
Flow around Oscillating
Circular Cylinders

by

Mehdi Nazarinia

A Thesis submitted to Monash University

for the degree of

Doctor of Philosophy

March 2010

Department of Mechanical and Aerospace Engineering

Monash Universty





For Elham my dear wife,
and

For my parents, sister and brother.





Statement of Originality

I, Mehdi Nazarinia declare that this thesis is my own work and contains no material that

has been accepted for the award of a degree or diploma in this, or any other, university.

To the best of my knowledge and belief, information derived from the published and

unpublished work of others has been acknowledged in the text of the thesis and a list

of references is provided in the bibliography.

Candidate: Mehdi Nazarinia

Submitted: 31 March 2010

v



vi



If we knew what it was

we were doing,

it would not be called research,

would it?
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Abstract

This thesis investigates the flow behind an oscillating circular cylinder, it consists of

three main parts. The first part, using particle image velocimetry and flow visualisa-

tions, experimentally examines the near-wake of a circular cylinder oscillating transla-

tionally in a quiescent fluid, or, alternatively, oscillating flow past a stationary cylinder,

at low amplitude and frequency. All but one of the two- and three-dimensional regimes

of the Tatsuno & Bearman (1990) map were investigated. Cylinders in simple harmonic

translational oscillations in a quiescent fluid exhibit a wide range of flow regimes over

a range of amplitudes and frequencies. The identification and location of the different

regimes has previously been done qualitatively using experimental visualisation of dye

and particle shedding patterns. Here flow fields are presented that are successfully com-

pared with previous experimental observations and numerical simulations. Each of the

wake regimes are analysed and elucidated individually. Detailed quantitative results

are compared with the previous studies.

The second part explores the effect of forced combined rotational and translational

oscillatory motions in a quiescent fluid on the wake structures and three-dimensionality

of flow. Previous two-dimensional numerical studies have shown that a circular cylin-

der undergoing combined oscillatory motion can generate thrust so that it will actually

self-propel through a stationary fluid (Blackburn et al. 1999). Although, cylinders

undergoing a single oscillation have been thoroughly studied, the combination of the

two oscillations has received little attention until now. The research reported here ex-

tends the numerical study of Blackburn et al. (1999) experimentally and numerically.

It records the vorticity fields of the wake and uses these to elucidate the underlying

physics, examining the three-dimensional wake development experimentally, and deter-

mining the three-dimensional stability of the wake through a Floquet stability analysis.

Experiments were performed for parameters that were shown previously to result in a

net thrust i.e. the swimming cylinder case. The velocity fields were measured in multiple

planes using particle image velocimetry. In particular, we confirm the thrust generation

in a circular cylinder undergoing combined oscillatory motions. Importantly, we also

find that the wake undergoes three-dimensional transition at low Reynolds numbers

to a instability mode with a wavelength of about two cylinder diameters. The stabil-

ity analysis indicates that the base flow is also unstable to another mode at slightly

higher Reynolds numbers, broadly analogous to the three-dimensional wake transition
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mode for a stationary circular cylinder, despite the distinct differences in wake/mode

topology. The stability of these flows was confirmed by experimental measurements.

The third part of the research investigates the addition of cross flow to the combined

oscillatory motion of the second part. The motivation of this part lies in its application

to vortex-induced vibration and its suppression, and to bio-mimetic motion. Focus

is on the effect of the phase difference between the two motions, which was found to

be an important independent variable. The results show that there is an unexpected

loss of synchronisation of the wake with the motion of the cylinder for a finite range

of phase differences. The effect of velocity ratio between the two oscillatory motions

on the synchronisation effect was also examined. It was found that at lower velocity

ratios no evidence of synchronisation can be observed. Increasing the velocity ratio

not only introduces synchronisation in the wake but also changes the shedding wake

mode as well. Previous studies have extensively investigated the effect of these motions

individually on cylinder wakes; however, the investigation of their combined effect is

new.
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Nomenclature

Abbreviations

Symbol Description

2D two–dimensional

2D-PIV planar particle image velocimetry

3D three–dimensional

CCD charge coupled device

DNS Direct Numerical Simulation

FLAIR Fluids Laboratory for Aeronautical and Industrial Research

Hz Hertz

LDV laser Doppler velocimetry

PIV particle image velocimetry

TTL transistor–transistor logic

VIV Vortex–induced vibration

English Symbols

Symbol Description

Aθ Amplitude of rotational oscillation in radians

At Amplitude of translational oscillation

D Cylinder diameter

f frequency of oscillation (Hz)

fN Natural frequency of vortex shedding (Hz)

fv Frequency of vortex shedding (Hz)

FR Frequency ratio between translational and rotational oscillation =
ft/fθ

FRN Frequency ratio between oscillatory motion and natural frequency =
f/fN

Continued on next page...
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Continued from previous page...

Symbol Description

FRt Frequency ratio between translational oscillation and natural fre-
quency = ft/fN

FRθ Frequency ratio between rotational oscillation and natural frequency
= fθ/fN

k Spanwise wavenumber

KC Keulegan-Carpenter number

L/D cylinder length/diameter ratio

M camera magnification factor (px/mm)

px pixels

Re Reynolds number based on free-stream velocity and cylinder diameter

St Strouhal number

t Time

T Temperature (◦C)

T Oscillation period

U, V,W Velocity components in the x (streamwise), y (transverse) and z (span-
wise) directions, respectively

Umax Peak velocity of an oscillating cylinder

U∞ Free-stream velocity

VR Velocity ratio between translational and rotational oscillation =
Umaxt/Umaxθ

x, y, z rectangular Cartesian coordinates in physical space (mm)

X,Y, Z rectangular Cartesian coordinates in image space (px)

Greek Symbols

Symbol Description

§ Thesis section∫
Integration

β Stokes number

δ standard deviation

∆x, ∆y, ∆z change in x, y, z location in physical space (mm)

∆X, ∆Y change in X, Y location in image space (px)

∆t PIV time interval separating each image pair (ms)

Continued on next page...
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Continued from previous page...

Symbol Description

Γ circulation

η The angle between the transverse oscillation motion and the free-
stream

λ Spanwise wavelength

λc Critical spanwise wavelength

µ Dynamic viscosity (kg.m−1.s−1),
Floquet multiplier

ν Kinematic viscosity, µ/ρ (m2.s)

ωx, ωy, ωz Vorticity components along the x, y and z axis respectively (s−1)

ψ Angle between translational oscillation and free-stream flow

ρ Density (kg.m−3)

σ Floquet exponent = log(µ/T )

θ Angular displacement

Φ Phase angle between rotational and translational motions

Subscripts & Superscript

Symbol Description

θ rotational oscillation component

avg average

cyl cylinder

f fluid

i, j, k spatial coordinate indices

max maximum addition value

p particle

rand random component

rms root-mean-square value

t translational oscillation component

∞ free-stream value

′ fluctuating value
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2.1 Kármán vortex street behind a circular cylinder at Re = 105. The

image shows streaklines produced by electrolytic precipitation in water.

Photograph by Sadatoshi Taneda and is then reproduced from Van Dyke

(1982) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Regimes of flow around a smooth circular cylinder in steady current.

Reproduced from Sumer & Fredsøe (1997). . . . . . . . . . . . . . . . . . 9

2.3 The shear layer. The shear layer on both sides roll up to form the lee-

wake vortices, vortices A and B. Reproduced from Sumer & Fredsøe (1997). 9

2.4 Variation of Strouhal number with Reynolds number for the cylinder

wake. Shown are experimental results: ◦, Williamson (1989); •, Ham-

mache & Gharib (1991) and numerical results: +, Barkley & Henderson

(1996). Wake instabilities up to Re = 300 are labelled: Re1 (the primary

instability), Re2 (the secondary instability) and Re′2 (a point of further

three-dimensional instability; the trinary instability (Elston 2005)). Re-

produced from Barkley & Henderson (1996). . . . . . . . . . . . . . . . . 10

2.5 The saturated mode structure for mode B (left), and mode A (right).

The bottom images were obtained through dye visualisation during ex-

periments such as those by Williamson (1996c). The top images were

obtained through particle tracking three-dimensional simulations such as

those by Thompson et al. (1996). Both show the development of span-

wise vortices. The waviness of the vortex cores in mode A is clear, as is

the finer-scale structure of mode B. Flow is from left to right. Reproduced

from Thompson et al. (2006b). . . . . . . . . . . . . . . . . . . . . . . . 15

xxv



2.6 Primary lock-on regime. Shown are the boundaries of the lock-on regime

as a function of the frequency ratio between the excitation and natural

shedding frequency and the non-dimensionalised amplitude of oscilla-

tion. Low Reynolds number results from Koopmann (1967) are at: 4,

Re = 100; �, Re = 200 and ©, Re = 300. The experimental results of

Cheng & Moretti (1991) were obtained at Reynolds numbers of 1500, �,

and 1650, N; The graph appeared in Elston (2005) and is reproduced by

permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Map of vortex synchronisation patterns near the fundamental lock-on

region. The critical curve marks the transition from one mode of vortex

formation to another. Reproduced from Williamson & Roshko (1988). . 22

2.8 The major wake modes during synchronised VIV and driven oscillation.

Left: the 2P mode (Williamson & Roshko 1988). Top right: the 2S

mode (Koopmann 1967). Bottom right: the P + S mode (Williamson

& Govardhan 2004). Flow is from left to right in all images. The graph

appeared in Leontini (2007) and is reproduced by permission. . . . . . . 23

2.9 Representation of basic modes of vortex formation from cylinder oscil-

lating translationally at angle η with respect to the free-stream. The

graph originally appeared in Ongoren & Rockwell (1988b) and then is

reproduced from Al-Mdallal (2004) by permission. . . . . . . . . . . . . . 23

2.10 Spanwise correlation of vortex shedding for a rigid cylinder during lock-

on. The graph originally appeared in Blevins (1977) and then is repro-

duced from Elston (2005) by permission. . . . . . . . . . . . . . . . . . . 24

2.11 Streamline and streak-line patterns at Re = 33.7, D = 1.0cm, θ = 45◦.

(a) Stf = 0, (b) Stf = 3.4. At a critical frequency of oscillation the wake

region behind the cylinder is much reduced. Reproduced from Taneda

(1978a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xxvi
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4.2 Plane views of flows at various stages of motion in regime A∗ (case 1

in table 4.1) showing flow patterns and structures for over half a cycle:

Flow visualisation method, At = 10 mm, ft = 0.132 Hz (equivalent to

KCt = π, βt = 53, respectively), exposure time=0.6 sec. (a) is showing

the cylinder at its left most position and starting its motion from left to

right and (h) is showing the cylinder at the most right end of its motion,
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6.26 Poincaré map for two typical unlocked regimes for Re = 225. Left: quasi-
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Chapter 1

Introduction

This thesis presents the results of an experimental investigation into the flows produced

by a bluff body subjected to oscillatory motion in a Newtonian fluid. A bluff body can

be defined as a body that, as a result of its shape, has separated flow over a substantial

part of its surface. An important feature of a bluff body flow is that there is a very

strong interaction between the viscous and inviscid regions. The traditional types of

floating and fixed offshore, or man-made, structures used for oil recovery can expect

waves and currents from any direction and they are designed using bluff cross sections,

such as the circle and the square. The cylinder has geometric simplicity enabling models

to be easily manufactured for basic experimental research (Bearman 1997). Hence, in

this thesis a circular cylinder is used as the bluff body.

The structures formed by an oscillating cylinder are highly dependent upon the

characteristics of the cylinder’s oscillation and are additionally influenced by the pres-

ence of an external flow. In a quiescent fluid, at very low amplitudes and frequencies

of translational oscillation, the flow about a circular cylinder is symmetric about its

axis of oscillation and is two-dimensional (it has no variation along the span), attached

and non-turbulent. However as either, or both, of these parameters increase, the flow

structures produced by the cylinder change dramatically. The initial symmetry is lost

and a number of two- and three-dimensional flow structures are seen in the cylinder’s

wake. An example of this is the “streaked flow” observed by Honji (1981) wherein reg-

ularly spaced chains of dye were seen to form along the cylinder span for a particular

envelope of amplitudes and frequencies of oscillation (Elston 2005).

Driving this oscillating body research is the fact that, in nature, a number of oceanic

animals have evolved a highly efficient propulsive mechanism that is, in its simplest

form, a body subjected to both a lateral and twisting oscillatory motion. This means of
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propulsion, known as Carangiform motion, involves the animals tail fin being subjected

to a twisting motion at the extreme ends of the fins lateral oscillatory motion. It is a

highly effective form of propulsion and is used by a number of the fastest swimming

oceanic lifeforms such as dolphins, marlin and some families of sharks.

Studies on flow past an oscillating cylinder can be divided into the following three

categories depending on the motion of the cylinder. In the first category, the cylinder

oscillates translationally only, at an angle of 0◦ or 90◦, or even in between these values,

with respect to the free-stream. The 0◦ case is a purely in-line oscillation, and the 90◦

case is a purely transverse oscillation. Many researchers (such as Bishop & Hassan 1964;

Koopmann 1967; Hamman & Dalton 1971; Sarpkaya 1976a; Taneda 1978b; Griffin &

Hall 1991; Bearman & Currie 1979; Sarpkaya & Isaacson 1981; Bearman et al. 1981;

Bearman 1984; Williamson 1985; Ongoren & Rockwell 1988a; Williamson & Roshko

1988; Hover et al. 1998; Konstantinidis et al. 2000; Carberry et al. 2001; Uzunoğlu et al.

2001; Sarpkaya 2002; Konstantinidis et al. 2002; Carberry et al. 2005; Leontini et al.

2006a,b, 2007; Konstantinidis et al. 2007, and many more) have shown that the vortex

shedding phenomenon can be dramatically altered for the cylinder undergoing in-line

and transverse oscillation in a fluid stream. For in-line oscillations, vortex lock-on occurs

when the oscillation frequencies are approximately twice the Strouhal frequency (the

frequency of the vortex shedding from a stationary cylinder). For transverse oscillations,

lock-on usually occurs near the Strouhal frequency (Griffin & Hall 1991; Meneghini &

Bearman 1995).

In the second category, the cylinder performs a rotational oscillation about its axis

in mean flow. Lock-on or resonance occurs when the body and wake oscillations have

the same frequency, which is near one of the characteristic frequencies of the structures.

Vortex lock-on can also be realized with rotational oscillations of a circular cylinder.

However, in contrast to the large number of studies conducted in the first category,

there is relatively little research carried out in this category (for example Wu et al.

1989; Tokumaru & Dimotakis 1991; Filler et al. 1991; Lu & Sato 1996; Fujisawa et al.

1998; Mahfouz & Badr 2000; Cheng et al. 2001a; Choi & Choi 2002; Du et al. 2003;

Schmidt & Smith 2004; Thiria et al. 2006; Lo Jacono et al. 2010).

The third category, which is of a class of flow that has not received much attention

until now, is created by a circular cylinder moving with combined oscillatory transla-

tional and rotational motion in quiescent fluid or free-stream. Blackburn et al. (1999)
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found that a circular cylinder undergoing combined oscillation in a quiescent fluid has

the capability to generate thrust. This phenomenon is the major interest of the present

thesis. The primary aims of this thesis are to extend the numerical study of Blackburn

et al. (1999) both experimentally and numerically, to examine the three-dimensional

wake development experimentally, using the particle image velocimetry technique, and

to determine the three-dimensional stability of the wake through Floquet stability anal-

ysis.

The results are compared to the only known available numerical results of Blackburn

et al. (1999) to confirm the thrust generating ability of the cylinder. Placing the

circular cylinder which is undergoing combined oscillatory motion in a free-stream has

shown to generate intriguing wake modes and the potential of such flows to reduce

synchronisation of the cylinder motion in the near-wake (Al-Mdallal 2004; Kocabiyik

& Al-Mdallal 2005). The effect of phase difference and velocity ratio between the

two oscillatory motions on the synchronisation in the near-wake of the cylinder were

considered for the first time in this thesis.

The problem considered here involves a circular cylinder being subjected to one or

more modes of oscillation while surrounded by either an externally imposed flow or by a

quiescent fluid. Simple harmonic forms of translational and rotational oscillation were

used for all the modes of imposed oscillation considered in this thesis.

The investigation is composed of three components:

1. An investigation of the near-wake produced by a circular cylinder oscillating only

translationally in a quiescent fluid at low KCt and βt numbers in a quiescent

fluid.

2. The mechanism resulting in the combined rotational and translational oscillation

of a circular cylinder in a quiescent fluid producing a time-averaged thrust is

experimentally examined and the thrust generation ability is confirmed, i.e. the

“swimming cylinder”. Additionally the influence of phase difference between the

two motions on the near-wake structure and three-dimensionality of flow along

the span of the cylinder are investigated.

3. The effect of adding a cross flow to the swimming cylinder case on the synchroni-

sation in the near-wake of the cylinder is also examined. The effect of the phase

difference and velocity ratio between the two motions are investigated.
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Structure of the Thesis

The thesis is structured as follows:

Chapter 2: A review of the relevant literature is conducted in order to assess

the current state of knowledge, and to highlight unanswered questions and gaps in the

existing research.

Chapter 3: The experimental method used to measure the flows is outlined. The

particle image velocimetry technique and flow visualisation are used for flow measure-

ments.

Chapter 4: An investigation of the flow generated at very low amplitudes and

frequencies of translational oscillation is made. This chapter provides quantitative

measurements of flow around the cylinder oscillating in an initially quiescent fluid.

Chapter 5: The “swimming cylinder” problem of a cylinder in combined trans-

lational and rotational oscillatory motion is examined. The impact of the various

parameters controlling the motion of the resultant flow is investigated.

Chapter 6: The addition of cross flow to the “swimming cylinder” is investigated.

The impact of the various parameters controlling the motion of the resultant flow is

investigated.

Chapter 7: The overall conclusions of the thesis, summarising the results obtained

in the previous chapters, are presented. Potential future directions for research in this

area are discussed.

Appendix A: A definition of spatial and/or temporal properties symmetry is given.

Appendix B: Copies of the papers published in the Physics of Fluids journal arising

from Chapters 5 and 6 are provided.

Appendix C: During the candidature opportunity arose to conduct a series of

experiments on a different topic than the aim of present thesis, a copy of the paper

published recently in the Physics of Fluids journal from this work is provided here.

Bibliography: A bibliography that contains all the references cited throughout

the body of this thesis.
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Chapter 2

Literature Review

2.1 Introduction

In the following sections previous research into aspects of a cylinder oscillating in a

fluid are examined. In particular two specific phenomena that, in part, provided the

motivation for this research will be examined in greater detail. The first of these

phenomena arises from the research of Honji (1981); Williamson (1985) and Tatsuno

& Bearman (1990) who collectively observed that the translational oscillation of a

circular cylinder at low amplitudes and frequencies of oscillation in a quiescent fluid,

or equivalently a fixed cylinder in sinusoidally oscillating flow, can generate a set of

intriguing flow structures. Tatsuno & Bearman (1990) defined a number of unique

regimes, on the basis of the distinctive flow structures shed from the cylinder, that

were observed to occur over a very small range of Keulegan-Carpenter and Stokes

numbers.

The second phenomenon of interest is observed when a harmonic rotational oscil-

lation is imposed upon the cylinder in addition to the aforementioned translational

motion. It has been computationally shown by Blackburn et al. (1999) that, for partic-

ular phase angles between the two forms of oscillations, a net thrust can be produced by

the cylinder which acts upon the surrounding fluid and results in a time-averaged flow

past the cylinder. This motion combination has also been identified, (see for example

Lighthill 1986), as being the propulsion mechanism used by the fastest deep sea ma-

rine animals. These animals, a small sample of which includes tuna, swordfish, sharks,

whales and dolphins, utilise a form of tail-fin motion identified as carangiform motion

that in its simplest form can be related back to a bluff body performing translational

and rotary oscillation. Although in carangiform motion, the phase angle between the

rotational and translational motions is the reverse of that found to produce a thrust by
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Blackburn et al. (1999) with a circular cylinder.

To gain an insight into the effects that occur with the combined motion it is infor-

mative to review the body of knowledge surrounding the individual motion components.

The following sections shed some light on the previous researches conducted on a cir-

cular cylinder in a free-stream, pure translational oscillatory motion and the combined

oscillatory motions in either free-stream or quiescent fluid, i.e. stationary fluid. Ini-

tially we start by defining some fluid mechanic variables followed by definitions on flow

instability and intrinsic flow transition. It is then followed by reviewing a station-

ary cylinder with no oscillation in a free-stream and then review the influence of the

addition of either oscillatory motion types with or without the free-stream presence.

2.2 Flow past a fixed cylinder

Anagnostopoulos (1997) has introduced some researchers like Leonardo da Vinci, Strouhal

or von Kármán as the pioneers in the vortex shedding behind the bluff body field. He

said “in the fifteenth century Leonardo da Vinci sketched a double row of vortices in the

wake of a bluff body. Strouhal (1878) demonstrated that the dimensionless frequency

remains constant over a wide range of Reynolds number, while von Kármán (1911)

replaced the actual vortex street with a double row of point vortices and proposed

stability criteria for its existence.”

Flow around cylindrical structures is of relevance for many practical applications,

e.g. offshore risers, bridge piers, periscopes, chimneys, towers, masts, stays, cables,

antenna, and wires. Knowledge about flow-related unsteady loading on such structures

is crucial for hydro- and aerodynamic design and control (Blevins 1977; Norberg 2003).

For nearly a century research (see for example Strouhal 1878; von Kármán 1911) has

been conducted on the flow past a fixed circular cylinder. A primary reason for this

is that the geometry is easy to describe, being defined by only the cylinder diameter

and length. In the limit of two-dimensional flow, this description requires the definition

of only one term, the diameter. Other shapes share this feature, such as squares and

equilateral triangles, however, these shapes possess sharp corners, or discontinuities.

This means that the angle of attack of the flow needs to be considered for these other

cross-sections, whereas it is unimportant for a circular cylinder (Leontini 2007). The

dimensionless quantity describing the flow around a smooth stationary circular cylinder

in a uniform stream of Newtonian fluid can be described by a single parameter, the

6



cylinder Reynolds number (Stokes 1851; Reynolds 1883; Munson et al. 2006):

Re =
DU∞
ν

, (2.1)

which represents the ratio of inertial to viscous forces.

The flow undergoes major changes as the Reynolds number is increased from zero

to very high values and does not vary linearly, but a series of distinct transitions do

occur. The flow moves from a two-dimensional creeping flow, to a two-dimensional

separated flow, then to an unsteady flow, a three-dimensional flow and finally a fully-

turbulent flow (Zdravkovich 1997; Leontini 2007). The flow regimes experienced with

increasing Re are summarised in figure 2.2. Summations of the characteristics of these

different flow regimes, particularly those after the transition to unsteady flow, can

also be found in Roshko (1993); Williamson (1996c). While the wake extends over a

distance which is comparable with the cylinder diameter, the boundary layer extends

over a very small thickness, which is normally small compared with diameter. The most

important feature of the flow regimes summarised in figure 2.2 is the vortex shedding

phenomenon, which is common to all the flow regimes for Re > 40. For these values

of Re, the boundary layer over the cylinder surface will separate due to the adverse

pressure gradient imposed by the divergent geometry of the flow environment at the

rear side of the cylinder. As a result of this, a shear layer is formed, as shown in

figure 2.3 (Sumer & Fredsøe 1997). The boundary layer formed along the cylinder

contains a significant amount of vorticity. Regular patterns of vortices can be formed

in the wake, a classical and well known example being the von Kármán vortex street,

see figure 2.1. The vortices are shed alternately from either side of the cylinder causing

periodic forces to be experienced by the cylinder. The periodic force has a component

in the direction normal to the free-stream, which oscillates at the shedding frequency

(Bearman 1984), and a component in-line with a stream, which oscillates at twice the

shedding frequency (see for example Sarpkaya & Isaacson 1981; Hurlbut et al. 1982;

Lecointe & Piquet 1989). As the velocity of the free-stream varies the frequency of the

shedding vortices also varies. This vortex shedding frequency, when normalised with

the flow velocity and the cylinder diameter takes the form of

St =
fND

U∞
(2.2)

The normalised vortex shedding frequency, St, is the Strouhal number. This dimen-
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Figure 2.1: Kármán vortex street behind a circular cylinder at Re = 105. The image shows
streaklines produced by electrolytic precipitation in water. Photograph by Sadatoshi Taneda
and is then reproduced from Van Dyke (1982)

sionless group was first suggested by Rayleigh (1879), to collapse the data presented by

Strouhal (1878) in a study of Aeolian tones from cylindrical strings.

2.2.1 Wake regimes: Variation with Reynolds number

The different flow regimes provide a natural delineation when describing the flow around

a circular cylinder. Therefore, the following review of the literature pertaining to this

flow is presented in sections relating to increasing Re. Of the main interest and most

relevant to the present study is the effect of wake transition as Re increases. Figure 2.4

shows the variation of Strouhal number with Reynolds number for the cylinder wake.

The figure is reproduced from Barkley & Henderson (1996). It should be mentioned that

the Re number corresponding to the primary and secondary wake instability boundaries

have varied from Re ≈ 46 (Barkley & Henderson 1996, for example) to Re ≈ 49

(Williamson 1989, for example) in the literature. In this part of thesis the experimental

values from Williamson (1996c) are used.

2.2.1.1 Laminar Steady Regime (0 < Re < 49)

For very small values of Re (where Re < 1), viscous forces dominate the flow and

no separation occurs. The flow does not separate from the surface of the cylinder,

but stays completely attached, and the flow streamlines appear identical upstream and

downstream of the cylinder. This flow is known as creeping or Stokes flow (Stokes 1851).

A schematic example of such a flow is shown in figure 2.2a. This flow around a circular

cylinder persists only at very small values of Re, until the first of a series of transitions

occurs. The separation first appears when Re becomes 5. This is the transition to
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Figure 2.2: Regimes of flow around a smooth circular cylinder in steady current. Reproduced
from Sumer & Fredsøe (1997).

Figure 2.3: The shear layer. The shear layer on both sides roll up to form the lee-wake
vortices, vortices A and B. Reproduced from Sumer & Fredsøe (1997).
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Re

St

Figure 2.4: Variation of Strouhal number with Reynolds number for the cylinder wake.
Shown are experimental results: ◦, Williamson (1989); •, Hammache & Gharib (1991) and
numerical results: +, Barkley & Henderson (1996). Wake instabilities up to Re = 300 are
labelled: Re1 (the primary instability), Re2 (the secondary instability) and Re′2 (a point of
further three-dimensional instability; the trinary instability (Elston 2005)). Reproduced from
Barkley & Henderson (1996).

separated flow, when small steady two-dimensional regions of recirculating flow form

behind the cylinder. This wake region consists of two vortices symmetrically placed on

either side of the wake centreline, which together form a symmetric recirculation region.

Williamson (1996c) notes that the length of this region has been experimentally (Taneda

1956; Gerrard 1978; Coutanceau & Bouard 1977; Roshko 1993) and numerically (Dennis

& Chang 1970) shown to increase as the Reynolds number increases. An schematic

example of this steady, separated flow is shown in figure 2.2b. According to Taneda

(1956) this occurs for Re ' 5.

2.2.1.2 Primary Wake Instability (Re ' 49)

As the Reynolds number is further increased it exceeds a critical value at which point

an instability has been shown by Taneda (1956); Gerrard (1978) to manifest itself in the

form of sinuous waves which propagate along the boundary of the wake recirculation in

the downstream direction (Elston 2005). This trend continues until Re ' 49 (Taneda

1956; Roshko 1993; Dušek et al. 1994; Williamson 1996c; Le Gal et al. 2001; Thompson

& Le Gal 2004). At this limit, the flow undergoes its second major transition, this time
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to an unsteady, time-periodic flow. This type of transition, from a steady flow to a

time-periodic flow, is known as a Hopf bifurcation (Hopf 1942; Seydel 1994).

2.2.1.3 Laminar Vortex Shedding Regime (49 < Re < 140− 190)

The transition from a steady flow to a time-periodic one is probably the most impor-

tant transition in cylinder wakes with respect to VIV. As a consequence of the Hopf

bifurcation, the primary instability, (Provansal et al. 1987) the wake in this regime

oscillates periodically. As the Reynolds number is further increased within this regime,

the amplitude of these oscillations increase. After this transition, laminar vortex shed-

ding occurs, with vortices being shed in turn from alternate sides of the cylinder. This

periodic shedding causes a periodic force on the cylinder. This force has been found

to have components in the direction normal to the free-stream, which oscillates at the

shedding frequency of the vortices, as noted in the review of Bearman (1984), and a

component in-line with the stream, which oscillates at twice the shedding frequency, as

noted in the review of Sarpkaya & Isaacson (1981). The vortices shed organise them-

selves into a two-row configuration, known as the Kármán vortex street. This is named

after Theodore von Kármán because of his observation and analysis of the configuration

(von Kármán 1911). von Kármán (1911)’s analysis was based on the earlier observation

of this street of Bénard (1908). A classic example of the Kármán vortex street is shown

in figures 2.1 and 2.2c. The frequency of this shedding, where the flow remains laminar

and two-dimensional, is a unique function of the Reynolds number (see equation 2.2).

In an ideal case the cylinder is of infinite spanwise length, however in any laboratory

experiment the cylinder is of a finite length and the experiment’s spanwise boundary

conditions have been shown to exert considerable influence over the flow. Williamson

(1996c) observed that if the experimental spanwise boundary conditions are carefully

manipulated then the flow is periodic and vortex shedding is parallel to the cylinder.

According to Williamson (1996c) the upper limit of this laminar shedding range

has an enormous spread in the literature, Re = 140 up to 194, although recent precise

results now place the critical Reynolds number very close to 194. Barkley & Henderson

(1996) found it to be 188.5± 1.0.

2.2.1.4 Secondary Instability (Re ' 190)

The transition from the Laminar vortex shedding regime is first observed in experiments

as a sharp discontinuity of the Strouhal number, as shown in figure 2.4, where the
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Strouhal number can be seen to drop rapidly at Re ' 180. This rapid experimental

transition is characterised as the secondary instability of steady flow past a fixed circular

cylinder. Williamson (1996c) observes that the upper-limit of the previous laminar

vortex shedding regime has been found to vary considerably in experiments, from Re =

140 − 194. This large variation in the experimentally measured point of transition

was ascribed by Williamson (1996c) to be a consequence of experimental sources of

perturbation to the ideal flow. Cylinder roughness, free-stream turbulence amplitude,

blockage and end effects are some of the perturbation sources cited which tended to

have the effect of reducing the point of transition to a lower Reynolds number. Barkley

& Henderson (1996) numerically investigated the secondary instability via numerical

techniques, using a Floquet stability analysis, see §5.4, with the objective of quantifying

the nature and location of the transitions to three-dimensionality. Their results showed

the secondary instability transition to occur at Re = 188.5±1.0, as shown in figure 2.4.

However, investigation of the location of the second instability will not be considered in

this review as is not the focus of this study. A comprehensive review of this instability

can be found in Barkley & Henderson (1996); Williamson (1996c); Zdravkovich (1997);

Elston (2005).

2.2.1.5 3-D Wake Transition Regime (190 < Re < 260)

Williamson (1996c) describes this transition regime to be associated with two discon-

tinuous changes in the wake formation as Re is increased. The discontinuities may be

manifested by the change in base suction of the cylinder (Williamson & Roshko 1990),

or by the variation in Strouhal number as the Reynolds number is increased Williamson

(1988) as shown in figure 2.4. The transition to three-dimensionality begins with the

onset of mode A Williamson (1988). At the first discontinuity near Re = 180 − 194

(depending on experimental conditions), the inception of vortex loops (in a mode A

instability) and the formation of streamwise vortex pairs due to the deformation of

primary vortices as they are shed can be seen. This range has been attributed to end

effects, and the “pure” transition is seen to occur very close to Re = 190 (Williamson

1996c; Barkley & Henderson 1996). The mode is characterised by deformation of the

vortex cores in the Kármán vortex street. The cores become wavy rather than straight,

with a spatial wavelength of around 3–4 cylinder diameters. This waviness therefore

turns some of the vorticity in the streamwise direction, and vortex loops are then drawn
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out in the high-strain region between the primary vortices (Henderson 1997). This dis-

continuity is hysteretic and is labeled as a “hard” transition by Zhang et al. (1995).

Experimental and numerical examples of the structure of the saturated mode A are

shown in figure 2.5. The Floquet stability analysis of Barkley & Henderson (1996))

provided predictions of both critical wavelengths and Re for three-dimensional modes

arising from the two-dimensional Kármán vortex street. That study found that the

first Floquet mode became unstable at Re = 188.5, and possessed a spatial wavelength

of λ = 3.96D, corresponding to mode A. This linear analysis also indicated that mode

A was at its strongest in the vortex cores, agreeing with the experimental observation

of vortex core waviness. Leweke & Williamson (1998) also investigated the character

of the mode A instability. The analysis returned a predicted wavelength for the in-

stability of 3D, in good agreement with the observed wavelength of mode A. Their

analysis also indicated areas of the flow where the mode would be expected to grow.

Leontini (2007) reported on the paper from Henderson (1997) which covered many phe-

nomena relating to the transition to three-dimensionality and mode A. The symmetry

properties of the mode were reported, and an investigation to the effect of the span

of the cylinder was made. It was reported that for long cylinder spans, mode A led

to the development of spatio-temporal chaos, or a disordered pattern and a lack of

periodicity in the wake. This was distinguished from strong turbulence that occurs

with increasing Re and the reducing impact of dissipative viscous forces. This spatio-

temporal chaos offered an explanation for the spread in the data of earlier StRe curves

(Roshko 1954). While mode A is the first three-dimensional mode to arise, it is not

the most resilient. At the second discontinuous change in the St − Re relation, there

is a gradual transfer of energy from mode A shedding to a finer-scaled mode, logically

named mode B (Williamson 1988). Floquet stability analysis by Barkley & Henderson

(1996) predicted mode B to first become unstable at Re = 259, but experimentally

mode B is first detected anywhere in the range 230 Re 250 Williamson (1988, 1996a).

With the onset of mode B, energy is gradually passed from mode A to mode B, until

by Re ' 285 there is effectively no evidence of mode A. Once mode B is established,

it is very robust, with evidence of mode B still present in the wake at Re = 1000

(Wu et al. 1996). Early three-dimensional simulations by Karniadakis & Triantafyllou

(1992) indicated that mode B was the primary three-dimensional transition, and that it

led to a period-doubling cascade as the route to turbulence. However, later simulations
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from Zhang et al. (1995), and the extensive computations of Thompson et al. (1996)

indicated that if a suitable spanwise domain was employed, mode A was resolved and

the predicted period-doubling cascade did not occur, the route to turbulence instead

being through spatio-temporal chaos. These findings highlighted that the suppression

of particular three-dimensional modes could change the path to turbulence. Mode B

comprises finer-scale streamwise vortices, with a spanwise length scale of around 1Dand

is more or less focused in the braid shear layer that links successive primary vortices in

the Kármán vortex street. Examples of the saturated mode B are shown in figure 2.5.

Following the discovery of modes A and B, and their effect on the path to turbulence,

few researchers investigated the possibility of other types of modes. As well as modes

A and B, other modes have been shown to be theoretically possible. Marques et al.

(2004) and Blackburn et al. (2005), using group theory (Rosen 1995), showed that for

flows possessing the symmetries of the Kármán wake, only three generic bifurcations

can arise from the two-dimensional base flow. One of which breaks the “time” part of

the spatio-temporal symmetry, and is represented by a quasi-periodic mode, or a mode

that has a different period to the two-dimensional base flow. Such a quasi-periodic

mode can be found numerically in the fixed cylinder wake (Blackburn & Lopez 2003).

It is predicted to occur around Re = 377, and so is not observed in experiments, as the

base flow is far from two-dimensional by this stage. However, experiments by Zhang

et al. (1995) with an upstream tripping wire excited a mode with a similar value of λ

to this quasi-periodic mode, in the Reynolds number range 170 ≤ Re ≤ 270. The ex-

periments of Zhang et al. (1995) and the restricted-domain simulations of Karniadakis

& Triantafyllou (1992) demonstrated that relatively passive measures could be used

to affect the inception order of the three-dimensional modes, even if there is only a

small number of possible modes involved (Marques et al. 2004; Blackburn et al. 2005;

Leontini 2007).

