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Abstract. Experiments and observations and some selected theoretical studies of 

thermocapillary instabilities are reviewed. We start with simple idealized model 

systems of pure thermocapillarity and add to them more complex features like gravity 

forces, temperature gradients inclined to the free surface, static and dynamic surface 

deformations, solutocapillary effects and reacting or moving crystal boundaries (like 

during unidirectional solidification). Many effects and instabilities are demonstrated in 

video clips which can be downloaded from 

http://meyweb.physik.uni-giessen.de/1_Forschung/crystalgrowth/video/ 

homepage.html. We try to point out the relationship of thermocapillary instabilities in 

the more complex systems with those in theoretical studies where the name of these 

instabilities has been coined. 
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1 Introduction 

1. Outline 

This paper deals mainly with surface-tension-driven instabilities like those of thermocapillary flow or 

the formation of cellular convective structures. It is motivated by the geometries and boundary 

conditions found in crystal growth from the melt. Therefore, convective effects induced by the large 

temperature gradients of these crystal growth methods are in the centre of this paper although 

solutocapillary effects are touched, too. The geometrical and thermal boundary conditions in crystal 

growth systems can be rather complex, including curved free surfaces like menisci, the combined 

action of surface tension forces and buoyancy, the presence of moving boundaries (e.g. the growing 

crystal interface) and the interaction of buoyant-thermocapillary convection with forced convection by 

crystal rotation in the Czochralski technique. The systems used in melt crystal growth are bounded by 

walls. Therefore, end-effects and boundary layers need to be considered with their special localized 

instabilities. Nevertheless, we will start with a review and discussion of unbounded simplified model 

systems and their instabilities before discussing more complex situations, - adding complexity step by 

step. 

 This paper is mainly experimental. The instabilities are demonstrated in video clips and some 

measurements, but almost never fully characterized because not yet numerically simulated. 

 The literature on liquid interfacial systems, on their phenomena and instabilities, is vast and not 

even the special field of this paper can be covered completely. We apologize for having not cited some 

important work of our colleagues. The reader is referred to the following books [1-6], the review 

articles [7-8] and the cited original literature which can serve a guides to further problems and further 

literature. 

 

1.2 Simple models 

We consider liquid configurations like layers or vessels with free upper surface or liquid bridges (LBs) 

and define the following nondimensional groups, e.g. for the case of horizontal liquid layers 

 aspect ratio 
ddepthliquid

Lextensionlateral
A =  

 Prandtl number Pr = ν/χ 

 Rayleigh number Ra = g ⋅ β ⋅ ∆T ⋅ d3 ⋅ ν-1 ⋅ χ-1 

 horizontal Marangoni number Mah=∂σ/∂T ⋅ (∆Th/L) ⋅ d2 ⋅ η-1 ⋅ χ-1 

 vertical Marangoni number Mav = ∂σ/∂T ⋅ ∆Tv ⋅ d ⋅ η-1 ⋅ χ-1 

 dynamic Bond number Bodyn = Ra/Ma 

 surface tension number S = ρ ⋅ σ ⋅ d ⋅ η-2 

 capillary number Ca = σ-1 ⋅ ∂σ/∂T ⋅ ∆T ⋅ L-1 ⋅ d 
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with kinematic viscosity ν, dynamic viscosity η, thermal diffusivity χ, surface tension σ, temperature 

dependence of surface tension ∂σ/∂T, volume expansion coefficient β, density ρ, Earth gravity g, 

temperature difference between the boundaries ∆T. In certain cases one can replace ∆Th/L by gradhT. 

We denote the bifurcation point by the superscript "c"; e.g. Rac is the critical Rayleighnumber. We 

consider first unbounded (∞-extended) liquid layers with free surface 

a) heated from below and cooled from above 

b) subject to a horizontal temperature gradient 

The basic state of case a) is a stagnant layer, showing a transition to the well-known hexagonal cellular 

convection pattern [1, 9] of the Bénard-Marangoni-Instability (BMI). (Fig. 1) Pearson [10] analyzed 

the case excluding gravity and Nield [11] included gravity. The Marangoni effect and buoyant forces 

reinforce each other lowering the critical Ma or Ra, respectively and influence the pattern (Fig. 2). We 

find cellular patterns of different type in deep vessels compared to the one in thin layers and again 

different under microgravity (pure Marangoni effect) (Fig. 3) [12]. 

 For case b) we can consider a linear flow profile without return flow (Fig. 4a) and thermocapillary 

flow with return flow (Fig. 4b) like Smith and Davis [13]. The basic states of case b) are dynamic 

layers. The stability analysis of these dynamic layers indicated as most dangerous instability for the 

linear flow so called linear rolls (roll-axis aligned with the basic flow) and as most dangerous 

instability of thermocapillary flow with return flow so called hydrothermal waves [13]. The wave 

vector of the hydrothermal waves is inclined to the applied temperature gradient, the inclination 

growing with decreasing Pr. 

 Hydrothermal waves (HTWs) in a thin layer of silicone oil on a metal plate impressing the 

temperature gradient driving thermocapillarity in rectangular symmetry is shown in Fig. 5 [14]. The 

HTWs travel from "cold" to "hot" in this experiment as predicted by [13]. For radially oriented 

temperature gradients like in cylindrical annuli, the HTWs become Archimedian spirals (Fig. 6) for 

small inner radius because of the angle between wave vector and temperature gradient [15]. 

 Fig. 7 shows an example of HTWs in an open cylindrical annulus with A = 1 under microgravity 

[16]. The corresponding numerical simulation shows Fig. 8 [17]. The HTWs are found to be travelling 

azimuthally but as well to form standing waves or waves travelling from one or different sources in 

opposite direction and interfering (see examples in figure 25 in [18]). The open annulus investigated in 

[16] and [17] can be taken as a model for a Czochralski crystal growth system, where a crystal (cold 

cylinder) is grown and pulled out from the free surface of the melt in a crucible (Fig. 9). The main 

differences to crystal growth are: 

− the cold side in the centre is a crystal with the solid-liquid interface at the level of the melt 

− the thermal conductivity of the crystal is comparable to that of the melt 

− gravity is acting because of large temperature (density) differences 

− the free surface is normally strongly cooled because of the high working temperature (high 

melting points above 1000° C). 
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The much higher complexity of the Czochralski system will be discussed later. 

 An example of travelling hydrothermal waves in the meniscus attached to a cooled dummy crystal 

is shown in Fig. 10 [19]. The HTWs develop only in the range of the cooled crystal because of the 

largest radial temperature gradient there. They travel well ordered in azimuthal direction. The attempt 

to damp their amplitude and/or azimuthal  travelling speed by counter rotation of the dummy crystal 

failed; for not too large counter rotation speeds the HTWs change their rotational direction to that of 

the crystal. 

