large
number of parameters like elasticity constants, geometry
specifications, loading parameters, boundary conditions,
etc., of which most values are not perfectly known [3]. It
was stated above that the so-called ‘true’ parameters
can, if at all, be determined in exceptional cases only, i.e.
by experiments. Hence the values used in deterministic
FE-analysis are so-called nominal values that deviate to
a certain extent from the unknown true value. The
uncertainties within the input parameters naturally
result in uncertainties of the output, i.e. the response.
Since response predictions are the central goal of any
FE-analysis, and all predictions depend more or less on
the uncertain input parameters, a rational approach has
to include these unavoidable uncertainties.

Data are always scarce. Accessible statistical infor-
mation, if any, might be restricted to the mean value, the
standard deviation, upper and lower fractile values or
upper and lower bounds. However, with this concept,
whatever information is available can be used and — as
new information or data becomes available — updated.
Under these circumstances, it is reasonable to select the
most convenient distribution that reflects the known or
assumed variability (uncertainty) and avoids realizations
that are not physically meaningful. For many reasons,
the Gaussian normal distribution and log-normal dis-
tribution respectively are preferred. Since the uncertain
input is specified mathematically by probability laws, the
response follows also such laws, i.e. has a well defined
unique distribution. Analytical methods to arrive at the
distribution of the response require very specialized
knowledge, and, most importantly, are not generally
applicable, i.e. they are limited in their application and,

in addition, not straightforward. The alternatives to
analytical approaches are those based on what is deno-
ted as Monte-Carlo simulation. This approach is most
generally applicable, and all deterministic analysis tools
can be integrated to their full extent.

Figure 3 depicts the basic principles of Monte-Carlo
sampling [4] where the laws of statistics are exploited to
derive information on the variability of the response. By
using a suitable number generator (see e.g. RANDLIB
[S]), statistically independent samples of the input are
generated by a type of game of chance, and follow the
prescribed probability distributions of the uncertain
parameters. Suppose that each of the introduced ran-
dom variables is represented by a component X; of the
vector X = {Xj}7_|. Hence, the input distribution f{x,
X2, ..., X,) 1s represented according to statistical laws by
a finite number N of independent samples {x(k)},/(\':l.
Each vector x® specifies for each uncertain parameter a
deterministic discrete value and consequently defines
deterministically the response that might be represented
by the vector r'® = r(x®). Hence, traditional determi-
nistic FE-analysis can be used to provide the mapping
r® = r(x®) between input and response.

In the simplest case, it might be justified to assume
that all uncertainties are independent. Such as assump-
tion is reasonable as long as this assumption does not
contradict experience and physical properties. When the
components are considered as independent, each com-
ponent can be generated by available random number
generators where the distribution and its parameters
must be supplied. One can approximate the expectation
or the mean of each response quantity r; by

| N
pi = E(ry = 5> rilx®) @
k=1
and the variance by
;XN
V2= ) e — (x®M) — )2
Var{r;} =07 =E{(r; — )"} N _ 1;("1()‘ ) — i)
3)
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where E{-} denotes the expectation operator. In addi-
tion, the linear correlation between different response
quantities can be computed:

=, — 1)1~ m)} (i) =
ket (1 — ) (r(x") — pu)
S () — 30 () —

a4

The above estimates (right-hand side expression) are
random variables themselves, which fluctuate randomly.
The fluctuation diminishes with an increasing sample
size N, where the mean p; and standard deviation
oi = y/Var{r;} have a coefficient of wvariation of
~ 4/1/N. For assessing the variability of the response, a
sample size N in the order of 30 to 100 suffices for the
first step to obtain estimates on the mean and the var-
iance of the response. Hence the estimates will vary
approximately 20% and 10% when using a sample size
N of 25 and 100, respectively. This accuracy generally
suffices to get a good idea of the variability of the
response.