2.2.1.6 Fine Scale 3-D Wake Regime (260 < Re < 1000− 2000)

This regime initially consists of mode B shedding. Subsequent increases in Re towards

the limits of our consideration (Re = 2000) result in the flow becoming increasingly

disordered, leading to a reduction in two-dimensional Reynolds stresses and an increas-

ing length of the formation region. The flow in the range of Re between 1000 and

2000 also is experiencing the wake contraction and the wake regime is not changing
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Figure 2.5: The saturated mode structure for mode B (left), and mode A (right). The
bottom images were obtained through dye visualisation during experiments such as those
by Williamson (1996c). The top images were obtained through particle tracking three-
dimensional simulations such as those by Thompson et al. (1996). Both show the development
of spanwise vortices. The waviness of the vortex cores in mode A is clear, as is the finer-scale
structure of mode B. Flow is from left to right. Reproduced from Thompson et al. (2006b).

significantly. This regime is also equivalent with the sub-regime TrSL1 definition of

Zdravkovich (1997).

2.3 Flow past a translationally oscillating cylinder

The focus of this thesis is on cylinders undergoing combined translational and rota-

tional oscillatory motions mainly in quiescent fluid and to some extent in a free-stream.

Therefore, the following sections of this literature review focus on the primary phenom-

ena that occur in such flows and reviewing the few available sources of literature on

the combined motion. To gain an insight into the effects that occur with the combined

motion it is informative to review the body of knowledge surrounding the individual

motion components. For this reason, the literature pertaining to purely translational

or rotational oscillatory motion is also presented. The approaches to studying and

understanding this problem have tended to fall into two categories; the study of the

response of an elastically mounted cylinder in a free-stream or of a cylinder that has

been subjected to forced oscillations in a free-stream or quiescent fluid. The present
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review will primarily focus on the forced translational oscillations approach, as it is the

most relevant to the current investigation. In forced translational oscillations the cylin-

der axis is translating along a linear path at some orientation relative to the incident

flow. Here we primarily consider two particular orientations relative to the free-stream:

transverse oscillation where the direction of cylinder oscillation is at right angles to the

incident flow; and in-line oscillation where the direction of cylinder oscillation is aligned

with the free-stream. A more detailed review of other orientations can be for example

found in Elston (2005).

The study of VIV is important to a large number of disciplines such as fluid mechan-

ics, structural vibrations, acoustics, offshore engineering, heat exchanger design, bridge

design and aeronautical engineering. Accordingly, substantial research time and publi-

cations have been devoted to this phenomenon (Elston 2005). Before considering VIV,

it is important to have an in-depth understanding of how the oscillation of a cylinder

changes the behaviour of the flow from the limiting case of a fixed cylinder. Therefore,

phenomena such as synchronisation, timing of vortex shedding, and wake modes will

be presented. As mentioned above, with these concepts established, the literature on

the flow past an oscillating cylinder will first be reviewed. In the following section the

literature on the translational oscillation in a quiescent fluid will be presented. Finally,

the flow around a combined oscillatory motions in either quiescent fluid or free-stream

will be reviewed.

2.3.1 Transverse Oscillations

The vibration of structures immersed in a fluid flow has received much experimental,

analytical, and numerical study, as reported in review articles by Parkinson (1974);

Savkar (1977); Sarpkaya (1979); King (1977); Williamson (1996c); Paidoussis (1998);

Williamson & Govardhan (2004); Sarpkaya (2004), and textbooks of Blevins (1977);

Sumer & Fredsøe (1997); Naudascher & Rockwell (1994). Numerical studies of vor-

tex shedding have primarily addressed the flow of a uniform stream normal to a rigid

circular cylinder, in either two- or three-dimensions. Since the cylinder is fixed, no

information about vibration interaction is thus obtained. If the cylinder is vibrat-

ing, either in forced or natural motion, a nonlinear interaction occurs as the cylinder

frequency approaches the vortex shedding frequency. This interaction has two major

characteristics: First, the natural shedding frequency is suppressed and vortex shedding
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occurs instead at the cylinder vibration frequency over a range of flow velocities. This

is known as the lock-on or “wake capture” phenomenon. Second, the transverse or lift

force increases greatly, with a maximum response occurring near the mid-point of the

lock-on range. These effects occur when the cylinder is vibrating either in-line or trans-

verse (The translational oscillations comprise a set of oscillations where the cylinder

axis is translating in any orientation relative to the incident flow with the free-stream

direction).

The large number of studies into a cylinder in simple harmonic cross-flow oscillation

has identified a number of significant features of the fluid-cylinder interaction. The

features most relevant to the present study are reviewed in the following sections.

2.3.1.1 Lock-on

Vortex shedding results in periodic forcing of a body that under certain conditions

induces large scale motion of the body. As flow interacts with the bluff body above a

certain Reynolds number vortices are produced at the trailing edge of the body and shed

at a given frequency. Vortices are regions of low pressures, consequently the pressure

differences between the vortex cores and outside them exert a force on the body. As the

vortices shed regularly the body experiences a periodic forcing. A significant feature

of the fluid-structure interaction for a cylinder in transverse oscillation is the ability of

the cylinder to capture the vortex shedding frequency (fv) so that it oscillates at the

cylinder oscillation frequency (ft) instead of the natural frequency of shedding (fN )

for a fixed cylinder. The terms “Synchronisation”, “Lock-in” or “Lock-on” are used to

describe the wake when the periodic shedding of vortex structures and the resulting

fluctuating forces are synchronised with the motion of the body. The frequency of vortex

shedding can be quantified by measuring the velocity within the wake or the lift force

on the body. If lock-on occurs the structure may experience resonance and, due to the

periodic forcing induced by the flow the body, may exhibit large scale motion, compared

to when the frequencies were not synchronised. The bounds of lock-on are generally

defined to include all cases where the most energetic wake frequency coincides with

the frequency of oscillation, see for example Bishop & Hassan (1964); Marris (1964);

Koopmann (1967); Griffin & Ramberg (1974); Stansby (1976); Blevins (1977); Sarpkaya

(1979); Karniadakis & Triantafyllou (1989); Cheng & Moretti (1991); Hall & Griffin

(1993); Blackburn & Henderson (1999) and Balabani et al. (2007). When the vortex
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shedding, or wake frequency has a strong spectral peak, lock-on can easily be identified.

However, the definition of lock-on is somewhat subjective as it depends on how and

where the wake frequency is measured, therefore the exact boundaries of lock-on are

not rigorously defined. Lock-on can be demonstrated schematically using a phase plot

of the displacement of the body versus lift or wake velocity/frequency. In cases where

the flow is not locked-on, the most energetic shedding frequency is often close, or equal

to the Strouhal shedding frequency of the stationary body (Carberry 2002). The lock-

on range is somewhat dependent on the Reynolds number and cylinder amplitude and

the maximum range is approximately ±40 percent of the mid-point frequency (Hurlbut

et al. 1982). Cylinder vibrations at frequencies far removed from the harmonics and

sub-harmonics of the shedding frequency have only a small effect on the wake (Blevins

1977).

This lock-on, or synchronisation, effect was first documented by Hartog (1956) and

later by Bishop & Hassan (1964) (Blevins 1977; Hall & Griffin 1993). In their ex-

perimental driven oscillation study, they found synchronisation occurred for driving

frequencies close to, but both above and below, the natural shedding frequency. There-

fore, a defining parameter was the ratio of the oscillation frequency to the Strouhal fre-

quency, ft/fN . It was also noted that the range of synchronisation frequencies seemed

to increase with increasing amplitude of oscillation. This was systematically studied

by Koopmann (1967) with a series of low-Re experiments. This flow regime has been

found to occur for oscillations at various orientations to the incident flow (Hall & Grif-

fin 1993) and for rotational oscillation as observed by Tokumaru & Dimotakis (1991).

For lock-on to occur, a sufficiently large oscillation amplitude is required and once this

threshold is exceeded the oscillations causing the lock-on can control the location and

extent of the vortex formation region (Hall & Griffin 1993; Sarpkaya & Isaacson 1981).

It was shown by Koopmann (1967) that the amplitude of oscillation increased, so did

the range of frequencies resulting in synchronisation. This range always encompassed

the Strouhal frequency for a fixed cylinder, fN , but extended further for frequencies be-

low f/fN than for frequencies above it. This synchronisation dependence on At/D has

been confirmed through the experiments of Griffin (1971); Griffin & Ramberg (1974);

Stansby (1976) and Williamson & Roshko (1988), and the simulations of Hurlbut et al.

(1982); Blackburn & Karniadakis (1993), and Meneghini & Bearman (1995) among

others, at Re where the flow is both two- and three-dimensional.
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Sometime later Cheng & Moretti (1991) showed that the vortex shedding frequency

locks onto the cylinder forced frequency not only in the vicinity of the frequency of

vortex shedding expected for a fixed cylinder, but also when the driving frequency is a

multiple of the expected frequency. At very small amplitudes the phenomenon has been

demonstrated to occur when the frequency ratio ft/fN is near 1.0. Subsequent increases

of the amplitude of oscillation has been shown to increase the envelope of frequencies

over which the primary lock-on regime will occur. A lock-on envelope derived from

results presented in the reviews of Blevins (1977) and Sarpkaya (2004) can be seen

in figure 2.6 which shows the boundaries of this region for low-Re experiments. The

comparison between the results of Koopmann (1967) and Cheng & Moretti (1991) shows

that increasing the Reynolds number results in a widening of the lock-on envelope.

Cheng & Moretti (1991) also showed that outside the lock-on regions, the frequency

of vortex shedding gradually decreases with increasing forcing frequency and also with

increasing amplitude. They speculated that this is related to a widening of the wake

they have observed in their flow visualisation experiments. In the cases shown, the

central frequency of the lock-on envelope is tilted towards the lower frequencies (< 1).

Additionally, the envelope of frequencies found by Cheng & Moretti (1991) exhibits

a slanted onion-shaped region. According to Sarpkaya (2004), the Reynolds number

has a strong influence on the upper frequency lock-on boundary. As the amplitude of

oscillation approaches zero the lock-on envelope narrows such that ft/fN approaches

1.0. The results of Koopmann (1967), shown in figure 2.6, have a minimum amplitude

at which lock-on was found to occur, At/D ≈ 0.05. However, the results of Cheng &

Moretti (1991), also presented in figure 2.6, show that much lower values of At/D in

the lock-on regime can be achieved. Blackburn & Henderson (1999) suggested that the

minimum amplitude was associated with the presence of oblique, instead of parallel,

vortex shedding for the stationary circular cylinder. Further, they speculated that it is

likely for three-dimensionally unstable flows that there does exist a limiting minimum

amplitude for lock-on to occur in experiments due to the perturbation imposed by the

cylinder on the flow being too small to control the turbulent wake. Karniadakis &

Triantafyllou (1989) also qualitatively distinguished the upper and lower branch over

a range of ft/fN and observed that the lock-on region was amplitude dependent and

became larger (wider) with an increase of amplitude. Their experiment also displayed

a region outside the lock-on boundaries where the flow is receptive to the oscillation
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Figure 2.6: Primary lock-on regime. Shown are the boundaries of the lock-on regime as a
function of the frequency ratio between the excitation and natural shedding frequency and the
non-dimensionalised amplitude of oscillation. Low Reynolds number results from Koopmann
(1967) are at: 4, Re = 100; �, Re = 200 and ©, Re = 300. The experimental results of
Cheng & Moretti (1991) were obtained at Reynolds numbers of 1500, �, and 1650, N; The
graph appeared in Elston (2005) and is reproduced by permission.

frequency of the body. Bearman (1984) suggested that in driven cylinder experiments

the cylinder oscillation also has the effect, during lock-on, of synchronising the moment

(in time) of shedding along the span of the cylinder, so that parallel vortex shedding is

universally observed, with no oblique modes present.

Other researchers also investigated the lock-on phenomenon for other applications

like: rotationally oscillating cylinder (for example Chou 1997), pulsating flow (for ex-

ample Konstantinidis & Balabani 2008), pulsating flow in tube arrays (for example

Konstantinidis et al. 2000) and oscillating flow at high Re numbers (Barbi et al. 1986).

As these are not the focus of this thesis they will not be covered here.

The applications of biomimetic motion proposed by Blackburn et al. (1999) and its

application to the reduction of VIVs is of particular interest to the present study. As

was explained so far there has been considerable research on the effects of transverse

only motion on cylindrical wakes but there is not much studies on VIV of a circular

cylinder undergoing combined translational and rotational oscillatory motion.
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2.3.1.2 Vortex Shedding Structures and Wake modes

The general form of the fluid structures shed into the near-wake is often described in

terms of the mode of vortex shedding. An oscillating cylinder can exhibit a number of

different shedding modes. A systematic study of the wake modes of a driven oscillating

cylinder was made by Williamson & Roshko (1988). They visualised the vortex wake

patterns for a cylinder subjected to harmonic transverse motion in a uniform cross-

flow over a Reynolds number range 300-1000. The shedding regimes are generally

expected to persist over a wider range of Reynolds numbers (Carberry 2002). The non-

dimensionalised oscillation parameters of amplitude, At/D, and wavelength, λosc/D,

were used to characterise their study, where λosc = U∞Tt is equal to the product of the

free-stream velocity, U∞, and the period of cylinder oscillation Tt. The parameters were

varied over the range 0 < At/D < 5.0 and 0 < λosc/D < 15.0. A number of different

regimes were observed where each regime was characterised by the number of single

vortices (S) or vortex pairs (P ) formed on each side of the cylinder over each cycle of

vortex shedding, i.e., the classical antisymmetric Kármán vortex street is designated

the 2S mode using this notation, and a mode consisting of a pair of vortices shed each

half-cycle, or a total of four vortex structures per oscillation, is designated the 2P

mode. Their results can be seen in figure 2.7, which shows the modes in the vicinity

of the lock-on regime. In the regime of synchronisation, only the 2S and 2P modes

were observed at amplitudes of relevance to VIV. Examples of the 2S and 2P mode,

along with the asymmetric P + S mode, are also shown in figure 2.8. The Reynolds

number was not held constant over the entire At/D − λosc plane, it being argued that

the Strouhal number for a fixed cylinder does not vary over this range. However,

significant changes do occur over this range, such as decreasing base-suction coefficient

and formation length (Roshko 1993; Williamson 1996c). Therefore, the boundaries

shown on this plot may have some built-in bias. Regardless, the modes present seem

universal, even if the boundaries are not completely fixed (Leontini 2007)). Basic modes

of vortex formation from the cylinder undergoing forced translational oscillations, in

general at angle η with respect to the free-stream, are summarised in figure 2.9 (see

Ongoren & Rockwell 1988b, p. 227). The same notation will be used throughout the

thesis.

These VIV results, along with the driven oscillation results, do indicate that a

relatively high amplitude is required to form the 2P wake. Results from Govardhan
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Figure 2.7: Map of vortex synchronisation patterns near the fundamental lock-on region.
The critical curve marks the transition from one mode of vortex formation to another. Re-
produced from Williamson & Roshko (1988).

& Williamson (2001) show a significant increase in the periodic Reynolds stress when

the 2P wake is present, as compared to the fixed cylinder Kármán wake. These results

also show that the 2P wake does not consist of four vortical structures being shed from

the body; instead, one structure is shed per half-cycle that is then split into two under

the influence of the high strain in the near-wake. The influence of Reynolds stress goes

some way to explaining the phenomenon of the 2P wake.

Blackburn et al. (2000) presented two-dimensional and three-dimensional simu-

lations at the same Re, and showed that the 2P wake was present for the three-

dimensional flow, and the 2S wake for two-dimensional flow. The only study that

shows anything other than the 2S wake for two-dimensional VIV is Singh & Mittal

(2005), where the P + S wake was realised. However, this only occurred for Re > 300

where the flow is assumed to be naturally three-dimensional, so that the assumption of

the 2S wake being the only configuration for two-dimensional VIV still seems to hold.

Leontini (2007) investigated the conditions at which the two-dimensional assumption

holds. As this is not the aim of this thesis will not be covered in the present review.

Blevins (1977) showed that lock-on increases the spanwise correlation of vortex shed-

ding along the cylinder axis. Figure 2.10 shows the effects that cylinder oscillation can
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Figure 2.8: The major wake modes during synchronised VIV and driven oscillation. Left:
the 2P mode (Williamson & Roshko 1988). Top right: the 2S mode (Koopmann 1967).
Bottom right: the P + S mode (Williamson & Govardhan 2004). Flow is from left to right
in all images. The graph appeared in Leontini (2007) and is reproduced by permission.

Figure 2.9: Representation of basic modes of vortex formation from cylinder oscillating
translationally at angle η with respect to the free-stream. The graph originally appeared in
Ongoren & Rockwell (1988b) and then is reproduced from Al-Mdallal (2004) by permission.
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Figure 2.10: Spanwise correlation of vortex shedding for a rigid cylinder during lock-on.
The graph originally appeared in Blevins (1977) and then is reproduced from Elston (2005)
by permission.

have on the spanwise correlation, where a value of 1.0 corresponds to two-dimensional

flow.

The investigations of Ongoren & Rockwell (1988a) and Gu et al. (1994) also con-

sidered the variation of the wake as the frequency ratio between the forced oscillation

to the natural shedding, ft/fN , increased through unity, focusing on the changes in

the phase referenced structure of the near-wake. In both these investigations the phase

point at which the flow fields were compared corresponded to the maximum displace-

ment of the cylinder. Carberry (2002) comprehensively investigated this problem and

not being the aim of this thesis is not considered here.

2.3.2 In-line and Oblique Oscillations

The study of forced oscillations at angles other than transverse to the flow, η, (0◦ ≤

η ≤ 90◦) have received considerably less attention than the transverse case. Primarily

this appears to have occurred because the forces arising from transverse oscillations

are substantial greater than those arising from in-line oscillations. However Jauvtis

& Williamson (2003, 2004) have observed significant alteration of the fluid-structure

interactions when the mass ratio between the cylinder and surrounding fluid is reduced

below 6. In this scenario, a new response branch was observed with much larger am-

plitudes of in-line oscillation and a vortex shedding mode that resulted in a triplet of

vortices being formed in each half-cycle.

Ongoren & Rockwell (1988b) presented hydrogen bubble visualisations of a circular

cylinder subjected to forced oscillations at angles to the cross-flow ranging from the in-
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line case, η = 0◦, to the transverse case, η = 90◦. Visual observations were made in the

Reynolds number and frequency ratio ranges 584 ≤ Re ≤ 1300 and 0.5 ≤ ft/fN ≤ 4.0,

respectively, at angle of inclination η = 0◦, 45◦, 60◦, 90◦ of cylinder oscillation with

respect to the free-stream. For most experiments, a constant value of dimensionless

amplitude, At/D = 0.26, was chosen. They showed that if the cylinder is excited

at an angle other than the cross-stream or streamwise direction, then there is mixed-

mode excitation: the perturbation from the cylinder motion contains both symmet-

rical and anti-symmetrical contributions and the potential for exciting both types of

modes. Moreover, these modes either can be synchronised, i.e. phase-locked, with the

cylinder motion, or they can compete with each other. In their investigation, they

addressed under which conditions these modes occur, for both synchronised and non-

synchronised vortex formation. Particularly remarkable is the finding by Ongoren &

Rockwell (1988b) of the occurrence of synchronised vortex formation in the asymmet-

ric mode when the cylinder motion produces purely symmetrical perturbations of large

amplitude.

According to the experimental work of Ongoren & Rockwell (1988b) symmetric

modes can occur at any value of inclination angle to the free-stream except 90◦. The

asymmetric, 2S, P + S and 2P , modes (a notation similar to that of Williamson &

Roshko (1988) explained in the previous section §2.3.1.2 is used) over two oscillation

cycles occur only for 0◦ ≤ η < 90◦ where there is a symmetrical component in the flow

perturbation. In fact the effect of the symmetrical component of the perturbation is

to double the period of the asymmetrical vortex formation. The asymmetric 2S mode

over two periods of the cylinder oscillation occurs only for η 6= 0◦. The asymmetric

P +S and 2P occur only for η = 0◦. We note that generalisation of occurrence of these

modes are restricted to the relatively small amplitudes of cylinder oscillation. Ongoren

& Rockwell (1988b) showed that the cylinder at an angle other than 0◦ or 90◦ can cause

vortex lock-on. In their work it was reported that phase-locking of vortex shedding with

the cylinder motion is possible for all the modes described earlier. Griffin & Ramberg

(1976) in an in-line study only, η = 0◦, experimentally visualised two modes of vortex

shedding. These modes correspond to the symmetric and antisymmetric observed by

Ongoren & Rockwell (1988b).

Griffin & Ramberg (1976) and Ongoren & Rockwell (1988b) found the lock-on region

for in-line oscillations was centred at a frequency which is double the Strouhal frequency
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of shedding, 2fN , as compared to the lock-on region for transverse oscillations which

is centred at the Strouhal frequency. Ongoren & Rockwell (1988b) also found that

lock-on was possible for all the modes they observed. When the vortex shedding was

not synchronised to the oscillation frequency a competition between the symmetrical

and antisymmetrical modes was observed. It was found that the near-wake structure

locks on to each mode for a number of cycles and then abruptly switches to the next

mode.

2.4 Flow Past a Rotationally Oscillating Cylinder

Many attempts have been made to control the wake behind a circular cylinder in recent

years. The rotation of a cylinder in various uniform flows is expected to modify wake

flow pattern and vortex shedding configuration, which may reduce a flow-induced oscil-

lation or augment a lift force. The basic rationale behind the rotation effect is that as

a cylinder rotates the flow is accelerated on one side of the cylinder and decelerated on

the other side. Hence, pressure on the accelerated side becomes smaller than that on

the decelerated side, resulting in a mean lift force. Such a phenomenon is referred to as

the “Magnus” effect. As a result, the rotation significantly alters the flow pattern, and

probably has an effect on flow-induced oscillation. Most of such research performed

to date can be classified into two categories, a rotary oscillation and a unidirectional

rotation. There are a large number of papers investigating the latter, unidirectional

rotation. Among them the most recent one is the experimental and numerical inves-

tigation of the wake behind a cylinder rolling on a wall at varying rotation rates by

Stewart et al. (2010). As it is more relevant to this thesis the first, rotary oscillation,

is reviewed here.

A brief survey of the experimental studies by Taneda (1978a); Wu et al. (1989);

Tokumaru & Dimotakis (1991) and Filler et al. (1991) reveals that rotational oscillations

can significantly alter the wake shedding pattern and can lead to dramatic decreases in

the cylinder drag coefficient when the velocity of the rotation is large enough. Taneda

(1978a) experimentally investigated the effects of rotary cylinder oscillations over a low

Reynolds number range. He demonstrated that the wake structure can be substantially

altered by rotary oscillation. Taneda (1978a) performed a series of visualisations, using

aluminium dust and electrolytic precipitation techniques, for the Reynolds number

range 30 to 300 and Strouhal numbers between 0 and 55. By altering the frequency and

26



Figure 2.11: Streamline and streak-line patterns at Re = 33.7, D = 1.0cm, θ = 45◦. (a)
Stf = 0, (b) Stf = 3.4. At a critical frequency of oscillation the wake region behind the
cylinder is much reduced. Reproduced from Taneda (1978a).

amplitude of rotary oscillation he was able to determine a critical value of the Strouhal

number where the dead water region behind the cylinder vanishes. In these experiments

the Strouhal number was based on oscillation frequency, Stf (fθ = frequency of rotary

oscillation) instead of the classical shedding frequency. The critical Strouhal number,

Stc, was found to vary inversely with the oscillation amplitude but was independent

of the Reynolds number over the range of values considered. Increasing Stf from zero

was found to cause the separation points to move rearward until Stc was attained. At

this point the recirculation region of the wake vanished and the wake was found to be

narrow with no reverse flow. At values of Stf greater than Stc, the streamlines were

found to converge at the back of the cylinder and approach a potential flow solution.

Figure 2.11 shows clearly the effects mentioned for Stf = 0 and Stf = 3.4, where

Stc = 2.8.

Experiments at a higher Reynolds number of 1.5× 104 by Tokumaru & Dimotakis

(1991) yielded related results. At this Reynolds number the rotational frequency (forc-

ing Strouhal number, Stf ) and the normalised peak rotation rate of Ω1 were varied,

where the rotation rate, Ω(t), is defined as

Ω(t) =
θ̇D

2U∞
= Ω1sin(ωt) (2.3)

and θ̇ is the angular velocity of the cylinder. The drag coefficient, Cd, and the wake

displacement area were evaluated at a single location, 4.5D downstream of the cylinder.

The results showed that the wake displacement area could be made substantially larger

or smaller than in the unforced case by altering the rotary motion of the cylinder. It
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Figure 2.12: Cylinder wake mean velocity profiles, measured at midspan (Ω1 = 2): �,
unforced; ©, Stf ≈ 0.2; 4, Stf ≈ 1 (Tokumaru & Dimotakis 1991). The graph appeared in
Elston (2005) and is reproduced by permission.

was found that the minimum wake displacement area occurred in the neighbourhood

of Stf = 1 and Ω1 = 3, where it was half the value for the unforced case (Tokumaru

& Dimotakis 1991). The cylinder wake-mean velocity profiles in figure 2.12 clearly

demonstrate the influence of the rotational frequency. The minimum Cd was found to

approximately coincide with the minimum wake area. The rate of rotation affected

the number of vortices shed per cycle and four distinct modes of vortex shedding per

cycle were identified. It was concluded that when the forcing frequency is similar to the

natural vortex shedding frequency, the greatest control can be exerted over the wake.

In both studies there was no net circulation introduced by the rotary oscillation and

consequentially there was no time-mean lift generated.

Lu & Sato (1996) and Chou (1997), in numerical studies of vortex shedding from

a rotationally oscillating cylinder, recorded the transition and selection of different

vortex shedding modes and the lock-on phenomenon. Lu & Sato (1996) conducted

their experiments at Re = 200, 1000, and 3000 for a range of rotational velocities and

frequencies and used a wide range of frequency ratios Fθ = 0.5, 1, 2, 3, and 4 (Fθ=fθ/fv)

with no emphasis on the variation of frequency ratio in the neighbourhood of Fθ = 1

in order to give more details about the lock-on range, while Chou (1997) reported with

the same approach but mainly at different Reynolds number (Re = 500 and 1000). The

main objective of Chou (1997) was to study the flow structure in the wake as well as
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the hydrodynamics associated with a circular cylinder performing rotational oscillation

in a cross-stream.

More recently computational works by Baek & Sung (1998, 2000); Mahfouz & Badr

(2000); Cheng et al. (2001a,b) and Dennis et al. (2000) have expanded upon these earlier

experimental studies. The focus in this latter work has been on the lock-on behavior

in the fluctuating forces acting on the cylinder, and while they have shown a sampling

of the different locked-on wake states, they have not examined in great detail how the

wake changes as the rotational forcing changes. Du et al. (2003) have also examined the

effects of rotational oscillation on the vortex shedding mode and the spatial structure

and strength of the shed vortices behind a circular cylinder at Re = 1750. Depending on

the values of the rotational oscillation frequency and amplitude, they observed different

vortex shedding modes. They found that the vortex wake expanded for oscillation

frequencies less than the natural Kármán frequency while contracting for frequencies

greater than the Kármán frequency. They also found out that the longitudinal spacing

is decreased pronouncedly with increasing frequency and changed to a much lesser

degree with an increase in the oscillation amplitude, while the lateral spacing of the

shed vortices showed a weaker dependence on the cylinder oscillations.

Poncet (2002) investigated the three-dimensionality of flow behind a rotationally

oscillating cylinder. He found that the flow around a rotational oscillation cylinder,

like the translational oscillation, will change its behaviour from two-dimensional to

three-dimensional in most of the flow regimes . The von Kármán streets generated in

the wake of a circular cylinder are, at low Reynolds numbers, a time-periodic and two-

dimensional flow. It is now well known from both experiments (Wu et al. 1996; Brede

et al. 1996; Williamson 1996a,b) and numerical investigations (Thompson et al. 1996)

that this nominally two-dimensional flow becomes three-dimensional when Re > 190.

Most recently Schmidt & Smith (2004); Thiria et al. (2006) and Al-Mdallal & Ko-

cabiyik (2006) have investigated experimentally and numerically, respectively, in more

detail the rotary oscillation of a circular cylinder. Schmidt & Smith (2004) explored

the synchronising behaviour in the wake of a circular cylinder at Re = 125 when the

cylinder undergoes rotational oscillations about its longitudinal axis. They mostly fo-

cused on the changes observed in the vortex shedding pattern for different synchronised

conditions, while in addition Thiria et al. (2006) studied the wake of a cylinder perform-

ing rotary oscillations around its axis at moderate Reynolds numbers. They observed
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that the structure of the vortex shedding is strongly affected by the forcing parameters.

The forced wake is characterised by a “lock-on” region where the vortices are shed at

the forcing frequency and a region where the vortices are recognised to give a second

frequency close to those observed for the unforced wake. They showed that these mod-

ifications of the wake structure change the dynamics of the fluctuations downstream

from the cylinder. They conducted all of their experiments at Re = 150. The effect of

forcing amplitude on the wake is shown in figures 2.13 (Thiria et al. 2006). Schmidt

& Smith (2004) numerically investigated the laminar unsteady periodic flow motion

in the wake of a rotationally oscillating circular cylinder at a Reynolds number of 855

over a wide range of oscillation amplitudes (15◦ < Aθ < 75◦) and frequency ratios

(fθ/fN = 2, 3). In general they found that at a given frequency ratio, increasing the

rotational amplitude changes the wake synchronisation mode from non-synchronised to

lock-on. They also concluded that the effect of increasing the amplitude of rotary oscil-

lation is to reduce the period of vortex shedding modes whereas the effect of increasing

the frequency ratio is to increase it. However, as the amplitude of oscillation increases

the band of lock-on also increases.

Lo Jacono et al. (2010) also investigated the flow past an oscillatory rotating cylin-

der, where the frequency of oscillation was matched to the natural frequency of the

vortex street generated in the wake of a stationary cylinder, at Reynolds number 300.

Their focus was on the wake transition to three-dimensional flow and, in particular,

the changes induced in this transition by the addition of the oscillatory rotation. Using

Floquet stability analysis, they found that the fine-scale three-dimensional mode that

typically dominates the wake at a Reynolds number beyond that at the second transi-

tion to three-dimensional flow (referred to as mode B) is suppressed for amplitudes of

rotation beyond a critical amplitude, which is in agreement with past studies. However,

the rotation does not suppress the development of three-dimensionality completely, as

other modes are discovered that would lead to three-dimensional flow. In particular,

the longer-wavelength mode that leads the three-dimensional transition in the wake

of a stationary cylinder (referred to as mode A) is left essentially unaffected at low

amplitudes of rotation. At higher amplitudes of oscillation, mode A is also suppressed

as the two-dimensional near-wake changes in character from a single- to a double-row

wake; however, another mode is predicted to render the flow three-dimensional, dubbed

mode D (for double row). This mode has the same spatio-temporal symmetries as mode
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Figure 2.13: Effect of forcing amplitude on the wake. The forcing frequency is Fθ = 5 (low
drag situation), the forcing amplitude is (a) Ω = 1, (b) Ω = 2, (c) Ω = 4, (d) Ω = 5, (e)
Ω = 7 and (f) Ω = 9. Reproduced from Thiria et al. (2006).

A. Figure 2.14 shows the contours of vorticity of the two-dimensional base flow past a

cylinder undergoing several amplitudes of rotation at Re = 300.

There are also a number of references that theoretically, experimentally or numer-

ically analysed and measured lift exerted on a rotational cylinder. The experiments

of Tokumaru & Dimotakis (1993) have shown that higher cylinder aspect ratios yield

higher maximum lift coefficients. The maximum lift coefficients in their experiments

exceed that proposed by Prandtl (1926), possibly because Prandtl’s arguments ne-

glected unsteady effects. Recently Fujisawa et al. (2005) have extensively conducted

experimental investigation on forces exerted on a rotating cylinder.
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Figure 2.14: Contours of vorticity of the two-dimensional base flow past a cylinder undergo-
ing several amplitudes of rotation at Re = 300. The flow is from left to right. The amplitudes
of the imposed rotation are expressed in radians. Amplitude of rotation (Aθ) increases as:
Aθ= 0, 0.20, 0.40, 0.60, 0.80, 1.00 from (a) to (f), respectively. All the images are taken at
θ = 0. White (black) represents positive (negative) vorticity. For all the cases considered
the near-wake was synchronized to the forcing frequency. Reproduced from Lo Jacono et al.
(2010).

2.5 Translational Oscillation in Quiescent Fluid

Vortex shedding behind a circular cylinder is a complicated flow phenomenon that has

proved a challenging area for researchers over many years. Various investigators con-

tinued the research on vortex shedding behind bluff bodies, and many of them focused

their attention on low Reynolds numbers, where the phenomenon is less complicated

due to the absence of turbulence. Bodies oscillating in a stationary or unsteady fluid

flow and stationary bodies in an oscillating unsteady flow are fluid-structure interaction

problems of great practical and theoretical interest in the fields of aerospace, naval ar-

chitecture, and offshore engineering. For example, as Uzunoğlu et al. (2001) mentioned,

a ship or aircraft maneuvering, a submersible oscillating under prescribed experimental

conditions to measure fluid actions, cylindrical tubular structures (i.e. offshore plat-

forms, risers, etc.) subject to current and wave loads, etc. are practical illustrations of

fluid-structure interactions, facets of which are discussed by Duncan (1959); Hamman

& Dalton (1971); Burcher (1972); Etkin (1972); Sarpkaya & Isaacson (1981); Faltinsen
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(1990) and Naudascher & Rockwell (1994). The study of the oscillating flow around

circular cylinders is of importance in off-shore engineering because it is an idealised

representation of the wave-induced loads on cylindrical structures (Bearman 1997; Ne-

hari et al. 2004), while oscillation of the cylinder in quiescent fluid, or the converse

situation of oscillating flow pass a stationary cylinder, are effective representations of

wave-cylinder interaction in the area of the ocean engineering (Lin & Rockwell 1997).

Consequently, sinusoidally oscillating flow about a circular cylinder has been extensively

researched in the past century. However, most of the research into these applications

involves flow with high Keulegan-Carpenter and Stokes numbers, which are not the

focus of this study, and consequentially is not considered here. A wide variety of vortex

patterns are attainable, as described in the insightful works and assessments of Maull &

Milliner (1978); Sarpkaya & Isaacson (1981); Williamson (1985); Bearman et al. (1985);

Obasaju et al. (1988) and Tatsuno & Bearman (1990). Of primary interest to the cur-

rent investigation are the flow visualisation studies of Honji (1981); Williamson (1985)

and Tatsuno & Bearman (1990), which were conducted at low KC and β. There are

not much studies at low KC and β which investigated such flows quantitatively.

Earlier laboratory studies employed a U-tube to produce an oscillating water flow

in which a stationary circular cylinder was placed in the flow. Dye-streak and other

flow visualisation techniques were used in later studies to observe the vortex patterns

around the cylinder (Williamson 1985; Obasaju et al. 1988; Tatsuno & Bearman 1990).

Some of these studies employed a similar laboratory situation of a cylinder oscillating

with a sinusoidal motion in an otherwise still fluid (Lam & Dai 2002). Simulation of

loading due to long waves can also be accomplished by subjecting a stationary cylinder

to unidirectional oscillatory flow or, conversely, oscillating the cylinder in quiescent fluid

(Yang & Rockwell 2002). Based on the results of these studies, different regimes of the

flow have been classified, each with a distinct pattern of vortices and fluid forces. The

flow regimes are determined mainly by the Keulegan-Carpenter number (Keulegan &

Carpenter 1958) which is defined by

KC =
UmaxT

D
. (2.4)

In the situation of a cylinder oscillating in quiescent water, the cylinder movement can
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be described by

y(t) = At sin(2πftt) (2.5)

θ(t) = Aθ sin(2πfθt+ Φ). (2.6)

The flow is weakly dependent on a second parameter, β, which is sometimes known as

the Stokes number (or viscous scale parameter: Sarpkaya (1976b, 2005)) defined by

β =
fD2

ν
. (2.7)

A Reynolds number can be defined for this type of flow as

Re = KC.β (2.8)

It is well known that when a bluff body is oscillated in a still fluid or a fixed body is

placed in an oscillating flow, secondary streaming is generated around the body owing

to the influence of nonlinear effects (see for example Tatsuno 1973, 1981). The resulting

secondary flow is symmetrical about the axis of oscillation and has been visualised by

many studies (e.g. the visualisations of Schlichting (1932) and later by M. Tatsuno

as shown in figure 2.15). When the Keulegan-Carpenter or Stokes number exceeds a

critical value the flow is altered by the formation and subsequent separation of vortices

on the cylinder surface, leading to a loss of this symmetry and the formation of three-

dimensional flow (Bearman et al. 1981; Elston 2005).