 The HTWs do not travel in radial direction in Figs. 7 and 10 compared to Fig. 6. Their travelling 

direction is only perpendicular to the temperature gradient and not inclined to it as in Fig. 5. The 

reason for the suppression of the HTW-component parallel to the temperature gradient is the 

confinement of the HTW to a region near the cold thermal boundary layer with the sufficiently large 

temperature gradient. Only if the temperature gradient is impressed by a metal bottom with a 

sufficietly large gradient, HTWs can develop in the whole area of this metal bottom with both wave-

components. In case of side-heating and side cooling the HTWs will develop (for Pr > 1) only near 

and in the thermal boundary layers, and with one suppressed wave component. This has been observed 

in side-heated shallow annular pools with thermally insulated bottom [20] shown in Fig. 11. We can 

call these HTWs near thermal boundary layers "degenerated" or "frustrated" HTWs because one wave 

component – the one in the direction of the applied temperature difference – does not develop; the 

degenerated HTWs travel parallel to the heated or cooled wall. 

 HTWs are as well degenerated if the gap between the hot and the cold wall is smaller than their 

wavelength component in this direction. In this case they travel azimuthally in annular gaps or cross 

the temperature gradient in channels because of this geometric restriction [21-22]. Stationary rolls 

have been observed in these so-called channels (Fig. 12) at larger depth d (e.g. d > 3 mm) [22] with 

the roll axis parallel to the applied temperature gradient (wave vector perpendicular to the applied 

horizontal temperature gradient). These stationary rolls (SR) could be related to the "linear rolls" of 

Smith and Davis [13]. Buoyancy might be the reason for these stationary rolls though 

thermocapillarity is dominating (to be discussed later). On the one hand the SRs have not been 

observed under microgravity for 2.5 mm ≤ d ≤ 20 mm, indicating that gravity is essential. On the other 

hand these 3D stationary rolls have been observed down to d = 3 mm, that is, at small gravity 

influence [23]. The increase of the flow amplitude of these stationary rolls indicates that the transition 

from the basic state to the roll state is not a Hopf bifurcation [23].A bifurcation of 2D buoyant 

thermocapillary convections to 3D (like SR) is indicated in numerical calculations [24]. 

 Liquid bridges (LBs) constitute a special rotationally symmetric gap. The free surface is parallel to 

the gravity direction, the LBs must be short because of gravity and, the HTWs travelling in azimuthal 

direction must obey the periodic boundary condition 2 πa = m ⋅ λ with a = LB-radius, λ = wavelength 

of the HTWs and m an integer. The temperature – and flow oscillations in the LBs have been 

investigated long before the studies of the related annular gaps [25]. 
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 It was found that the transition from steady flow to oscillatory flow (that is degenerated HTWs) is a 

Hopf bifurcation (Fig. 13) [25]. In a microgravity experiment on an extremely long LB (A = L/a = 15) 

the degeneration of the HTW was very effectively removed and a large axial wave component was 

observed besides the azimuthal one [26]. And it was found that the transition from the basic 

thermocapillary flow with return flow in the LBs is a Hopf bifurcation [24] (Fig. 14) [25]. 

 The advantage of the confined very large temperature gradient near a heated or cooled metal wall 

seems to be the possibility to observe the so called "surface waves" predicted by Smith and Davis [27]. 

Thermocapillary surface waves (SWs) have been observed until now only in such thermal boundary 

layers [20, 28, 29] at the heated wall. SWs are due to a shear mechanism which is largest at the hot 

side in the boundary layer with the highest surface flow velocities. The dynamic deformation of the 

free surface is crucial for this instability whereas HTWs are found by linear stability analysis for 

nondeformable free surface. Fig. 15 shows a shadowgraphic image of free surface of an annular gap 

heated from the inner cylinder (ri = 20 mm) and cooled from the outside container (ro = 40 mm) and 

cooled from the outside container (ro = 40 mm) with insulating bottom. The SWs in Fig. 15 travel from 

"hot" to "cold" and azimuthally. 

 Hydrothermal waves (HTWs) [13, 14], surface waves (SWs) [27], stationary rolls or linear rolls 

(SRs, LRs) [13, 22] and multicells (MCs) [30, 20, 14] (MCs see Fig. 16) have now been observed 

most likely in many configurations with different aspect ratios and thermal boundary conditions, but it 

is not easy to tell which case was observed and to compare the different works. In some experiments 

submerged heaters have been used [31-35] or the free surface was heated locally from above [36]. The 

temperature gradient along the free surface can be prescribed as linear like in the theoretical paper [13, 

14] but can be supplied by heated/cooled walls with thermal boundary layers like in liquid bridges [25] 

and annular gap [16] but can as well be provided as a gradient in the conducting bottom [30]. 

Depending on the thermal conductivity of the bottom (glass [15, 22, 37, 38], quartz glass [23] or metal 

[30, 39]. The thermal boundary condition at the bottom can have a large influence on the type and 

threshold of the various thermocapillary instabilities. As well the degree of confinement (channel [30, 

22] or LB [25, 40] with strong confinement or more extended layers or LBs [14, 15, 37, 26]) make a 

difference for the appearance of the instabilities. Interesting is as well the case where the "bottom" is 

made up by a large or a practically infinite vessel with thermocapillary acting on top, only [33, 35]. 

The influence of the thermal boundary conditions on the stability of thermocapillary flow is reviewed 

only for small Pr in [41] and a short review on experiments on thermocapillary instabilities can be 

found in [42]. 

 

2 Systems with higher complexity 

2.1 Adding buoyancy to thermocapillarity 

We consider an increasing depth d of the liquid with thermocapillarity driven in its horizontal free 

upper surface with extension L. Besides an increase of Ra as well A = L/d will approach a larger value 
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in most experiments. The experimental systems studied are either rectangular [22, 30, 37, 43-48] or 

circular, e.g. crucibles or annular gaps (to be discussed later). 

 In rectangular geometry we have influence of the sidewall, modulating the travelling direction of 

the HTWs [22, 30] or by inducing 3-D flow [43-48]. It was found that an increasing influence of 

buoyancy – e.g. by increasing d – will stabilize the flow against transition to time dependence [30]. 

Smaller critical Marangoni numbers have been found in experiments with annular gaps under 

microgravity compared with those under normal gravity [16, 50]. The influence of gravity on the Mac 

for the occurrence of HTWs is shown in Fig. 17. Increasing Bo(h) means increase of d. Gravity 

stabilizes the basic flow with multirolls against the transition to HTWs. 

 The 3D-stationary instability of longitudinal rolls found at larger d [22, 23, 37, 47] was not found 

under microgravity, indicating that it needs gravity influence to develop [16]. 

 At larger d, e.g. d > 10 mm, the convection roll driven by thermocapillarity and buoyancy can 

separate from buoyancy driven convection in the bulk fluid [43-46]. This type of flow seems to be 

steady in contrast to that for d ≤ 3 mm which is time-dependent at comparably smaller Ma. The 

separation has been successfully simulated numerically by use of a rather fine mesh and by 

introducing temperature-dependent viscosity [49]. Moreover, one has to resolve the buoyant flow in 

the thermal boundary layers at both end walls and their connection with the thermocapillary flow to 

get a correct numerical simulation of the strength of the latter. Hotter liquid is circulating on top of 

colder liquid in the bulk in this separation of surface flow and its return flow from the bulk [43, 46, 

49]. This separation of a thermocapillary convection roll (or layer) on top of the fluid is demonstrated 

in Fig. 18 by streaklines in a vertical light sheet and by holographic interferometry indicating the 

isotherms. It was as well observed in crucibles [50, 51] and its instability will be considered later when 

the separated "basic thermocapillary flow" is strongly cooled from above. 