The above simple and straightforward procedure is
getting more involved for cases where correlations
between random variables need to be considered.
Uncertain structural properties such as Young’s mod-
ulus in a continuous beam or plate, the thickness of a
plate, geometric imperfections of shells, fluctuation of
pressure due to wind loading, and earthquake ground
motion are continuous with respect to space or time.
Hence, uncertain properties in the close neighborhood
are generally strongly correlated, while the mutual
dependency diminishes with the distance in space and/or
time. Such continuous uncertain properties are des-
cribed mathematically by random fields where the
correlation coefficient tends to one as the distance tends
to zero. When the uncertain properties are modeled by
random variables, these variables, X}, are now a function
of time ¢ (e.g. earthquake acceleration at a specific site),
of the spatial position p (e.g. geometric imperfection of
shells) or of both (p, 7), as in the case of wind pressure,
which varies continuously with respect to time and
space. The minimal information needed to describe a
random field is the specification of the mean;

1 (p) = E{X;(p)} (5)
and the covariance,

Ci(p1,p2) = E{(X;(p1) — p(p1))(Xj(p2) — p(p2))} (6)

For the case where f(x;(p)) is normally distributed, the
random field can be approximated by the so-called
Karhunen—Loéve expansion [6,7]:

X0 =) + 3 & 1) 1)
k=1

where {x}k]}kmzo are deterministic functions with respect
to time and space. This representation introduces just m
independent standard normal random variables &, with
the property of zero mean and unit standard deviation:

E{&} =0, E{&&} = on (8)

with 6x—; = 1 and 6, = 0. The Karhunen-Loé¢ve
expansion is related to the required specification of the
mean and covariance by the following relations:

1(p) = x"(p) )

Cipr.p2) = > x5 (p1)x(po) (10)
k=1

For the case where no continuous random field is
involved, but just discrete random variables that are
correlated, a quite similar representation exists as shown
above for random fields, where the free continuous
vector p will be replaced by discrete values.

4. Practical applications

In order to demonstrate the applicability of the
probabilistic approach described in the preceding sec-
tions, two examples are presented, in which uncertainties
significantly affect the response predictions.

4.1. Coupled load analysis of a launcher-mounted satellite

In this first example, a large-scale FE-model of an
aerospace application is analyzed, specifically the
dynamic response of a satellite structure mounted on a
launcher rocket. This is accomplished by reducing the
problem with the sub-structuring technique known as
‘Craig-Bampton’ method [8]. Clearly, in a FE-model
with this complexity and size, the uncertainty about its
parameters is significant and unavoidable. In the present
example, this random scatter is modeled in a probabil-
istic framework, by treating the parameters as random
variables and estimating the resulting uncertainty in the
response via Monte-Carlo simulation.

Figure 4 shows the FE-model of the launcher-satellite
assemblage. It is divided into sub-structures, specifically
the two lateral solid propellant boosters, the main stage
and the upper composite at the top. The latter contains
the payload, in the present case the satellite. The dis-
played sub-division reflects the decomposition of the
numerical model applying the Craig-Bampton method.
The entire model contains approximately 170000
degrees of freedom, where the satellite contains roughly
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Fig. 4. (a) FE-model coupled launcher-satellite structure; (b) end-of-booster-pressure oscillation (EBP) load case.

120000 DOFs, and the solid propellant boosters, the
main stage and the upper composite approximately
12000, 8800 and 16000 DOFs, respectively. The FE
model of the satellite is significantly more refined than
that of the launcher components, since the response
quantities of interest are exclusively located in the
satellite. After the Craig-Bampton reduction the num-
ber of DOFs of the coupled system amounts to
approximately 800.

For the Monte-Carlo simulation, all material and
geometry parameters specified in the model input files
have been treated as random variables. This results in a
total of around 1300 random variables for both the
satellite and the launcher. In order to separately assess
the effects of the uncertainties in the launcher on one
hand and in the satellite on the other, two sets of ana-
lyses have been performed. In the first set, the launcher
properties have been varied randomly and the satellite
set deterministically, and vice versa for the second set.
The magnitude of the scatter in terms of the coefficient
of variation is based on experimental data and on
experience with similar structures and varies in the range
of 4-6%. The distribution type is mostly Gaussian, with
the exception of the viscous damping ratios, which are
log-normal; for these the C.o.V. has been set sig-
nificantly higher, namely 40%, since considerable
uncertainty is usually associated with damping.

The load case considered in this example is the so-
called end-of-booster-pressure oscillation (EBP), which
takes place about two minutes after the ignition of the

boosters at lift off. In essence, this load case simulates
the pressure oscillation inside the combustion chamber
of the solid propellant booster, cf. Fig. 4. The linear
frequency response analysis covers the frequency range
from 30Hz to 54 Hz, with intervals of 0.2Hz and has
been performed with the commercial FE-code
MSC.Nastran.