The flow at very small KC has been studied analytically first by Stokes (1851)

and then by Wang (1968) who developed an asymptotic theory assuming that the flow

remains attached. It is well established, however, that as KC is increased the flow will

separate and eventually become asymmetrical (Sarpkaya 1986; Bearman et al. 1985;

Justesen 1991). Experimental investigations of the oscillatory flow around a circular

cylinder at small KC have shown that the flow can be classified into a number of

different flow regimes governed mainly by KC and with a weak dependency on Re

(Bearman et al. 1981; Williamson 1985; Sarpkaya 1986).

Williamson (1985) performed experiments, using a combination of two-dimensional

flow visualisations and force measurements. He investigated the different patterns of

vortex shedding for a cylinder in relative sinusoidal oscillatory motion for KCt < 60 and

two βt values of 255 and 730. Using two-dimensional visualisations of the repeatable

patterns produced on the water tank surface, a set of flow regimes were identified as a
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Figure 2.15: Secondary streaming induced by an oscillating cylinder. This image was pro-
duced by illuminating glass beads with a stroboscope. The image was taken at an oscillation
amplitude of At/D = 0.085 and at Re = 70 (based on frequency). Reproduced from Van
Dyke (1982). Photograph by Masakazu Tatsuno.

function of KC. The modes observed were found to be a function of the KC number.

A common element of all modes identified was the pairing of vortices from a previous

half-cycle with those in the present half-cycle. He did not examine, however, the three-

dimensional structure of the flow along the cylinder axis. The approximate relationship

between the observed flow patterns and the KC number is shown in figure 2.16.

The regular lift force fluctuations were shown to be directly related to the repeatable

vortex shedding patterns observed in the cylinder wake. It was found that the lift force

fluctuation frequency was a multiple of the forcing frequency and that this was directly

tied to the shedding of a specific number of vortices in each half-cycle. In each of the

regimes identified in figure 2.16 a specific number of vortices was shed in each half-

cycle. The subsequent pairing of vortices shed in the present half-cycle with those of

the preceding half-cycle was identified as being a core feature leading to the formation

of the repeatable vortex patterns. In the first regime identified (0 < KCt < 7) a pair

of attached vortices are formed in the wake in each half-cycle. These are shed from

the cylinder as it reverses direction and are symmetrical about the axis of oscillation

up to KC ≈ 4, where it was observed that the vortices formed are no longer equal in

magnitude and are not shed at the time of cylinder reversal. This led to the detection of

a lift force varying with the oscillation frequency. This regime could reasonably be sub-

divided into two sub-regimes which are distinguished by the breaking of the symmetry
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Figure 2.16: An approximate guide to the flow patterns from an oscillating cylinder as a
function of the KC number. Annotations describe the number of vortices shed per oscilla-
tion half-cycle. Regimes are based on observations conducted for β values of 255 and 730.
Reproduced from Williamson (1985).

about the oscillation axis.

In the transverse street/single pair regime (7 < KCt < 15), see figure 2.17, a single

vortex is shed per half-cycle which pairs up with the shed vortex from the previous

half- cycle. A series of cycles results in a number of pairs being formed and shed on the

same side of the cylinder. These pairs form a transverse street which convect away from

the cylinder. In the lower end of the range (7 < KCt < 13), namely double pair, the

direction of the street was observed to be approximately perpendicular to the oscillation

axis, as shown in figure 2.17, while in the upper end of the range (13 < KCt < 15),

namely three or more pairs, the direction of the street was observed to be at an angle of

approximately 45◦ to the oscillation axis. Initial conditions were thought to determine

which side of the cylinder the street formed on, although it was also observed that

the shedding could intermittently change sides. Higher regimes (Double pair, Three

pairs and Four pairs) were distinguished by the formation of more vortices per cylinder

oscillation cycle. In each case the process of pairing of the shed vortices was fundamental

to the pattern formed.

Visualisations of Williamson (1985) provide a good deal of insight into the flow

dynamics despite the inherent limitation due to their two-dimensional nature. A prior

study by Honji (1981) produced visualisations of the three-dimensional structures that

can arise in the same (KCt, βt) parameter space. Honji (1981) visualised the flow

around a transversely oscillating cylinder in a quiescent fluid for 68.8 < βt < 700 and

KCt < 7.5. He has shown that a three-dimensional instability of the flow occurs around
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Figure 2.17: Transverse street wake for KC = 12.0. The cylinder is approaching it lowest
point of its oscillation. This regime is delineated by the distinctive trail of vortices which
convects away at around 90◦ to the oscillation axis. Reproduced from Williamson (1985).

a circular cylinder oscillating in a quiescent fluid at small KC. Honji (1981) observed

that in a certain range of KCt an instability of the flow developed that resulted in

the appearance of streaks which arrange alternately in a double row along the cylinder

axis, which he attributed to the onset of turbulence. These structures were named the

“Honji Instability” by Sarpkaya (1986) although Honji simply referred to the patterns

formed as “streaked flow”. Honji (1981) also observed the presence of mushroom shaped

vortices, in a plane normal to the direction of cylinder motion, which were arranged

alternately along each side of the cylinder span in a double row. The spanwise streak

spacing was found to only weakly depend on the Stokes number and increased as the

Keulegan–Carpenter number was increased. Honji suggested that the instability mech-

anism leading to this flow pattern was “a kind of centrifugal one”. While Honji does

not explicitly state that this was a Taylor-Görtler instability, it is possible that he was

referring to this form of instability, which arises from the centrifugal forces induced by

the curvature of the boundary layer (Elston 2005).

The usual view, implicit in most experimental and numerical studies, is that the

process of vortex formation from the oscillating cylinder involves a layer of distributed

vorticity feeding into a large-scale vortex. Most relevant to the present study is the flow

visualisation of Tatsuno & Bearman (1990). They further extended the previous works

explained above and produced a control-space map, classifying the flows into eight

separate flow regimes each with a two- and three-dimensional flow structure and vor-

tex shedding characteristics. Tatsuno & Bearman (1990) comprehensively investigated
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translational harmonic oscillation in a quiescent fluid at various independent variables,

e.g. the amplitude and frequency of oscillations corresponding to KCt and βt numbers,

respectively. They covered a wide range of KCt and βt numbers using flow visualization

but without the availability of such experimental techniques at the time their results

are qualitative in nature. Their experiments were carried out at KCt numbers between

1.6 and 15 and βt numbers between 5 and 160. They observed the wake vortices’ forma-

tion and some asymmetry in the flow separation and the associated vortex development

behind the cylinder for different cases. Their flow regimes were identified within the

above mentioned ranges of KCt and βt numbers. Like Williamson (1985) and Honji

(1981), they observed symmetrical flow separation and vortex development about the

oscillation axis of the cylinder for very low Keulegan-Carpenter numbers. However,

as the Keulegan-Carpenter number was increased, and eventually exceeded a critical

value, the onset of an asymmetry in the vortex development and flow separation was

observed.

The reduced version of the (KCt-βt)-space map they produced, which classified

the unique flows identified into regimes, is shown in figure 2.18. Their nomenclature

for labelling these regimes, A∗–G, will be used for clarity from this point forward.

The boundary between regimes A∗ and A was not explicitly delineated in the original

diagram of Tatsuno & Bearman (1990) while in their graph reproduction, figure 2.18,

it is shown as a dashed line.

These regimes match well with the observations of Honji (1981) and Williamson

(1985). Results of Honji (1981) were obtained for an overlapping region, 68.8 < βt <

700, within which Tatsuno & Bearman (1990) observations closely agree. Williamson

(1985)’s results were obtained at a larger Stokes number, βt ≈ 255, and due to the two-

dimensional limitation of Williamson (1985)’s visualisations no observation of “streaked

flow” was made. However, the two-dimensional characteristics observed for KCt < 7

resemble those identified by Honji (1981) and Tatsuno & Bearman (1990) for βt > 60.

A sample of the cross-sectional images that appeared in Tatsuno & Bearman (1988,

1990) illustrating these different regimes is shown in figure 2.19. Flows of regime A∗

were found to have no vortex shedding. They observed no flow along the span of

the cylinder (i.e. two-dimensional flow) and found the flow to be symmetrical about

the oscillation axis as shown in figure 2.19. Regime A is distinguished from A∗ due

to the formation and shedding of vortices which was not observed in regime A∗. In
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βt

KCt

Figure 2.18: Parameter-space map created by Tatsuno & Bearman (1990) identifying eight
different flow regimes in the (KCt-βt) plane indicated. A: symmetric with vortex shed-
ding, two-dimensional; A: symmetric and attached, two-dimensional; B: longitudinal vor-
tices, three-dimensional streaked flow; C: rearrangement of large vortices, three-dimensional;
D: transverse street, three-dimensional; E: transverse street with irregular switching, three-
dimensional; F: diagonal double-pair, three-dimensional; G: transverse vortex street, three-
dimensional. The triangles indicate the cases investigated here. Reproduced from Tatsuno &
Bearman (1990) by permission.

other respects it retains the same characteristics of regime A∗. The lack of a distinct

boundary was attributed by Tatsuno & Bearman (1990) to it being very difficult to

determine the onset of vortex shedding and a consequence of the visual means used to

evaluate this. In figure 2.19(A) the concentrations of dye that could be mistaken as

the presence of vortices actually represent a periodic mass convection away from the

cylinder. Tatsuno & Bearman (1990) stated that the vortices formed and shed in each

half-cycle of cylinder motion are convected back towards the cylinder in the subsequent

half-cycle and are then annihilated by mixing with vorticity in the boundary layer.

The structure of flow in regime B differs remarkably from that of other regimes

seen so far. Regime B is defined by Tatsuno & Bearman (1990) as the onset of three-

dimensional instability and longitudinal vortices. The flow in this regime is charac-

terised by the presence of spanwise, periodic structures in the induced flow due to a

three-dimensional instability. Both Honji (1981) and Tatsuno & Bearman (1990) visu-

alised the formation of streaked flow, as shown in figures 2.20(a-c), which was formed

and shed alternately along the cylinder span at regular intervals. From figures 2.20(a-c)

and with reference to the work of Honji, it may be concluded that in regime B pairs
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Figure 2.19: Two-dimensional visualisations of the vortex shedding patterns found for
Regimes A∗–G. The cylinder is shown oscillating along the horizontal axis of the page. The
image for regime F appeared in Tatsuno & Bearman (1988), while the others are from Tatsuno
& Bearman (1990); All images are reproduced with their permission.

of contra-rotating longitudinal vortices are formed alternately along the cylinder axis

and extend in the direction of cylinder oscillation. The boundaries for this regime

almost exactly match those identified by Honji (1981) for the formation of “streaked

flow”. Through measurements of the streak spacing, these vortices were found to have a

spanwise wavelength ratio (λ/D) that increased as the KeuleganCarpenter number also

increased. Despite the onset of a three-dimensional instability the spanwise average of

the flow in regime B was found to preserve symmetry, as shown in figure 2.19(B). This

tendency is similar to that found by Honji (1981) in the range 200 < βt < 400. One of
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the defining characteristics of regime B is the presence of structures which vary along

the span of the cylinder. In that respect this case has broken a symmetry property and

is no longer considered to be fully two-dimensional.

The flow of regime C was found to be three-dimensional but appeared to have no

periodic spanwise structure as shown in figures 2.20(d,e). In the cross-sectional plane

the vortices initially shed from the cylinder were seen to roll up into large vortices,

figure 2.19(C), and form a street of vortices similar to that of the von Kármán street,

although in this case the sense of rotation of the vortices was opposite to that of the

von Kármán street, i.e. jet-like. It was noted by Tatsuno & Bearman (1990) that the

large vortices are formed in succession for equal numbers of oscillation cycles, however

it is unclear how many oscillation cycles are required for the formation of a large vortex.

Due to reasons highlighted above this regime was not considered as part of this thesis.

Apart from the two-dimensionality and symmetry of flow with respect to the axis of

oscillation in regimes A∗ , A and to some extent B, the flow characteristic will change as

KCt increases at relatively lower βt. Regime D flows were found to break a symmetry

that characterised the previously discussed flows; in this regime the induced flow no

longer convected along the axis of oscillation, as it did for regimes A∗-C, but at an angle

to the axis of oscillation as shown in figure 2.19(D). No mention was made of the actual

angle to the oscillation axis that the flow initially convected along, however from the

figures presented it can be estimated to be approximately 25◦. While the resultant flow

breaks symmetry about the axis of oscillation (the x-axis), it was observed that the time-

periodic symmetry about the y-axis was retained, i.e. the flow was still synchronous

with the cylinder oscillation. Along the span the formation of regular “tubes” was

found, see figure 2.20(f), within which the fluid was observed to be travelling faster

than the surrounding fluid. The spanwise spacing between the tubes was found to be

independent of KCt and only weakly to decrease with increasing Stokes numbers.

The flow in regime E exhibited spatial patterns in the cross-section similar to that

of regime D see figure 2.19(E), but it was found that the direction to which the flow

convected intermittently changed between the +x and −x side of the cylinder. Ac-

cording to the classification of Tatsuno & Bearman (1990) the resulting flow belongs to

regime E representing temporarily stable V-type vortex streets. The irregular switching

to either side is in contrast to regime D where the direction was fixed. Along the span

there was evidence of some three-dimensional structures, see figure 2.20(g), although
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Figure 2.20: Visualisations of the three-dimensional structures observed in Regimes B to F.
The images were produced using an electrostatic precipitation method and show the variation
in the flow along the cylinder span. The span of the cylinder (z-axis) is orientated horizontally
in all these images with the cylinder oscillating along the y-axis. Images (a), (d), (f), (g) and
(h) are taken in the y − z plane while images (b), (c) and (e) are taken in the x − z plane.
Presented are Regime B [(a), (b) & (c)], Regime C [(d) & (e)], Regime D [(f)], Regime E
[(g)] and Regime F [(h)]. All the images appeared in Tatsuno & Bearman (1990) and are
reproduced with their permission.

no periodic wavelength could be established. The structures that were present were

found to be obscured by the switching of the flow convection direction.

Regime F is a double-pair diagonal regime, in which vorticity is shed diagonally with

respect to the axis of oscillation (see figure 2.19(F)). Along the span, a periodic structure

was found with pairs of counter rotating vortices observed to form at regular intervals

along the span as shown in figure 2.20(h). The spacing between these structures was

found to vary in the same manner as it did for its neighbouring regime, D.
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A circulatory streaming motion around the cylinder was observed to occur in regime

G, figure 2.19(G). Increases in KCt or βt within this region resulted in the onset of

turbulent motion and the streaming flow generated by the cylinder motion was observed

to irregularly change direction. No regular formation of structures along the span was

observed.

Yang & Rockwell (2002) observed sinusoidal spanwise variations in the flow about

a cylinder subjected to wave loading at a relatively low KCt = 4.5. Along the span

of the cylinder regular patterns of streamwise vorticity were observed. The spanwise

wavelength between vorticity of like sign ranged from 1 . λ/D . 4.5, which at this

λ/D value of KCt is compatible with the observations of Tatsuno & Bearman (1990).

At larger values of KCt (10 and 18) larger scale regular variations along the span were

observed. These variations were of the order 10 . λ/D . 110 which was greater than

the distances between individual concentrations of streamwise vorticity.

Using a two-dimensional finite-difference numerical technique Justesen (1991) was

able to predict the transverse street and other vortex shedding regimes, as found by

Williamson (1985) and shown in figure 2.7. Despite this study being under-resolved in

some regions of its parameter space, it was conducted for βt in the range 196−1035 and

KCt between 0 and 26, and being restricted to two-dimensions they were able to obtain

good agreement between calculated drag and inertia coefficients and experimental data.

The onset of an asymmetry in the flow was found to occur at KCt ≈ π for βt = 196

and to decrease slightly for higher Stokes numbers.

Dütsch et al. (1998) performed a series of experiments using LDA and compared it

with their two-dimensional computations for three regimes: A, E and F. In regime A

they found good agreement between the velocity fields produced by both techniques.

These data are used to validate our experimental technique and apparatus, see §4.4.1.

In regime F they found that the flow was asynchronous using both techniques. As a

consequence of the formation of a vortex pair that was unequal in magnitude a vor-

tex street was observed to form that convected away from the cylinder at an angle of

approximately 27◦. This again matches previous results, e.g. see figure 2.19(F), but is

interesting because it was achieved by both LDA and two-dimensional computation sug-

gesting that the breaking of symmetry about the oscillation axis and the asynchronous

behaviour are largely two-dimensional phenomena. In the last regime studied, E, they

presented vorticity contours which matched the flow fields generated by Tatsuno &
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Bearman (1990) in figure 2.19(E). However, they found that their simulations were

stable after 15 cycles and that periodic shedding resulted. This is in direct contrast to

Tatsuno & Bearman (1990) who observed an irregular switching of the direction of vor-

ticity shedding between the +x and −x sides of the cylinder. The computed lift force

history of Dütsch et al. (1998) showed that the vortex shedding was first symmetric to

the plane of oscillation and then became unstable involving a strong increase of the lift

force and a slight decrease of the in-line force.

Iliadis & Anagnostopoulos (1998) used a finite-element study to locate a boundary in

(KCt, βt)-space where the two-dimensional symmetric flow became asymmetric. They

conducted their study over the range KCt ≤ 15 and 6 ≤ βt ≤ 100 and found good

agreement with the experimental boundaries presented in figure 2.18 for βt > 40, but

in the low Stokes number region the match was poorer. At a low Stokes number (regime

D) their vorticity contours match experimental visualisations both in their spatial and

temporal (synchronous) nature. Investigations of flows in regimes E and F yielded

results that showed no intermittent switching of the shedding direction as found in

experiments. This led them to conclude that the switching of the flow direction is

associated with the three-dimensional nature of the flow.

The characteristics of the flow regimes defined by Tatsuno & Bearman (1990) can

also be described in terms of their symmetry properties. At the boundaries between

these regimes a transition in the symmetry properties occurs. A more relevant study

to the present study is the more recent work of Elston (2005) and Elston et al. (2006),

which investigated the two- and three-dimensional instabilities and symmetry breaking

within the parameter space map of Tatsuno & Bearman (1990). They used a Floquet

analysis (for definition refer to §5.4) and direct numerical simulation to study the insta-

bility of such flows. Their study isolated and classified the symmetry-breaking insta-

bilities from these two-dimensional basic states as functions of the control parameters.

They found that while the initial bifurcations produced by increasing the parameters

can be due to three-dimensional flows, much of the behaviour can be explained in terms

of two-dimensional symmetry-breaking instabilities. These have two primary manifes-

tations: at low Stokes numbers, the instability was synchronous with the imposed oscil-

lation, and gave rise to a “boomerang-shaped” mode, while at higher Stokes numbers,

the instability was quasi-periodic, with a well-defined second period, which became infi-

nite as Stokes numbers were reduced along the marginal stability boundary, “freezing”

44



the quasi-periodic mode into a synchronous one. Elston et al. (2006) found that these

two-dimensional modes are, with further small increase in control parameter, unsta-

ble to three-dimensional secondary instabilities. In contrast, the mode first reported

by Honji (1981), which arises at high Stokes numbers, and lower Keulegan–Carpenter

numbers than the two-dimensional quasi-periodic mode, has a three-dimensional pri-

mary instability arising directly from the symmetrical two-dimensional basic state. The

outcomes of the investigation of Elston et al. (2006) are summarised in figure 2.21. In

general, within the range of control parameters (0 < βt < 100 and 0 < KCt < 10),

they found that there are two fundamentally different types of symmetry-breaking

instability in this flow: two-dimensional and three-dimensional. Flows for which two-

dimensional symmetry breaking is the primary instability are almost immediately un-

stable to three-dimensional secondary instabilities, and these secondary regimes are the

ones that have been observed in experiments, e.g. regimes C and D. Like their under-

lying two-dimensional equivalents, regime D flows are synchronous with the forcing,

while flows of regime C are quasi-periodic. There is also a direct primary breakage to

three-dimensional instability at Stokes numbers β & 50; this produces regime B flow,

another synchronous mode. Elston et al. (2006) also found that the fundamental dis-

tinction between the flows of regimes C and D, on the one hand, and those of regime B

on the other, is that the spanwise average flows of regime B have the two-dimensional

symmetries of the base flows, while those of regimes C and D do not. Elston et al.

(2006) concluded, based on the detail of their findings, that the regime map presented

by Tatsuno & Bearman (1990), while a very good guide to the terrain to be encountered

in such a study, is, like many early maps, to be interpreted with care.

Most recently Lam et al. (2010) performed a series of experiments using time-

resolved PIV to investigate the development of vortex patterns around a circular cylin-

der oscillating in a quiescent fluid. Experiments were conducted at KCt between 8 and

36 with Reynolds number kept constant at 2400 (consequently 67 . βt < 300). Similar

to previous studies, they identified three modes and denoted as modes I, II, and III

(characterised by one, two and three (or more) vortices generated in each half cycle,

respectively). Lam et al. (2010) classified the modes based on the development mecha-

nism of shear layers around the cylinder, the number of vortices shed in each half cycle,

and the characteristics of the vortex street. Figure 2.22 illustrates the flow of fluid

associated with the vortex patterns in each mode. They found that vortex shedding in
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Figure 2.21: Locations and charactersitics of the primary and secondary symmetry-breaking
bifurcations. Reproduced from Elston et al. (2006).

mode I occurred only on one side of the line of cylinder motion. This mode which occurs

at 8 ≤ KCt ≤ 16, was observed to have two submodes with different orientations of

the vortex street to the line of cylinder motion. Similar vortex patterns to mode I has

also been reported in the literature as the transverse vortex street or single vortex pair

(Williamson 1985; Obasaju et al. 1988; Tatsuno & Bearman 1990). They also observed

that the vortex street intermittently swaps from one side to the other. It has been found

that below a critical KCt number of ≈ 8, no large-scale vortices can be completely shed

from the cylinder. It was also seen by Lam et al. (2010) that the vortex street is not

necessarily always perpendicular to the line of cylinder motion. Sometimes, the vortex

street is aligned at about 45◦to the line of cylinder motion, shown in figure 2.22b. They

have noticed that this submode was occurred more often at KCt > 12. The same sub-

mode was reported in Williamson (1985) as the single (vortex) pair. Mode II occurred

at KCt between 16 and 24 and the vortex street extended to both sides of the line of

cylinder motion and lies at about 45◦ to the line. At mode III (KCt > 24) vortices

are shed behind the moving cylinder similar to the case of a towed cylinder. Mode III

features one longitudinal vortex street, similar to a limited-length von-Kármán street,

which consists of at least three vortices. One more vortex is produced in each half

cycle with the increase in KCt by approximately 8. At KCt between 24 and 32, three

vortices are shed in each cylinder stroke but were found not to be exactly in pairs.

Instead, the first vortex shed in each stroke has the same sense of rotation as the third

and last vortex shed in the previous stroke. In general, they found that each vortex

pattern was associated with the typical secondary flow stream. As mentioned above,
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Figure 2.22: Interrelation of vortex pattern with secondary flow stream. (a) Mode I, lateral
vortex street; (b) mode I, inclined vortex street; (c) mode II; (d) mode III. Bold arrows:
secondary flow stream; dotted arrows: ambient water flow; dot-dashed lines: typical length
of cylinder stroke. Reproduced from Lam et al. (2010).

these secondary flow streams have been noted by Williamson (1985) and Tatsuno &

Bearman (1990). Also, the results of Lam et al. (2010) showed that KCt number, or

equivalently, the stroke length of cylinder motion, and the secondary flow stream are

the key factors responsible for the different vortex patterns.

Three-dimensional numerical investigations of this parameter space have been more

sparse. An investigation into the onset of three-dimensionality by Zhang & Dalton

(1999) using a numerical technique at βt = 196 yielded a set of results that agreed

with experimental results. The onset of three-dimensionality was observed for KCt =

2 and separation was subsequently observed to occur at KCt = 3.2 before the flow

became chaotic at KCt = 4. Nehari et al. (2004) examined two three-dimensional

states, both at βt = 20; one at KCt = 6.5 (Regime D) and the other at KCt = 8.5

(Regime F). They found that in both cases irregular switching of the vortex streets

between the +x and −x directions was observed. This behaviour could be reproduced

using purely two-dimensional simulations and therefore it was concluded that this is

related to a two-dimensional instability, a finding in direct contrast to that of Iliadis

& Anagnostopoulos (1998). It was noted that three-dimensionality appears after the

underlying two-dimensional symmetry has been broken. Thus was speculated to be

due to switching of the vortex shedding direction in combination with the onset of

47



three-dimensionality, which would contribute to the formation of the sinuous S-mode

witnessed by Yang & Rockwell (2002).

Table 2.1 briefly summarises the flow patterns observed in previous investigations

reviewed above. Only the most relevant papers to the present study are listed in the

table. There are many high quality research studies available in the literature but

many are not relevant to this thesis because their focus is on high KCt and βt numbers.

The development of new measuring techniques that provide detailed information about

the time variations of local flow properties are stirring this new interest in a field

which has seen active research efforts for many decades. Despite a huge number of

visualisations on low amplitude and frequency cases (Tatsuno & Bearman 1990), and

some other translational research in quiescent flow, either experimentally or numerically,

like: Hamman & Dalton (1971); Justesen (1991); Lin & Rockwell (1997); Dütsch et al.

(1998); Iliadis & Anagnostopoulos (1998); Zhang & Dalton (1999); Uzunoğlu et al.

(2001); Lam & Dai (2002); Elston et al. (2004); Elston (2005); Elston et al. (2006),

there are few quantitative experimental investigations (i.e. PIV) especially at low values

of translational amplitudes and frequencies. Therefore this is one of the aims of the

present study - to provide an insight into this problem using high resolution PIV.

2.6 Combined Rotational and Translational Oscillation Mo-
tion

A circular cylinder undergoing a combination of oscillatory translation and rotation in

either quiescent fluid or external flow has received little attention until now. It was

shown in §2.5 that when a bluff body is oscillating translationally in a quiescent fluid,

secondary streaming is generated around the body because of nonlinear effects (Bear-

man et al. 1981). However, the combination of two oscillatory forcing mechanisms,

under specific conditions detailed later, results in a net thrust being experienced by the

circular cylinder in a direction normal to the translational axis (Blackburn et al. 1999).

The cylinder experiencing thrust, while undergoing a series of pitch and plunge, has

been labeled the “swimming cylinder”. When the circular cylinder was permitted to

move in response to the average force, a terminal velocity approximately one third of

the peak translational velocity was predicted (Blackburn et al. 1999). The forces expe-

rienced by the circular cylinder had only been examined in detail for the particular case

of a zero phase angle between the oscillatory motions, although according to Blackburn
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et al. (1999) instantaneous vorticity contours at other angles would suggest a similar

forcing. The results of the Blackburn et al. (1999) are all numerical and, up until now,

there has been no experimental investigation of the swimming cylinder reported.

A set of preliminary studies into the effect of combining rotational and transla-

tional oscillations of a circular cylinder by Elston (1997); Blackburn et al. (1998, 1999)

have demonstrated a number of interesting results (Figure 2.23). In a series of two-

dimensional numerical simulations conducted by Elston (2005) the phase angle, Φ,

between the two motions was found to have a significant effect upon the near-wake

structure, as shown in figure 2.23. Indeed, previous interesting results on purely trans-

verse oscillation in free-stream (Leontini et al. 2006a) have also indicated that the phase

difference between the two motions is of considerable importance and this is the focus

of the research discussed here. The phase angle between the motions seems to influ-

ence the degree to which cross-annihilation of vorticity occurs and the distance from

the cylinder at which vorticity persists. Elston (1997); Blackburn et al. (1998, 1999)

have shown that the “in-phase” or “opposing-phase” (Φ = 0, π, respectively) motion in

the combined oscillation would produce the most thrust effective jet stream. In these

cases a net force was found to act on the surrounding fluid at an angle perpendicular

to the oscillation axis. In the results shown, figure 2.23, the computational domain

has periodic boundaries and for Φ = π/4, 3π/8 and π/2 this permitted vortex pairs to

leave the domain and re-enter on the opposite side. Blackburn et al. (1999) and Elston

(2005) examined two scenarios for this case: firstly where the cylinder was held fixed

in the horizontal plane and secondly where the cylinder was permitted to freely move

in the horizontal plane. The translational oscillation had the parameters KCt = π and

βt = 90 which was shown to result in a regime B (refer to §2.5 and Tatsuno & Bearman

(1990)) flow with no rotary oscillation present. The frequency of the rotary oscilla-

tion was set to be synchronous with the translational oscillation and the amplitude of

oscillation was one radian (Elston 2005).

Elston (2005) mentioned that for the first scenario where the cylinder was fixed

in the horizontal direction, see figure 2.24, a streaming flow along this axis is appar-

ent in the vorticity contours. A corresponding simulation of particles being shed from

the cylinder surface further illustrates the jet that results. A wake velocity profile at

x/D = 2.0 downstream revealed this jet to have a double-peaked nature as suggested

by the particle transport map. In the second scenario, where the cylinder was allowed
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to move in response to the forces exerted by the jet, i.e. the swimming cylinder case, a

terminal velocity approximately one third of the magnitude of the maximum transla-

tional velocity was achieved. The instantaneous vorticity contour and particle transport

maps are shown in figure 2.25. In these maps the high-speed pulsating nature of the

jet is shown as discrete “puffs” of particles.

The combined translational and rotational oscillation of the cylinder can result in

one side of the cylinder having a greater relative acceleration to the fluid than the

opposite side. The greater tangential surface acceleration results in a corresponding

increase in vorticity production from the surface. Only in certain cases the motion of

the cylinder thus acts to produce vorticity more strongly from one side of the cylinder

while retaining an overall zero production of vorticity from the cylinder. The net

production of vorticity in one motion cycle is theoretically zero due to the symmetry

of the motion. In practice this might not occur because the fluid motion around the

cylinder will not remain symmetrical. The thrusting effect appears to occur in a lock-

on regime and as reported by Blackburn et al. (1999) for this to occur a threshold

amplitude of oscillation is required (Figure 2.23).

Elston (2005) had no physical experiments against which to compare his numerical

simulations to confirm these effects. To date no detailed studies, especially experimen-

tal, into the effects of combining an oscillatory rotational and translational motion of a

circular cylinder in either quiescent fluid or in external flow are known. The only avail-

able studies on the combined oscillatory motion in external flow are Al-Mdallal (2004)

and Kocabiyik & Al-Mdallal (2005). There are also no three-dimensional experimental

and numerical studies of the flow available. The three-dimensionality potentially could

have a significant impact on the thrust observed by Blackburn et al. (1999) as the flow

for a cylinder in purely translational motion at this point in the (KCt, βt)-parameter

space has been proven to be three-dimensional (Elston 2005). Al-Mdallal (2004) has

also explicitly mentioned that “despite the large number of papers dedicated to the prob-

lem of a cylinder vibrating transverse to a fluid flow there is only one paper which also

allows the body to perform rotational oscillations about its axis in a quiescent fluid

(swimming motion): Blackburn et al. (1999)”.

On the other hand, there exists a similar form of motion in nature that is a combi-

nation of rotational and translational motion, which is used as a propulsion mechanism.

This motion will be discussed in §2.6.1.
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Figure 2.23: Instantaneous vorticity contours for a cylinder with both translational and
rotational oscillation, shown at t/T = 45.75 for a range of phase angles: (a), Φ = 0◦; (b),
Φ = 22.5◦; (c), Φ = 45◦; (d), Φ = 67.5◦; (e), Φ = 90◦; (f ), Φ = 112.5◦; (g), Φ = 135◦; (h),
Φ = 157.5◦. The graph originally appeared in Blackburn et al. (1998) and then is reproduced
from Elston (2005) by permission.

Similarities can be found between the study of oscillating cylinders, and oscillating

foils. Triantafyllou et al. (1991) experimentally investigated the wake mechanics of

thrust generated by oscillating foils, and noted that the vortex structure produced in

the wake of an oscillating foil resembles that produced by a bluff-body, but with re-

verse rotational direction. The wake dynamics were dominated by the non-dimensional

parameter, the Strouhal number. Streitlien et al. (1996) used a similar definition of

efficiency as it was used by Triantafyllou et al. (1991) in analysing the oscillating foil

numerically but required an altered definition to examine the effects of ambient vorticity,

because efficiencies of greater than 100% could be achieved by manipulating vorticity
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Figure 2.24: Flows produced by a cylinder with oscillatory translation and rotation: (a)
instantaneous vorticity contours; (b) fluid particle transport. The cylinder is at its maxi-
mum vertical position and most negative angular displacement at the instant shown. The
rest position of the cylinder is indicated by cross-hairs, and the radial line shows the radial
displacement of the cylinder from the horizontal. The graph originally appeared in Blackburn
et al. (1999) and then is reproduced from Elston (2005) by permission.

Figure 2.25: Flows produced by a cylinder with oscillatory translation and rotation with no
restraints applied in the horizontal direction: (a) instantaneous vorticity contours; (b) fluid
particle transport. The cylinder is moving at terminal speed in the −x direction. The graph
originally appeared in Blackburn et al. (1999) and then is reproduced from Elston (2005) by
permission.
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present in the stream. Anderson et al. (1998) performed further practical investigations

into oscillating foils and were able to achieve efficiencies as high as 87% under optimal

conditions. The critical factors influencing thrust optimisation were Strouhal number,

amplitude of heave motion-to-chord ratio, angle of attack and phase angle between

pitch and heave.

As mentioned above the only available studies on the combined translation and

rotation oscillatory motions in a free-stream are Al-Mdallal (2004) and Kocabiyik & Al-

Mdallal (2005). They dealt with this class of wake flows to analyse the vortex formation

modes and synchronisation (lock-on) phenomena behind the cylinder (in the near-wake

region) as well as the fluid forces acting on the cylinder. They conducted a series of

numerical simulations assuming the flow to be incompressible and two-dimensional,

with harmonic translational and rotational oscillations. Their numerical simulations

were carried out at only one Reynolds number, Re = 855, under the same oscillation

conditions as the experimental study of Ongoren & Rockwell (1988b) for the case of a

cylinder undergoing purely forced translational oscillations at angles of 0◦, 60◦, 90◦ with

respect to the uniform free-stream.

For the combined forced translational and rotational cylinder oscillation case the

numerical simulations of Al-Mdallal (2004) were carried out for combined phase-locked

translation and rotation with only a single frequency, i.e., f = ft = fθ. They also

assumed that the instantaneous translation and rotation start at the same moment and

the development of the flow was studied in a coordinate frame which moved with the

cylinder but did not rotate. Al-Mdallal (2004) considered two types of forced trans-

lational oscillation of the circular cylinder in their numerical simulations. In the first,

the cylinder was forced to move by combined transverse (cross-stream) and rotational

oscillation (η = 90◦, Aθ 6= 0). In the second, the cylinder was forced to move by

combined in-line (streamwise) and rotational oscillation (η = 0◦, Aθ 6= 0). Calcula-

tions were carried out for values of Reynolds number, Re = 855, and amplitude of

translational (in-line or transverse) oscillatory motion, At/D = 0.26, respectively, in

the cases f/fN = 0.5, 1, 2, 3, 4 and Aθ = 15◦, 30◦, 60◦, 75◦. The effects of f/fN and

Aθ on the vortex formation modes as well as the fluid forces acting on the cylinder

were examined. Results of Al-Mdallal (2004) show that five basic asymmetric modes

of vortex formation synchronised with the body motions in the near-wake region. Four

of these asymmetric modes showed period doubling; doubling or tripling; tripling and

54



Figure 2.26: Representation of basic modes of vortex formation from cylinder undergoing
combined translational and rotational oscillation. Reproduced from Al-Mdallal (2004) by
permission.

quadrupling relative to the classical Kármán mode. These modes are schematically

shown in figure 2.26. The asymmetric 2S and P + S modes occur for both types of

forced combined oscillation; the asymmetric 6S, 8S and 2P modes occur only for com-

bined transverse and rotational oscillation case. The following summarises an overview

of wake modes and fluid forces calculated by Al-Mdallal (2004) for the transverse and

in-line cases separately:

Combined transverse and rotational cylinder oscillations:

When the forcing frequency is f/fN = 1, the classical asymmetric 2S mode over one

oscillation cycle was the dominant mode for all values of Aθ since the maximum oscil-

latory speeds of both motions are less than the uniform flow speed. Figure 2.27 shows

a sample of Al-Mdallal (2004)’s results of combined transverse and rotational cylinder

oscillation when f/fN = 1. In the range of the frequency ratios when f/fN ≥ 2,

the vortex shedding becomes more complicated due to the strong interaction between
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the cylinder motion and the shed vortices. Breaking up of the near-wake vortices and

coalescence of these vortices occurred in the region very close to the cylinder surface.

This coalescence phenomenon produced interesting repeatable patterns in the near-

wake region. They found that the translational oscillation plays an important role in

activating the periodic coalescence phenomenon at high values of the frequency ratio.