 Turning from rectangular cavities to rotationally symmetric annular gaps or cylindrical vessels 

(crucibles with cooled or heated centres) does not change the nature of the HTWs or linear rolls. The 

advantage of this kind of geometry compared to the rectangular are avoidance of one pair of (inactive) 

sidewalls which could become disturbing due to extra lateral temperature gradients or by reflecting 

travelling HTWs. We mention work on annular gaps with not too large d [15, 16, 18] annular gaps 

with A up to A = 1 [33, 34, 16, 52] and crucible-like configurations [51]. For large A and small d 

HTWs are observed [15, 16] which form Archimedian spirals in this configuration because of an angle 

of approximately 45° between the wavevector and the temperature gradient (Fig. 6). The HTWs for 

the fluid with 7 ≤ Pr ≤ 17 have the travelling direction from "cold" to "hot." For smaller A some 

wavetrains are observed to travel mainly azimuthally [16, 33, 34, 52]. In a crucible with real 

Czochralski crystal growth configuration HTWs have been observed to travel azimuthally in the 

meniscus at the cooled crystal dummy [19]. Numerical simulation of Czochralski-growth systems of 

and oxide melt [53, 54] revealed azimuthally travelling waves as those observed in the model systems 

of annular gaps. But from real growth systems these HTWs have not yet been reported. 
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2.2 Temperature gradients inclined to the free surface 

The motivation to study this problem is application; we encounter at the same time heating from the 

side and cooling from the top in many practical situations (e.g. in material processing like crystal 

growth from the melt after the Czochralski-technique). The possibility of an instability of 

thermocapillary flow in form of the classical Bénard-Marangoni instability by cooling from above is 

given. Indeed, small convection cells can be observed on the surface of high temperature melts to drift 

from "hot" places to "colder" ones (Fig. 19). The small wavelength λ of this cellular instability at the 

surface of oxide melt of considerable depth d ( 2λ << d) indicates the instability of a thin layer of the 

melt, only. We have seen in the preceding chapter that a time-independent surface roll can separate 

from the flow in the bulk (Fig. 20). We can take the flow profile of this separated surface tension 

convection as basic state for a new state when cooling from above. Two flow profiles can be studied 

− separated flow with return flow 

− linear flow (only from hot to cold without return flow) because the return flow is deeper in the 

bulk 

Given a melting temperature of the order of 1800° C and a semitransparent melt (or even a black 

melt), the surface will be cooled very effectively by radiation. This can induce Bénard-Marangoni 

cells which will increase the heat transfer from the bulk to the free surface and through the free 

surface. Thus the heat flux through the free surface is enhanced what will turn increase the convective 

strength of the thermocapillary motion and the tendency for the above discussed separation. One can 

assume a Nusselt number Nu for the Bénard-Marangoni instability well above Nu = 2 because the 

value Nu = 1.8 has been reported for Ma = 4 ⋅ Mac from an experiment under microgravity [12]. Only 

for the correct simulation of the heat transport through the free surface and through the crystal. can one 

expect the correct simulation of buoyant-thermocapillary convection in the whole melt in the crucible. 

This, in turn, is needed to simulate the correct balance between buoyancy – thermocapillary 

convection and forced convection driven by crystal rotation which is decisive to simulate the crystal 

radius and the shape of the crystal-melt interface [56-58]. The basic ideas are sketched in Fig. 21. The 

flow – and temperature profile at the melt surface that can become instable due to cooling from above 

can be more a linear velocity profile (Figs. 21a, 4) or one with return flow (Fig. 21b). The type of 

drifting cells and their drift speed, the type of instability will be different for the two velocity profiles. 

 The stability of thermocapillary flow (with return flow) with inclined temperature gradient was 

investigated theoretically (Fig. 22) [59]. Transition to HTWs, transverse travelling rolls (TTRs) or 

square drifting cells and stationary lingitudinal rolls (LRs) are observed, depending on Mah and Mav. 

HTWs are stabilized by cooling from above (line 3 in Fig. 22, increase of Mav/Mah) as well observed 

in [60, 61]. Stationary longitudinal rolls have been observed by many experimenters mentioned above 

at increased liquid d though the parameter Mav/Mah in Fig. 22 is meant for increasing ∆Tv, only (d was 

fixed in [59]). The stationary rolls are as well observed in the experiments and numerical analysis 
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changing d and ∆Tv/∆Th [61]. Transverse travelling rolls (or square drifting cells) have been observed 

cooling thermocapillary flow (Pr = 10) from above in experiments with controlled ∆Th and ∆Tv [62]. 

The scenario and tendencies of figure 22 seem to be correct and are found in Czochralski melt growth. 

 In the situation sketched in Fig. 21 (a) only the linear flow profile, like that of linear 

thermocapillary flow becomes instable to cooling from above. This has been investigated in the same 

apparatus used in [39] to study linear thermocapillary flow and its instabilities at larger Mah. Figure 23 

shows the pattern of convection cells drifting in linear thermocapillary flow cooled from above. The 

drifting speed of the cells is proportional to that of the flow speed in the free surface and much larger 

thant the drifting speed of convection cells observed in thermocapillary flow with return flow (as 

sketched in Fig. 21 (b)) [63]. Figure 24 indicates the stability threshold in terms of Mav. The difference 

between the experiments [39, 63] and that of separated thermocapillary flow on the top of oxide melts 

in Czochralski growth are the undefined thermal- and flow boundary conditions at the lower border of 

the latter. But the physics should be the same. 

 

2.3 Static and dynamic surface deformations 

The heat transfer properties of a flat and that of a curved surface can differ significantly. One example 

is the meniscus of a liquid at a heated wall when the liquid is fully wetting the wall in comparison to a 

liquid with flat surface pinned to e.g. the upper rim of the vessel. Thermocapillarity will be of another 

nature (e.g. stronger in case of a thermal boundary layer at the wall) in the meniscus region. 

Spontaneous convection can occur in the vicinity of a liquid meniscus in case of solute transfer across 

the curved interface [64]. Heat transfer across the meniscus interface will change thermocapillary 

flow, too. Thermocapillary flow is largest near the hot crucible wall in Czochralski systems of oxide 

materials because of the thermal boundary layer and, in accordance with Fig. 22, stationary linear rolls 

(called "spokes pattern" in the crystal growth literature) are observed there. In the regions with smaller 

horizontal temperature gradient or stronger cooling from above the pattern of linear rolls transforms 

into transverse travelling rolls or travelling cells [65]. 