The purpose of the analysis is to estimate the effect of
the uncertainties in the launcher and the satellite on the
structural response. The considered critical response
quantity is the von Mises stress in the beam connecting
the solar panel to the satellite structure. The location of
this beam is depicted in Fig. 5.

solar panel connector
CBARID 710

Fig. 5. Location of beam connecting the solar panel.
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Fig. 6. (a) Frequency response of coupled launcher-satellite system, von Mises stress in solar panel connecting beam: (a) mean p and
mean shifted by standard deviation p + o; (b) coefficient of variation o/p.

The results of the probabilistic analysis for the von
Mises stress in the solar panel connector are synthesized
in Fig. 6. The left portion of the figure shows the mean p
and the mean shifted by the standard deviation p + o.
The thick lines refer to the case in which the uncer-
tainties in the launcher properties are captured, whereas
the thin lines result when the satellite properties are
modeled as random variables. In the right part of the
figure, the coefficient of variation is shown. For this plot,
the frequency range has been restricted to the interval
[40,50] Hz, firstly because in this range the maximum
responses occur and, secondly, because outside this
range the mean values are very small and the coefficient
of variation ceases to be a meaningful measure of the
scatter.

Clearly one can see that the scatter and hence the
uncertainty in the response is enormous. In Fig. 6(a),
the o-shifted mean response exceeds the mean response
by ~ 60% around the peak response of the analysis that
captures the effect of the launcher scatter. In the range
between 40 and 50 Hz the C.0.V. does not fall below
30% and, in the case of the launcher scatter analysis,
even approaches 100%.

This shows that neglecting the uncertainty in the
structural components and performing a single deter-
ministic analysis would lead to fictitiously accurate
results. A severe underestimation of the effects of the
load case would most probably occur.

4.2. Thin-walled cylindrical shell with random geometric
imperfections

As a second example, the effect of random geometric
imperfections on the limit loads of isotropic, thin-

walled, cylindrical shells under deterministic axial
compression is presented [9]. Therefore, a concept for
the numerical prediction of the large scatter in the limit
load observed in experiments using direct Monte-Carlo
simulation technique in connection with the finite ele-
ment method is introduced. Geometric imperfections are
modeled as a two-dimensional Gaussian stochastic field
with prescribed second moment characteristics based on
a database of measured imperfections [10]. In order to
generate realizations of geometric imperfections, the
estimated covariance kernel is decomposed into an
orthogonal series in terms of eigenfunctions with cor-
responding uncorrelated Gaussian random variables,
known as the Karhunen—Loé¢ve expansion (see Fig. 7).
For the determination of the limit load a geometrically
nonlinear static analysis [11] can be carried out using a
general purpose code, e.g. STAGS [12], where one
typical result is shown in Fig. 8.

The second moment characteristics of the limit load
are obtained by using the direct Monte-Carlo simula-
tion. In fact, the numerically predicted statistics of the
limit loads coincide reasonably well with the actual
observations as shown in Fig. 9. It might be observed,
though, that the calculated mean value is somewhat
higher when compared with the experimentally deter-
mined mean. This is due to the fact that there are still a
number of uncertainties — in addition to the geometric
imperfections — that have not yet been considered in this
analysis, e.g. varying thickness and material properties
(Young’s modulus), imperfect boundary conditions,
misalignment in loading, etc.
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Fig. 7 Geometric imperfections using the Karhunen-Loeéve
expansion.

Fig. 8. Deformation at the limit load for the shell by STAGS
[11].
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Fig. 9. For comparison: experimental observations [9]: mean value p = 0.6433, coefficient of variation V' = 0.0867.

5. Summary and conclusions

In the pre-computer times, and during its early stages
of development, the computational efforts to process
uncertainties were prohibitive. In those days the use of
the deterministic conception, which in fact is a simplifi-
cation of the realistic situation, was absolutely
necessary. But the breathtaking developments in com-
puter technology (hardware) have laid the ground for
the reconsideration of the traditional procedures. The
possibility of parallel and distributed computing, the
further development of Monte-Carlo simulation proce-
dures, etc., on the software side accelerate this process
even more. It is envisaged that before long, uncertainty
analysis will be an inherent part of engineering struc-
tural analysis. Such uncertainty analysis ensures the
robust prediction of variability, among many other
possibilities, such as model verification, safety assess-
ment, etc.
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