The asymmetric P + S mode occurred over two oscillation cycles only for f/fN = 2:

Aθ = 15◦. The asymmetric 2P mode occurred over two and three cycles of oscillation

when f/fN = 2: Aθ = 30◦ and f/fN = 3: Aθ = 15◦, respectively. The asymmet-

ric 6S and 8S modes occurred over three and four oscillation cycles for f/fN = 3:

Aθ = 30◦; f/fN = 4: Aθ = 60◦ and f/fN = 4: Aθ = 15◦, 30◦, respectively. Period dou-

bling; tripling; quadrupling relative to the classical Kármán mode occurred in the cases

f/fN = 2: Aθ = 15◦, 30◦; f/fN = 3: Aθ = 30◦ and f/fN = 4: Aθ = 60◦; f/fN = 4:

Aθ = 15◦, 30◦, respectively. Thus, the vortex shedding period was found to increase

proportionally with f/fN . Al-Mdallal (2004) also found that the time-averaged drag

coefficient reached its maximum value at f/fN = 1 for all values of the rotational oscil-

lation amplitude. Al-Mdallal (2004) found that the effect of increasing the rotational

oscillation amplitude is to reduce the vortex shedding period. The location of the de-

veloping vortices increased vertically on the cylinder surface as Aθ increases. Thus, the

angle of separation is increasing as Aθ increases which was consistent with their results

observed for rotational-only oscillations case.

Based on the results of Al-Mdallal (2004), the vortex lock-on phenomenon was

observed for all values of f/fN ≥ 1, when 15◦ ≤ Aθ ≤ 75◦. An interesting result

related to the lock-on phenomenon was observed at f/fN = 4 and Aθ = 15◦ in which

the vortex shedding in both purely transverse and rotational oscillation cases was not

locked-on while it produced vortex lock-on for the case of combined translational and

rotational oscillations.

Combined in-line and rotational cylinder oscillations:

The classical asymmetric 2S mode over one period of oscillation cycle was the

dominant mode for all values of f/fN and Aθ except f/fN = 2: Aθ = 15◦, 30◦. They

found that this vortex shedding mode was consistent with the in-line-only oscillation

case at f/fN = 2, 3. Figure 2.28 shows a sample of Al-Mdallal (2004)’s results of

combined transverse and rotational cylinder oscillation when f/fN = 1. In the first

one, they observed a small counter-rotating vortex accompanying the large shed vortex
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Figure 2.27: Equivorticity lines over one period of oscillation, T , for the combined transverse
and rotational oscillation case (η = 90◦, 15◦ ≤ Aθ ≤ 75◦) when Re = 855, At/D = 0.26:
f/fN = 1 (T = 9.09, 81.82 ≤ t ≤ 90.91). Reproduced from Al-Mdallal (2004) by permission.

from the upper side of the cylinder for a limited distance in the downstream direction.

In the second occurrence this counter-rotating vortex accompanies the shed vortex

from the bottom of the cylinder. Finally, in the third occurrence each shed vortex was

accompanied by a counter-rotating vortex. Moreover, the existence of the asymmetric

P + S mode which was observed at f/fN = 2 when Aθ ≤ 30◦ is consistent with

the results of previous experimental and numerical studies for the case of in-line-only

oscillation at the same value of f/fN .

All of the above are the results of numerical simulations. There is no available

experimental investigation on the combined oscillatory motion either in quiescent fluid

or free-stream. It therefore seems worthwhile investigating not only the near-wake

structure of such a combination of forcing mechanisms, but also to extend this to

examine the three-dimensional nature of the wake, which is yet to receive any attention.

These are the aims of this thesis.
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Figure 2.28: Equivorticity lines over one period of oscillation, T , for the combined in-line
and rotational oscillation case (η = 0◦, 15◦ ≤ Aθ ≤ 75◦) when Re = 855, At/D = 0.26:
f/fN = 1 (T = 9.09, 81.82 ≤ t ≤ 90.91). Reproduced from Al-Mdallal (2004) by permission.

2.6.1 Carangiform Motion

In the animal kingdom, the process of evolution has led to highly efficient methods of

propulsion being developed. Of particular relevance to the combined motion outlined

earlier is the means of propulsion developed by animals of three distinct groups that

include all of the fastest, continuously swimming animals in the ocean. These ani-

mals, such as tuna, marlin, sharks, whales and dolphins, all have an identical means of

propulsion which is based upon their fins (tails) being given a characteristic combina-

tion of rectilinear and rotational oscillation. This mode of oscillation, which is called

Carangiform motion, utilises a twist of the animal’s wing-like surface at the extreme

ends of the fins translational oscillation. This mode of oscillation, carangiform (after the

horse-mackerel Caranax), necessitates a twist at each extreme of the oscillation to give

backward inclination to the moving winglike surface, that is to a vertically oscillating

cetacean tail, or to a fish’s horizontally oscillating caudal fin, see figure 2.29 (Lighthill

1986).
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Figure 2.29: Carangiform motion involves a twist at each extreme of the oscillation. Suc-
cessive positions a, b, c, d and e, assumed by a lunate tail’s airfoil cross-section at equal
time-intervals, are sketched for half of the cycle of oscillation. The other half of the cycle is
a mirror image of that shown. Reproduced from Lighthill (1989).

In comparison, the results for the circular cylinder have the change in rotational

velocity at the midpoint of the cylinders translation. The propulsive jet that is produced

from carangiform motion occurs when the oscillations are in-phase, in contrast to the

preliminary results for the swimming cylinder, which occurred when the translational

and rotational oscillations were out of phase (Blackburn et al. 1999; Elston 2005). It

has been suggested that this disparity in the phase angle between carangiform motion

and the numerical results could be linked to the features which act to influence and

control the fin’s wake. The magnitude of thrust from the fin is also much larger than

that from the oscillating cylinder, but it is likely that much of the thrust comes from

the aerodynamics shape of the fin. It is possible that the oscillatory motion of the fin

could serve as a drag reduction mechanism (Elston 2005).

2.7 Summary

There have been many studies investigating the translational and rotational oscilla-

tory motions in different flow regimes and characteristics. These research studies have

focussed on the flow structures and force measurements. However, research into the

effects of combining the two oscillatory motions is at a preliminary stage. A number of

interesting features have been shown to occur as a result of combining the motions. In
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particular, the apparent jet of fluid produced by the cylinder, for a specific phase rela-

tionship between motions, has been shown to propel the cylinder. To date, no physical

experiments exist to verify there results. The mechanism that results in the cylinder

producing a thrust is yet to be investigated. How the relationship between the two

motions affects the resulting wake structure has also not been investigated extensively.

The combination of oscillatory motions has been shown to be capable of producing a

wide variety of vorticity wake patterns. Based on the reviewed literature outlined in

this chapter, the aim of the present thesis is first: to quantify the flow around a pure

translational oscillating cylinder in a quiescent fluid at low values of KCt and βt in more

detail; second: for the first time to experimentally investigate the addition of rotational

oscillatory motion to the translational motion in a quiescent fluid, i.e. the swimming

cylinder; third: to investigate the effect of a free-stream past the swimming cylinder and

the effect of a change of phase difference between translational and rotational oscillation

on the synchronisation behaviour.
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Chapter 3

Experimental Methodology

3.1 Introduction

This chapter describes the experimental apparatus, facilities, procedures and techniques

used in this research/study. This includes the post processing techniques and calcula-

tions used to evaluate the data. The chapter is divided into three parts; the first deals

with the experiments on the pure translational oscillation in a quiescent fluid (a de-

scription of the PIV measurement technique is provided here); the second looks at the

combined translational and rotational oscillations in a quiescent fluid i.e. the swimming

cylinder; the third looks at the combined translational and rotational oscillations in a

free-stream flow. Due to the need for specialised design of the experimental instrumen-

tation for the individual experiments, the description of those aspects of the experiment

that were not common to all experiments is given in the relevant results chapters. This

is particularly the case for the cameras, particles used, number of vectors and number

of images acquired and used for phase-averaging.

3.2 Problem definition and Parameter Space

In the case where a cylinder is exposed to an oscillatory flow, or equivalently is driven by

unidirectional simple harmonic (translational oscillatory) motion in a quiescent fluid,

the dimensionless quantities representative of amplitude and frequency of the motion

are usually defined as (Sumer & Fredsøe 1997):

KC = Umax
fD , (3.1)

β = fD2

ν , (3.2)

where KC is the Keulegan–Carpenter number (Keulegan & Carpenter 1958) and β is

the Stokes number (for example see Sarpkaya 2005). If the flow is sinusoidal with the
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equation of motion defined by:

y(t) = At sin(2πftt) (3.3)

then the maximum (peak) translational velocity will be:

Umaxt = 2πAtft. (3.4)

For sinusoidal oscillation the KCt number will therefore be identical to:

KCt =
2πAt
D

(3.5)

A Reynolds number, although less commonly used in the published literature than KC

and β, can alternatively be defined as a combination of two of these dimensionless

parameters. The associated Reynolds number, Ret, is then

Ret =
UmaxtD

ν
= KCt βt. (3.6)

When rotational oscillation is added to the translational oscillation of a circular

cylinder in a quiescent fluid, a similar but separate set of dimensionless quantities

representative of amplitude and frequency of the rotational oscillatory motion can be

defined as:

KCθ =
Umaxθ
fθD

, (3.7)

βθ = fθD
2

ν , (3.8)

where KCθ and βθ are the rotational Keulegan–Carpenter and Stokes numbers, respec-

tively. If the equation for the rotational sinusoidal motion is defined as:

θ(t) = Aθ sin(2πfθt+ Φ) (3.9)

then the maximum (peak) rotational velocity and KCθ number will be:

Umaxθ = 2πAθfθ, (3.10)

KCθ = 2πAθ
D . (3.11)

The experimental arrangement allowed independent variation of the translational and

rotational KC and β numbers.
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3.3 Experimental Set-up

3.3.1 Flow System

This section explains the two different flow systems used in this research, quiescent

(stationary) fluid and free-stream.

3.3.1.1 Quiescent Fluid

The experiments were performed in an adjustable size tank in a recirculating free-

surface water channel at Monash University, Melbourne, Australia. Two transparent

walls made of Perspex were inserted into the test section of the water channel that fitted

within and were a snug fit with the glass side walls and the other two walls of the box

were perpendicular to this. The insertion of the box combined with the water channel

being turned off during the quiescent flow experiments ensured zero velocity flow in the

channel. The inserted tank was sealed using small round cross section tubes that were

attached on the edges of the walls. To ensure stability of the walls a horizontal flat

plate was mounted at the end of the walls to sit on the bottom of the water channel.

These movable walls were used to set different tank sizes, if necessary. The tank width

was limited by the width of the water channel test section, this being 600mm or 30D.

The use of the tank also allowed heavy seeding levels during the PIV experiments.

The water channel was equipped with a PIV measurement system. This could

direct a laser sheet from either underneath or through the side wall of the working

section. The laser sheet could be either parallel or perpendicular to the direction of

flow/fluid by adjusting the reflection mirror and lens under or next to the working

section. Figures 3.1 and 3.2 show the photo of the experimental rig and schematic of

the water tank, with details of the location of the walls, respectively.

3.3.1.2 Streaming Flow

Some of the experiments were conducted in the recirculating free-surface water channel

test section with water recirculating through the channel. A centrifugal pump con-

trolled by an electronic controller was used to give flows with free-stream velocities

in the working section between 0.047 and 0.456 m s−1 (corresponding to the pump fre-

quency range between 5 and 50 Hz). For a cylinder with a diameter of 20mm, this range

of flow speed gives a Reynolds number range between 1000 and 9200, Re based on the

cylinder diameter (this range can vary slightly due to water properties varying with the
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Figure 3.1: A photograph showing cylinder and oscillation system in the tank working
section.

slight changes in temperature). The test section had a width of 600mm (transverse),

depth of 800mm (vertical, free-surface) and was 4000mm long (downstream). The chan-

nel’s test section was positioned between two large tanks of water. Upstream of the

working section, water flows through a distribution manifold followed by flow condi-

tioning honeycombs and screens before going through a 3:1 contraction to the working

section. This combination of flow conditioning and contraction act to straighten the

flow and yield a free-stream turbulence level of less than 1.0%. The maximum angle

between measured velocity vectors and the downstream direction was less than 1◦. Of

course, these values only apply when there was a mean flow in the water channel, i.e.

not quiescent cases. More details of the flow quality in the water channel have been

reported by Leweke (2002).

3.3.2 Experimental Apparatus

To generate the harmonic oscillatory movement of the cylinder within the tank or

test section of the water channel, a rig was designed that could accurately translate

and/or rotate the cylinder at specific amplitudes and frequencies of oscillations with an

adjustable phase difference between the two motions. The rig was designed such that
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Figure 3.2: Water tank assembly.

it can hold the weight of the actuator, the stepper motors, the sting, the vertically-

mounted cylinder, and digital scale. Figure 3.1 shows the experimental rig on top of

the test section of the water channel during a quiescent fluid experiment. The following

sections describe the individual parts of the experimental apparatus.

3.3.2.1 Cylinder Model and Coordinates

The experimental model used for the experiments was a hollow circular cylinder ma-

chined to smooth outside diameter of 20mm and a length of 800mm, giving an aspect

ratio of 40 (see Figure 3.3). This value has been shown by several researchers to be

adequate not to affect the two-dimensionality of the flow (Norberg 1994; Williamson

1989; König et al. 1990; Lee & Budwig 1991; Szepessy & Bearman 1992; Williamson

1996c; Carberry 2002). The effect of aspect ratio has also been discussed in §2.2.1.3.

The cylinder was made of carbon fibre and suspended vertically by a sting from an in-

line actuator placed above the water and controlled by a micro-stepping stepper motor.

The cylinder was vertically mounted such that its spanwise axis was perpendicular to

the free-surface as shown in Figure 3.1 and Figure 3.4. A small section of the cylinder

(17mm long and located at a distance of 180mm from the end of cylinder) was replaced

by a thin-walled transparent cylinder, whose interior was filled with distilled water.

This window minimises shadow effects arising from refractive distortion of the laser

light sheet that was generated for acquisition of the PIV images. Figure 3.3 shows a

schematic view of the cylinder and its dimensions.
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Figure 3.3: Schematic showing dimensions of the circular cylinder model.

The cylinder used was fitted with an end plate to reduce end effects. End plates

are frequently employed (see for example Nishioka & Sato (1974); Mair & Stansby

(1975); Gerich & Eckelmann (1982); Fox & West (1990); Hammache & Gharib (1991);

Szepessy & Bearman (1992); Szepessy (1993); Norberg (1994, 2003); Parnaudeau et al.

(2008)) in wind tunnel or water channel studies in an attempt to ensure that “two-

dimensional” flow conditions occur around nominally two-dimensional bluff bodies.

Despite the widespread use of end plates with circular cylinders, there is only lim-

ited information available on the recommended specific design criteria to be met for

their adoption. Stansby (1974) conducted series of experiments with different rectan-

gular shaped end plates and established the basic requirements through measuring the

mean base pressure of circular cylinders for designing end plates.

Here, we used the Stansby criteria (Stansby 1974) to reduce the end effects; an

end plate was designed and used following the recommendations by Stansby (1974).
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Figure 3.4: Schematic of the problem geometry and important parameters relevant to the
oscillatory forcing motions. (a): the two-dimensional overview (xy-plane) of the cylinder
and the sinusoidal motions parameters, (b): spanwise view of the cylinder (yz-plane) with
end plate and field of view (PIV), (c): the two-dimensional overview of the cylinder and the
sinusoidal motion parameters in a free-stream.

However, in this case we did not use rectangular plates, as recommended by Stansby

(1974), circular end plates were used instead. This was done based on the fact that

the vertical cylinder must remain axisymmetric along the vertical axis when rotated.

The circular end plates were made of Perspex with a diameter of 9D and a thickness of

3mm. An end plate was mounted on the bottom end of the cylinder. Special care was

taken to ensure the gap between the end plate and the bottom glass of the test section

was always less than 2mm.

The Cartesian coordinate system used was defined such that the origin is located at

the centre of the circular cylinder (at t = 0) at the above-mentioned window. Figure 3.4

illustrates the definitions of the variables used in equation 3.3 and equation 3.9. The x-

direction is referred to as streamwise, the y-direction as transverse and the z-direction
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as spanwise (see figure 3.4). To verify the frequency and amplitude of oscillation a

digital scale was used to measure the oscillation displacement of the actuator which

was attached to the cylinder. This also provide a means of tracking the motion with

an oscilloscope.

3.3.2.2 Motion Controller and Stepper Motors

In a number of previously published studies of related flows a Scotch Yoke mechanism

(for example see Tatsuno & Bearman 1990; Dütsch et al. 1998; Kishnamoorthy et al.

2001; Sarpkaya 2002, and many more) was widely used as the means of generating sinu-

soidal oscillatory motion. However, for these experiments it was felt that the approach

could have difficulties for the detailed examination of the phase relationship between

the different oscillatory motions. U-tubes have also previously been used for related

flow and has been found to work particularly well for flow visualisation experiments

(for example see Williamson 1985).

The high efficiency and versatility of modern high resolution micro-stepping step-

per motors and controllers, encouraged us to use this technology to generate a wide

range of motion profiles. Using high resolution stepper motors (here the maximum

resolution was 50800 steps rev−1) provides more control of the independent variables of

a harmonic oscillation motion. They were used here to generate the required sinusoidal

oscillatory motions. This was achieved by using a 2-axis controller (Parker Compumo-

tor 6K2); two independent drivers (Parker OEM650 and E-DC) for driving translational

and rotational motions, respectively; two independent high resolution stepper motors

(Parker S-series and LV231-02-10-EC); a rodless in-line mounting actuator (Parker

ERS50-B02LA20-FSR150-A) and a desktop personal computer (PC).

The vertically mounted cylinder was directly connected to a high resolution stepper

motor that generates the rotational motion. The motor was housed in a bracket (see

Figure 3.5) and connected to the sliding plate underneath the rodless in-line mounting

actuator through shafts and bearings. The second high resolution stepper motor was

connected to one end of the in-line actuator and generates the translational oscillatory

motion. The 2-axis controller allows the stepper motors to be controlled independently,

allowing the generation of the two motions with any combination of frequency, ampli-

tude and phase angle difference. A desktop PC was used to program the controller,

using the “Motion Planner” software provided by the Parker company.
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Figure 3.5: A photograph showing the rotational stepper motor housed in a bracket, where
the circular cylinder is vertically mounted to.

One of the options of the controller was used to generate a sine wave for driving

the cylinder’s motion. It was possible to produce sinusoidally oscillating motions, with

control of the phase angle, amplitude, and centre of oscillation. One sine wave was

produced per axis, each using the variable count frequency of that axis to increase

or decrease the frequency of motion, up to a maximum angular frequency of 40 Hz.

For each set of experiments, the motion was controlled such that, after started, the

controller sent signals to the drivers of both axes. These then drove the stepper mo-

tors at preselected resolutions, which here were set to the maximum resolution i.e.

50800 steps rev−1.

The control software was programmed such that the output profile incorporated

triggering (TTL-signal) signals to acquire images from the camera acquisition and fire

the laser. In this way the PIV images could be captured at pre-selected phase angles

in the oscillation cycle (phase-locked), see figure 3.13c. Figures 3.6 and 3.7 show the

schematic and a photo of the controller system, respectively.

A digital scale (150mm vertical type) was used to obtain position feedback of the

translational motion as an analog signal. An interface box was made to take serial

digital position data from the digital scale and convert it to an analog voltage. The

scale sample rate could be changed from its default mode of about 3 Hz to the fast

mode of about 40 Hz. Figure 3.8 shows a schematic of the digital scale mounted to the

actuator rig.
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Figure 3.6: Schematic of the 2-axis controller, drivers, digital scale and PC used.

Figure 3.7: A photograph showing the controller and the oscilloscope inside the box!.

3.3.2.3 Means of obtaining Quiescent Flow

The experiments for the first two parts of this study were conducted in a fluid initially

at rest, i.e. quiescent. The experiments were conducted in a laboratory with no tem-

perature control, meaning special care was required to ensure the quiescency of the

flow because the temperature difference between the water and the room could result

in undesirable motion of the water inside the tank. Following each experiment, the

cylinder held stationary in the tank for at least one hour to allow the flow to become

stationary again. During the course of experiments, the water and room temperatures

were monitored and recorded hourly using an ebro TFX430 thermometer. Figure 3.9

shows a typical variation of room and water temperature for different times of a day

and different days throughout a year.

Due to temperature differences between the water and room, for most of the exper-
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Figure 3.8: Schematic of the digital scale.
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Figure 3.9: Room and water temperature variation during the course of experiment for
different days throughout the year. The horizontal axis shows time in hour and the vertical
axis shows the temperature. The solid line denotes the room temperature, whereas the dashed
line denotes water temperature.

iments there was unwanted fluid motion inside the tank due to the resultant natural

convection. To minimise, and preferably eliminate these a sheet of honeycomb, 30mm

thick, was suspended above the tank (see Figure 3.10) and moved in and out of the

tank very slowly before each set of experiments. This reduced the waiting period be-

tween the experiments by breaking any large-scale flow structures into small-scales,

which consequently dissipated more rapidly. This resulted in less unwanted motion and

reduced background noise. Typically, the background noise amplitude, measured with

the norm of velocity magnitude was in the order of 0.1mm s−1. Figure 3.11 shows a

sample of these measurements before starting the main experiment. Special care was

also taken to make sure both the norm of velocity magnitudes and the norm of stan-
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dard deviation of the velocity magnitudes converged to a satisfactorily low value. This

starting criterion was found to be less than 0.1% of Umax of the experiment.

Figure 3.10: A photograph showing the honeycomb used to settle the flow for the quiescency
experiments.

Figure 3.12 shows a typical comparison between the quiescency of the water in the

tank with and without the use of the honeycomb. Clearly this shows the effect of the

honeycomb in damping the large-scale motions. The honeycomb in this particular case

reduced the waiting time by at least 50%, from about an hour to 30 minutes.

3.3.3 Experimental measurement systems

The primary visualisation method used in this study was particle image velocime-

try, PIV (Adrian 1991). PIV is now a well known and accepted technique and so only

a brief overview is presented here.

The software used to perform the PIV analysis was an in-house developed algo-

rithm written primarily by Dr. Andreas Fouras of Monash University (for example see

Fouras & Soria 1998; Fouras et al. 2008). It incorporates a number of error correction

algorithms previously discussed in the literature.

Particle Streaked Visualisation was also used, and will be briefly described in the

following sections.
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Figure 3.11: This figure shows a sample quiescency case, KC=5, β=20 and Umax=5.56
mm s−1. The vertical axis shows the norms of either standard deviation of the velocity fields
(red color) or the velocity fields (black color). The horizontal axis is showing the time in
hours. The average room temperature during the quiescency experiments is 18.1◦C.

3.3.3.1 Flow Visualisation

Flow visualisation techniques were mainly used for the quiescent fluid experiments.

In acquiring the flow visualisation images, the water inside the tank was seeded with

polymer sphere particles (VESTOSINT 2157 natural color) having a mean diameter

of 56µm. Particles were poured into the water tank, while stirring the water well to

distribute the particles homogeneously across the box. The system was then allowed

to settle as discussed above in § 3.3.2.3. Preliminary experiments showed that the

particles can remain buoyant for at least 45–60 minutes after the flow settled down; all

experiments were conducted during this time. The flow visualisation was performed

with the same hardware and techniques used to obtain PIV images but with different

camera and software settings, e.g. longer exposure times (due to using video PIV mode).

The main difference between the flow visualisation methods in this study and PIV were

in the use of a continuous light sheet instead of a pulsed laser sheet, and the camera

settings, as the flow visualisation didn’t need an expensive PIV camera. Two apertured

1200W stage-lamps as light sources, one on each side of the water channel, were used to

ensure the light sheet passed through the water window of the model (see Figure 3.3).

The thickness of the light-sheet was controlled to be about 3mm. Visualisation images

were captured on a high performance digital CCD camera system (Cooke Pixelfly) with

a maximum resolution of 1376 × 1040 pixels. The stepper motor has the capability of
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Figure 3.12: Comparison of quiescency with (black color) and without (red color) honey-
comb, KC=5, β=20 and Umax=5.56 mm s−1. The vertical axis shows the velocity norms of
the measurement field. The horizontal axis is showing the time in hours. The average room
temperature for the cases with and without honeycomb are 21.4◦C and 22.0◦C, respectively

delivering triggering TTL pulses to the CCD PIV camera. Consequently the stepper

motor triggers the CCD camera at pre-selected phase angles. The flow visualisation

results were useful in revealing vortex structures in the flow and also to make sure that

the system was giving results comparable with the flow visualisation results of Tatsuno

& Bearman (1990).

3.3.3.2 PIV - Particle Image Velocimetry imaging system

The PIV technique provides instantaneous velocity vectors, u, of a fluid in a region

of interest of the flow illuminated by a sheet of laser light. This method determines

particle displacement (∆x,∆y) in a flow over a known time, ∆t. PIV gives quantitative

and non-intrusive flow measurements with high spatial resolution, advantages of this

technique over other visualisation techniques. In these experiments flow fields around

a sinusoidally oscillating circular cylinder were measured using PIV.

Particles are used to seed the flow and two consecutive images acquired in a plane

of interest in the flow that is illuminated by a laser sheet. The images are taken a

time ∆t apart. In general, particles made from different materials such as Polystyrene,

Aluminium flakes, hollow glass spheres, granules for synthetic coatings or polyamide

can be used (Raffel et al. 2007). If the particles in a region of the flow field move by

an amount ∆x in the x-direction and ∆y in the y-direction in time ∆t, the velocities
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of the particles in x and y-directions are

u =
∆x

∆t
(3.12)

and

v =
∆y

∆t
. (3.13)

In each pair of images, a small sub-region of the image is interrogated with a cross-

correlation algorithm that identifies where the group of particles in the first frame have

moved to in the second frame. A vector is then drawn in the centre of the first image

interrogation window with a length and direction corresponding to the offset (to sub-

pixel accuracy) of the particle group. Then, by knowing the image resolution and the

time between images (∆t), the vector can be linearly scaled to give a fluid velocity

in that region (using the magnification factor, M). The magnification factor can be

measured by placing a ruler or grid with known spacing in the plane of interest and

convert the pixels to required unit length. In this study a ruler was used to calculate

the M factor prior to experiments. This process is repeated over the whole image,

resulting in a grid of velocity vectors, typically presented as the horizontal and vertical

components of the resultant velocity vector. Further information on the PIV method

can for example be found in Adrian (1991) and Raffel et al. (2007).

The in-house algorithm used here also determined a bound on the velocity results

of the experimental interrogation (Fouras & Soria 1998; Fouras et al. 2008). At each

interrogation location, theoretical velocity vectors were determined using a deconvolu-

tion of a simplified Navier–Stokes equation fit through surrounding vectors. Erroneous

vectors were detected and replaced using an algorithm incorporated into the PIV pro-

cessing software. Any experimental measurements that were not within two pixels of

that predicted value at that location were then replaced with the theoretical vector.

This vector is then known as filled, and a count of the number of filled vectors in any

given image gave an estimate of the adequacy of the experimental data. Any data set

that had more than 5% of vectors filled was discarded and all the efforts have been

made to reduce this value as much as possible prior to any experiment.

From the sequence of images obtained, i.e. the instantaneous results, an averaged

flow field was required for each parameter setting in the phase-locked experiments. The

simplest method of doing this is by averaging the vectors at each interrogation location

for all the PIV images in a given sequence. A more accurate technique that has also
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been incorporated was developed by Meinhart et al. (2000), who showed that greater

accuracy could be obtained by averaging the correlation space peaks of the same inter-

rogation region of each image before determining the real-space vector. However, this

method assumes that the flow is steady in time as any temporal variation in the flow

will be smoothed out by this procedure and hence was not used for the majority of

data analysis here. Also included in the PIV algorithm used in this investigation was

a technique developed by Hart (2000) to improve the accuracy of cross-correlation by

successively reducing the interrogation window size. In this technique, an initial inter-

rogation is performed on all images in a sequence with a large interrogation window

size. The velocity vectors produced by this method were then used as a first approxi-

mation to a second interrogation using a window size reduced by half. This process is

repeated for successively smaller window sizes and can be repeated theoretically until

the window size matches a particle size. However, to minimise noise, this is usually lim-

ited in practice to a window size that includes at least 7 to 8 particles. This multi-pass

technique has been used to analyse the PIV images. It was finally found that an initial

32× 32 pixel interrogation window size on a 16× 16 pixel grid with 50% overlap would

produce good balance between accurate results as in less than 5% filled vectors and

computational times in comparison with an initial approximation using a window size

of 64×64 pixels. Other combinations of the multi-pass interrogation window sizes have

also been tested but none of the larger ones fulfilled the less than 5% of filled vectors

criterion explained above. Smaller initial interrogation window sizes than what is used

have also been tested and due to the longer computational times in comparison with

the accuracy of the results were not used. It should be noted that in order to achieve

more accurate results a 50% overlap between the interrogation windows was always

used (Raffel et al. 2007), hence while testing smaller initial window sizes of 16 × 16

pixel a grid size of 8× 8 pixel was used. Larger initial sizes significantly increased the

processing time with no great improvement in accuracy (Atvars 2007). Most of the

results presented in the following chapters are phase-averaged. For this purpose, the

images were taken at pre-selected phases in the oscillating cycle for a series of time and

then the displacement fields were temporally averaged as can be seen in equations 3.14

and 3.15. Equation 3.14 shows the instantaneous velocity and 3.15 the phase-averaged

velocity over n number of cycles.
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(a) (b) (c)

←→ ←→

Figure 3.13: A sample of (a) instantaneous and (b) phase-averaged PIV results. (c) shows
a typical harmonic motion of the cylinder and the circles on the curve show the pre-selected
phase in the cycle at which the PIV images were taken. The measurement has been taken
over a translationally oscillating cylinder at KCt=6.25, βt=18 corresponding to regime D
of Tatsuno & Bearman (1990), refer to §2.3 and §4.4.6 for further information. The arrows
represent the direction of the oscillation.
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Figures 3.13a and 3.13b show a sample of instantaneous and phase-averaged PIV

results for a translationally oscillating cylinder, respectively. In order to identify the

statistically sufficient number of frames to average, prior to experiments for a very long

series of data the root-mean-square (rms) of the velocities in the x and y-directions

were recorded. In a long enough series of data the rms values of the velocities will

reach an asymptotic value, from which the optimum and sufficient number of cycles

to average was extracted for each case. The same test was repeated once one of the

independent variables was changed to make sure sufficient number of frames were used

for averaging.

A schematic diagram of the PIV set-up can be seen in Figure 3.14. The PIV set-up,

using digital double exposure cameras and illustrated in Figure 3.14, was based on that

originally described by Adrian (1986, 1991) and developed over the past decades (see

for example Rockwell & Lin 1993; Rockwell et al. 1993; Westerweel 1997).

As mentioned previously, the primary output of PIV is a 2D velocity vector, these

were converted into vorticity normal to the flow field, given by

ωz =
∂v

∂x
− ∂u

∂y
(3.16)

Spatial displacement gradients were derived by χ2 fitting a second-order interpolator
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curve through the vectors surrounding the interrogation point, rather than by a discrete

finite difference approach. Fouras & Soria (1998) measured the gains in accuracy re-

sulting from this approach when calculating quantities requiring velocity gradients, for

example shear stress and vorticity. More detailed information can be found in Dusting

(2006).

In this research, a twenty one-point 2D local fit to the discrete velocity data, based

on what is explained in Fouras & Soria (1998), was used. The additional bias and

random error introduced by this approximation into the vorticity value have also been

investigated by Fouras & Soria (1998). The accuracy of the ωz field measurement

depends primarily on the spatial sampling distance between each velocity data point

and the accuracy of resolved velocity vector field, as is discussed in detail by Fouras &

Soria (1998).

Subsequent processing was undertaken using scripts written with the MATLAB R©

(Octave) data manipulation and programming tool. Additional scripts were used to

calculate the circulations and other important flow properties.

The circulation of vortices was calculated by integrating the vorticity in the longi-

tudinal direction over the cross-section of the vortices in the wake of the cylinder.

The edge of the vortices was defined to be the contour of the points of about 10% of

the local extreme value of the vorticity, as defined by McWilliams (1990). Eventually

the spacing between vorticity concentrations was determined.

The vorticity is non-dimensionalised by the maximum velocity of the cylinder mo-

tion, Umax, and the cylinder diameter by

ω∗z =
ωzD

Umax
. (3.17)

The circulation is also non-dimensionalised by Umax and D so that

Γ ∗ =
Γ

πDUmax
. (3.18)

From the computed vorticity distribution, vortex shedding and vortex motion could

easily be recognised and was used to determine the time-dependent vortex dynamics

induced by the oscillating cylinder. The phase averaged velocity and vorticity fields

were also calculated to examine the repeatable features of the flow field.
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3.3.4 Experimental procedures

The PIV processes used in the experiments are described below. Here only a generic

procedure is described. Other parameters specific to individual sets of experiment are

included when they are described in the results section.

3.3.4.1 PIV measurement procedure

The method for capturing PIV data was described in §3.3.3.2. PIV was used to investi-

gate the wake behind a purely translational oscillatory circular cylinder in a quiescent

fluid (the first part of the present study) and combined translational and rotational

sinusoidally oscillating circular cylinder in a quiescent fluid and free-stream (the second

and third part of this study, respectively).

Figure 3.14 shows a schematic of the PIV imaging system. For the xy-plane mea-

surements the camera was mounted underneath the water channel test section facing

up and the laser was mounted horizontally on the side of test section. The laser sheet

was set such that it passed through the window in the circular cylinder model. The

laser was then triggered at certain phases of the motion. For the yz-plane or spanwise

measurements the location of the camera and the laser was switched. The camera was

now mounted on the side of the test section and the laser was fired from underneath

the channel. For both cases, the laser beam was passing through a plano-concave lens

to generate the laser sheet.

The flow was then seeded with spherical polyamide particles of specific gravity of

1.016. A range of particle sizes have been used depending on the specifications of each of

experiment. The size of particles varied from 11µm to 56µm in diameter (VESTOSINT

2159, 2158 and 2157 natural color, respectively). The particles were illuminated using

two miniature Nd:YAG laser sources (Continuum Minilite II Q-Switched) of a wave-

length of 532nm and maximum energy output of 25 mJ pulse−1. The thickness of the

laser sheet was measured to be less than 2mm. Pairs of images were captured on a high

resolution CCD camera (either Cooke pco2000 or Cooke pco4000) with a maximum

resolution of 4008×2672 pixels. An interrogation window of 32×32 pixels was used for

the parts of this study (with an initial window size of 64× 64 pixels) and was found to

give satisfactory results with 50% overlap. More than 98% of the vectors were valid for

all the experiments. At a particular phase of the oscillation cycle, a number of image

pairs over successive cycles were taken and stored for further processing. The timing
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of the laser and camera triggering was controlled by a special in-house designed timing

unit, with an estimated accuracy of 1µs. The camera and the laser were triggered by a

TTL-signal, which was delivered from the stepper motor once during each laser shot.

Using predefined timing sequences, the first and then second laser were triggered and

fired by the timing unit. The time difference between image pairs, ∆t, was calculated

for each case based on the values of KC and β to give a displacement of at least 8px in

each pair. The timing between the triggering pulses and the signals from the stepper

motors were also monitored and checked using a Tektronix TDS2002B oscilloscope for

all the times. For each set of measurements unbiased images were taken of a ruler next

to the cylinder to give the spatial calibration of the PIV images (magnification factor,

M). Figure 3.15 shows the PIV set-up during capturing an image while the laser fires.

It should be noted that particles with different diameter sizes were used in this

thesis. Regardless of the diameter size of the particles, according to the manufacturer’s

user manual (Vestosint 2010), the specific gravity (1.016) is identical among all of them.

Based on the Stokes’ law (Happel & Brenner 1983) a terminal velocity for a particle

travelling in the z-axis direction at low Re number can be calculated by (Rhodes 2008):

wp =
2(ρp − ρf )gr2p

9µ
. (3.19)

For the 20µm particle case, wp is found to be 3.67×10−6 m s−1, hence the settling time

of the particles for travelling from the water surface to the bottom of the channel test

section (800mm) can take up to ≈ 90 hours. This value in comparison with the range

of oscillation period experienced in this thesis (1.6 ≤ T ≤ 20 sec) is negligible.