 Liquid bridges LBs are hydrostatically deformed by gravity in laboratory experiments and their 

volume V can be less than ideal, e.g. V/Vo < 1 (underfilled or necked-in LB) or more than ideal (V/V0 

> 1) (bulging LB). The stability of thermocapillary flow can depend strongly on V/V0 with maximum 

stability near V/V0 = 1 [66-68] in terms of a Marangoni number Ma* = |∂σ/∂T|⋅∆T⋅R⋅η-1⋅χ-1, with the 

temperature difference ∆T between the support rods and radius R of the LB. We note that most of the 

∆T applied to the support rods is dropping in the thermal boundary layers on both end walls in the LB 

with Pr >> 1 investigated until now. Thus the meniscus-shape in a necked-in LB will provide a 

relatively better "thermal coupling" of the necked-in LB to the end walls than that provided for an 

ideal LB. The smaller Ma* for necked-in LBs is understandable, therefore. Heat transfer to the 

surrounding air can play a role for the critical Ma as well because buoyancy-driven convective rolls 
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together with thermocapillary-driven rolls are alive in the gas-surrounding of the LBs in normal 

experiments. 

 Known since Bénards experiments and measurements [9, 1] is the depression of the free surface at 

the spots of the hexagonal convection pattern where the hot fluid is rising. This hotter fluid has smaller 

surface tension which generates the depression. Thus it is principally impossible to investigate 

thermocapillary flow or Marangoni effects in liquids with a mirror-like flat surface. It is possible to 

prepare such a mirror-like flat free surface without meniscus at the wall of the vessel if no temperature 

gradients are applied. But a surface depression will be observed as soon as a wall is heated. The 

surface depression in its vicinity occurs because of uprising hot flow [20]. Time-independent flow and 

temperature gradients will deform the free surface statically and time-dependent states will generate 

time-dependent surface deformations. The dynamic surface deformations can be essential for the 

instability mechanism of thermocapillary flow or they can be only reactions to the flow instability. 

 The HTW in dynamic thermocapillary layers [13] have been derived in a stability analysis of layers 

with undeformable free surface and their properties compare well with HTWs observed in experiments 

[14, 15]. We conclude that the surface deformations observed in connection with the occurrence of 

HTWs are only reactions of the free surface to time-dependent flow. The same is true for the 

degenerated HTWs in liquid bridges; here experiments and numerical simulations of LBs with 

undeformable free surface show satisfactory agreement. As well the HTWs observed at the heated 

cylindrical inner wall of an annular gap [20] and those in the meniscus of a cooled dummy crystal in a 

Czochralski configuration [19] are small and of secondary importance for the occurrence of this 

instability. 

 An interesting case of surface oscillations was observed in the meniscus at a cold wall when – and 

only when – this meniscus had a certain height h and was pinned to the upper rim of this wall [29]. 

The experiments have been performed in a rectangular cavity of A = 1 (e.g. L = 20 mm, d = 20 mm, w 

= 41 mm) filled with ethanol (Pr = 17) with not to much underfilling below the normal volume V0 = 

20 x 20 x 41 mm3 such that the menisci at all walls were still pinned to the upper rim. Macroscopic 

standing gravity-surface waves with amplitudes up to 0.5 mm have been excited in the surface of the 

liquid due to resonance with oscillations in the meniscus at the cold wall. The macroscopic gravity 

surface wave disappeared when the meniscus at the cold wall was no longer pinned but able to slide at 

the cold wall. It was concluded that the meniscus at the cold wall became instable to oscillations of the 

type of surface waves [27]. The frequency spectrum of these surface waves was tracked as spectrum of 

temperature oscillations in the meniscus and some peaks of this spectrum are found to be near the 

frequency peaks of gravity surface waves in this cavity. Tuning these frequency peaks of the gravity 

surface waves, by changing e.g. L, the resonance could be reinforced or suppressed (e.g. with L = 12 

mm instead of L = 20 mm). Fig. 25 shows the amplitude of the standing wave in direction of the 

applied temperature gradient ∆T/L as function of the underfilling h (h measured from the top rim of 

the cavity) for a fixed ∆T = 27.5 K. The onset of the surface gravity waves is for h = 0.8 mm, and for 
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∆Tc ~ 11.5 K for h ~ 1.5 mm with frequencies of ~ 7 Hz (depending on mode and h). It was concluded 

that time-dependent  flow in the meniscus is exiting the standing gravity waves (Fig. 26). The 

resonance is possible if the frequencies of the exiting and the exited oscillations are not too far apart 

and if at least one has a large enough half width in frequency (Fig. 27). We have here an example of 

the excitation of macroscopic standing gravity waves by small amplitude surface oscillations by 

oscillatory thermocapillary flow in case of resonance. 

 

3 Systems of technical relevance 

3.1 Solutocapillarity and dirt films 

 We will give some examples of thermocapillary flow or solutocapillary flow in systems of 

technical relevance. We leave the model substance "silicone oil" and turn to metals or crystal growth 

melts. 

 The surface tension and its temperature dependence are normally changed by impurities. 

Solutocapillary effects are often much stronger than thermocapillarity. Moreover, many liquids 

contain impurities which are surface active; e.g. these impurities can accumulate in the free surface as 

a film. Such a film can suppress thermocapillarity totally [44]. Water and mercury are examples of 

such liquids. Thermocapillarity and its instabilities can be studied reliably only in liquid systems 

without such surface films. Either high purity or very low surface tension of the liquid are used to 

reach this goal. Only a few liquids with higher surface tension seem to make no problems (e.g. 

NaNO3-melt). If the surface is only partly covered by an impurity film, this film will be concentrated 

at the cold side and will be deformed by surface pressure of the flow [35] or the flow direction is 

changed [69]. A flow-reversal is known from arc welding where sulphur-impurities are known to 

produce this and the depth of the weld-bed can increase significantly by this flow reversal (from 

"cold" to "hot" in the free surface). 

 The surface tension of oxides is normally significantly smaller than that of the pure metal and 

solutocapillary effects can override thermocapillary ones. One example is given by a liquid Sn-droplet 

covered with a SnO2-skin in high vacuum, bombarded with an ion beam on one spot [70]. It was 

sufficient to bombard only this spot to remove the whole SnO2-skin because solutocapillarity is 

driving any SnO2-skin towards the (heated) bombarded spot with its higher surface tension where the 

SnO2 is sputtered away. Strong solutocapillary flow and flow instabilities including surface vibration 

have been observed in melt pools of Cu or of Sn blowing locally oxygen onto the melt surface [71]. 

 The experiments to study the onset of oscillatory thermocapillary flow in LBs from mercury 

suffered under the presence of amalgame films [72] whereas careful the experiments on LBs from tin 

in high vacuum and with a getter (Ti at 600° C) to reduce the oxygen partial pressure yielded reliable 

results of Mac and the frequency [73]. The same is true for the studies of the instability of 

thermocapillary flow in LBs from silicon melt [74-75] or that in melt pools like in Czochralski crystal 

growth [76]. Many attempts to measure Mac in silicon melt have been undertaken because of the 
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technological importance of this material. It is not easy to compare the measurements and to predict 

the flow-state in industrial systems because of the high solubility of oxygen in Si-melts and the 

volatility of SiO at the melting temperature of Si; the surface tension of Si-melt shows a strong 

dependence on the oxygen partial pressure [77, 78] and the systems are not easily characterized. 

 We have the impression that experiments on "easy" model systems with liquids of high Pr are 

rather reliable because they can be characterized well enough and the physical parameters are known. 

Fundamental aspects of thermocapillary instabilities can be studied especially if the liquids are 

transparent. The critical Marangoni numbers measured at LBs from high Pr-liquids are rather reliable 

[79] and the extrapolation of the data to smaller Pr was successful. Figure 28 shows the measured 

critical Marangoni numbers in LBs with different Pr in comparison to theory for infinitely extended 

liquid layers.Only the tendency over Pr is satisfacory. 

 

3.2 Thermocapillarity and solutocapillarity in interaction with moving crystal boundaries 

Crystal growth is a nonequilibrium process. In melt growth we have the temperature gradient in front 

of the crystal-melt interface as the driving potential for the advancement of the solid interface. Thus 

we expect thermocapillary flow towards the crystal grown from the melt with free surface (floating 

zone technique, Czochralski technique). This flow transports heat towards the crystal. On the other 

hand the melt is never pure or it is even doped deliberately and impurities or dopants are not 

incorporated into the crystal as the main constituent. The dopants or impurities are normally enriched 

in the residual melt and the crystal is more pure than the melt. Defining the concentration of an 

impurity in the melt as cm and that in the crystal grown with growth speed v as cs(v) we can define the 

segregation coefficient or distribution coefficient k(v) = cs(v)/cm. The effective distribution coefficient 

k(v) is smaller unity if the crystal contains less impurity and this impurity is enriched in front of the 

crystal growing with speed v in this case. We note that the impurity source is ceasing for zero growth 

speed. The impurity source provided by the growing crystal ceases as well for v → ∞ because then 

k(v) → k(∞) = 1. The strength of the impurity source provided by a growing crystal is limited, 

therefore. We have thus the possibility to use the growing crystal as a source of rejected impurities 

and, if the impurity is e.g. lowering the surface tension, solutocapillary forces can drive flow in the 

free surface away from the growing crystal. 

Different cases can arise 

a) time-dependent thermocapillarity modulates the growth speed of the crystal and thus the amount 

of incorporated impurity. 

b) solutocapillarity and thermocapillarity are directed parallel and reinforce each other 

c) solutocapillarity is antiparallel to thermocapillarity and is weaking it 

d) solutocapillarity is strong and counteracting thermocapillarity. New instabilities are possible. 

e) the solute is surface-active, forming a film at the free surface, but partly soluble with 

solutocapillarity counter thermocapillarity. New instabilities are possible. 
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f) thermocapillary flow and forced flow by crystal rotation are counteracting and both are shaping 

the crystal interface, but differently, where the rotational action depends on the crystal shape. 

Instable situations for the flow and the interface are possible. 

 

Some of these cases have been treated or observed. 

a) A floating zone of Si-melt doped with Sb was crystallized under microgravity from one side 

with 1 mm/min and the temperature oscillations by time-dependent thermocapillary flow have 

been measured together with growth rate oscillations [80]. From the good correspondence of 

both signals it was concluded that the growth speed of the crystal was reacting on the flow - and 

temperature - oscillations of thermocapillary flow. A quite similar result was obtained by other 

authors in laboratory experiments [78]. 

c)-d) A thin sheet Bi-crystal was grown by dircetional solidification. at high growth velocities v from 

a Sn-0.11 at % Bi melt-layer of 2 mm thickness with free surface under a temperature gradient 

of approximately 10 K/cm. The authors could observe a coordinated back and forth motion of 

the meniscus line [81]. For the doping of Sn with Bi a flow reversal is observed for some 

concentrations (e.g. c < 0.5 at % Bi) and solutocapillary flow can oppose thermocapillary one. 

This work seems to be an example of the active involvement of the growing crystal into the 

thermocapillary-solutocapillary instability. 

d)-e) This active participation of the crystal in the instability has been observed in LBs from NaNO3 

faintly doped with the surface-active impurity CH3CH2COOK and recrystallized from below 

[82]. The surface tension of NaNO3 is lowered dramatically by the impurity and the impurity is 

rejected by the crystal. We thus have solutocapillarity opposing thermocapillarity. In contrast to 

the well-known passive growth oscillations discussed above under a) [78, 80] the growth and 

remelting of the crystal is taking part acitvely in this instability. The full mechanism of this new 

type of instability is outlined in this paper [82]. We outline one part of the instability-cycle: The 

crystal is a source of impurity, increasing solutocapillarity during growth. This decreases the 

convective heat transport to the crystal because thermocapillarity is consequently weakened. The 

convective heat transport to the crystal is weakened. Thus the growth speed is increasing more 

and more. This is limited by the applied temperature gradient and by k → 1. The reverse 

happens once remelting starts because pure substance is remelted, weakening solutocapillarity 

(strengthening thermocapillarity). The impurity CH3CH2COOK might form a film on NaNO3-

melt. 

 Solutocapillarity as analogue to thermocapillarity in a LB was studied numerically [83]. The 

source for the solute gradient was the growing crystal and the solute distribution differs from the 

temperature distribution for thermocapillarity, therefore. For certain conditions the authors 

found a Hopf bifurcation from the basic flow to HTWs. 
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 A dramatic interaction between buoyant-thermocapillary flow and forced flow by crystal rotation 

was observed in Czochralski growth of high melting point oxides [58]. The crystal has a strong conical 

interface deflection during the beginning of growth because of large radiative heat transport through it. 

The rotationally driven convection roll has a smaller strength near the free melt surface for a conical 

interface than for a flat interface. The rotation of the crystal is chosen by the crystal grower in a way 

that the balancing point (stagnation point) between forced convection and buoyant-thermocapillary 

convection is near the crystal periphery to controll the crystal radius. This situation is instable during 

the increase of the crystal radius (Fig. 29) because of the following reaction chain: a small increase in 

crystal radius r at a certain crystal radius will increase rotationally driven convection. This in turn will 

melt-back a part of the crystal cone below the surface and this increases the strength of rotational 

convection near the interface. The stagnation point is shifted outwards because of this and the 

convective heat transport towards the crystal by thermocapillarity is weakened, resulting in further 

increase of the crystal radius. Thus the crystal radius will increase uncontrollable and the flow near the 

crystal interface changes from "buoyant-thermocapillary dominated" to "rotationally dominated." The 

reason for the significance of thermocapillary convection in this flow transition is the fact that both, 

thermocapillarity and forced convection by a flat rotating crystal interface are acting and balancing 

near the free melt surface whereas radial outwards convection by a rotating conical interface below the 

surface is stronger in the bulk of the melt and not in the interface. 

 

4 Conclusions 

Thermocapillary convection with its instabilities and effects in melt processing (mainly crystal 

growth from the melt) has been reviewed from an experimental point of view. We propose to interpret 

the thermocapillary instabilities observed in the more complex systems as derivable from the 

instabilities found in the model systems, like hydrothermal waves or linear rolls or Bénard cells in 

infinitely extended layers. We found tendencies supporting this view although the conclusion is not 

unambiguous. 