To ensure that the particles were following the streamlines a Stokes number defined

as:

Stk =
trelax
T

, (3.20)

is required to be Stk << 1, where trelax is the relaxation time. The Stokes number

corresponds to the behaviour of particles suspended in a fluid. For Stk >> 1, particles

will continue in a straight line as the fluid turns around the obstacle therefore impacting

on the obstacle. For Stk << 1, particles will follow the fluid streamlines closely. A

relaxation time for particles is defined as the time required for a particle to adjust or

relax its velocity to a new condition of forces. It is an indication of the particle’s ability

to quickly adjust to a new environment or condition. It depends on the mass and

mechanical mobility of the particle, and is not affected by the external forces acting on
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the particle. The particle relaxation time can be obtained from the following equation

(Hinds 1999):

trelax =
(ρp − ρf )d2p

18µ
. (3.21)

In the present study depending on the size of the particles used, relaxation time can

be calculated to be in the range 1.14 × 10−7 ≤ trelax ≤ 2.94 × 10−6 sec, where the

limits correspond to 11µm and 56µm particles, respectively. Consequently, the ratio

between the relaxation time and oscillation period is calculated to be in the range

1.875 × 10−8 ≤ Stk ≤ 2.34 × 10−7. As it can be seen for all the cases the Stk << 1,

meaning that the particles are following the streamlines in all the experiments and the

flow and vorticity paths are not affected by particles.
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Figure 3.14: Schematic of PIV imaging system.
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Figure 3.15: A photograph showing the experimental PIV set-up and the laser sheet.
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Chapter 4

Translationally oscillating
cylinder in quiescent fluid

4.1 Introduction

The oscillatory motion of a cylinder relative to the surrounding fluid gives rise to a

large number of different flow regimes that affect the forces that the body experiences

during its motion. Of primary interest in this thesis is the combination of forced simple

harmonic (sinusoidal) translational and rotational oscillation of a circular cylinder in

either a quiescent fluid or free-stream flow. Numerical research into the effects of

combining these motions has demonstrated that a number of interesting features arise,

however there have been few detailed, particularly experimental, research studies done

on these findings to date (see for example Elston 1997; Blackburn et al. 1998, 1999;

Al-Mdallal 2004; Kocabiyik & Al-Mdallal 2005). To gain an insight into the effects that

occur with the combined motion it is informative to review and investigate the body

of knowledge surrounding the individual motion components. This chapter deals only

with the pure translational oscillatory motion in quiescent fluid (see §2.5).

There have been many excellent visualisations of the flow in an otherwise quies-

cent fluid resulting from low amplitude rectilinear motion at a range of frequencies by

Tatsuno & Bearman (1990) and others, such as Lin & Rockwell (1996, 1997); Dütsch

et al. (1998); Blackburn et al. (1998); Uzunoğlu et al. (2001); Lam & Dai (2002); Elston

et al. (2004); Elston (2005); Elston et al. (2006). However, there has been a lack of

quantitative experimental investigations at low values of translational amplitudes and

frequencies. In this work PIV was used as it has the potential to examine vorticity

fields, their evolution and transitions between different resulting wake structures.

Most relevant to the present study is the flow visualisation of Tatsuno & Bearman
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Case Regime KCt βt Re

1 A∗ π 53 166
2 A 8.16 8.18 67
3 B π 63.1 198
4 C 4.40 44.44 195
5 D 8.17 11.00 90
6 E 2π 26.23 165
7 F 12.57 38.68 486
8 G 8.25 38.68 319

Table 4.1: Flow Visualisation test cases conducted in this chapter. One value of KCt and
βt was chosen as a representative of each regime.

(1990). Using qualitative techniques they comprehensively investigated translational

harmonic oscillation in a quiescent fluid at KCt numbers between 1.6 and 15 and

βt numbers between 5 and 160. They produced a control space map, classifying the

parameter space into eight flow regimes that were identified within the above mentioned

ranges of KCt and βt numbers (see figure 2.18). Each regime was identified based on

the two- or three-dimensionality of flow structure and vortex shedding characteristics.

Many of these regimes have a spatially periodic pattern, providing the basis of phase-

averaging.

The major objective of this part of the study was to quantitatively investigate the

structure and dynamics of the flow induced by a circular cylinder performing pure

rectilinear sinusoidal oscillations in a fluid initially at rest, quiescent, for KCt < 15 and

βt < 160, the same parameter range as of Tatsuno & Bearman (1990). All of the two-

and three-dimensional regimes of the Tatsuno & Bearman (1990) map except regime C

(the quasi-periodic regime), were investigated (see §2.5). The nomenclature of Tatsuno

& Bearman (1990) for labelling the flow regimes, A∗–G, was used for clarity through

out this thesis (see figure 2.18).

In the next section, the experimental arrangements and apparatus is explained first.

The results of flow visualisations which provided qualitative information on the nature

of these flow and the resulting wake structures are then presented. In the following

sections, the two- and three-dimensional regimes are analysed. Finally, a quantitative

comparison between the different regimes is presented.
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4.2 Experimental Arrangement and Parameters

As described in chapter 3, the technique of high-image-density particle image velocime-

try was employed to determine the flow physics. This technique allows quantitative

space-time imaging and thereby whole-field representations of the flow structure. For

these particular experiments for the flow visualisation and PIV the flow was seeded with

spherical polyamide particles with a mean diameter of 56µm and 11µm, respectively,

with specific gravity of 1.016. In the PIV system, the particles were illuminated using

two miniature Nd:YAG laser sources (Continuum Minilite II Q-Switched). The planes

of interest for these experiments were the yz- and xy-planes, being the spanwise and

streamwise directions, as was shown in figure 3.4. The thickness of the laser sheet was

measured to be less than 2mm. Pairs of images were captured on a high resolution CCD

camera (Cooke pco4000) with a maximum resolution of 4008×2672 pixels. The camera

was equipped with two Nikkor (Nikon Corporation, Japan) lenses of focal lengths of

105mm and 200mm. An interrogation window of 32 × 32 (with an initial window size

of 64 × 64) pixels was found to give satisfactory results with 50% overlap. More than

98% of the vectors were valid for all the experiments. The interrogation window size

used for this part of experiments corresponds to an average interrogation window of

0.156D×0.156D and 0.0615D×0.0615D for 105mm and 200mm lenses, respectively. It

was possible to obtain a measurement resolution of 124× 82 (total of 10168) vectors in

each field of view. The overall field of view was 2000× 1336 pixels (9.76D× 6.52D and

3.84D × 2.56D for the 105mm and 200mm lenses, respectively). All the images were

captured at pre-selected phase angles in the oscillation cycle (phase-locked). Phase-

averaged vorticity and velocity fields are presented using 30 or more instantaneous

measurements unless otherwise mentioned. The vorticity fields were calculated with

the technique developed by Fouras & Soria (1998). The velocity and spatial coordi-

nates are non-dimensionalised by the maximum velocity of the translational cylinder

motion, Umaxt , and the cylinder diameter, D, respectively.

In the following sections the results of seven of the eight regimes of Tatsuno &

Bearman (1990) are presented. The points in the (KCt,βt)-map were selected on the

basis of their being representative of the regimes they lie in. Tables 4.1 and 4.2 show

the selected points for the flow visualisation and PIV experiments, respectively.
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4.3 Flow Visualisation

The flow visualisation undertaken as part of the current study is in agreement with the

work of Tatsuno & Bearman (1990). It was undertaken to ensure the experimental ap-

paratus gave results comparable with their flow visualisations. The Tatsuno & Bearman

(1990) work was taken as a benchmark for the flow visualisations given its quality and

the extensive explorations of the relevant parameter space. This was further confirmed

by the excellent agreement with the extensive numerical study of Elston et al. (2006).

Flow visualisation was also undertaken as a means of examining the dynamics of the

flow and focussing the PIV experiments. Based on the method explained in §3.3.3.1, a

series of images were taken for all of the regimes listed in table 4.1.

4.3.1 Validation

The results of regime D were used for detailed validation but flow visualisation results

of the other regimes also matched well with the results of Tatsuno & Bearman (1990).

They will be presented and explained in the following sections. Figure 4.1 shows a com-

parison of the flow around the translationally oscillating cylinder at the same position

of the cylinder between the present results and Tatsuno & Bearman (1990) in regime D.

The similar vortices and vortex paths, shown by red arrows in figure 4.1, are denoted

as vortices A & B, and trail C & D, respectively in the figure. The inset in figure 4.1b

shows the direction of movement and the phase at which the images were taken. It is

clearly seen from the figure that the location of the flow structures and flow pattern

around the cylinder match well with the results of Tatsuno & Bearman (1990). The

present flow visualisation technique enabled capturing of the vortex structures of A and

B more clearly, even though the exposure time for capturing the images was shorter

than that of Tatsuno & Bearman (1990) (figure 4.1b).

4.3.2 Results

This section presents the results obtained from flow visualisation experiments conducted

during the course of research. The results are presented separately for each regime of

Tatsuno & Bearman (1990) listed in table 4.1.
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Case Regime KCt βt Re At (mm) ft (Hz) Umax (mm s−1)

1 A∗ 3 30 90 9.55 0.075 4.50
2 A 5 20 100 16 0.05 5.00
3 B 3 80 240 9.55 0.2 12.00
4 D 6.28 18 113 20 0.045 5.65
5 E 5 80 400 15.92 0.2 20.00
6 F 8.17 30 245 26 0.075 12.25
7 G 9 80 720 28.64 0.2 36.00

Table 4.2: Experimental (PIV) test cases conducted in this chapter. One value of KCt and
βt was chosen as a representative of each regime.

4.3.2.1 Case I: Regime A∗, Two-dimensional patterns without vortex shed-
ding and flow separation

Figure 4.2 shows a sequence of instantaneous flow visualisation images and the vortex

patterns around a translationally oscillating circular cylinder in regime A∗ (KCt=π

and βt=53) over a half period of oscillation. The figure shows that the structure of the

vortices are symmetrical with respect to the axis of oscillation, shown as arrow in image

(a) of figure 4.2. They also show that no vortex shedding occurs for this regime, as

there is no evidence of trailing vortices behind the cylinder in the direction of oscillation

away from the cylinder. The same trend was observed at even longer exposure times,

not shown here. The vortex structures are always attached to the cylinder and, as

Tatsuno & Bearman (1990) suggested, do not break away from the boundary layer

on the body surface. The two counter-rotating vortices, denoted as vortices A and

B in figure 4.2a, which are formed each half cycle do not survive into the next half

cycle. As the cylinder is oscillated at low values of KCt and βt and the cylinder is

not moving much relative to the size of diameter, once they will be cancelled because

of cross-annihilation with opposite-sign vorticity generated at the wall (boundary layer

around the body surface), as seen in figures 4.2b and 4.2c. By looking at figure 4.2 it

can be seen that as the cylinder moves from left to right, figure 4.2a to figure 4.2h, by

approaching the middle of motion two new vortices are generated one at the top and

one at the bottom of the cylinder, shown as vortices C and D in figures 4.2c-h. When

the cylinder approaches the end of its first half cycle motion, the generated vortices

remain attached to the cylinder and are not shed from the top and bottom surfaces

of the cylinder. Figures 4.2g and 4.2h clearly show how close the vortices are to the

surface of the cylinder. These vortices are the ones which will disappear due to cross-
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Figure 4.1: Comparison of the flow visualisation of the present study with Tatsuno & Bear-
man (1990), Regime D: (a) Present study: KC=8.17, β=11.11, exposure time=1.6 sec; (b)
Tatsuno & Bearman (1990): KCt=8.16, βt=11.0, exposure time=2 sec.

annihilation with the opposite-sign vortices generated at the beginning of the next half

cycle, same as vortices A and B shown in figure 4.2a which are from the previous half

cycle.

The flow visualisation images also revealed that the flow streams move away from

the cylinder along the oscillation axis, figures 4.2c and 4.2d, though only up to 1D

behind the cylinder. There are no far-field concentrations of vorticity seen in figure 4.2.

This finding is in agreement with the lack of vortex shedding observed by Tatsuno &

Bearman (1990) and the numerical results of Elston (2005). Elston (2005) showed that

the vorticity contours from his numerical simulations for this regime are all connected

back to the near cylinder region and that there are no far-field concentrations of vor-

ticity. On the other hand Tatsuno & Bearman (1990), §2.5, observed a jet of particles

moving away from the cylinder along the axis of oscillation. This far-field traces of flow
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Figure 4.2: Plane views of flows at various stages of motion in regime A∗ (case 1 in table 4.1)
showing flow patterns and structures for over half a cycle: Flow visualisation method, At = 10
mm, ft = 0.132 Hz (equivalent to KCt = π, βt = 53, respectively), exposure time=0.6 sec.
(a) is showing the cylinder at its left most position and starting its motion from left to right
and (h) is showing the cylinder at the most right end of its motion, the end of first half cycle.
The arrow in image (a) shows the direction of oscillation.
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were not observed in the present flow visualisation and Elston (2005)’s results. The

results of Elston (2005) showed that all the particles remained in the near vicinity of

the cylinder, which is also consistent with the present flow visualisations. Figure 4.3,

directly reproduced from Elston (2005), shows the numerical particle-track plot of flow

for this regime. The image was created by placing ten sources of massless particles

equally around the cylinder circumference at a very small distance from the cylinder

surface and evolving the flow using two-dimensional DNS. The image clearly shows

how all the particles remain in the near vicinity of the cylinder which contrasts with

the results of Tatsuno & Bearman (1990) and is in favour with the present study for

regime A∗. The reason for the discrepancy observed is not clearly known. It may be

because of using dye in Tatsuno & Bearman (1990)’s experiments or the artifact of

their experiments. Dye flow visualisations are normally more sensitive than particle

flow visualisations. Dyes diffuse further away from the body than particles. It is also

true that the particles used are not massless so cannot travel away from the body as

dyes can. However, the numerical massless particle visualisations of Elston (2005), see

figure 4.3, showed that the particles are not convected away from the body too. The

fact that for low KC and Re (β) numbers, the vorticity decaying effect is dominant

in the flow field, whereas at higher Re numbers vorticity convection becomes stronger

(Zhang & Zhang 1997) may in addition explain why the streams of flow moving away

from the cylinder were not observed experimentally. The spanwise measurements also

confirmed the two-dimensionality of the flow in this regime (discussed in §4.4.3). The

flow observed by Elston (2005) is symmetrical and two-dimensional which is in agree-

ment with the results of Tatsuno & Bearman (1990). Elston (2005) saw no evidence of

three-dimensional spanwise structures in regime A∗. More detailed quantitative mea-

surements of the flow in regime A∗ are presented in §4.4.3.

4.3.2.2 Case II: Regime A, Symmetrical patterns with vortex shedding;
two-dimensional

Figure 4.4 shows a sequence of instantaneous flow visualisation images and vortex

patterns around a translationally oscillating circular cylinder in regime A over a half

period of motion. The other half period is the mirror image of what is shown in the

figure. It can be seen that the structure of the vortices, like regime A∗ are symmetrical

with respect to the axis of oscillation, shown as arrow in image (a) of figure 4.4.

It is clear that two vortices, with rotations of opposite signs, are formed symmetri-
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Figure 4.3: Numerically generated particle shedding image. Over 15 periods of motion
conducted at KCt=2, βt=80, with two-dimensional DNS, ten equally spaced points on the
cylinder surface released massless particles into the surrounding fluid; the image appeared in
Elston (2005) and reproduced by permission.

cally behind the cylinder in each half cycle (figure 4.4a). At the end of the half cycle

the two vortices stay behind the cylinder and as the cylinder reverses it moves through

the previously generated vortices (figure 4.4h). It should be noted that these vortices

do not survive into the next half cycle and as Tatsuno & Bearman (1990) suggested,

based on the delineations of Bearman et al. (1981), the vortices may be cancelled by

cross-annihilation of the opposite-sign vortices in the cylinder boundary layer. Tatsuno

& Bearman (1990) characterised regime A as to having the same vortex generation

sequence as regime A∗ except the existence of vortex shedding and flow separation in

regime A. Tatsuno & Bearman (1990) defined separation as “breaking away of vor-

tices which moves the vortices away from the body surface”. Based on this no evidence

of vortex shedding was observed in the present flow visualisation results. Figure 4.4

clearly shows that the flow remains attached to the cylinder, it does not move away

from the cylinder and so no vortex shedding is observed. This finding is in agreement

with the numerical simulations of Elston (2005) and in contrast to the flow visualisa-

tions of Tatsuno & Bearman (1990). Tatsuno & Bearman (1990) identified this case,

KCt = 8.16 & βt = 8.18, as belonging to regime A with its definitive characteristic,

in relation to the flows of regime A∗, being the presence of vortex shedding. Elston

(2005)’s results suggested that this location in (KCt,βt)-map should belong to regime

A∗, which appears consistent with the present findings.
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Figure 4.4: Plane views of flows at various stages of motion in regime A (case 2 in table 4.1)
showing flow patterns and structures for over half a cycle: Flow visualisation method, At = 26
mm, ft = 0.02 Hz (equivalent to KCt = 8.17, βt = 8.11, respectively), exposure time=1.1
sec. (a) is showing the cylinder at its left most position and starting its motion from left to
right and (h) is showing the cylinder at the most right end of its motion, the end of the first
half of the cycle. The arrow in image (a) shows the direction of oscillation.
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4.3.2.3 Case III: Regime B, Onset of three-dimensional instability; longi-
tudinal vortices

The third case examined is at KCt = π, β = 63.1. This point lies in regime B of the

Tatsuno & Bearman (1990) (KCt,βt)-map. One of the defining characteristics of regime

B is the presence of structures which regularly vary along the span of the cylinder. In

this respect this case has broken a symmetry property and is no longer considered two-

dimensional. In regime B the onset of a regular spanwise variation in the structures

visualised was first experimentally observed by Honji (1981) and later by Tatsuno &

Bearman (1990).

It should be noted that the present flow visualisation results of regime B appeared

different from the results of Tatsuno & Bearman (1990) for this regime. However, the

present PIV results, see §4.4.5, clearly showed the three-dimensionality effect. This

may be because of the artifact of our experiments for regime B. A comparison between

the three regimes of A∗, A and B is also provided in §4.4.5.

4.3.2.4 Case IV: Regime C, Rearrangement of large vortices; three-dimensional

Regime C is a three-dimensional and quasi-periodic regime of very narrow parameter

space and as mentioned in §2.5 was not of interest in this thesis. In the interests of

completeness the flow visualisation of this regime is shown in figure 4.5. Large vortices

are formed in succession for equal numbers of oscillation cycles, however it is unclear

how many oscillation cycles are required for the formation of a large vortex. The

arrangement of these vortices is similar to that in a Kármán vortex street behind a

cylinder in uniform flow. However the sense of rotation of the vortices is opposite to

that found in a unidirectional flow wake and the vortices convect themselves away from

the oscillating cylinder, i.e. jet-like flow.

4.3.2.5 Case V: Regime D, Flow convected obliquely to one side of the axis
of oscillation; three-dimensional

Apart from the two-dimensionality and symmetry of flow with respect to the axis of

oscillation in regimes A∗, A and to some extend B, the flow characteristics will change

as KCt increases at relatively lower βt. According to the argument of Tatsuno &

Bearman (1990), and based on the present flow visualisations, the flow characteristics

in regime D change dramatically compared to those of regimes A∗–C. In this regime

the indsuced flow is no longer convected along the axis of oscillation, as it did for
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(f)(e)

(d)(c)

(b)(a)←→

Figure 4.5: Plane views of flows at various stages of motion in regime C (case 4 in table 4.1)
showing flow patterns and structures for over half a cycle: Flow visualisation method, At = 14
mm, ft = 0.11 Hz (equivalent to KCt = 4.40, βt = 44.44, respectively), exposure time=1.0
sec. (a) is showing the cylinder at its left most position and starting its motion from left to
right and (e) is showing the cylinder at the most right end of its motion, the end of first half
cycle. The arrow in image (a) shows the direction of oscillation.
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(b)(a)←→

Figure 4.6: Plane views of flows at various stages of motion in regime D (case 5 in table 4.1)
showing flow patterns and structures for over half a cycle: Flow visualisation method, At = 26
mm, ft = 0.0275 Hz (equivalent to KCt = 8.17, βt = 11, respectively), exposure time=1.6
sec. (a) is showing the cylinder at its left most position and starting its motion from left to
right and (h) is showing the cylinder at the most right end of its motion, the end of first half
cycle. The arrow in image (a) shows the direction of oscillation.
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regimes A∗-C. As KCt increases some asymmetry appears in the vortex development

and induced flows are now convected at an angle to the axis of oscillation. At higher

KCt, than those for which two-dimensional flow regimes are found, an asymmetry

develops in the direction of flow convection around the cylinder. Regime D is the

onset of this symmetry breaking in a sense that the flow will not convect along the

direction of cylinder oscillation anymore. This feature was attributed to an asymmetry

in the development of a vortex pair in each half-cycle. It should be noted that while

the resultant flow breaks symmetry about the axis of oscillation, it was observed that

the time-periodic symmetry about the vertical axis, x-axis, was retained, i.e. the flow

was still synchronous with the cylinder oscillation (Elston 2005, and §4.4.6). The flow

along the span of the cylinder is now three-dimensional and, as noted by Tatsuno &

Bearman (1990), regular “tubes” form along the span of the cylinder (see figure 2.20).

In these tubes the fluid was observed by Tatsuno & Bearman (1990) to be travelling

faster than the surrounding fluid. The spanwise spacing between the tubes was found

to be independent of KCt and only weakly to decrease with increasing βt.

Figure 4.6 shows a sequence of instantaneous flow visualisation images and the

vortex patterns around a translationally oscillating circular cylinder in regime D over

a half period of motion. Generally speaking, in regime D, asymmetrical vortices, with

opposite sense of rotation, are formed on the top and bottom sides of the cylinder when

the cylinder translates from left to right. In this case, the negative (clockwise) vortex is

developed on the lower side of the cylinder, vortex B in figure 4.6e, whereas the positive

(counter-clockwise) vortex on the upper side, vortex A in figure 4.6e. The vortices

formed during previous cycles are convected towards the streamwise direction as paths

of vortices denoted as C and D in figure 4.6e. During the visualisation experiments it

was observed that vortex A, on the upper side of the cylinder, appears to grow stronger

than vortex B. As described by Tatsuno & Bearman (1990), Iliadis & Anagnostopoulos

(1998) and Elston (2005), this clockwise rotating vortex in the upper part of the cylinder

appears in elongated form compared with that formed at the lower side and is tilted

downwards. It is seen from figures 4.6a and 4.6b that the positive vortex formed during

the previous half-cycle below the cylinder starts to split into two parts, a process leading

to the formation of two equal sign vortices in subsequent images. The negative vortex

formed during the previous half-cycle above the cylinder is swept downstream and pairs

up with the opposite-signed vortex forming above the cylinder.
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In addition, two relatively parallel rows of opposite sign vortices exist on both sides

of the cylinder, inclined to the horizontal. The strength of these vortices decreases with

increasing distance from the cylinder by almost one order of magnitude within one

diameter from the cylinder, as is shown in §4.4.6. When the cylinder reaches its zero

velocity position at the rightmost part of the cycle, the negative sign vortex has moved

further downstream, while the positive vortex forming above the cylinder appears in

elongated form with respect to the vortex forming below the cylinder, as shown in

figure 4.6h. It was also observed by Tatsuno & Bearman (1990) that as the value of βt

is increased the flow becomes more curved.

When the cylinder reaches at the rightmost part of its cycle, figure 4.6h, the elon-

gated positive vortex core, from previous snapshots, has already commenced convecting

downstream. The motion of the cylinder prior to this snapshot has drawn this positive

vortex core downstream and in the negative y-direction, such that it is now directly

behind the cylinder. The negative vortex core, shed from lower surface of the cylinder,

is stretched around the small positive vortex core created adjacent to the body in the

lower half, and the body. A jet of fluid can be seen to be formed between the two vortex

cores. The jet travels both in the upstream and negative y-direction.

As the cylinder reverses, the vortices shed during the previous half-cycle are swept

back towards the cylinder. Also, though not shown in the sequence of frames in fig-

ure 4.6, the stronger vortex is convected back along the cylinder surface and shed

obliquely across the axis of oscillation. Hence, the direction of the flow induced by

the cylinder oscillation deviates from the direction of oscillation. In consequence, a

strong vortex is developed on only one side of the axis of oscillation in each half cycle

and the fluid mass accompanying the vortex is convected obliquely to the other side

of the axis of oscillation, as also discussed by Tatsuno & Bearman (1990). By start-

ing the cylinder’s motion from right to left, the negative vortex structure mentioned

earlier (vortex B) wraps around the small positive vortex core and the cylinder, mov-

ing towards the upper side of the cylinder. This negative vortex starts strengthening

significantly, due to the solid surface interaction. It is also clear from the sequence of

images in figure 4.6 that one vortex is shed during each half-cycle. Examining the visu-

alisations over a large number of oscillation cycles, and also from further measurements

by PIV (discussed in §4.4.6), revealed that the vortices are phase-locked to the motion

of the cylinder. This periodicity enabled phase-averaging when taking PIV data. This
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phase-lock phenomenon was also mentioned by Iliadis & Anagnostopoulos (1998).

It is also noted that, depending on small disturbances in the fluid prior to the

beginning of the motion, the flow was convected to either side of the cylinder. Once

the motion started and the flow deflected it remained on that side and never changed

its direction to the other side of the cylinder.

4.3.2.6 Case VI: Regime E, Irregular switching of flow convection direction;
three-dimensional

Figure 4.7 shows a sequence of instantaneous and temporarily stable flow visualisation

images around a translationally oscillating circular cylinder in regime E over a half

period of motion. The flow pattern of this regime resembles that in regime D, §4.3.2.5,

with the flow being convected to one side of the axis of oscillation and forming a V-

shape vortex streets pattern around the cylinder. In the flow visualisations of Tatsuno

& Bearman (1990) it was observed that the direction of convection of the flow intermit-

tently changed between the +x and −x side of the cylinder. Tatsuno & Bearman (1990)

noted that this switching of the flow is likely to be triggered by small disturbances. As

discussed in §2.5, Dütsch et al. (1998) and Iliadis & Anagnostopoulos (1998) were not

able to confirm the change in convection of the flow from one side to the other side of

the cylinder. This may be due to two-dimensional nature of their numerical studies.

The present experiments confirmed that the flow does irregularly switches from one side

to the other side of the cylinder. The results of change of direction of the convected

flow is discussed in §4.4.7 in more detail. Figure 4.7 is for one instance of the flow and

hence does not show the change of direction.

Moreover, results of Tatsuno & Bearman (1990) revealed that this flow regime has

significant three-dimensional structures along the span, see figures 2.18, 2.19 and 2.20,

although no periodic wavelength could be established. The structures that were present

were found to be obscured by the switching of the flow convection direction (Tatsuno &

Bearman 1990). Further discussion about this regime and the observation of switching

of the flow is presented in §4.4.7.

4.3.2.7 Case VII: Regime F Flow convected diagonally; three-dimensional

Regime F is defined as a double-pair diagonal regime, in which vorticity is shed diago-

nally with respect to the axis of oscillation (Tatsuno & Bearman 1990). The mechanism

of vortex shedding has been described in detail by several authors (see for example Tat-
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(h)(g)

(f)(e)

(d)(c)

(b)(a)←→

Figure 4.7: Plane views of flows at various stages of motion in regime E (case 6 in table 4.1)
showing flow patterns and structures for over half a cycle: Flow visualisation method, At = 20
mm, ft = 0.0655 Hz (equivalent to KCt = 2π, βt = 26.23, respectively), exposure time=1.0
sec. (a) is showing the cylinder at its left most position and starting its motion from left to
right and (h) is showing the cylinder at the most right end of its motion, the end of first half
cycle. The arrow in image (a) shows the direction of oscillation.
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(h)(g)

(f)(e)

(d)(c)

(b)(a)←→

Figure 4.8: Plane views of flows at various stages of motion in regime F (case 7 in table 4.1)
showing flow patterns and structures for over half a cycle: Flow visualisation method, At = 40
mm, ft = 0.454 Hz (equivalent to KCt = 12.57, βt = 18.16, respectively), exposure time=1.0
sec. (a) shows the cylinder at its left most position and starting its motion from left to right
and (h) is showing the cylinder at the most right end of its motion, the end of first half cycle.
The arrow in image (a) shows the direction of oscillation.
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suno & Bearman 1990; Dütsch et al. 1998; Iliadis & Anagnostopoulos 1998; Elston et al.

2006), as discussed in §2.5. Figure 4.8 shows a sequence of instantaneous and temporar-

ily stable flow patterns of flow visualisation images around a translationally oscillating

circular cylinder in regime F over a half period of motion.

When the cylinder starts its motion from rest, symmetric vortex shedding occurred

first in roughly the same way as described in §4.3.2.2. However, after a few cycles of

oscillation, the symmetric flow pattern ceased to exist. The symmetric vortex formation

became unstable, resulting in the occurrence of a stronger vortex on one side of the

cylinder and a weaker one on the other. Both vortices that were formed did not cross

this axis, but moved away from it.

Two related features of the shedding wake distinguish the flow past an oscillating

cylinder in regime F. First, the wake sheds at an angle to the flow. Second, the fluid

structures are shed in vortex pairs. These structures induce a jet of fluid to travel in the

positive y-direction when the cylinder is moving from left to right and in the reverse of

this when moving from right to left. This induces the angle at which the wake is shed.

The motion of the cylinder is responsible for inducing the vortex pairing, as is clearly

reflected in figure 4.8 and in more detail in §4.4.8

In the present investigation, similar to other investigations mentioned above, it was

observed that two vortex pairs are shed during each oscillation cycle. It was also seen

that a single vortex, in this particular configuration, with positive sign is also shed in the

same direction as that of the pairs in each half cycle, but with much less concentration.

Examination of Elston (2005)’s numerical results reveals that the single vortex shed

from the cylinder can also be identified and it is clearly present (figure 4.9). This

has not been discussed by other researchers including Elston (2005) so far. However,

it can clearly be observed in the flow visualisations shown here. Figure 4.9 shows

the instantaneous vorticity contours for two-dimensional flow in regime F shown at

y = ymax at two different locations in the regime F of the Tatsuno & Bearman (1990)

(KCt,βt)-map from the two-dimensional numerical simulation of Elston (2005). In the

figure arrows show the above mentioned single vortex. Tatsuno & Bearman (1990)

mentioned that the convection of vortices away from the body at large angles to the

oscillation direction seems to be similar to the formation of two vortex pairs per cycle

at larger βt, which has been described as the 2P pattern by Williamson (1985). It is

proposed from the present study that this regime could be characterised as the 2P +2S
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Figure 4.9: Instantaneous vorticity contours for two-dimensional flow in regime F shown
at y = ymax. The flows were computed at: (a) KCt = 8, βt = 25.0; and (b) KCt = 10,
βt = 20.0. The arrows in the figure shows the single vortex shed per cycle. The image
appeared in Elston (2005) and reproduced by permission.

pattern using the same shedding nomenclature, introduced in §2.3.1.2, as described by

Williamson (1985). Further information on this regime is presented in §4.4.8.

4.3.2.8 Case VIII: Regime G, Transverse vortex street; three-dimensional

In this regime the majority of the vortex activity leading to vortex shedding occurs

either above or below the cylinder. Figure 4.10 shows a sequence of instantaneous and

temporarily stable flow patterns of flow visualisation images around a translationally

oscillating circular cylinder in regime G over a half period of motion. Two vortices are

formed per half cycle; when the cylinder moves from right to left one vortex is attached

to the cylinder and the other seems to have just been shed from the cylinder. This

vortex, with a counter-clockwise rotation, is shed downwards halfway through a cycle.

In the next half cycle from left to right, a clockwise vortex is shed downwards. As such

a process is repeated, a circulatory streaming is generated.

As Tatsuno & Bearman (1990) suggested, this regime appears to be similar to the

transverse vortex street observed by Bearman et al. (1981) and Williamson (1985)

at higher values of βt. By increasing KCt or βt, turbulent motion appears and the

direction of flow may change intermittently. They also suggested that the flow may

have a three-dimensional structure, but this structure is not regular along the cylinder

axis. This was not seen in the present flow visualisation results shown in figure 4.10.
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Figure 4.10: Plane views of flows at various stages of motion in regime G (case 8 in table 4.1)
showing flow patterns and structures for over half a cycle: Flow visualisation method, At =
26.25 mm, ft = 0.967 Hz (equivalent to KCt = 8.25, βt = 38.68, respectively), exposure
time=0.5 sec. (a) is showing the cylinder at its left most position and starting its motion
from left to right and (h) is showing the cylinder at the most right end of its motion, the end
of first half cycle. The arrow in image (a) shows the direction of oscillation.
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4.4 PIV results

This section presents the results obtained from PIV experiments conducted during the

course of research. The results are presented separately for each regime of Tatsuno &

Bearman (1990) listed in table 4.2. First validation of the PIV set-up and apparatus is

presented. The next section explains briefly the mechanisms of vortex generation and

decay based on the arguments of Morton (1984) and Reynolds & Carr (1985). This

arguments are used from this point onwards. The following sections are followed by

detailed results of each of the regimes mentioned above.

4.4.1 Validation

This section compares the PIV results of the present thesis with the previous experi-

mental and numerical results of other researchers in the literature (for example Dütsch

et al. 1998; Tatsuno & Bearman 1990) for xy- and yz-plane measurements. The valida-

tion case studied is for a purely translational oscillation of the cylinder in a quiescent

fluid. Other researchers such as Uzunoğlu et al. (2001), Guilmineau & Queutey (2002)

and Nehari et al. (2004) also used the numerical and experimental results of Dütsch

et al. (1998) to validate their numerical codes. Dütsch et al. (1998) was found to be

the main article available in the literature containing quantitative experimental results

at low KCt and βt numbers.

Initially, the experimental results were validated qualitatively against the available

results in the literature. This was done to ensure, as was done for the flow visualisations

in §4.3, that the results are similar to those expected and also to confirm the flow

patterns. Figure 4.11 shows the qualitative comparison between the present study

and that of Iliadis & Anagnostopoulos (1998) for dimensionless vorticity contours at

two different phase angles, at each end of the oscillation cycle. Figure 4.11a is a phase-

averaged vorticity contour at the same two phases of the cycle from the results of Iliadis

& Anagnostopoulos (1998). The location of the vortex concentration cores and the flow

pattern around the cylinder is seen to be in an excellent agreement. The direction of

movement of the cylinder is from left to right and right to left for positions t = 0 and

t = 4T/8, respectively. The positive values of the vorticity contours are shown as full

lines and the negative values as broken lines in the figure.

To further validate our PIV set-up and increase confidence in our experimental re-

sults, the data were processed to yield local phase-averaged information on two velocity
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components, the streamwise (U) and transverse (V ) velocities. These were compared

with measurements taken by Dütsch et al. (1998). Figure 4.12 demonstrates the excel-

lent agreement between the experimental results of Dütsch et al. (1998), the present

experimental measurements and our numerical study conducted for this purpose, which

further confirms the accuracy of our experimental apparatus and PIV set-up. The nu-

merical computational method is described in §5.4. The comparisons were performed

at different cross-sections in the flow measured from the centre of the cylinder, i.e.

y/D = −0.6, 0.0, 0.6 and 1.2.

The flow in the spanwise direction, z-direction, of the cylinder was also validated

with the measurements of Tatsuno & Bearman (1990) to make sure the experimental

apparatus is capable of capturing the three-dimensional structures along the span of

the cylinder irrespective of whether the regime was three-dimensional or not. Regime

B was chosen, as the onset of three-dimensionality and breaking the symmetry, to

validate the results. Figure 4.13, reproduced from Tatsuno & Bearman (1990), shows

the distance between two streaked flows along one side of the cylinder in regime B for

different KCt numbers. The vertical axis shows the wavelength along the z-axis. The

point selected to conduct the experiments was KCt = 2.51 and βt = 142 (Ret = 356).

Tatsuno & Bearman (1990) using flow visualisation techniques measured the wavelength

to be λ = 1.0D, whereas it was found from our measurements the wavelength to

be λ = 1.04D. This was found to be within 4% of the previously reported value.

Tatsuno & Bearman (1990)’s results for various βt and KCt is depicted in figure 4.13.

The measurements have been conducted for more than 300 oscillation cycles. The

wavelength extraction method from velocity and vorticity fields along the span of the

cylinder is described in detail in §5.5.

In the following sections, results from seven of the eight investigated regimes of

Tatsuno & Bearman (1990) are presented. The data points selected are representative

of each of the Tatsuno & Bearman (1990)’s regimes except regime C (refer to table 4.2).

4.4.2 Generation and decay of vorticity

During the past few years, researchers like Morton (1984) and Reynolds & Carr (1985)

tried to either physically or analytically investigate the generation and decay of vorticity.