 The presented material covers mainly liquids with Pr > 1. Metallic liquids with Pr << 1 are only 

touched and their larger difficulties with defined surface properties (e.g. oxide films) are pointed out. 

 The literature cited in the article can by no means be complete but can serve as a source to cover 

the complete field. 

 Crystal growth from the melt is an prospective area to apply the knowledge about 

thermocapillary (Marangoni) instabilities because of two reasons: 

1. The melt adjacent to the growing crystal has a free surface in the Czochralski technique, in the 

floating zone technique and in directional solidification in horizontal geometry. The free surface is 

mandatory to avoid heterogeneous nucleation and is thus mandatory for the growth of perfect 

single crystals. All ingredients for thermocapillary flow and Marangoni instabilities are given. 
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2. Large temperature gradients near the growing crystal interface are mandatory to avoid 

constitutional supercooling with its catastrophic effect for crystal quality. 

We thus have liquid systems in melt growth with all ingredients for strong thermocapillary flow and 

its instabilities. Moreover, the growing (moving) crystal interface can react to flow oscillations (heat 

transport fluctuations) and can incorporate them as dopant striations. Solutocapillary effects can be 

introduced by the segregation connected with crystallization. The crystal can even play an active rôle 

in thermocapillary – solutocapillary instabilities. 
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Figure captions 

 

Fig. 1. Hexagonal convection pattern in a liquid layer heated from below and cooled from above, 

visualized by a Shadowgraph technique [1]. 

 

Fig. 2. Stability diagram for the Bénard-Marangoni-Instability including the action of gravity [11]. 

 

Fig. 3. Convection pattern of the pure Marangoni-Instability in a small circular layer with free upper 

surface under microgravity (A = D/d = 5, Ma = 7 Mac). Visualization with fine aluminum flakes. The 

up- and down-flow regions are dark [12]. 

 

Fig. 4. Basic state flow profiles of dynamic thermocapillary layers. A temperature gradient in the free 

surface or a temperature difference between the walls drives this flow. 

(a) linear flow profile of thermocapillary flow (without return flow) 

(b) thermocapillary flow with return flow 

These flow profiles can be modified by the action of gravity. 

 

Fig. 5. Hydrothermal waves in a layer from silicone oil with d = 1.0 mm, travelling under an angle of 

24° between temperature gradient and wave vector from " cold " to " hot." (From "left" to "right"). 

Visualization with IR camera [14]. 

 

Fig. 6. Hydrothermal waves in an open annulus with small diameter inner cooled wall in form of an 

Archimedian spiral [15]. Shadowgraph technique (d = 1.9 mm, ∆T = 14.5 K, Pr = 10). 

 

Fig. 7 Hydrothermal waves in an open annulus with d = 20 mm and A = 1 under microgravity 

(silicone oil, Pr = 6.8). An IR camera shows the temperature distribution at the free surface [16] 

(a) five wavetrains at Ma ≈ 2 ⋅ Mac travelling azimuthally (experimental) 

(b) nearly chaotic at Ma ≈ 4 ⋅ Mac (experimental) 

 

Fig. 8. Simulated surface temperature distribution for the same annular gap as in Fig. 7 with Bi = 0 

[17] 

(a) slightly above Mac 

(b) at approximately 3 ⋅ Mac 

The five wavetrains (m = 5) rotate clockwise and m does not change when increasing Ma. 

 

Fig. 9. Sketch of the Czochralski crystal growth technique and the thermocapillary open annulus 

investigated in [16, 17]. 
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Fig. 10 HTWs in the meniscus at the cold dummy crystal (copper) with r = 4 mm, ωcrystal = 0 in a 

crucible with R = 20 mm, liquid height H = 30 mm, ∆T = 25 K. Observation under diffuse 

illumination through the crucible bottom [19]. 

 

Fig. 11. HTWs in a shallow liquid layer (Pr = 17) in an annular gap near the heated wall with the 

bottom of the gap cooled. The HTWs deform the free surface and this deformation can be visualized 

by surface reflection shadowgraphy. (L = 20 mm, d = 1.8 mm, ∆T = 34 K) [20] 

 

Fig. 12. (a) Linear rolls by shadowgraphy. View through the channel-like layer (d = 6 mm, ∆Tx = 6 

K, Lx = 30 mm, Pr = 10). The cold side is down, menisci at cold and hot side [37] 

 (b) Critical temperature differences for travelling waves (TW) = HTW and stationary rolls 

(SR) = LR in layers with different height h = d in a rectangular gap with glass bottom 

with L = 10 mm (Pr = 10) 

 

Fig. 13. The amplitude of temperature oscillations in a liquid bridge heated from the top by ∆T with Pr 

= 8 above the threshold increase as (∆T - ∆Tc)0.6. The exponent 0.6 is near 0.5 of a Hopf bifurcation 

[25]. 

 

Fig. 14. Squared amplitude of the temperature oscillations in a LB with A = 15 under microgravity 

over the applied temperature difference ∆T indicating a Hopf bifurcation [25]. 

 

Fig. 15. Surface wave (SW) with m = 6 in a 20 mm wide annular gap heated from the inside cylinder 

with ri = 20 mm (d = 3.1 mm, ∆T = 24 K). The free surface in the gap is prepared as totally flat (no 

menisci at both sides) to allow shadowgraphy of light reflected from the free surface to visualize the 

SWs [28]. 

 

Fig. 16. Streamlines of multicellular (steady) thermocapillary convection in Pr = 4 fluid heated from 

the right-side. The cell axes are perpendicular to the temperature gradient. For larger Ma HTWs can 

travel from "cold" to "hot" (or vice versa depending on Pr) and the multicells will oscillate according 

to the HTW frequency [30]. The multicellular state can serve as basic state for HTWs [14, 16]. 

 

Fig. 17. The critical Ma increases with Bo, that is for increasing d, because of increasing gravitational 

effects (planar HTWs in extended rectangular cavities) [37]. 

 



 20 

Fig. 18. (a) Streaklines and (b) isotherms by holographic interferometry in a cubic fluid cavity with L 

= H = 20 mm at ∆T = 4 K (Pr = 17). The cavity has a flat free surface without any menisci at its side 

walls [46]. Indicated is the separation of a thermocapillary convection roll with hot fluid on top of cold 

fluid in the bulk. 

 

Fig. 19. Cellular convection pattern observed on Garnet melt surface (melting point ~ 1750° C) with a 

melt depth d > 30 mm, drifting rapidly radially inwards to the coldest spot of the surface. Note linear 

rolls (steady) near the heated wall also called "spokes", note cross cells between the spokes (drifting) 

and chaotic Bénard-like cells in the centre [55]. 

 

Fig. 20. Streaklines in a 40 mm ∅ crucible, liquid depth d = 20 mm, different ∆T between hot crucible 

and cold crystal dummy, showing the separation of the surface tension driven convection from bulk 

convection [51]. 

 

Fig. 21. The counterbalance of buoyant-thermocapillary and rotationally driven flow in a high-

temperature melt (Pr >> 1). A thermocapillary-driven flow can separate from the bulk flow, balancing 

the rotational one. And this "linear" flow profile (a) can become instable (to Bénard-like convection 

cells) due to large radiative heat loss from the melt surface. This heat loss is largest near the centre of 

the crucible or near the crystal. The instability in form of rolls or cells can reach down to the return 

flow (b) if the return flow is very near the surface flow due to strong separation. 

 

Fig. 22. Stability diagram of thermocapillary flow with inclined temperature gradient, expressed by 

the relation between the vertical Marangoni number Mav and the horizontal one, Mah. The line "H-F" 

marks the transition to oblique hydrothermal waves, line "F-E" that to transverse travelling rolls and 

lines 1 and 2 that to stationary longitudinal rolls [59].above the threshold 

 

Fig. 23. Linear thermocapillary flow without return flow cooled from above (sapphire lid with 

temperature gradient parallel to that in the metal bottom) shows convection cells drifting with the 

linear flow for Mav above the threshold. Visualization with IR camera, IR illumination and aluminum 

flakes. (d = 1.34 mm, Mav = 12.6, Mav = 132, Pr = 10) [63]. In the right part of the figure (hot) Mav is 

too small for the cellular instability and linear rolls can be observed. 

 

 

 

 

 

 



 21 

Fig. 24. Stability limits of linear thermocapillary flow cooled from above [63]. For a certain Mah with 

linear flow we find with increasing Mav 

- ○ stable linear flow 

- ● longitudinal rolls 

- ◊ transition from rolls to drifting cells (guessed) 

-  drifting cells 

 

Fig. 25. The amplitude of standing surface gravity waves in a cavity with L = 20 mm, d = 20 mm, W = 

41 mm, ∆T = 27.5 K when the underfilling h from a flat free surface is increased up to h = 1.4 mm. 

Onset at h = 0.8 mm [29]. 

 

Fig. 26. Spectra of hydrodynamic instabilities in the meniscus (red) and spectra of standing surface 

gravity waves in a cavity (L = 20 mm, W = 41 mm, ∆T = 25 K, underfilling h = 1.5 mm). The 

frequencies of the hydrodynamic instabilities (e.g. "a") are near to surface waves frequencies to excite 

these (e.g. mode k = 1, l = 1) [29]. 

 

Fig. 27. Time-dependent flow in the meniscus at the cold wall (L = 12 mm, W = 41 mm, ∆T = 45.5 K, 

h = 1.8 mm). The thermocapillary vortex fills only the upper part of the meniscus and secondary 

vortices are visible below it [29]. 

 

Fig.28. The measured critical Marangoni numbers in liquid bridges and layers (symbols) are generally 

larger than the theoretical ones ( lines from[13]) but with the correct tendency. The reason for the 

discrepancy might be uncontrolled surface tension properties for the metallic systems (oxide 

impurities) and for the high-Pr liquids the “consumtion“ of the largest part of the applied temperature 

gradient in the thermal boundary layers. The critical value measured at liquid layers with temperature 

gradient in the metal bottom is nearest to theory, therefore.  

 

Fig. 29. The counterbalance between buoyant-thermocapillary and rotationally driven flow of a flat 

interface (K/r = 0) and a conically deflected one (K/r = 1) (crystal radius r, stagnation point at rs, 

rotational Reynolds number Re = 2 πfr2/ν). 

a) Experimental result of the stagnation position for two different K/r at constant buoyant-

thermocapillary flow; the flat interface needs smaller Re to shift the stagnation point to rs/r = 0.9. 

b) Numerical result on flow and stagnation positions (SP) for two interface shapes (flat on the left 

side, conical on the right side) for else unchanged boundary conditions for the flow. 

Though the boundary conditions of the experiment are used for the simulation, the simulation does 

not show the separation of the thermocapillary flow observed in the experiments. The separation of 
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the thermocapillary flow could increase the observed difference in the action of a flat and a conical 

interface [58]. 
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Fig. 1. Hexagonal convection pattern in a liquid layer heated 
from below and cooled from above, visualized by a 
Shadowgraph technique [1]. 
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Fig. 2. Stability diagram for the Bénard-Marangoni-
Instability including the action of gravity [11]. 
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Fig. 3. Convection pattern of the pure Marangoni-Instability 
in a small circular layer with free upper surface under 
microgravity (A = D/d = 5, Ma = 7 Mac). Visualization with 
fine aluminum flakes. The up- and down-flow regions are 
dark [12]. 
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(b) 

 
 
 
Fig. 4. Basic state flow profiles of dynamic thermocapillary 
layers. A temperature gradient in the free surface or a 
temperature difference between the walls drives this flow. 
(a) linear flow profile of thermocapillary flow (without 
return flow) 
(b) thermocapillary flow with return flow 
These flow profiles can be modified by the action of gravity. 
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Fig. 5. Hydrothermal waves in a layer from silicone oil with 
d = 1.0 mm, travelling under an angle of 24° between 
temperature gradient and wave vector from " cold " to " hot." 
(From "left" to "right"). Visualization with IR camera [14]. 



 28 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 6. Hydrothermal waves in an open annulus with small 
diameter inner cooled wall in form of an Archimedian spiral 
[15]. Shadowgraph technique (d = 1.9 mm, ∆T = 14.5 K, Pr 
= 10). 
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(a) 

 
(b) 

 
 
Fig. 7 Hydrothermal waves in an open annulus with d = 20 
mm and A = 1 under microgravity (silicone oil, Pr = 6.8). 
An IR camera shows the temperature distribution at the free 
surface [16] 
(a) five wavetrains at Ma ≈ 2 ⋅ Mac travelling azimuthally 
(experimental) 
(b) nearly chaotic at Ma ≈ 4 ⋅ Mac (experimental) 
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(a) 

 
(b) 

 
 
Fig. 8. Simulated surface temperature distribution for the 
same annular gap as in Fig. 7 with Bi = 0 [17] 
(a) slightly above Mac 
(b) at approximately 3 ⋅ Mac 
The five wavetrains (m = 5) rotate clockwise and m does not 
change when increasing Ma. 
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Fig. 9. Sketch of the Czochralski crystal growth technique 
and the thermocapillary open annulus investigated in [16, 
17]. 
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Fig. 10 HTWs in the meniscus at the cold dummy crystal 
(copper) with r = 4 mm, ωcrystal = 0 in a crucible with R = 20 
mm, liquid height H = 30 mm, ∆T = 25 K. Observation 
under diffuse illumination through the crucible bottom .The 
small inner grey circle is the face of the dummy seem from 
below.A thermocouple (black wire) comes from above and 
whithe schlieren ( generated by the jet of cold liquid falling 
down from the cold dummy are visible on the grey dummy-
face. The HTWs are visible in the video clip on the web 
page given in the abstract under “HTW in the 
meniscus”[19]. 
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Fig. 11. HTWs in a shallow liquid layer (Pr = 17) in an 
annular gap near the heated wall with the bottom of the gap 
cooled. The HTWs deform the free surface and this 
deformation can be visualized by surface reflection 
shadowgraphy. (L = 20 mm, d = 1.8 mm, ∆T = 34 K) [20] 
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Fig. 12. (a) Linear rolls by

the channel-like
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menisci at cold 
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= LR in layers 
rectangular gap
mm (Pr = 10)
 