As Morton (1984) has expressed vorticity, although not the primary variable of fluid

dynamics, is an important derived variable playing both mathematical and physical

107



(a)

(b)

Figure 4.11: Comparison of the present PIV results with numerical results of Iliadis &
Anagnostopoulos (1998) in regime A∗. The full lines represent positive (counter-clockwise)
and the broken lines negative (clockwise) values of vorticity. (a) Present study, KCt =
3 & βt = 30; (b) Iliadis & Anagnostopoulos (1998)’s study, KCt = 2 & βt = 100.

roles in the solution and understanding of fluid mechanics problems. Morton (1984)

showed the rate of generation of vorticity to be the relative tangential acceleration of

fluid and boundary without taking viscosity into account and the generating mechanism

therefore involves the tangential pressure gradient within the fluid and the external

acceleration of the boundary only. The mechanism is inviscid in nature and independent

of the no-slip condition at the boundary, although viscous diffusion acts immediately

after generation to spread vorticity outward from boundaries. He also showed that

the vorticity diffuses neither out of boundaries nor into them, and the only means

of decay is by cross-diffusive annihilation within the fluid. Morton (1984) classified

the vortex generation mechanism from oscillating plates to be slow. He also identified

in detail a number of properties that must be taken into account in developing any

comprehensive treatment of the generation and decay of vorticity. Even though the

detailed discussion can be seen in Morton (1984), it is worthwhile summarising and

highlighting the important and more relevant ones to the present study as follows:

• generation results from tangential acceleration of a boundary, from tangential ini-

tiation of boundary motion and from tangential pressure gradients acting along a

boundary;
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Figure 4.12: Comparison of the velocity components at three cross-sections of the transla-
tionally oscillating cylinder in a quiescent fluid at constant y/D values. The y/D values from
the top to bottom rows are −0.6, 0.0, 0.6 and 1.2, respectively. The measurements are taken
at KCt = 5 and βt = 20, similar to previous numerical and experimental results (Dütsch
et al. 1998). This places the flow generated from the cylinder in two-dimensional regime A
(see figure 2.18). The left column depicts the V/Umaxt

and the right column U/Umaxt
. The

solid lines (red) show the present experiment, the dashed lines (black) the present numerical
simulation and the filled circle points (blue) the experimental results of Dütsch et al. (1998).
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Figure 4.13: Distance between the two streaked flows on one side of a cylinder in regime B
(wavelength, λ/D). •, KCt=3.77; 	, KCt=3.35; ◦, KCt=3.14; :, KCt=2.51; ⊕, KCt=2.09;
the image appeared in Tatsuno & Bearman (1990) and is reproduced by permission.

• generation is instantaneous;

• vorticity once generated cannot subsequently be lost by diffusion to boundaries;

• wall stress relates to the presence of vorticity but is not a cause of its generation;

• the generation process is independent of the prior presence of vorticity;

• walls play no direct role in the decay or loss of vorticity;

• vorticity decay results from cross-diffusion of two fluxes of opposite sense and

takes place in the fluid interior; i.e. vorticity is not lost by diffusion to boundaries

other than in circumstances in which vorticity of counter-sign is being generated

and suffering immediate cross-diffusive annihilation with pre-existing vorticity.

In the following results sections/chapters the above mentioned properties will be

used to explain and interpret the experimental results of this thesis.

4.4.3 Regime A∗

The comprehensive flow visualisations of Tatsuno & Bearman (1990) revealed that no

vortex shedding occurred in regime A∗. They also observed that large regions of contra-

rotating crescent-like flow structures, i.e. streaming flow, are formed on both sides of

the cylinder, whereas in this research due to the small field of view of the camera in

the two-dimensional cases, i.e. regimes A∗, A and B, the areas far around the cylinder

were not observed. Uzunoğlu et al. (2001) and other researchers (see for example Lam
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& Dai 2002; Elston 2005) observed the same vortex pattern for this two-dimensional

and symmetrical regime.

Figures 4.14, 4.15, 4.16, 4.17 and 4.18 show a cross-sectional view and sequence of

phase-averaged PIV results of out-of-plane vorticity (ω∗z), V/Umax and U/Umax velocity

contours and velocity vector fields extracted over one motion period, T , in regime A∗.

These figures focus on the region near the surface of the cylinder. Furthermore, it should

be noted that the image sequence over one cycle of the cylinder oscillation extends from

image (a), t = 0, of each figure to image (h), t = 7T/8. The same sequence is used

throughout this chapter. This helps to clearly see and compare the mirror image of each

phase. The images in figure 4.14 indicate the formation of positive (counter-clockwise)

and negative (clockwise) concentrations of vorticity around the surface of the cylinder.

It is clearly seen from the results of dimensionless vorticity contours, ω∗z , that the

flow around the cylinder during one cycle is symmetrical with respect to the axis of

oscillation, y-axis. The instantaneous, dimensionless spanwise velocity vector field along

the vertical axis of the cylinder after about 50 cycles is shown in figure 4.19. The figure

reveals the two-dimensionality of the flow along the cylinder vertical axis. This verifies

the results of Elston (2005) which showed no variation along the span in regimes A∗ as

well as A. Apart from the secondary streaming, the main characteristics of this regime

discussed by Tatsuno & Bearman (1990) were all observed in this research, i.e. no flow

separation; two-dimensionality; no vortex shedding (see figures 4.14 to 4.19).

By looking at the concentrations of vortices generated in each oscillation cycle, it

can be seen that the vortices remain in the vicinity of the surface of the cylinder. They

are not shed, in the sense of being separated from the cylinder and moving away from

it. They do not survive to their next half cycle. Compared with the results of the other

2D regime, i.e. regime A (see §4.4.4), it can be seen that the vortices generated in each

half cycle, i.e. vortices C and D in image (a), are not separated from the surface. They

are just elongated in the opposite direction to the cylinder’s motion, as the cylinder

continues its motion to the right and accelerates toward the other end of the motion.

This clearly shows that, based on the above argument, there is no vortex shedding in

regime A∗.

From images (a) to (h) of figure 4.14, previously created concentrations of vorticity,

arising during the preceding oscillation cycle, are evident; they are designated as A′

and B′ in images (a) to (c), and vanish as the cylinder reaches to the mid-point of its
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Figure 4.14: A sequence of phase-averaged non-dimensionalised out-of-plane vorticity con-
tours, ω∗z , extracted over one motion period, T , at KCt = 3, βt = 30 in regime A∗. Positive
(counter-clockwise) and negative vorticity contours are denoted by red and blue colours,
respectively. Vorticity contours are evenly spaced over the range [-6.0:6.0]; with ∆[ω∗z ] = 0.6.
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Figure 4.15: A sequence of phase-averaged non-dimensionalised V velocity contours, ex-
tracted over one motion period, T , at KCt = 3, βt = 30 in regime A∗. Positive and negative
velocity contours are denoted by red and blue colours respectively. V velocity contours are
evenly spaced over the range [-0.8:0.8]; with ∆[V/Umax] = 0.08.
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Figure 4.16: A sequence of phase-averaged non-dimensionalised U velocity contours, ex-
tracted over one motion period, T , at KCt = 3, βt = 30 in regime A∗. Positive and negative
velocity contours are denoted by red and blue colours respectively. U velocity contours are
evenly spaced over the range [-0.6:0.6]; with ∆[U/Umax] = 0.06.
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amplitude to the right, i.e. image (d). This happens due to the cross-annihilation of

the opposite-sign vortices A′ and C on the upper and B′ and D on the lower side of the

cylinder. Concentrations C and D are from the present cycle of the cylinder motion.

As the cylinder starts its motion from left to right (or the converse situation when

the flow passes over the cylinder from right to left), i.e. image (a), small positive and

negative concentrations of vorticity grow in size. These are the vortices that started

forming adjacent to the body surface of the cylinder from the previous cycle, i.e. image

(h) of the previous cycle not shown here. These are the symmetric upper and lower

boundary layers designated as C and D in images (a) to (g). Concentrations C and

D can almost survive during one complete oscillation cycle, starting from position (h),

t = 7T/8, of the previous cycle and disappearing in the t = 7T/8 position of the present

cycle, i.e. image (h) of figure 4.14. Two fixed stagnation points, shown as points I in

image (b), at the front and the back of the cylinder, exist in all the cylinder positions

shown. It is evident that at all the instants of figure 4.14 the concentrations are all not

shed and remain in the vicinity of the surface of the cylinder. Again this confirms the

characteristics of the flow in regime A∗ as defined by Tatsuno & Bearman (1990) and

numerically by Elston (2005). As the cylinder moves to the right, the concentrations

A′ and B′, from the previous cycle, experience a decrease of peak vorticity level, as

well as leaving behind the cylinder as it passes them. As the cylinder continues the

motion to the right, concentrations A′ and B′ are no longer detectable from images

(d) onwards and concentrations C and D continue to accumulate vorticity, as well as

experiencing an increase of peak vorticity level in the vicinity of the cylinder. The

direction of motion of the cylinder will eventually drag concentrations C and D, such

that they wrap around the body and remain attached to the surface until the cylinder

approaches zero velocity, at the end of its right-most end of motion, image (e).

Before the cylinder reaches its right-most end of motion, image (d), two counter-

rotating concentrations of vorticities of the opposite direction to the concentrations

C and D, i.e. concentrations A and B, are formed. These are the onset of formation

of a narrow shear layer adjacent to the body of cylinder. These two newly created

vortices, A and B, will grow in size as the cylinder reaches its peak amplitude at the

right-most of it oscillation cycle, and also will remain attached to the cylinder body

surface as the cylinder reverses its oscillation direction from right to left, becoming

larger in size and in their values of vorticity. Changing the direction of the cylinder
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motion and movement of the cylinder breaks up concentrations C and D, which force

them to move past the cylinder to the opposite side. As the cylinder continues the

motion, concentrations C and D, as previously happened to concentrations A′ and B′

in the previous half cycle, experienced a decrease in the peak vorticity level. In time

they vanish, due to cross-diffusive annihilation, and concentrations A and B dominate

the flow. Figure 4.20 clearly shows how the peak vorticity level changes for regime A∗

(as well as regimes A and B, this will be explained in §4.4.4 and §4.4.5). It should be

noted that no convection of the vortices was observed as they are created adjacent to

the body, i.e. in the attached shear layer, or vanish in the vicinity of the cylinder, i.e.

in the separated shear layer.

Figure 4.21 shows the time history of dimensionless circulation, Γ ∗, of concentra-

tions of vorticity C and D, adjacent to the cylinder surface for regimes A∗, A and B at

different phase positions in a cycle. The comparison between the regimes will be de-

scribed in §4.4.5. At the instant corresponding to figure 4.14a (t = 0), the identifiable

symmetric concentrations of vorticity C and D each have average dimensionless circu-

lation values of about 0.5. It should be noted that the points are connected by lines to

give an easier visual identification of the changes in Γ ∗, not to indicate a continuous

time history. Each point is an average over more than 30 cycles. As the cylinder reaches

the end of the cycle, i.e. images (g) and (h), Γ ∗values decrease until they reach values

of approximately 0.26 at t = 6T/8 and nearly zero for t = 7T/8. This is speculated

to be due to the cross-diffusive annihilation of the vortices with the newly generated

vortices A and B. As was mentioned above, simultaneously concentrations C and D

become clearly defined in images (b) to (f), and on top and bottom of the cylinder

surface, distributed trails of positive (solid line) and negative (dashed line) vorticity

clusters persist, respectively. These vortices will gradually grow in size and circulation

due to the motion of the cylinder until they reach their maximum Γ ∗ values of 1.76 at

(c), which corresponds to the middle of oscillation cycle and the maximum velocity of

the cylinder in the cycle (Umax).

The velocity patterns of figures 4.15 and 4.16 as well as velocity distributions of

figure 4.22 clearly show the symmetry of the flow around the oscillating cylinder in this

regime, in an appropriate sense. Figure 4.15a indicates substantial levels of negative

V/Umax. This relates to the direction of the motion of the cylinder prior to this location

from the previous cycle. As the cylinder reverses, image (b) onwards, the substantial
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levels of V/Umax change sign to positive. This trend continues until the cylinder reverses

at image (e). It can be seen from figure 4.15 and figure 4.16 that the patterns of

V/Umax and U/Umax, respectively do not lose their symmetry with respect to the axis

of oscillation.

Figure 4.17 and figure 4.18 show the velocity vector fields and streamline topology

of the flow in a frame of reference moving with the instantaneous velocity of the cylinder

in regime A∗. Figure 4.18 shows that the flow is steady and there is no evidence of

separation, except images (d) and (h) which corresponds to the onset of the formation

of concentrations A and B in figure 4.14d and h, respectively. This does not imply full

separation of the flow from the cylinder surface, but shows that part of the elongated

concentrations of C and D are lifted from the surface due to the generation of vortices

A and B, see for example figure 4.14d.

Figure 4.22 shows the V/Umax phased-averaged velocity and ω∗z distribution at

y/D=0.0 for four different phases of the motion in one cycle. The four phases cho-

sen here are at the middle (figures 4.15c,g and figures 4.14c,g) and at the ends (fig-

ures 4.15a,e and figures 4.14a,e) of the oscillation cycle, i.e. the cylinder maximum and

zero velocity locations, respectively. This figure clearly shows the symmetry of the flow

with respect to the axis of oscillation, y-axis, and also the x-axis. As expected, the

results are the mirror image of each other. These results further confirm the symmetry

suggested by Tatsuno & Bearman (1990) in regime A∗.
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Figure 4.17: A sequence of phase-averaged velocity vector fields, extracted over one motion
period, T , at KCt = 3, βt = 30 in regime A∗.
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Figure 4.18: Phase-averaged streamline patterns extracted over one motion period, T , at
KCt = 3, βt = 30 in regime A∗. Images are in a frame moving with instantaneous velocity
of the cylinder.
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Figure 4.19: Two-dimensionality of flow along the cylinder axis in regime A∗ (KCt =
3 & βt = 30); Instantaneous dimensionless velocity vectors after 50 cycles. The solid rectangle
lines denote the position of the cylinder in this phase.
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Figure 4.20: Comparison of time history of dimensionless peak vorticity of vortices C (nar-
row solid lines) and D (dotted lines), labelled in figure 4.29, adjacent to the cylinder body
surface for regimes A∗(squares), A (diamonds) and B(circles) at different phase locations.
Thick solid lines/symbols indicate the average peak vorticity value for both vortices C and
D.
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Figure 4.21: Time history of dimensionless circulation of vortices C and D, adjacent to
the cylinder body surface for regimes A∗(black color) and A (blue color) at different phase
positions. The vortices C and D are symmetric with respect to the axis of oscillation. This
results the absolute value of dimensionless circulation of vortices C and D coincides in this
figure.
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Figure 4.22: V/Umax velocity component and ω∗z distribution of flow at the cross-section
y/D=0.0 for four different phases of flow in the cycle in regime A∗, KCt=3 and βt=30. The
phases are selected to locate at the middle and the end of the cycle where the velocity of the
cylinder is maximum and zero, respectively. The square symbols show the t = 0 (figure 4.14a
and 4.15a) phase, the circle t = 4T/8 (figure 4.14e and 4.15e) phase, the triangle t = 2T/8
(figures 4.15c and 4.15c) and the diamond shape t = 6T/8 (figures 4.15g and 4.15g).

121



4.4.4 Regime A

Based on the observations of Tatsuno & Bearman (1990) the flow in regime A is char-

acterised by stable, symmetric and periodic vortex shedding. It is two-dimensional and

two vortices are shed symmetrically per half cycle. The flow is also symmetric with

respect to the axis of motion of the oscillating cylinder, the y-axis. At values of KCt

larger than that of regime A∗ for βt < 50, vortices are formed and the flow, according to

Tatsuno & Bearman (1990), is composed of secondary streaming and flows due to vor-

tices resulting from separation. The point selected for this regime is case 2 of table 4.2,

i.e. KCt=5 and βt=20. This regime was used in the validation section (§4.4.1) to com-

pare our results against that of Dütsch et al. (1998). The flow pattern in regime A

was found to be similar to that of regime A∗(Tatsuno & Bearman (1990) and §4.3.2.1).

Tatsuno & Bearman (1990) characterised this regime to have periodic vortex shedding,

which they declared was the main difference between this regime and regime A∗. As

was discussed in §4.3.2.1, based on the flow visualisation results previously presented

and Elston (2005)’s numerical results, no evidence of vortex shedding for this regime

was observed. The vortices did not appear to be shed nor did they convect away from

the cylinder. The main differences between the present regime and regime A∗ observed

to be:

• the vortices and shear layers generated in regime A are larger in size and also

stronger (see figures 4.14, 4.20 and 4.23) than that of regime A∗;

• the elongated concentrations of vorticity C and D (labelled in figures 4.14 and

4.23)) travel slightly further away from the cylinder surface in regime A;

• the separation of the elongated vortices which wrap around the cylinder surface

(vortices C and D) occurs only in the vicinity of the cylinder. The vortices are not

moved away from the vicinity of the cylinder, and based on the separation defi-

nition of Tatsuno & Bearman (1990), noted in §4.3.2.2, the flow is not separated

in regime A, same as what was observed in regime A∗.

This was observed to be the case both in the PIV and flow visualisation results. It

was found that the separated vortices remained within a distance of a maximum of one

cylinder diameter away from the oscillating surface. Referring to figure 4.20, it can be

seen from the non-dimensionalised ω∗z that the peak vorticity values of regime A are
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always greater than that of regime A∗. This implies that since the emergence of the

vortices the same vortices generated in regime A, during one cycle, are always stronger

than regime A∗.

A sequence of regime A’s periodic flow patterns caused by the forward and backward

motion and explained above is shown in figures 4.23, 4.24, 4.25 and 4.26. As was

presented in §4.4.3 two fixed stagnation points (points I in image (c)), at the front

and the back of the cylinder, exist for all positions. The resulting vortex dynamics

can be described as follows. As the oscillating cylinder moves in the forward direction,

e.g. left to right starting from image (a) or conversely from right to left from image

(e) in figure 4.23, symmetric upper and lower boundary layers develop at the front of

the cylinder (shear layers C-D or A′-B′ in (a)-(d) or (e)-(h), respectively); these layers

locally/partially separate at a symmetric upper and lower position on the cylinder wall

(points II in image (d)) creating two symmetrical counter-rotating vortices of the same

strength behind the cylinder. At the end of the half cycle the two vortices remain

behind the cylinder and as the cylinder reverses the vortices are convected towards the

cylinder. This is an indication of no vortex shedding for this regime, otherwise the

vortices separated from the surface of the cylinder would be expected to travel away.

In addition, the backward motion of the cylinder causes a splitting of the vortex pair

(vortices C-D in image (g) for example), which is produced by the forward motion, and

finally wake reversal occurs. Consequently, these vortices do not survive into the next

half cycle and may be cancelled by mixing with vorticity of opposite sign in the cylinder

boundary layer. As the cylinder approaches the end of its full cycle, the pair A-B, which

moves slowly towards the cylinder, is still detectable at image (g) and amalgamates with

the vorticity generated on the cylinder at image (h), A′-B′. Similarly the pair C-D of

image (h) persists and is still detectable. The only difference is that this pair decreases

in size from the interaction with the vorticity generated on the cylinder as it convects

downstream.

As was found in regime A∗ the flow here is observed to be two-dimensional along

the span of the cylinder with the same pattern as in figure 4.19. Figure 4.27 shows the

phase-averaged V/Umax velocity vectors along the span of the cylinder in regime A. The

solid line in the figure denotes the position of the cylinder at that particular phase of

measurement. As can be seen from the figure, the flow is parallel to the bottom surface

of the channel test section (or the y-axis). This confirms the two-dimensionality of the
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flow in this regime.

4.4.5 Regime B

The structure of the flow in regime B differs remarkably from that of the regimes at

lower amplitude or frequency. Those regimes, i.e. A∗ and A (refer to figure 2.18), are

two-dimensional and spatially symmetric with respect to the axis of oscillation. Regime

B, however, is defined by Tatsuno & Bearman (1990) as the onset of three-dimensional

instability and longitudinal vortices. As discussed in §2.5, Honji (1981) investigated

this flow in detail and named it the “streaked flow”. Figure 4.28 shows the three-

dimensionality of the flow along the span of the cylinder. Section §4.4.1 showed the

comparison of the measured distance (λ/D) between the centres of the two “streaked

flows” adjacent to each other on one side of the cylinder for a sample point in regime

B. Unlike regimes A∗ and A, regime B is no longer symmetric with respect to the

axis of oscillation. Figure 4.29 shows this asymmetry, at x/D = 0. The results are

phase-averaged over more than 30 cycles.

Figure 4.29 shows a sequence of phase-averaged ω∗z contours. Figures 4.30, 4.31

and 4.32 show a sequence of phase-averaged V/Umax and U/Umax velocity contours

and velocity vector fields, respectively. All of the sequences are extracted over one

motion period, T at KCt=3, βt=80 in regime B. Again, these figures clearly show the

asymmetry of the flow with respect to the axis of oscillation. As the cylinder starts

its motion from left to right, two initially symmetric vortices, vortices C and D in

figure 4.29, emerging from the previous cycle, start growing in size while retaining their

circulation as the cylinder moves to right. They become stronger, relatively symmetric

and also stretch as the cylinder passes the middle of its motion. Once the cylinder

reaches the end of its half cycle motion, image (e) of figure 4.29, the vortices become

asymmetric with respect to the axis of oscillation, but they still hold their T/2 reflection

symmetry about y/D = 0 axis. This symmetry breaking about the x/D = 0 axis of

regime B can clearly be seen in figures 4.30 and 4.32 as well. It should be noted that

regimes A∗ and A, as was shown in §4.4.3 and §4.4.4, were found to keep their symmetry

about the axis of oscillation as well as the axis of y/D. These results are consistent

with the previous results of Tatsuno & Bearman (1990) and Elston (2005). Appendix

A explains the definition of different types of symmetries based on what was introduced

by Elston (2005).
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Figure 4.23: A sequence of phase-averaged non-dimensionalised out-of-plane vorticity con-
tours, ω∗z , extracted over one motion period, T , at KCt=5, βt=20 in regime A. Positive
(counter-clockwise) and negative vorticity contours are denoted by red and blue colours re-
spectively. Vorticity contours are evenly spaced over the range [-6.0:6.0]; with ∆[ω∗z ] = 0.15.
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Figure 4.24: A sequence of phase-averaged non-dimensionalised V velocity contours, ex-
tracted over one motion period, T , at KCt=5, βt=20 in regime A. Positive and negative
velocity contours are denoted by red and blue colours respectively. V velocity contours are
evenly spaced over the range [-0.3:1.0]; with ∆[V/Umax] = 0.1.
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Figure 4.25: A sequence of phase-averaged non-dimensionalised U velocity contours, ex-
tracted over one motion period, T , at KCt=5, βt=20 in regime A. Positive and negative
velocity contours are denoted by red and blue colours respectively. U velocity contours are
evenly spaced over the range [-0.6:0.6]; with ∆[U/Umax] = 0.06.
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Figure 4.26: A sequence of phase-averaged velocity vector fields extracted over one motion
period, T , at KCt=5, βt=20 in regime A. Positive and negative velocity contours are denoted
by red and blue colours respectively.
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Figure 4.27: Two-dimensionality of flow along the cylinder axis in regime A (KCt=5 &
βt=20); Instantaneous dimensionless velocity vectors after 50 cycles. The solid rectangle
lines denote the position of the cylinder in this phase.
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Figure 4.28: Three-dimensionality of flow along the cylinder axis in regime B (KCt =
3 & βt = 80); Instantaneous spanwise dimensionless velocity vector at the 36th cycle and
phase angle of 270◦. The solid rectangle lines denote the position of the cylinder in this phase
which moves from right to left.

The cylinder shown in image (e) of figure 4.29 is at its right-most position in the

oscillation cycle and is starting its motion from right to left. Vortices C and D are

now those generated in the previous half-cycle, originating from the interaction of the

flow and body. Vortices A′ and B′ have just been created, image (d), and are almost

symmetrical relative to the axis of oscillation. These are the vortices which are close

to the surface of the cylinder and remain attached to the cylinder until the cylinder

reverses. As with vortices C and D at the beginning of their creation, they are also

more symmetrical in shape than vortices C and D which were created and separated

from the body in the previous cycle and have lost their symmetry with respect to the
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Figure 4.29: A sequence of phase-averaged non-dimensionalised out-of-plane vorticity con-
tours, ω∗z , extracted over one motion period, T , at KCt=3, βt=80 in regime B. Positive
(counter-clockwise) and negative vorticity contours are denoted by red and blue colours re-
spectively. Vorticity contours are evenly spaced over the range [-5.0:5.0]; with ∆[ω∗z ] = 0.5.
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Figure 4.30: A sequence of phase-averaged non-dimensionalised V velocity contours, ex-
tracted over one motion period, T , at KCt=3, βt=80 in regime B. Positive and negative
velocity contours are denoted by red and blue colours respectively. V velocity contours are
evenly spaced over the range [-0.5:0.7]; with ∆[V/Umax] = 0.04.
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Figure 4.31: A sequence of phase-averaged non-dimensionalised U velocity contours, ex-
tracted over one motion period, T , at KCt=3, βt=80 in regime B. Positive and negative
velocity contours are denoted by red and blue colours respectively. U velocity contours are
evenly spaced over the range [-0.6:0.6]; with ∆[U/Umax] = 0.06.
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Figure 4.32: A sequence of phase-averaged velocity vector fields extracted over one motion
period, T , at KCt=3, βt=80 in regime B. Positive and negative velocity contours are denoted
by red and blue colours respectively.
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axis of oscillation. This asymmetry can also be seen in figure 4.20. As the cylinder

reverses and continues to complete its motion and finish one cycle, the vortices C and

D wrap around the cylinder. As the cylinder continues its motion they will be directed

to the other side of the cylinder.

Since the three regimes A∗, A and B exhibit similar vortex patterns the peak vor-

ticity of a pair of vortices (C and D) is compared between these regimes in figure 4.20,

where normalised peak vorticity, ω∗zKCt, is plotted against t/T . The narrow solid lines

indicate the time evolution of vortex C with positive sign and the dotted lines denote

the time history evolution of vortex D with negative sign. The thick solid lines, the

average value of the normalised peak vorticity of both vortices, are also shown for com-

parison purposes. Positive vorticity is defined as counter-clockwise rotation. In this

figure, the blue lines represent regime A∗ and red lines regime A.

The peak vorticity values for both vortices C and D are similar for regimes A∗

and A and exhibit symmetry whereas for regime B the distributions of peak vorticity

values only for the first half of motion coincide. The second half of motion exhibit

asymmetry in peak vorticity values. The asymmetry of the vorticity pattern of regime

B with respect to the oscillation axis in figure 4.20 is clearly shown at t/T = 0.875,

corresponding to image (h) of figure 4.29. As the absolute magnitude of the vorticity

of vortex C is higher than that of vortex D, the flow between these two vortices tends

to tilt towards the axis of oscillation leading to an asymmetry in the flow. This causes

the breaking of the reflection symmetry about the x/D = 0 axis, as can be seen in

figure 4.29, but yet keeping the T/2 reflection symmetry about the y/D = 0 axis.

For all these experiments the camera was held fixed at the bottom of the test section,

in the case of the 2D measurements. In some cases, due to the larger amplitude of

oscillation and the perspective effects of the cylinder in the PIV images, a small region

of shadow was seen around the cylinder. This affected the results around the cylinder

as for example can be seen in the middle right hand side of the cylinder in image (c)

of figure 4.29. Special care was taken to reduce or even eliminate the shadow effect at

all times but in some cases it was inevitable that we would lose a small region of the

data. Primarily, this affected the front and rear parts of the cylinder.
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Figure 4.33: A sequence of phase-averaged non-dimensionalised out-of-plane vorticity con-
tours, ω∗z , extracted over one motion period, T , at KCt=6.28, βt=18 in regime D. Positive
(counter-clockwise) and negative vorticity contours are denoted by red and blue colours re-
spectively. Vorticity contours are evenly spaced over the range [-1.5:1.5]; with ∆[ω∗z ] = 0.1.
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Figure 4.34: A sequence of phase-averaged non-dimensionalised V velocity contours, ex-
tracted over one motion period, T , at KCt=6.28, βt=18 in regime D. Positive and negative
velocity contours are denoted by red and blue colours respectively. V velocity contours are
evenly spaced over the range [-0.25:0.25]; with ∆[V/Umax] = 0.025.
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Figure 4.35: A sequence of phase-averaged non-dimensionalised U velocity contours, ex-
tracted over one motion period, T , at KCt=6.28, βt=18 in regime D. Positive and negative
velocity contours are denoted by red and blue colours respectively. U velocity contours are
evenly spaced over the range [-0.2:0.2]; with ∆[U/Umax] = 0.02.
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Figure 4.36: A sequence of phase-averaged velocity vector fields extracted over one motion
period, T , at KCt=6.28, βt=18 in regime D. Positive and negative velocity contours are
denoted by red and blue colours respectively. The arrow in image (f) shows the direction of
the created jet flow.
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Figure 4.37: Contour of phase-averaged non-dimensionalised vorticity of regime D,
KCt=6.28, βt=18. This phase is corresponding to image (b) of figure 4.33. The dark cylinder
shows the actual position of the cylinder in that phase of the motion and the grey cylinder is
shown to clearly show one diameter location behind the cylinder. This shows the one order
of magnitude difference in the magnitude of the ω∗z .

4.4.6 Regimes D

Apart from the two-dimensionality and symmetry of flow with respect to the axis of

oscillation in regimes A∗, A and to some extend B, the flow characteristics will change

as KCt increases at relatively low βt. Contrary to what was observed in the previous

regimes, where the flow induced by the cylinder convects along the direction of cylinder

oscillation (Tatsuno & Bearman 1990), the flow characteristics in regime D changes

dramatically. At higher values of KCt, than that of the two-dimensional regimes, an

asymmetry develops in the direction of flow convection around the cylinder. Regime D

is the onset of this symmetry breaking in a sense that the flow will no longer convect

along the direction of cylinder oscillation. The flow has been characterised by Tatsuno

& Bearman (1990) to eventually form a V-shaped vortex pattern.

Figures 4.33, 4.34, 4.35 and 4.36 show the patterns of phase-averaged vorticity

and velocity contours for the flow in regime D. Image (a) of figure 4.33 shows the

vortices pre-existing from the previous cycles. Generally speaking, in regime D, when

the cylinder translates from left to right, asymmetrical vortices, with opposite signs

of rotation, are formed on the top and bottom sides of the cylinder. In this case a

negative vortex is developed on the lower side of the cylinder and a positive vortex on

the upper side as shown in images (a)-(e) of figure 4.33 (vortices B and D in image

(b) of figure 4.33, respectively). As the cylinder continues its motion to the right

the newly generated vortices from the surface of the cylinder grow in size the break

through the vortices formed during the previous cycles. The interaction between the

newly generated vortices and the ones from the previous one cause the vortices to

cross-annihilate and diffuse (vortex D in image (d)) as the cylinder moves through
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them. The negative vortex A which is now weakened due to the diffusion pairs up with

the positive vortex D, hence generating a jet flow which can be clearly seen in image

(f) of figure 4.36, as the cylinder reaches its end of half cycle. The arrow in image (f)

of figure 4.36 shows the direction of the created jet flow. In this instance (images (e)

and (f)) vortex D has not yet interacted with any other vortices nor the motion of the

cylinder has moved through it yet, hence it is stronger than vortex A. As the vortex D is

stronger than vortex A at this stage the jet flow is now convected towards the stronger

vortex, i.e. vortex D. This jet flow is now creating the left tail of the V-shaped vortex

pattern mentioned above as being the characteristic of flow in regime D. The same

mechanism is applied to the right tail of this V-shaped vortex pattern. On the other

hand while the cylinder is still in its movement from left to right, the negative vortex

(vortex B of image (b) in figure 4.33) becomes larger and as the cylinder approaches

the end of the mid-point of the motion to the right (image (e)) the vortex wraps around

the cylinder. As the cylinder reverses, a stronger part of the vortex remains around the

cylinder, vortex B in image (f), while the weaker part of the same vortex, vortex B1

in image (f), sheds on the opposite direction of the cylinder motion joining the weak

positive vortex being created at the same time on the lower surface of the cylinder. As

described by Tatsuno & Bearman (1990) and Iliadis & Anagnostopoulos (1998), this

negative sign vortex, vortex E in image (h), in the upper part of the cylinder appears

in elongated form compared with the one formed at the lower side, vortex F in image

(h), and is tilted downwards, in this case.

In addition, two relatively parallel rows of opposite sign vortices exist on both sides

of the cylinder, inclined to the horizontal. The strength of these vortices decreases

with increasing distance from the cylinder by almost one order of magnitude within

one diameter from the cylinder (shown in figure 4.37). When the cylinder reaches its

zero velocity position at the right-most point of the cycle, the negative sign vortex

has moved further downstream while the positive vortex forming above the cylinder

appears in an elongated form with respect to that forming below the cylinder, as shown

in image (e) of figure 4.33. It was also observed by Tatsuno & Bearman (1990) that as

the value of βt is increased the flow sheds at larger angles with respect to the axis of

oscillation, hence more curvature is visible around the cylinder.

When the cylinder reaches this right-most point of its cycle, the elongated posi-

tive vortex core has already commenced convecting downstream, as shown previously.
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The motion of the cylinder prior to this snapshot has drawn this positive vortex core

downstream and in the negative y-direction, such that it is now directly behind the

cylinder. The negative vortex core, shed from the lower surface of the cylinder, is

stretched around the small positive vortex core created adjacent to the body in the

lower half, and the body itself. From the velocity vectors it can be seen that a jet of

fluid has formed between the two vortex cores (figure 4.36). The jet is travelling in the

upstream and positive y-direction.

As the cylinder reverses, images (e) and (f) of figure 4.33 show that the vortices

shed during the previous half-cycle are swept back towards the cylinder. Also, as the

sequence of frames in images (e)–(h) of figure 4.33 shown, the stronger vortex (vortex

A) is convected back along the cylinder surface and shed obliquely across the axis of

oscillation. Hence, the direction of the flow induced by the cylinder oscillation deviates

from the direction of oscillation. In consequence, a strong vortex is developed on only

one side of the axis of oscillation in each half cycle and the fluid mass accompanying

the vortex is convected obliquely to the other side of the axis of oscillation (Tatsuno

& Bearman 1990). As the cylinder starts its motion from right to left, starting from

image (e) of figure 4.33, the negative vortex structure mentioned earlier wraps around

the small positive vortex core and the cylinder towards the upper side of the cylinder.

This negative vortex starts strengthening significantly. It is also clear from the sequence

of images in figure 4.33 that one vortex is shed during each half-cycle. The same trend

can be seen in figures 4.34 and 4.35. The solution over a large number of oscillation

cycles revealed the absolute periodicity of the phenomenon, which made it possible to

do phase-averaging. These results are similar to that of Tatsuno & Bearman (1990)

and Iliadis & Anagnostopoulos (1998).

4.4.7 Regime E

According to the classification of Tatsuno & Bearman (1990) the flow patterns belonging

to regime E represent temporally stable V-type vortex streets. Figure 4.38 shows typical

examples of the behaviour of the flow in this regime, in which the flow changes with

time. As the flow in this regime is not phase-locked the instantaneous results are

presented. The instantaneous non-dimensionalised vorticity contours in figure 4.38 were

taken in a sequence during one run. Tatsuno & Bearman (1990) discuss how the flow

pattern in this regime temporarily resembles that in regime D (refer to §4.4.6). Here,
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Figure 4.38: Patterns of instantaneous dimensionless vorticity, ω∗z , for the sinusoidally os-
cillating flow past the circular cylinder in regime E at KCt=5 and βt=80. For dimensionless
vorticity ω∗z , ∆[ω∗z ]=0.3. The cylinder is oscillating horizontally from left to right, at its most
left position in the cycle. (a) shows cycles before change in the direction, (b) transition in
the change in the direction, and (c) cycles after transition.

however, the flow that convects to one side of the axis of oscillation intermittently

changes direction to the other side. This switching of the flow occurs at irregular

intervals and is presumably triggered by small disturbances. Elston (2005) speculated

that the onset of regime E may be caused by the onset of an instability of the quasi-

periodic mode, which leads to an intermittency in the direction of the vorticity shed

from the cylinder. Figures 4.38a and c show temporally stable flow patterns, whereas

figure 4.38b shows the transient flow changing from one side to the other. Previous

experimental and numerical studies by Dütsch et al. (1998), Iliadis & Anagnostopoulos

(1998) on flow in regime E, have failed to capture this intermittent change. Although
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Nehari et al. (2004) have also investigated regime D and observed the switching in

their three-dimensional simulation at KCt=6.5 and βt=20, Elston (2005) has shown

that their simulation might be better categorised as being of regime E, rather than

D. The present results reveal this intermittent change in the direction of the V-shape

vortex in regime E experimentally, which has only been observed previously on a few

occasions, see for example Tatsuno & Bearman (1990). The flow in this regime has a

strong three-dimensional structure.

4.4.8 Regimes F

Figures 4.39, 4.40, 4.41 and 4.42 show a cross-sectional view and sequence of phase-

averaged PIV results of out-of-plane vorticity (ω∗z), V/Umax and U/Umax velocity con-

tours and velocity vector fields extracted over one motion period, T , in regime F. Regime

F is characterised by Tatsuno & Bearman (1990) to be a double-pair diagonal regime, in

which vorticity is shed diagonally with respect to the axis of oscillation. When starting

the cylinder from rest, symmetric vortex shedding first occurred in much the same way

as described in §4.4.4. However, after a few cycles of oscillation, the symmetric flow

pattern ceased to exist. The symmetric vortex formation became unstable, resulting

in the occurrence of a stronger vortex on one side of the cylinder and a weaker one on

the other side. Both vortices that were formed did not cross the axis of oscillation, but

moved away from it (Dütsch et al. 1998).

According to Tatsuno & Bearman (1990) two related features of the shedding wake

distinguish the flow past an oscillating cylinder in regime F. First, the wake is shedding

at an angle to the in-flow or axis of oscillation. Second, the fluid structures are shed

in vortex pairs. As it was discussed in §4.3.2.7 based on observations of the results of

Elston (2005) and present flow visualisations it was proposed that this regime could be

characterised as a 2P + 2S pattern instead of the so-called 2P shed per cycle. The PIV

results of the present section also confirm and support this proposal. Vortex C labelled

in figure 4.39 is the single vortex shed per cycle.

The vortex pair structures induce a jet of fluid travelling in the positive y-direction,

as the cylinder movies from left to right, or the negative y-direction, when the motion is

reversed; the same jet is responsible for the angle the wake is shed. Figure 4.43 compares

the absolute values of peak dimensionless vorticity, |ω∗z |, between the individual vortices

in the vortex pairs (A-B) and the single vortex (C) in each cycle. Clearly, the magnitude
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Figure 4.39: A sequence of phase-averaged non-dimensionalised out-of-plane vorticity con-
tours, ω∗z , extracted over one motion period, T , at KCt=8.17, βt=30 in regime F. Positive
(counter-clockwise) and negative vorticity contours are denoted by red and blue colours re-
spectively. Vorticity contours are evenly spaced over the range [-1.5:1.5]; with ∆[ω∗z ] = 0.1.
Thick line is image (a) shows the axis of oscillation. The angle between the shed vortices and
the axis of oscillation is 18◦ in this case.
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Figure 4.40: A sequence of phase-averaged non-dimensionalised V velocity contours, ex-
tracted over one motion period, T , at KCt=8.17, βt=30 in regime F. Positive and negative
velocity contours are denoted by red and blue colours respectively. V velocity contours are
evenly spaced over the range [-0.25:0.25]; with ∆[V/Umax] = 0.025.
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Figure 4.41: A sequence of phase-averaged non-dimensionalised U velocity contours, ex-
tracted over one motion period, T , at KCt=8.17, βt=30 in regime F. Positive and negative
velocity contours are denoted by red and blue colours respectively. U velocity contours are
evenly spaced over the range [-0.2:0.2]; with ∆[U/Umax] = 0.02.
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Figure 4.42: A sequence of phase-averaged velocity vector fields extracted over one motion
period, T , at KCt=8.17, βt=30 in regime F. Positive and negative velocity contours are
denoted by red and blue colours respectively.
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Figure 4.43: Distribution of absolute dimensionless peak vorticities, |ω∗z |, of three vortices
A (solid red line, square), B (solid blue line, triangle), and C (dashed red line, circle) shown
in figure 4.39. These data are for regime F, KCt=8.17 and βt=30 and are extracted from the
phase-averaged PIV analysis. The lines are only showing the trend of distribution of ω∗z .

of the single vortex, denoted as C in images (b)–(h) of figure 4.39, is approximately

less than half of the value of the pairs vortices A and B. This figure also shows that

the magnitude of the positive vortex of the pair (vortex A) over most of the phases is

greater than that of the negative vortex of the pair (vortex B), except at the beginning

of the motion. Since vortex B is stronger than vortex A at the beginning of the motion,

the relatively strong jet flow between these two vortices will be tilted towards vortex B.

Once the cylinder starts its motion from left to right, images (b–e), it breaks through

vortex B, and due to diffusive cross-annihilation of vortex B and the newly opposite-

sign generated vortex from the cylinder surface and vortex A, vortex B becomes weaker

in comparison with its strength in image (a). This implies that the direction of the jet

flow is now deflected towards vortex A rather than vortex B and is also determined by

the strength of vortex pair A-B.

As already mentioned the motion of the cylinder is responsible for inducing the

vortex pairing. This is clearly reflected in figure 4.39, which indicates that the difference

in the magnitude of the two vortices resulted in a motion of the vortices away from

the cylinder at an angle of approximately 18◦ with respect to the axis along which the

cylinder oscillated. Elston (2005) indicated that the above-mentioned angle is 25◦, but

Tatsuno & Bearman (1990) did not provide any measured values of this angle. However,

Nehari et al. (2004) mentioned in their article that the angle of inclination of the

diagonal pattern with respect to the longitudinal axis increases with KCt. The results
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of the flow visualisations of Tatsuno & Bearman (1990) showed that for KCt < 10 the

angle of inclination of the diagonal vortex pattern is small, and, in the far field, the

pattern tends to be parallel to the longitudinal axis. As KCt increases (KCt > 10) the

angle of inclination of the pattern increases, and vorticity is convected along a straight

line that, in the far-field, maintains its angle of inclination. Consequently as the value

of KCt in this study was less than those used by Elston (2005) and Nehari et al. (2004),

which were 10 and 8.5 respectively, the smaller values of inclination angle observed in

this investigation appear reasonable. It should also be mentioned that although it has

not been examined in this research, but Tatsuno & Bearman (1990) have observed that

at larger βt the convection of vortices away from the body occurs at large angles to the

oscillation direction.

4.5 Chapter Summary

In this chapter the flow around a translationally oscillating circular cylinder at low KCt

and βt numbers was investigated experimentally. PIV and flow visualisation techniques

were used to quantify and qualitatively investigate the flow around a sinusoidally os-

cillating circular cylinder in water initially at rest for the ranges of system parameters

1.6 < KCt < 15 and 5 < βt < 160, respectively. A number of measures were used to

establish the properties of the flow which included examining the vorticity field over a

period of cylinder motion and the long exposure particle visualisation images.

An interesting feature that was also clarified was the absence of vorticity shedding

observed in regime A. Tatsuno & Bearman (1990) delineated the difference between

regimes A∗ and A as the presence of vorticity shedding in regime A. In the observation

of flows in both regimes, no far-field concentrations of vorticity were observed to occur

and it is concluded that there is no difference between the flows of either regime in

terms of the vorticity contours. One difference that was observed was that the particles

shed for low Keulegan–Carpenter numbers remained in the near cylinder region, up to

1D from the cylinder surface. The difference between regimes A∗ and A might better

be defined by the size and strength of the generated vortices.

The results for regime B, as was first discussed by Tatsuno & Bearman (1990),

reveal the onset of three-dimensionality in this type of flow. The spanwise velocity

vectors distribution clearly shows this feature.

Contrary to the two-dimensional numerical investigations of Iliadis & Anagnos-
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topoulos (1998) and Dütsch et al. (1998) and the results of Nehari et al. (2004), the

intermittent switching in the direction of the V-shaped vortex pattern in regime E has

been observed. However, this switching was observed irregularly and its cause has not

been yet determined, but as mentioned by Tatsuno & Bearman (1990) this is presum-

ably triggered by small disturbances in the flow.

Tatsuno & Bearman (1990) mentioned that the convection of vortices away from

the body at large angles to the oscillation direction seems to be similar to the formation

of two vortex pairs per cycle at larger βt, which has been described as the 2P pattern

by Williamson (1985). It was proposed in the present study that this regime could be

characterised as the 2P + 2S pattern shed per cycle.
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Chapter 5

The ‘Swimming’ Cylinder

5.1 Introduction

Previous two-dimensional numerical studies have shown that a circular cylinder under-

going both oscillatory rotational and translational motion can generate thrust so that it

will actually self-propel through a stationary fluid, the so-called “swimming cylinder”.

This was shown by Blackburn et al. (1999) to happen only at certain phase angle differ-

ences between the two motions, Φ. Although a cylinder undergoing a single oscillation

has been thoroughly studied, see Chapter 4, the combination of the two oscillations has

not received much attention until now. So far, only the investigations by Blackburn

et al. (1999),Elston (2005), and more recent the ones by Al-Mdallal (2004),Kocabiyik &

Al-Mdallal (2005),Elston (2005),Nazarinia et al. (2009) have reported on the combined

oscillatory motion of a circular cylinder. Among them the work by Blackburn et al.

(1999) and Elston (2005) are the only ones on the swimming cylinder (i.e. the quiescent

fluid case).

A number of interesting features have been shown to occur as a result of combining

the two motions. Of principal interest is the jet flow produced by the cylinder when

the two imposed motions are in opposition of phase. The propulsive force produced by

the cylinder causes it to accelerate until eventually reaching a terminal speed of 33% of

the peak translational speed (Blackburn et al. 1999). Naturally, the above mentioned

phenomena are true when the two motions are in-phase, the difference is that the jet

flow appears on the opposite side.

The results of Blackburn et al. (1999) were obtained via numerical simulations but

to date no experimental studies into the effect of combining an oscillatory rotational

and translational motion of a circular cylinder in either quiescent fluid or in external

flow are known. However, a similar form of motion, Carangiform motion, is observed in
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nature, for example, the motion used by a tuna fish to propel through water. This mode

of oscillation necessitates a twist at each extreme of the oscillation to give backward

inclination to the moving wing-like surface, that is, to a vertically oscillating cetacean

tail, or to a fish’s horizontally oscillating caudal fin. However, the propulsive jet that

is produced from Carangiform motion only occurs when the oscillations are in-phase

(Lighthill 1986), see §2.6.1.

The purpose of the present study is to investigate not only the near-wake structure

of the combination of the two forcing mechanisms, but also to extend this to examine the

three-dimensional nature of the wake, which is yet to receive any attention. The results

of the present chapter incorporate both experimental and numerical studies, although

the main focus is on the experimental investigations. The numerical simulations, i.e.

Floquet stability analysis and DNS, are used as tools to provide further insights into the

wake flows produced. To characterise the experimental flows, as discussed in Chapter 3,

PIV was employed.

In the next sections a description of the experimental and numerical methods, and

the parameter range under investigation, are given. An overview of the linear Floquet

stability analysis is given. This is followed by a presentation of results confirming the

thrust generation. The three-dimensionality of the flow around the swimming cylinder

is also established, and the three-dimensional transition characterised. Following on

from the study by Blackburn et al. (1999), the following questions arise:

• What is the behaviour of flow around a swimming cylinder? Does the 2D model

capture the main features of real 3D flows?

• Is there any three-dimensional instability involved?

• At what Re does the transition to three-dimensional flow occur?

• What three-dimensional modes occur and how do they influence the wake and

swimming ability?

PIV measurements along with Floquet stability analysis have been employed to

answer these questions in this chapter.

The next chapter, Chapter 6, reports on the combined oscillatory motion of a cylin-

der in a free-stream. The current chapter extends the numerical study of Blackburn
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et al. (1999) and Elston (2005) both experimentally and numerically: recording de-

tailed vorticity fields in the wake and using these to elucidate the underlying physics;

examining the three-dimensional wake development experimentally; and determining

the three-dimensional stability of the wake. Experiments conducted in the laboratory

are presented for a given parameter range, confirming the results from Blackburn et al.

(1999).

5.2 Experimental Arrangement and Parameters

The motion profiles and the parameters defining the combined translational and ro-

tational oscillatory motion of a circular cylinder in a quiescent fluid were given in

Chapter 3 and §3.2, and also shown schematically in figure 3.4. Equations 3.3 and 3.9

defined the harmonic motions of the cylinder translationally and rotationally, respec-

tively. It is seen from the equations that addition of the rotational oscillation to the

translational oscillatory motion, mentioned in Chapter 4, adds three more independent

variables to the problem. These are the rotational amplitude, the frequency and the

phase difference between the two oscillatory motions, in addition to translational am-

plitude and frequency. This results in five dimensionless variables that in combination

specify uniquely the state of the system. These five variables are repeated below:

• The translational Keulegan–Carpenter number:

KCt =
Umaxt

ftD
=

2πAt
D

(5.1)

• The translational Stokes number:

βt =
ftD

2

ν
(5.2)

• The rotational Keulegan–Carpenter number (Aθ in radians):

KCθ =
Umaxθ

fθD
= πAθ (5.3)

• The rotational Stokes number:

βθ =
fθD

2

ν
(5.4)

• The phase angle between translation and rotation motions:

Φ. (5.5)
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The velocity ratio, taken at the surface of the cylinder, between the translational and

rotational motions is expressed as:

VR =
Umaxt

Umaxθ

=
βt
βθ

KCt
KCθ

. (5.6)

In the previous studies of Blackburn et al. (1999) and Elston (2005), referred to

previously in Chapter 2, the translational and rotational Keulegan–Carpenter numbers

were specified as KCt = KCθ = π, and the translational Stokes number as βt = 90. As

Elston (2005) also points out, on a purely translational oscillation basis, this places the

flow generated from the cylinder in three-dimensional regime B on the (KCt,βt)-space

map (see figures 2.18, 2.19 and 2.20). The rotational Stokes number was also fixed to a

single value, that of the translational Stokes number, such that βt = βθ = 90. The phase

angle between the motions was fixed at Φ = π, which has been shown in Blackburn

et al. (1999) to result in net thrust on the cylinder along the axis perpendicular to the

axis of oscillation. The final parameter required to determine the motion of the cylinder

was the rotational Keulegan–Carpenter number, KCθ. In Blackburn et al. (1999) and

Elston (2005) this was set to the value KCθ = π.

In the present study, in analogy with the studies of Blackburn et al. (1999) and

Elston (2005), i.e. the swimming cylinder case, the frequency ratios were held to be the

same, i.e. βt = βθ = β, and the phase difference between the two motions was set to Φ =

π. Some preliminary investigations were conducted into the effect of varying the phase

difference between two motions, both experimentally and numerically. The combination

of oscillatory motions was found to produce a wide range of flow patterns depending on

the phase difference between the two motions. Figure 5.1 shows an example of the near-

wake structure for three phase differences. It can be seen that by changing the phase

angle, the flow field around the cylinder changes dramatically. Notably, it is clear that

only the in-phase or opposing phase cases (Φ = 0, π) produce a jet-like flow (The results

for Φ = 0 are not shown in figure 5.1). The other phases result in a flow with a somewhat

preferred direction without the jet-like feature and dramatically different from the Φ =

0, π cases. It should be noted that Elston (1997) showed in his numerical simulations

that the phase differences within ±30◦ also generate jet-like flow, but the flow convected

at an angle and is not perpendicular to the axis of oscillation anymore. Additionally

for all of the experiments in this chapter, the associated translational and rotational

Keulegan–Carpenter numbers are KCt = KCθ = π. The non-dimensional frequency

was chosen to cover the range 45 ≤ β ≤ 200, consequently the range of Reynolds
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(a) (b) (c)

Figure 5.1: Contours of vorticity around the cylinder undergoing combined translational
and rotational oscillation at KC = π, β = 90, and (a) Φ = π, (b) Φ = π/2, (c) Φ = π/4,
taken at t/T = 0 from numerical simulation explained in §5.4. The dashed lines (enclosing
blue) correspond to clockwise direction of vorticity (negative). The solid lines (enclosing red)
correspond to counterclockwise direction of vorticity (positive).

number covered was 141 ≤ Re ≤ 628. As a result of fixing the above parameters the

equation for the velocity ratio for all the present experiments was held constant at the

value VR = 1. The effect of varying this ratio was not investigated in this thesis as was

the case in Elston (2005).

The experimental technique used here is the same as that described in Chapter 3

and used for Chapter 4. For these particular experiments the flow was seeded with

spherical polyamide particles with a mean diameter of 20µm and specific gravity of

1.016. In this system, the particles were illuminated using two miniature Nd:YAG laser

sources (Continuum Minilite II Q-Switched). The planes of interest for these exper-

iments were the yz- and xy-planes, being the spanwise and streamwise directions, as

was shown in figure 3.4. The thickness of the laser sheet was measured to be less than

2mm. Pairs of images were captured on a high resolution CCD camera (Cooke pco4000)

with a maximum resolution of 4008 × 2672 pixels. The camera was equipped with a

Nikkor 105mm lens (Nikon Corporation, Japan). An interrogation window of 32 × 32

(with an initial window size of 64 × 64) pixels was found to give satisfactory results

with 50% overlap. More than 98% of the vectors were valid for all the experiments.

This window size corresponds to an average interrogation window of 0.064D× 0.064D.

It was possible to obtain a measurement resolution of 249×166 (total of 41334) vectors

in each field of view. The overall field of view was 4008 × 2672 pixels (8.0D × 5.3D).

Phase-averaged vorticity and velocity fields are presented using 500 or more instanta-

neous measurements. It should also be noted that the cylinder was fitted with an end
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plate to reduce the end effects. The end plate was designed following recommendations

by Stansby (1974), and consisted of a circular plate with a diameter of 9D; schematics

are shown in figures 3.3 and 3.4. All the images were captured at pre-selected phase

angles in the oscillation cycle (phase-locked). Phase-averaged vorticity and velocity

fields are presented using 30 or more instantaneous measurements. The vorticity fields

were calculated with the technique developed by Fouras & Soria (1998). The veloc-

ity and spatial coordinates are non-dimensionalised by the maximum velocity of the

translational cylinder motion, Umaxt , and the cylinder diameter, D, respectively.

Same as for other quiescent experiments outlined in Chapter 4, special care was

always taken to ensure near quiescency of the flow. Prior to each set of experiments,

a honeycomb device was drawn through the working volume to break up large-scale

flow structures into smaller scales, minimising the time required to reach the back-

ground noise level. Typically, this background level, measured by the norm of velocity

magnitude, was kept less than 1.41% of Umaxt (0.1mm s−1 or less).

5.3 Validation

In this section the results for the swimming cylinder case, i.e. Φ = π, are compared

with numerical simulations to provide confidence in the experimental predictions before

other cases are examined. This proceeds in three stages: The validation case applied

first with the two individual oscillatory motions and then with the combined motion. As

was mentioned in §4.4.1 a useful validation case for the purely translational oscillation

of a cylinder in a quiescent fluid is the experimental study of Dütsch et al. (1998). This

is combined with our numerical simulations at KCt = 5 and βt = 20 (see figure 4.12).

These parameters place the wake flow in two-dimensional regime A (see figures 2.18,

2.19 and 2.20). Other researchers, e.g. Uzunoğlu et al. (2001), Guilmineau & Queutey

(2002) and Nehari et al. (2004) also used the numerical and experimental results of

Dütsch et al. (1998) to validate their numerical codes against. The numerical results

(explained in the next section) also match well with those of Dütsch et al. (1998).

Dütsch et al. (1998) was found to be a key article containing quantitative experimental

results at low KCt and βt numbers.

To provide some validation for the experiments in the 3D regime, the spanwise

wavelength was measured (using the technique explained in §5.5). This was for KCt =

2.51 and βt = 142 (Ret = 356), corresponding to regime B from Tatsuno & Bearman
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Figure 5.2: Outline of the 518-element 30D×30D domain, s, used for the swimming cylinder
simulations.
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Figure 5.3: Floquet multipliers for KCt = 2.75 for the three-dimensional instability of
regime B at βt = 80. The current results (solid line) are compared with those from Elston
et al. (2006) (squares).

(1990) (figure 12, Tatsuno & Bearman (1990)). It was found to be within 4% of the

previously reported value from Tatsuno & Bearman (1990) (λ = 1.04D cf. 1.0D).

5.4 Numerical formulation

As outlined earlier in the thesis the main focus of the present study is the experimental

measurement of the flow around an oscillating cylinder, and in particular the swim-

ming cylinder. Two-dimensional DNS and Floquet stability analysis were used to help

further understand the experimental results and to provide alternative insights into the

physics of the flow, but they are not a main focus. In this regard, the description of the

methodology is purposefully brief. Comprehensive descriptions of the methods have
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been given in previous articles. Details of the method in general are given by Karni-

adakis & Sherwin (2005), and the implementation used here by Thompson et al. (1996).

The code employed has been well-proven for use in bluff-body problems, and Floquet

stability analysis. There are a large number of papers available using the present numer-

ical code, e.g. Sheard et al. (2003); Ryan et al. (2005); Leontini et al. (2007); Leontini

(2007); Griffith (2007); Lo Jacono et al. (2008). However, a brief outline of the method

is provided here.

The 2D base flows (i.e. the time dependent wake flows) for the present study were

calculated by solving the incompressible, time-dependent Navier–Stokes equations. The

discretisation method employed was a spectral-element method, using seventh-order La-

grange polynomials associated with Gauss–Lobatto–Legendre quadrature points. The

time integration was executed using a three-step splitting scheme (Canuto et al. 1990;

Karniadakis et al. 1991; Thompson et al. 2006a). A computational domain extending

30D × 30D was split into 518 elements, the majority of which were concentrated in

the boundary layer and wake region. Figure 5.2 shows the mesh used. The resolution,

element distribution and domain size are consistent with those used successfully in the

previous similar studies. At the cylinder surface, a time-dependent Dirichlet condition

was utilised that varied sinusoidally in time according to the driven rotational oscilla-

tion. To account for the translational oscillation, the calculations were performed in an

accelerating frame of reference attached to the cylinder. The frame acceleration was

added to the Navier–Stokes equations to account for this. The method employed is

second-order in time with the Courant condition controlling the timestep. The unit

time step employed was 0.010 (≈ 1250 timestep/cycle) for β ≤ 70 and 0.005 (≈ 2500

timestep/cycle) for β ≥ 70.

For the Floquet stability analysis, perturbation equations were formed by decom-

posing the flow into base and perturbation components, subtracting the base flow, and

linearising the result. These equations were then integrated forward in time using the

same spectral-element technique as outlined above. Floquet multipliers were calculated

using the change to the perturbation field at successive instances one period apart. The

dominant multiplier is obtained by taken the ratio of (a norm of) the perturbation field

and the field one period before. This ratio converges to the dominant multiplier after

many periods. It is possible for the multiplier to oscillate. This is an indication that

the Floquet multiplier does not have the same period as the base flow. In this case
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the dominant multipliers are complex conjugate pair. The complex multipliers were

resolved using Arnoldi decomposition.

Figure 5.3 shows a validation of our technique with previous numerical simulations

of Elston et al. (2006). Here, the magnitude of the dominant Floquet multiplier as a

function of wavelength is shown. The validation case studied is a pure translational

motion with KCt = 2.75 and βt = 80 (Ret = 220), corresponding to regime B of

Tatsuno & Bearman (1990). The agreement was found to be excellent throughout the

range tested.

5.5 Experimental technique: Spanwise wavelength mea-
surement

The technique used to extract the dominant spanwise wavelength, λ, from the experi-

mental measurements is based on spatial autocorrelation. The spatial autocorrelation

function contain a peak, which corresponds to the regular spacing of vorticity or velocity

variations along the span. This gives the so-called wavelength. In the following sections

a brief mathematical definition of the autocorrelation is given, which is followed by the

explanation of how the technique is implemented.

5.5.1 Autocorrelation

Autocorrelation is the cross-correlation of a signal with itself. Informally, it gives the

similarity between observations as a function of the time or space separation between

them. It is a mathematical tool for finding repeating patterns, such as the presence

of a periodic signal which has been buried under noise, or identifying the missing

fundamental frequency in a signal implied by its harmonic frequencies. It is often used

in signal processing for analysing functions or series of values, such as time domain

signals (Fouras 1997). In this chapter the autocorrelation function is used to identify

the spanwise wavelengths of the vortex structures along the span of the cylinder.

In statistics, the autocorrelation of a random process describes the correlation be-

tween values of the process at different points in time, as a function of the two times or

of the time difference. Let X be some repeatable process, and i be some point in time

after the start of that process (i may be an integer for a discrete-time process or a real

number for a continuous-time process). Then Xi is the value (or realisation) produced

by a given run of the process at time i. Suppose that the process is further known to
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have defined values for mean µi and variance σ2i for all times i. Then the definition of

the autocorrelation between any two times s and t can be defined as

R(s, t) = E[(Xt − µt)(Xs − µs)] , (5.7)

where “E” is the expected value operator.

If Xt is a second-order stationary process, a stochastic process whose joint proba-

bility distribution only applied to pairs of random variables from the time-series does

not change when shifted in time or space, then the mean µ and the variance σ2 are

time-independent, and further the autocorrelation depends only on the difference be-

tween t and s: the correlation depends only on the time-distance between the pair of

values but not on their position in time. This further implies that the autocorrelation

can be expressed as a function of the time-lag, and that this would be an even function

of the lag τ = t− s. This gives the more familiar form

R(τ) = E[(Xt − µ)(Xt+τ − µ)] , (5.8)

and the fact that this is an even function can be stated as

R(τ) = R(−τ). (5.9)

Note that the above discussion focuses on time as the independent variable. For the

current context, the method can be used to extract spatial wavelength by replacing time

by a spatial variable, in this case the spanwise distance. The spatial autocorrelation

function will contain a peak at the origin and two symmetrical secondary peaks, as

shown in figure 5.4. The distance between the peak at the origin and the secondary

peak corresponds to the distance, here spanwise wavelength (λ/D), between the velocity

or vorticity distribution peaks.

5.5.2 Wavelength Extraction

In order to be able to extract the wavelengths of the spanwise vortex structures along

the span of the cylinder, the V velocity and ωx vorticity contours were extracted from

the instantaneous results at 16 positions behind the cylinder with an interval of 0.5D

from the surface of the cylinder, i.e. x/D = 0.5. Figure 5.5 shows the positions of

lines along which data were extracted. Then, at each position behind the cylinder the

spatial autocorrelation is evaluated for each set of V velocity and ωx vorticity fields,
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Figure 5.4: Spatial autocorrelation function for β=90, based on streamwise vorticity.
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Figure 5.5: Lines showing the positions where the spatial autocorrelations are calculated
and the streamwise and V velocity data are extracted.

separately. Figure 5.4 shows a sample of the autocorrelation curve obtained for the

ωx vorticity data. The distance between the central peak and dominant side peaks

of the autocorrelation curve corresponds to the predominant wavelength of the wake

at that position/time, i.e. λ. Finally a histogram of all of the wavelengths extracted

for each position (for more than 500 temporal samples) is prepared. Using the proba-

bility frequency distribution, the standard deviation and the dominant wavelength of

the spanwise variations corresponding to the peak of the probability distribution, are
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Figure 5.6: (left): Wavelength histogram of spanwise structures resulted from autocorrela-
tion of ωx fields over 500 data sets. The red line illustrates a Gaussian fit to the histrogram;
(right): Distribution of wavelengths at different y/D locations behind the cylinder; for β = 90.
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Figure 5.7: Vorticity contours around the cylinder undergoing combined translational and
rotational oscillation at KC = Φ = π and β = 90. The numerical result is presented on the
left, and the experimental result on the right. The experimental result is a phase-average of
10 successive cycles. The phase shown corresponds to t = 0. The dashed lines (enclosing
blue) correspond to clockwise direction of vorticity (negative), and the solid lines (enclosing
red) correspond to counterclockwise direction of vorticity (positive).

identified. Figure 5.6a shows a sample of the histogram prepared for the ωx vorticity

data. Figure 5.6b shows the density distribution of the spanwise wavelengths at each

position for more than 500 sets. All the wavelength results in the following sections are

extracted using this method.

5.6 Results and discussions

In this section the results are presented in two parts. In the first part, the wake profiles

around the cylinder in the streamwise direction (xy-plane) for KC = Φ = π and β = 90

are examined, and the second part investigates the three-dimensionality of such flows

for KC = Φ = π for the range of 20 < β < 200 (corresponding to 62.8 < Ret < 628).
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5.6.1 Wake profile in the streamwise direction

It has previously been found by Blackburn et al. (1999) that for the case with KC =

Φ = π and β = 90, and vertical cylinder translation, vorticity transport is predom-

inantly in the horizontal direction. Figure 5.7 clearly shows this vorticity transport

to one side of the cylinder as well as a direct comparison between results from the

present experimental and numerical investigation. Figure 5.7 also shows the excellent

qualitative agreement between the two methods used. Figure 5.8 depicts the sequence

of one complete cycle of translational and rotational oscillation, from the numerical

simulations. Experimental results of figure 5.7 clearly shows the transportation of wake

vorticity in the perpendicular direction to the axis of oscillation.

The cylinder motion, based on equations 3.3 and 3.9, starts from the centre towards

the top of the page, i.e. the positive direction of y-axis, and at the same time starts

rotating clockwise, i.e. the negative direction of rotation angle, θ. Figure 5.8c shows the

instant when the cylinder is at its maximum y-displacement position and most negative

angular displacement.

As the oscillations are in opposing phase, the maximum surface-tangential compo-

nent of cylinder acceleration is located on the left-hand side of the cylinder, i.e. the

accelerations in that location are additive rather than in opposition. This is shown

schematically in figure 5.9. The acceleration vectors on the right-hand side of the cylin-

der cancel each other, whereas on the left-hand side they add together. This is in fact

the effect of rotary oscillation that increases accelerations on one side of the cylinder

and decreases them on the other side during one half cycle. This leads to the formation

of a vortex pair which is unbalanced. The yellow vector in figure 5.9 shows the resultant

acceleration vector tangent to the cylinder surface. This sequence is only shown for the

first three phases of the oscillation. Morton (1984) has shown that this combination

of accelerations will result in (kinematic) generation of vorticity on that side of the

cylinder while the cancellation of accelerations on the other side results in little direct

vorticity generation on the right-hand side. In this figure it can clearly be seen that the

regions of highest vorticity formation, vortex pairs, are concentrated on the left-hand

side of the cylinder. The direction of rotation of the vortices will result in their being

strained and directed to only one side of the cylinder and perpendicular to its transla-

tion axis. On the other hand this pair of vortices moves away from the cylinder in the

direction of cylinder translational and rotational oscillation, due to one of the vortices
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being stronger, which acts to cause the trajectory of the pair to bend. Because two

pairs are being shed in a complete cycle of motion, the cylinder trajectory components

are cancelled out leaving a vortex path that is directed away from the oscillating cylin-

der. The vortex sheets formed as a result of the oscillations rapidly cross-annihilate and

diffuse in the wake, as can be seen in the vorticity contours on the right in figure 5.8,

so that with increasing distance from the cylinder the vortex sheets rapidly weaken. As

Elston (2005) has also stated, at a distance of approximately five diameters downstream

the vorticity has cross-annihilated to a level below the magnitude of the smallest con-

tour. Based on the vorticity fields, this will necessarily result in thrust generation in

this direction, but it has not been effectively measured experimentally. Elston (2005)

showed the H1 symmetry (refer to Appendix A) about the wake centreline, as can also

be clearly seen in figures 5.7 and 5.8. The thrusting effect appears to occur in a lock-in

regime and, as reported earlier by Blackburn et al. (1999), and would be expected to

occur for all cases where the flow structure is as shown in figure 5.1a. However, it may

be the case that there is a threshold set of amplitudes required to establish this but

this has not been determined to date. The phase angle between the motions influence

the degree to which cross-annihilation of vorticity occurs and the distance from the

cylinder at which vorticity persists (as was shown in figure 5.1).

It should be noted that the experimental result shown in figure 5.7 is phase-averaged

over just few cycles. It was observed that the vorticity concentrations convected to

the right-hand side of the cylinder started flapping after few cycles, hence making it

impossible to phase-average. This flapping is shown in figure 5.10. It can be seen that

the shed vortices are at an angle to the x-axis and not parallel to it as was shown

in figure 5.7. The developing unsteadiness of the flow didn’t allow averaging over

larger number of cycles. The experiments were repeated several times and identical

results were obtained. This difference between the experimental and numerical flows

suggested that although this flow has been investigated previously by two-dimensional

numerical codes and has initially been examined here experimentally in a 2D plane, it

may not be two-dimensional, and may undergo transition to three-dimensionality soon

after startup. This suggested scrutinising the flow in the spanwise direction to find an

answer to why the flows don’t completely match. In §5.6.2 the three-dimensionality of

the flow is addressed.
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Figure 5.8: Flow produced by a cylinder with combined oscillatory translation and rotation.
This figure shows the sequence and development of the ωz vorticity for one complete cycle,
(a) t = 0 to (h) t = 7T/8 at KC = Φ = π and β = 90 where T is the period of oscillation.
The radial line shows the rotational displacement of the cylinder. The dashed lines (enclosing
blue) correspond to clockwise direction of vorticity (negative), and the solid lines (enclosing
red) correspond to counterclockwise vorticity (positive).
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(c) t = 2T/8 t/T
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(a) t = 0 t/T
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Figure 5.9: Schematic of the acceleration vectors at KC = Φ = π and β = 90. The sequence
and development of the ωz vorticity for the first three phases of oscillation, (a) t = 0 to (b)
t = 2T/8, is also shown. The radial line shows the rotational displacement of the cylinder.
The dashed lines (enclosing blue) correspond to clockwise direction of vorticity (negative),
and the solid lines (enclosing red) correspond to counterclockwise vorticity (positive). The
green and purple vectors denote the translational and rotational components, respectively.
The resultant vector is also shown in yellow. The phase at which the vectors are depicted is
shown as well in this figure, with the red line showing the y(t) and the blue line θ(t). The
crosshairs denote the fixed point that the cylinder is oscillating about.
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Figure 5.10: Instantaneous experimental vorticity contours around the cylinder undergoing
combined translational and rotational oscillation at KC = Φ = π and β = 90. The phase
shown corresponds to t = 0. The dashed lines (enclosing blue) correspond to clockwise direc-
tion of vorticity (negative), and the solid lines (enclosing red) correspond to counterclockwise
direction of vorticity (positive). The snapshots are taken after (a) 12 and (b) 68 cycles.

5.6.1.1 Comparison between experimental and numerical results: Effect of
varying Φ

As discussed above, figure 5.1 shows the effect of varying phase difference angles. It is

seen that by changing the phase angle, the flow pattern around the cylinder changes

dramatically. As the phase angle deviates from the swimming cylinder case, Φ = π, the

vorticity concentrations are not convected to one side of the cylinder perpendicular to

the direction of the axis of oscillation. For the first time the effect of varying phase angle

difference is investigated experimentally. Figure 5.11 shows the comparison between the

experimental and numerical results for a phase difference angle other than the swimming

cylinder case.

Figure 5.7 shows the flow around the combined oscillatory cylinder at Φ = π. This

phase angle results in a net force in the x-direction. The vortex pair shown in figures 5.7

and 5.11 causes a fluid velocity through its centre that is from left to right. This vortex

pair is then carried downstream from the cylinder by the flow. The detailed mechanism

by which the flow is generated at the Φ = π case is discussed in §5.6.1. This fluid jet is

clearly depicted in figures 5.12 and 5.13. Figure 5.12a shows the flow direction on the

right-hand of the cylinder being from left to right. The same pattern can also be seen

in figure 5.12b. Figure 5.12b also shows the unbalanced flow around the cylinder as

was discussed in §5.6.1. By moving away from the cylinder and advecting downstream

the effect of cross-annihilation of vortices can directly be seen here. Moving away from

the body decreases and eventually eliminates the unbalanced vortices. Figure 5.13
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(a) (b) (c)

Figure 5.11: Contours of vorticity around the cylinder undergoing combined translational
and rotational oscillation at KC = π, β = 90 and Φ = π/2. (a) Numerical simulation, (b)
Instantaneous PIV, (c) Phase-averaged PIV, taken at t/T = 0 from numerical simulation
explained in §5.4. The blue corresponds to clockwise direction of vorticity (negative). The
red corresponds to counterclockwise direction of vorticity (positive).

shows the distribution of V velocity behind the cylinder at three different locations

of x/D = 1.0, 1.5 and 2.0. This figure also shows the unbalanced flow around the

swimming cylinder also with the jet-type flow generated at the right-hand side of the

cylinder. Figure 5.13 also shows that the jet strength decreases as it moves away from

the cylinder. It should be mentioned that the wake vortex structure for Φ = 0 is

identical to that of the Φ = π case described above, except that wake appears on the

opposite side. This is due to the symmetry of the oscillating functions. This has been

shown by Blackburn et al. (1999).