 
 
 
 
 

 
a) 
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 shadowgraphy. View through 
 layer (d = 6 mm, ∆Tx = 6 K, 
 = 10). The cold side is down, 
and hot side [37] 
ature differences for travelling 
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 with glass bottom with L = 10 
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Fig. 13. The amplitude of temperature oscillations in a liquid 
bridge heated from the top by ∆T with Pr = 8 above the 
threshold increase as (∆T - ∆Tc)0.6. The exponent 0.6 is near 
0.5 of a Hopf bifurcation [25].  
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Fig. 14. Squared amplitude of the temperature oscillations in 
a LB with A = 15 under microgravity over the applied 
temperature difference ∆T indicating a Hopf bifurcation 
[25].  
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Fig. 15. Surface wave (SW) with m = 6 in a 20 mm wide 
annular gap heated from the inside cylinder with ri = 20 mm 
(d = 3.1 mm, ∆T = 24 K). The free surface in the gap is 
prepared as totally flat (no menisci at both sides) to allow 
shadowgraphy of light reflected from the free surface to 
visualize the SWs [28].  
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Fig. 16. Streamlines of multicellular (steady) 
thermocapillary convection in Pr = 4 fluid heated from the 
right-side. The cell axes are perpendicular to the temperature 
gradient. For larger Ma HTWs can travel from "cold" to 
"hot" (or vice versa depending on Pr) and the multicells will 
oscillate according to the HTW frequency [30]. The 
multicellular state can serve as basic state for HTWs [14, 
16].  
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Fig. 17. The critical Ma increases with Bo, that is for 
increasing d, because of increasing gravitational effects 
(planar HTWs in extended rectangular cavities) [37]. 
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(a) 
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Fig. 18. (a) Streaklines and (b) isotherms by holographic 
interferometry in a cubic fluid cavity with L = H = 20 mm at 
∆T = 4 K (Pr = 17). The cavity has a flat free surface 
without any menisci at its side walls [46]. Indicated is the 
separation of a thermocapillary convection roll with hot fluid 
on top of cold fluid in the bulk. 
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Fig. 19. Cellular convection pattern observed on Garnet melt 
surface (melting point ~ 1750° C) with a melt depth d > 30 
mm, drifting rapidly radially inwards to the coldest spot of 
the surface. Note linear rolls (steady) near the heated wall 
also called "spokes", note cross cells between the spokes 
(drifting) and chaotic Bénard-like cells in the centre [55].  
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Fig. 20. Streaklines in a 40 mm ∅ crucible, liquid depth d = 
20 mm, different ∆T between hot crucible and cold crystal 
dummy, showing the separation of the surface tension driven 
convection from bulk convection [51].  
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Fig. 21. The counterbalance of buoyant-thermocapillary and 
rotationally driven flow in a high-temperature melt (Pr >> 
1). A thermocapillary-driven flow can separate from the 
bulk flow, balancing the rotational one. And this "linear" 
flow profile (a) can become instable (to Bénard-like 
convection cells) due to large radiative heat loss from the 
melt surface. This heat loss is largest near the centre of the 
crucible or near the crystal. The instability in form of rolls or 
cells can reach down to the return flow (b) if the return flow 
is very near the surface flow due to strong separation. 
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Fig. 22. Stability diagram of thermocapillary flow with 
inclined temperature gradient, expressed by the relation 
between the vertical Marangoni number Mav and the 
horizontal one, Mah. The line "H-F" marks the transition to 
oblique hydrothermal waves, line "F-E" that to transverse 
travelling rolls and lines 1 and 2 that to stationary 
longitudinal rolls [59].above the threshold.  
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Fig. 23. Linear thermocapillary flow without return flow 
cooled from above (sapphire lid with temperature gradient 
parallel to that in the metal bottom) shows convection cells 
drifting with the linear flow for Mav above the threshold. 
Visualization with IR camera, IR illumination and aluminum 
flakes. (d = 1.34 mm, Mav = 12.6, Mav = 132, Pr = 10) [63]. 
In the right part of the figure (hot) Mav is too small for the 
cellular instability and linear rolls can be observed.  
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Fig. 24. Stability limits of linear thermocapillary flow 
cooled from above [63]. For a certain Mah with linear flow 
we find with increasing Mav 
- ○ stable linear flow 
- ● longitudinal rolls 
- ◊ transition from rolls to drifting cells (guessed) 
-  drifting cells 
 



 47 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 25. The amplitude of standing surface gravity waves in 
a cavity with L = 20 mm, d = 20 mm, W = 41 mm, ∆T = 
27.5 K when the underfilling h from a flat free surface is 
increased up to h = 1.4 mm. Onset at h = 0.8 mm [29].  
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Fig. 26. Spectra of hydrodynamic instabilities in the 
meniscus (red) and spectra of standing surface gravity waves 
in a cavity (L = 20 mm, W = 41 mm, ∆T = 25 K, 
underfilling h = 1.5 mm). The frequencies of the 
hydrodynamic instabilities (e.g. "a") are near to surface 
waves frequencies to excite these (e.g. mode k = 1, l = 1) 
[29].  
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Fig. 27. Time-dependent flow in the meniscus at the cold 
wall (L = 12 mm, W = 41 mm, ∆T = 45.5 K, h = 1.8 mm). 
The thermocapillary vortex fills only the upper part of the 
meniscus and secondary vortices are visible below it [29].  
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Fig.28. The measured critical Marangoni numbers in liquid 
bridges and layers (symbols) are generally larger than the 
theoretical ones ( lines from[13]) but with the correct 
tendency. The reason for the discrepancy might be 
uncontrolled surface tension properties for the metallic 
systems (oxide impurities) and for the high-Pr liquids the 
“consumtion“ of the largest part of the applied temperature 
gradient in the thermal boundary layers. The critical value 
measured at liquid layers with temperature gradient in the 
metal bottom is nearest to theory, therefore.  
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Fig. 29. The counterbalance between buoyant-thermocapillary and rotationally driven 
flow of a flat interface (K/r = 0) and a conically deflected one (K/r = 1) (crystal radius 
r, stagnation point at rs, rotational Reynolds number Re = 2 πfr2/ν).  
a) Experimental result of the stagnation position for two different K/r at constant 
buoyant-thermocapillary flow; the flat interface needs smaller Re to shift the 
stagnation point to rs/r = 0.9. 
b) Numerical result on flow and stagnation positions (SP) for two interface shapes 
(flat on the left side, conical on the right side) for else unchanged boundary conditions 
for the flow. 
Though the boundary conditions of the experiment are used for the simulation, the 
simulation does not show the separation of the thermocapillary flow observed in the 
experiments. The separation of the thermocapillary flow could increase the observed 
difference in the action of a flat and a conical interface [58].  
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