As shown in figures 5.1, 5.7 and 5.11, when Φ varies from the swimming cylinder

case, the flow patterns also changes from that of the swimming cylinder case. At

Φ = π/4, for example, the shed vortices are no longer forming into consistent vortex

sheets to one side of the cylinder. This is clearly seen in figure 5.1, where recently shed

vortices are located both above and below the cylinder. The vortices at this phase angle

still retain some connection with the cylinder.

Figure 5.11 shows the wake flow structure for the Φ = π/2 case. The formation

of vortex pairs that move off into the fluid appear to be the dominant characteristic

of this phase angle. There appears, in comparison to other cases, to be less cross-

annihilation of the vorticity, presumably due to the greater distance between vorticity

concentrations.
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y/D

x/D x/D

Figure 5.12: Experimental phase-averaged velocity vector and V velocity distribution be-
hind the swimming cylinder at t/T = 0, KC = Φ = π and β = 90. (a) Velocity vectors, (b)
V velocity distribution.

5.6.2 Wake profile in the spanwise direction

This section describes the results obtained for the wake profile of the swimming cylinder

along the span of the cylinder. As it was mentioned earlier, the flow in the streamwise

direction for the swimming cylinder case was quasi-periodic and for a given phase in

time only few cycles could be averaged, see §5.6.1. In order to investigate this in

more detail a series of experiments were conducted in the spanwise direction of the

cylinder as well. Section §3.3.3.2 and figure 3.4 described and showed the PIV set-up

in the streamwise direction and provided a schematic of the geometry of the cylinder,

respectively. In this section the PIV set-up and regions of interest along the span of

the cylinder, and location of the cameras are discussed. In the following sections, the

results of the PIV measurements, including extracted wavelengths, are revealed. At the

end of the section, DNS and linear Floquet stability analysis are used to interpret the

experimental results in more detail.

5.6.2.1 Spanwise PIV set-up

This section describes the position of the laser sheets and camera used in the spanwise

PIV experiments. The coordinate system used in this study is comprehensively defined

in §3.3.2.1 and thus is not to be covered here. The only notable differences in the

PIV set-up for the spanwise direction measurements, xz and yz-planes, in comparison
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y/D

V
Figure 5.13: Experimental phase-averaged V velocity distribution for three different loca-
tions, x/D = 1.0 (solid line), x/D = 1.5 (dashed line) and x/D = 2.0 (dashed double dot
line), behind the swimming cylinder at t/T = 0, KC = Φ = π and β = 90. The jet-like flow
is clearly seen in this figure.

to the streamwise direction measurements, xy-plane, are the position of the camera

and laser sheet. Figure 5.14 shows the schematic of the PIV imaging system used

for the spanwise measurements. As shown in figure 5.14 the camera in this case was

mounted on the side of the channel/tank and the laser was fired from underneath the

test section. Figure 5.15 shows the spanwise coordinate system with laser sheets. The

yz and xz-planes were used for the spanwise measurements in the present study. Most

of the experiments were conducted in the yz-plane. Figure 5.16 shows different camera

positions used in this study. In order to ensure the reliability and repeatability of

the experiments, experiments with different camera positions were conducted, however

position (a) of figure 5.16 was used for most of the experiments.

5.6.2.2 Effect of varying Reynolds number

The non-periodicity of flow around the swimming cylinder which was seen in the stream-

wise direction and already discussed in §5.6.1, suggested three-dimensionality of the flow

for the swimming cylinder case at least at higher β (Re). In order to investigate the

possible three-dimensionality, spanwise flow measurements using the PIV technique,

were conducted.

Figures 5.17b and 5.18b show the vorticity field contours (ωx) and y-velocity fields

(V ) along the span of the cylinder, when β = 90, i.e. the swimming cylinder case.

Clearly, as can be seen from these figures, the flow is three-dimensional with regular
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Figure 5.14: Schematic of spanwise PIV imaging system.
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Figure 5.15: Spanwise coordinate system with laser sheets. Double arrow indicates the
direction of cylinder translational oscillation.
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Left

(a) (b)

(c) (d)
Figure 5.16: Schematic of camera positions in the xy-plane (as shown in figure 5.15) for
the spanwise PIV measurements. The thick green line denotes the laser sheets, the blue box
shows the camera and the dashed red boxes represents the region of interest.

and stable mushroom-shape structures distributed along the span of the cylinder, having

an apparently constant characteristic wavelength (λ). These structures are found to be

steady and fixed in position after just a few cycles from the beginning of the motion.

The results shown in figures 5.17 and 5.18 are all phased-averaged results over at least

500 cycles. The three-dimensionality of the flow along the span of the cylinder indicates

a transition from two-dimensional to three-dimensional flow, as discussed in Chapter 2.

Next the effect of varying Reynolds number on three-dimensionality of the flow

is investigated. The KC number and the Φ angle were held constant and the same

as the swimming cylinder case for all the spanwise experiments. The independent

variable varied was β, which is equivalent to varying the Reynolds number (refer to

equation 3.6). As for §5.6.1, the non-dimensional frequency was set to be the same for

both the translational and rotational oscillation, i.e. βt = βθ = β. The non-dimensional

frequency was chosen to cover the range 45 ≤ β ≤ 200, consequently the range of

Reynolds number covered was 141 ≤ Re ≤ 628.

Figures 5.17 and 5.18 show the experimental spanwise distribution of flow for dif-

ferent values of β at KC = Φ = π. They show the vorticity field (ωx) contours and

the y-velocity field (V ) along the span of the cylinder, respectively. The measurements

are taken in the yz-plane shown in figure 5.15 and the position of the camera is the

right-hand side shown in figure 5.16a. The three-dimensional structures shown ap-

pear regular and stable, with a constant characteristic wavelength. Further analysis

of the experimental data, using autocorrelation, as discussed previously and shown in

figure 5.19, shows this to be the case.
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Figure 5.17: Experimental phase-averaged ωx vorticity iso-contours for different β values
at KC = Φ = π. (a)β = 45, (b)β = 90, (c)β = 120 and (d)β = 150. ωx vorticity iso-contours;
the dashed lines (enclosing blue) correspond to clockwise direction of vorticity (negative),
and the solid lines (enclosing red) correspond to counterclockwise vorticity (positive). λ in
(a) denotes the characteristic wavelength.

Figures 5.17 and 5.18 show that as the Reynolds number increases the spanwise

variation changes slightly. The structures are found to remain reasonably regular but

are not as stable as for the lower Reynolds number cases. Despite the increasing irreg-

ularity the discrete wavelength is preserved and remains approximately the same. A

series of experiments at lower Reynolds numbers have also been conducted. The exper-

iments show that at Reynolds numbers less than about 100, the flow is two-dimensional

and there is no evidence of three-dimensional structures along the span of the cylinder.

Figure 5.20 shows approximately parallel streamlines indicating two-dimensional vor-

tex shedding around the cylinder, Re ≈ 63. In order to scrutinise and understand the

instability and three-dimensionality of such flow in more detail, linear Floquet analysis

has been used.

Figure 5.21 shows the Floquet multipliers, |µ|, for several Reynolds numbers for a

spanwise instability at KC = Φ = π. Figure 5.21a shows the value of |µ| as a function of

the spanwise wavelength, λ/D. This figure clearly depicts the emergence of two distinct
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Figure 5.18: Experimental phase-averaged V , y-velocity fields results of the spanwise dis-
tribution of flow for different β values at KC = Φ = π. (a)β = 45, (b)β = 90, (c)β = 120
and (d)β = 150.
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Figure 5.19: Spatial autocorrelation function for β=90 and 100 cycles, based on streamwise
vorticity. The thin color lines show the autocorrelation curves for each of the cycles and the
thick black line illustrates the average of them.
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Figure 5.20: Experimental streamline results of the spanwise distribution of flow for β = 20
at KC = Φ = π.

instability modes, a short and a long wavelength mode. The longer wavelength mode

has a critical Reynolds number of Rec ≈ 100, at a critical wavelength of λ ≈ 1.8D,

figure 5.21b. The second instability first occurs at a much higher Reynolds number

of Rec ≈ 226, the peak of red curve in figure 5.21b, for a wavelength of λ ≈ 0.7D.

The experiments show that the spanwise wavelength observed in the wakes at various

Reynolds numbers was close to 2D at onset, decreasing to about 1.5D at Re = 600.

These values are broadly consistent with the wavelengths corresponds to the fastest

growing modes. The thick red and blue solid lines in figure 5.21b corresponds to

the fastest growing wavelength for the short and long wavelength modes respectively,

as the Reynolds number is varied. Figure 5.21b also shows the unstable Reynolds

number range for each mode as function of the preferred wavelength. The experimental

wavelength variation with Reynolds number is marked on this figure by the symbols.

This matches the predicted preferred wavelength very well.

These long and short wavelength modes have the same spatio-temporal symmetries

as the mode A and B wake modes for a stationary circular cylinder in a uniform flow

(see Williamson 1988), respectively. These two symmetry breaking bifurcations are

the only ones possible with the same period as the base flow, as was shown using

group theory arguments by Blackburn et al. (2005). It is interesting to note that

the symmetry breaking transitions occur in the same order as for a circular cylinder,
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even though the two-dimensional base wake flow and perturbation field distributions are

completely different. Note that for different body geometries, the transition order can be

different, such as for an elongated streamlined cylinder with a leading-edge and a square

trailing-edge, for which the transition order is reversed (Ryan et al. 2005). Perhaps of

even more interest is that for a circular cylinder wake, the saturated second critical

mode, mode B, dominates the flow dynamics as the Reynolds number is increased

above the two transitions (Wu et al. 1996); in fact, for Reynolds numbers close to

300, the wake appears to be in an almost pure mode B state (Williamson 1996b).

Notably, this corresponds to the Reynolds number at which the mode B growth rate

grows to exceed that of mode A. This is not the case here. Despite examining the

wakes experimentally at Reynolds numbers up to 640, there was no evidence of the

shorter wavelength instability in the wake. There was also an attempt to artificially

force the wake at the predicted optimal shorter wavelength, i.e. λ/D ≈ 0.7. This

also failed to generate any long term change to the wake, i.e., the shorter wavelength

mode was visible initially but the wake quickly reverted to the longer wavelength state,

similar to that shown in figures 5.17 and 5.18 for the unperturbed case. For that

investigation, the wake was artificially forced by placing either thin tapes, thin wires

or small O-rings on the cylinder. Figure 5.22 shows the images depicting the methods

used for forcing the wake at the critical short wavelength. Figure 5.23 also shows the

instantaneous y-velocity component fields of the flow along the span of the cylinder

for three different cycles at KC = Φ = π and β = 90. The results clearly show that

initially the shorter wavelength mode is visible but after few cycles it reverts to the

longer wavelength state. The same results were achieved by using the thin wires and

tapes (not shown here). The experimental runs continued for more than 500 cycles and

were repeated several times on different days. The longer wavelength mode was always

the result after sufficient time. In order to more completely investigate the existence

of the shorter wavelength mode, different spanwise planes were also examined. These

planes are shown in figures 5.16b, c and d. Figure 5.24 shows the V field in the plane

shown in figure 5.16b. The result for the xz-plane showed no evidence of any short

wavelength instability. The observed wavelength corresponds to the long wavelength

mode. Figure 5.25 also shows the V field along the span in planes corresponding to

positions in figures 5.16c and d, respectively. None of the cases examined showed

evidence of the shorter wavelength instability for long times.
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Figure 5.21a clearly shows that linear theory predicts that the growth rate of the

shorter wavelength mode quickly overtakes the longer wavelength mode, so this is some-

what surprising. Of course, the growth and nonlinear saturation of the long wavelength

mode changes the base flow, so the result is not inconsistent.

Figure 5.26 shows the perturbation ωz vorticity contours of the short and long

wavelength modes. This clearly shows the spatio-temporal symmetries of the two modes

in terms of the perturbation vorticity, for the long wavelength mode. For the long

wavelength mode the flow reflects about the centreline and reverses in sign; for short

wavelength mode the sign reversal does not occur. These symmetries are the same as

for modes A and B, respectively. The mode structure of both modes is quite complex,

with substantial mode amplitude both near the cylinder and in the wake.

5.7 Chapter Summary

In this chapter the development of three-dimensionality of flow around a cylinder under-

going a combined translation and rotation oscillatory motion has been considered, both

experimentally and numerically. The study is restricted to the case with the phase angle

set to Φ = π, and for large amplitude oscillations, corresponding to a swimming cylin-

der. Because of this phase difference, the oscillation velocities at the cylinder surface

cancel on one side and reinforce on the other. This leads to preferential vorticity genera-

tion and transport on one side, and the cylinder rotational motion sweeps this vorticity

around to the other side producing a thrust wake. Although previous two-dimensional

simulations have shown that this mechanism leads to self propulsion orthogonal to the

translational oscillatory motion, the question of whether this will be effective at higher

Reynolds numbers remains. This work shows that the wake becomes three-dimensional

at a Reynolds number of approximately 100 due to a three-dimensional instability with

a spanwise wavelength of approximately 2 cylinder diameters. The Floquet analysis

shows that the two-dimensional base flow is also unstable to another three-dimensional

instability with a shorter wavelength (λ ≈ 0.7D) for Re ≥ 226; however, the exper-

imental results, even at much higher Reynolds numbers do not show any sign of the

occurrence of this mode. The experimental results indicate that the development of

three-dimensionality in the wake leads to significant distortion of the previously two-

dimensional wake. The effect on the self-propulsion is yet to be determined.
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Figure 5.21: Floquet multipliers for several Reynolds numbers for the spanwise instability
at KC = Φ = π. (a) Floquet multipliers as a function of spanwise wavelength. The open
(closed) symbols represent the shortest (longest) wavelength mode. Circles and black line:
Re = 377; Squares and blue lines: Re = 283; Diamonds and red line: Re = 226; Triangles
and magenta line: Re = 141. (b) Comparison of the Floquet analysis predicted wavelength
values as a function of Reynolds number with experimental measurements. The blue line cor-
responds to the wavelength range of the longest spanwise wavelength mode. The red dashed
line corresponds to the extent of the shortest spanwise wavelength mode. The thick lines
correspond to the predicted dominant wavelengths. The black circles represent experimental
measurements with error bars reporting the standard deviation of the measurements.

178



(a) (b) (c)

Figure 5.22: Photographs of the cylinder showing the methods used to artificially force the
wake at the predicted optimal shorter wavelength, i.e. λ/D ≈ 0.7. (a) Thin tape; (b) Thin
and short wires; (c) Small O-rings.
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Figure 5.23: Experimental instantaneous V field results of the spanwise distribution of
flow while artificially forcing the wake at the critical short wavelength, i.e. λ/D ≈ 0.7 for
KC = Φ = π and β = 90. The results are obtained using forcing with O-rings.

179



z
D

x/D

Figure 5.24: Experimental instantaneous V field taken at the xz-plane (see figure 5.15) for
KC = Φ = π and β = 90.
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Figure 5.25: Experimental instantaneous V fields of the spanwise distribution of flow taken
in a plane at x/D = 0.5 (left) and x/D = 0.25 (right) parallel to the yz-plane (see figure 5.15)
for KC = Φ = π and β = 90.

Figure 5.26: Contours of streamwise perturbation vorticity taken at KC = Φ = π and
β = 90 (Re ≈ 283) and when the cylinder is at t = 0 for: (left) λ = 1.8D the long wave-
length; (right) λ = 0.7D the short wavelength. The dashed lines correspond to the base flow
clockwise direction of vorticity (negative), and the solid lines correspond to the counterclock-
wise vorticity (positive).
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Chapter 6

Combined translational and
rotational oscillatory motion in
free-stream

In this chapter, the focus is on the experimental investigation and numerical results of

the wake flow created in a free-stream behind a cylinder undergoing forced combined

oscillatory motions. The motion consists of two independent oscillations: cross-stream

translation and rotation. The previous chapter investigated the combined oscillatory

motion in a quiescent fluid, here the effect of another independent variable, i.e. Reynolds

number, is investigated. Previous studies have extensively investigated the effect of both

motions individually on cylinder wakes; however, the investigation of their combined

effect is new. The motivation lies in its application to vortex-induced vibration (VIV)

and its possible suppression, and to bio-mimetic motion (refer to Chapter 2). The

primary focus here is on the effect of the phase angle difference between the two motions.

The effect of change of translational amplitude has also been briefly investigated. In

general, the results show that there is an unexpected loss of synchronisation of the

wake for a finite range of phase differences at a given Reynolds number. This chapter

takes the form of first briefly describing the problem to be solved, followed by the

experimental arrangements and parameters, then the results are presented, including a

comparison with numerical results. The numerical methods used to acquire these are

the same as those described in §5.4.

6.1 Introduction

Offshore structures are often subjected to VIV; if the structure’s motion becomes syn-

chronised with the vortex shedding the resulting resonance may cause its premature
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structural failure. In an effort to explore ways of suppressing VIV here we investigate

the effect of the Reynolds number and the phase angle difference between the rota-

tional and translational motions, Φ. Our aim is to understand the influence of these

parameters on the synchronisation of a cylinder wake under forced combined oscilla-

tory motion. With an in-depth understanding of the flow physics it may be possible

to propose novel means of actively or passively suppressing the lock-on between vor-

tex shedding and transverse oscillation. Also, we are interested in the application to

bio-mimetic motions and in particular to carangiform motion (Blackburn et al. 1999).

There has been considerable research on the effect of either transverse or rotational os-

cillations on cylinder wakes, as reviewed by Williamson & Govardhan (2004); Sarpkaya

(2004) and Chapter 2. These primarily focused on the translational oscillation due to

their focus on VIV. There have also been studies of the effect of rotational oscillation

on wakes, such as Tokumaru & Dimotakis (1991) and Filler et al. (1991). Previous nu-

merical work has also examined the effect of the combined motions in quiescent fluids

(Blackburn et al. 1999) and when there is flow past the cylinder (Kocabiyik & Al-

Mdallal 2005). Kocabiyik & Al-Mdallal (2005) didn’t examine the effect of the phase

angle difference between the two motions in the free-stream. Previous results of Elston

(2005) and Leontini et al. (2006a) indicate that the phase angle difference between the

two motions is important and this is the primary focus of the research discussed here.

6.2 Experimental Arrangement and Parameters

The motion profiles and the parameters involved in combined translational and ro-

tational oscillatory motion of a circular cylinder in a free-stream were described in

Chapter 3 and §3.2, as shown in figure 3.4. Equations 3.3 and 3.9 defined the harmonic

motions of the cylinder, translationally and rotationally. It is seen from the equations

that adding the rotational oscillation to the translational motion adds three more in-

dependent variables to the problem; these are the rotational amplitude, frequency and

the phase angle difference between the two oscillatory motions. These are in addition

to the translational amplitude and frequency and free-stream velocity, i.e. Reynolds

number. This results in the six dimensionless variables given below, which combine to

determine the state of the cylinder at any time:
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• The translational Keulegan-Carpenter number:

KCt =
Umaxt

ftD
=

2πAt
D

(6.1)

• The translational frequency ratio:

FRt =
ft
fN

(6.2)

• The rotational Keulegan-Carpenter number (Aθ in radian):

KCθ =
Umaxθ

fθD
= πAθ (6.3)

• The rotational frequency ratio:

FRθ =
fθ
fN

(6.4)

• The phase angle between translation and rotation motions:

Φ (6.5)

• The Reynolds number:

Re =
U∞D

ν
, (6.6)

The cylinder’s velocity ratio, between the translational and rotational motions is ex-

pressed as:

VR =
Umaxt

Umaxθ

=
βt
βθ

KCt
KCθ

, (6.7)

and the frequency ratio between the translational and rotational motions as:

FR =
ft
fθ
. (6.8)

The experiments were conducted in the same water channel and with the same

cylinder model as discussed previously (see Chapter 3). The averaged fixed upstream

velocity was U∞ = 60.6mm/s giving Reavg = 1 322. The frequencies of the oscillations

were fixed to be close to the natural frequency (T−1 = ft = fθ = 0.6Hz≈ fN ). Due

to the change in the temperature of the water the actual Re number of each set of

experiments might be marginally different from the averaged value, which is presented

for each set of experiments in the relevant figure. The natural frequency was found to be

fN ≈ 0.625Hz. The Strouhal number based on this frequency is St ≈ fND/U∞ = 0.203

and the Strouhal number of the forcing is Stt ≈ ftD/U∞ = 0.198.
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Case At Aθ(rad) VR Umaxt(mms−1) Umaxt/U∞

1 D/8 0.25 1.0 9.4 0.16

2 D/8 1.0 0.25 9.4 0.16

3 D/4 0.5 1.0 18.8 0.31

4 D/4 1.0 0.5 18.8 0.31

5 D/2 1.0 1.0 37.7 0.62

6 5D/8 1.25 1.0 47.1 0.78

7 3D/4 1.0 1.5 56.5 0.93

Table 6.1: Summary of the values of At and Aθ used when FR=1.0.

A range of translational and rotational amplitudes have been used. These ampli-

tudes when combined with the equal frequencies used result in equal maximum veloc-

ities from the translational and rotational motions, i.e. VR=1. When At was varied

Aθ was also varied to provide equal maximum velocities from the translational and

rotational motions. The effect of varying VR was also investigated. A summary of

these values is given in Table 6.1. The maximum velocity from the forcing is equal to

Umax = 2πftAt = 37.7mms−1, which corresponds to a ratio of Umax/U∞ = 0.62. All of

the experiments started after at least 20 cycles from the start of the motion to ensure

that the flow had reached its steady state condition.

Prior each set of experiments the flow approximately 10D upstream and downstream

of the fixed cylinder was measured. The upstream results were used to accurately obtain

the Reynolds number of each case and the downstream results were used to measure the

most accurate as possible of the natural vortex shedding frequency. Figure 6.1 shows a

sample of velocity vectors taken at the upstream of the cylinder. More than 100 frames

were measured in every set, then the instantaneous results were averaged temporally

and spatially to find the averaged displacement vector in the x- and y-directions. Hence

using the magnification factor, M, the free-stream velocity was calculated. Figure 6.2

also shows instantaneous and phase-average contours of vorticity, U/U∞ and V/U∞

velocities taken downstream of the fixed cylinder.

In order to obtain the most accurate results for the natural vortex shedding fre-

quency PIV measurements at different small regions of interest, mainly located at the

shear layer or downstream of the cylinder in the near-wake where most of velocity

fluctuations occur, were performed. Measurements of flow in small regions of interest

allowed us to capture PIV images at higher frame rates, slightly more than 10 frames

per second. For each set of experiments 5000 images were captured and analysed. Once
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Figure 6.1: Velocity vectors upstream of the cylinder, measured to capture the free-stream
velocity prior each set of experiments. The flow is from left to right.

the displacement vectors for 5000 image pairs were obtained, the velocity vectors were

temporally averaged and the fluctuating U -velocity were calculated. They were then

analysed using a Fast Fourier Transform (FFT) technique to obtain the power spectra

and hence the natural vortex shedding frequency. Figure 6.3 shows a sample of the nor-

malised power spectrum, against maximum power spectrum, where a natural frequency

of 0.63 Hz is extracted. This method was applied once prior each set of experiments on

the combined oscillatory motion and once at the end of the experiments. This was to

ensure the natural frequency measurement was as accurate as possible with our existing

equipment, i.e. PIV technique.

The results presented here primarily show the effect of the phase difference, Φ, be-

tween the translational and rotational motion on the wake. This parameter was chosen

as its variation had led to interesting behaviour in a quiescent fluid. The mechanisms

and variety of such flows has been extensively explained in Chapter 5 and is purposely

brief here. If the maximum velocities of the oscillatory motions are equal, VR = 1.0,

it can be shown that there will be an uneven distribution of velocity at the surface of

the cylinder depending on the phase imposed. Indeed, for opposing phases (Φ = 180◦)

the two velocities will cancel on one side (orthogonal to the translational motion) and

add on the other side. This creates a vorticity difference between the two halves of

the cylinder, resulting in a wake flow orthogonal to the translational movement. This

mechanism is based on Morton (1984) who explained the vorticity generation mech-

anism that depends on the acceleration of the surface relative to the fluid. This has

been extensively explained and discussed in §5.6.1. The experimental method used

here to characterise the wake of this forced cylinder is the same as described previously,
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Figure 6.2: Instantaneous and phase-averaged contours of vorticity (top row), U (middle
row) and V (bottom row) velocities measured at the downstream of the fixed cylinder. The
flow direction is from left to right. The blue color in the top row shows negative vorticity
and the red color shows positive vorticity being in the counter-clockwise direction.
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Figure 6.3: A normalised power spectrum, against maximum power spectrum, extracted
from FFT analysis of fluctuating U velocity over 5000 images captured at 10Hz at the down-
stream of the fixed cylinder.

Chapters 4 and 5, with the exception of particle size and field-of-view dimensions. The

experiments of the present study were conducted using 56µm diameter particles and

the experimental set-up provided a field-of-view of approximately 6D × 6D. It was

possible to obtain a measurement resolution of 127 × 127 (total of 16129) vectors in

each field of view.

It should be noted that the same PIV set-up, experimental apparatus and numerical

techniques and codes were used here, hence was as outlined the same validation cases
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as those described in sections §4.3.1, §4.4.1, §5.3 and §5.4 hold here as well.

6.3 Results

In the following sections, the results are presented in four parts. Firstly, the effect

of varying the velocity ratio between the two oscillatory motions at a given Reynolds

number and equal frequency of harmonic oscillations is investigated. Secondly, a com-

parison between our experimental and numerical results at a lower Re number is made.

Thirdly, the effect of varying the frequency ratio between the oscillatory motions and

natural vortex shedding frequency of the cylinder, FRN , for the FR=1.0 case is explained

in brief. Fourthly, the effect of varying the frequency ratio between the rotational and

translational oscillatory motions is presented. The same sign conventions as before have

been used for the vorticity; red color represents positive or counter-clockwise vorticities

and blue color shows negative or clock-wise vorticities.

6.3.1 Effect of varying VR

Figures 6.4, 6.5, 6.6 and 6.7 present the near-wake phase-locked vorticity, root-mean-

square (rms) vorticity, U and V velocity contours, respectively, taken at t = T for

various phase angle differences at At = D/8 and VR = 0.25 (case 2 of Table 6.1). It

should be noted that the field-of-view does not allow us to see the flow structures that

occur further downstream, the near-wake flow structures are the main focus of this

study. The image at the top left of figures 6.4 and 6.5 shows the case where the two

motions are of opposite phase (Φ = 180◦). In this case we observe a 2S mode (2 single

vortices shed per period) in a single-row aligned in the medial plane but with a slight

offset from the centreline. The field-of-view does not allow us to see the double-row

that should occur further downstream (see for example Lamb 1932; Cimbala et al.

1988; Johnson et al. 2004). The classification of the different vortex modes is given

by Williamson & Roshko (1988) and was presented in Chapter 2 (see figure 2.7). As

the phase angle difference decreases, the spacing between the vortices and the cylinder

body also decreases while the offset of the vortices from the centreline slightly increases.

The vortices are not separated widely and remain less than 1D from the centreline.

The positive vorticity generated on the lower part of the cylinder also approaches the

cylinder until Φ = 60◦ where it becomes attached to the cylinder. Once the phase angle

difference decreases below than the in-phase case (Φ = 0◦) the positive vortex becomes
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Figure 6.4: Motion phase-locked vorticity contours taken at the motion-phase of t = T for
At = D/8, fN=0.6 Hz, VR=0.25, FR=1 and Re=1 291. The near-wake vorticity is shown
for different phase angle differences between the two imposed oscillatory motions. Vorticity
contours are evenly spaced over the range [−0.1 : 0.1]; with ∆ωz = 0.01.

detached again. Interestingly, no transition to different wake modes is observed over

the range of Φ angles studied, with the vortices being shed in a 2S configuration in

a single-row mode. Throughout the observations it can be seen that the near-wake

vortices remain coherent and are synchronised with the translational motion, at least

up to 6D downstream. This synchronisation is characterised by a repeatable vortex

shedding pattern. Figure 6.5 also shows the existence of the coherent vortex structures

in the near-wake. It can be seen that the velocity distribution is not altered. This

suggests that over this range of Φ angles examined at At = D/8 and VR = 0.25 the

vortices are synchronised with the translational motion, i.e. locked. Note that setting

the VR to such a small value means the rotational oscillatory speed is much faster than

the translational. A possible explanation for the lock-on is that the rotational oscillation

adds momentum to the flow. In all the sets of experiments in which the phase angle

difference was varied, the last case Φ = −180◦ is identical with the Φ = 180◦ case.

Figures 6.8, 6.9, 6.10 and 6.11 present the near-wake motion phase-locked vorticity,
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Figure 6.5: Motion phase-locked vorticity contours (lines) and root-mean-square vortic-
ity (gray-scale) contours taken at the motion-phase of t = T for At = D/8, fN=0.6 Hz,
VR=0.25, FR=1 and Re=1 291. The near-wake rms vorticity is shown for different phase
angle differences between the two imposed oscillatory motions. The flow direction is from left
to right. Root-mean-square vorticity contours are evenly spaced over the range [0.02 : 0.1];
with ∆ωz = 0.02, and vorticity contours are evenly spaced over the range [−0.1 : 0.1]; with
∆ωzrms = 0.01.

rms vorticity, U and V velocity contours, respectively, taken at t = T for various phase

angle differences at At = D/4 and VR = 0.5 (case 4 of Table 6.1). At the beginning of

the phase angle range, Φ = 180◦, nearly the same trend as in the previous case can be

observed. The vortices are shed in a 2S single-row mode. The vortices at this phase are

at a closer distance to the cylinder than that of figure 6.4. The vortices are also located

at a slight offset of the centreline. The same trend exists for up to Φ = 60◦ case. As

the phase angle difference angle is reduced to Φ = 30◦, in the direction towards being

in-phase, the vortices are arranged towards each other and are less well-aligned with

the medial plane, suggesting an earlier double-row transition. The vorticity pattern

remains a 2S mode but is changed to a double-row configuration. The vortices are

now shed widely apart (nearly 2D). This trends continues as the phase angle difference

passes Φ = −60◦. Reducing the phase angle difference beyond this point causes the
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Figure 6.6: Motion phase-locked U/U∞ velocity contours taken at the motion-phase of t = T
for At = D/8, fN=0.6 Hz, VR=0.25, FR=1 and Re=1 291. The velocity contours are shown
for different phase angle differences between the two imposed oscillatory motions. The flow
direction is from left to right. U/U∞ velocity contours are evenly spaced over the range
[−1 : 1.8]; with ∆(U/U∞) = 0.2.

vortices to come closer to the centreline and form a single-row configuration. The rms

vorticity, shown in figure 6.9, along with the U and V velocity contours (figures 6.10 and

6.11) have similar trend and configuration to the previously discussed case, confirming

that the near-wake still synchronises with the combined motion. However, we do see a

change of shedding mode from single-row to double-row.

Figures 6.12, 6.13, 6.14 and 6.15 present near-wake motion phase-locked vorticity,

rms vorticity, U and V velocity contours, respectively, taken at t = T for various phase

angle differences at At = D/2 and VR = 1.0 (case 5 of Table 6.1). The image at the

top left shows the case where the two motions are of opposite phase (Φ = 180◦); the 2S

mode can be observed with vortices in a single row. The field-of-view does not allow

us to see the double-row that should occur further downstream (see for example Lamb

1932; Cimbala et al. 1988; Johnson et al. 2004). The structure of a double-row wake is

shown for the Φ = −30◦ case, in which alternate vortices align in two rows offset from
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Figure 6.7: Motion phase-locked V/U∞ velocity contours taken at the motion-phase of t = T
for At = D/8, fN=0.6 Hz, VR=0.25, FR=1 and Re=1 291. The velocity contours are shown
for different phase angle differences between the two imposed oscillatory motions. The flow
direction is from left to right. V/U∞ velocity contours are evenly spaced over the range
[−0.2 : 2.4]; with ∆(V/U∞) = 0.2.

the centreline. As the phase angle difference is reduced, from Φ = 180◦, towards being

in-phase, Φ = 0◦, the vortices are arranged closer to each other and are less well-aligned

with the medial plane, suggesting an earlier double-row transition. The in-phase case,

Φ = 0◦, presents the signature of a P+S mode (a single vortex and a vortex pair formed

per cycle), at least in the near-wake. For this in-phase case, the vortices are shed widely

apart (nearly 4D), readily explained by the rotational oscillation adding momentum to

the translational motion. The resulting strain favours a transition to the P + S wake

(Leontini et al. 2006b). Reducing the phase difference to Φ = −30◦ and Φ = −60◦, the

vorticity pattern returns to a 2S mode in a double-row configuration. It should be noted

that the spacing between the two rows reduces (from 2.5D to 2D) as we decrease Φ.

The cases of Φ = −90◦ and Φ = −120◦ are of particular interest: contrary to the other

experimental cases, these two cases were not synchronised with the translational motion

beyond 2D downstream. The effect of this loss of synchronisation can be seen in the
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Figure 6.8: Motion phase-locked vorticity contours taken at the motion-phase of t = T for
At = D/4, fN=0.6 Hz, VR=0.5, FR=1 and Re=1 274. The near-wake vorticity is shown
for different phase angle differences between the two imposed oscillatory motions. The flow
direction is from left to right. Vorticity contours are evenly spaced over the range [−0.1 : 0.1];
with ∆ωz = 0.01.

rapid downstream dissipation of the mean vortex structures. Only the two vortices near

the cylinder remain coherent. This a priori surprising phenomenon might be explained

by the fact that the separation between the two rows of vortices is smaller and that this

arrangement of vortices is not stable. Similar behaviour can be found behind elliptical

cylinders (Johnson et al. 2004). The last case Φ = −150◦ (and necessarily the first case,

Φ = ±180◦) displays vortices in a single-row.

Comparing the U and V velocity contours of this case (figures 6.14 and 6.15) with

the previous two cases, shows that there is a dramatic change of patterns in the velocity

distribution between the synchronised and desynchronised cases. The dominant velocity

contribution for the synchronised cases (Φ = −90◦ and Φ = −120◦) is the U velocity.

Beyond 4D downstream, the V velocities become much smaller than those found in

the near-wake structures. The synchronised velocity patterns are all well organised and

qualitatively similar to each other. A gradual change in the velocity patterns can be
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Figure 6.9: Motion phase-locked vorticity contours (lines) and root-mean-square vorticity
(gray-scale) contours taken at the motion-phase of t = T for At = D/4, fN=0.6 Hz, VR=0.5,
FR=1 and Re=1 274. The near-wake rms vorticity is shown for different phase angle dif-
ferences between the two imposed oscillatory motions. The flow direction is from left to
right. Root-mean-square vorticity contours are evenly spaced over the range [0.02 : 0.1];
with ∆ωz = 0.02, and vorticity contours are evenly spaced over the range [−0.1 : 0.1]; with
∆ωzrms = 0.01.

seen as we move away from the in-phase case, Φ = 0◦ towards the Φ = −60◦ until

the flow becomes desynchronised (unlocked). No similar trends in the near-wake to the

previous two cases, At = D/8 and At = D/4 were observed.

Figures 6.16, 6.17, 6.18 and 6.19 present motion phase-locked vorticity, rms vortic-

ity, U and V velocity contours, respectively, taken at t = T for various phase angle

differences at At = 3D/4 and VR = 1.5 in the near-wake (case 7 of Table 6.1). By

looking at the top left image of figure 6.16, i.e. Φ = 180◦, it can be seen that the

near-wake flow is already unlocked. There are no well-defined vortex structures in the

near-wake and also vortices are dissipated at a close distance downstream of the cylin-

der. As the phase angle difference is reduced the vortices are seen to no longer be shed

in a single-row as seen in the previous cases. The shedding mode for Φ = 150◦ is 2S,

whereas it becomes P + S when the phase angle difference is reduced to the in-phase
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Figure 6.10: Motion phase-locked U/U∞ velocity contours taken at the motion-phase of
t = T for At = D/4, fN=0.6 Hz, VR=0.5, FR=1 and Re=1 274. The velocity contours are
shown for different phase angle differences between the two imposed oscillatory motions. The
flow direction is from left to right. U/U∞ velocity contours are evenly spaced over the range
[−1 : 1.8]; with ∆(U/U∞) = 0.2.

case, Φ = 0◦. Over the phase angle difference range of Φ = 120◦ to Φ = 0◦ the vortex

shedding pattern does not change significantly as the phase angle difference is reduced

further. The vortices are more defined in the vortex street and are observed to be

synchronised with the motion. While the spacing of the vortices remains the same, the

near-wake flow pattern changes from the P + S configuration to a 2S in a double-row

mode. The difference between the 2S mode over the range of Φ = −30◦ to Φ = −90◦

compared with the larger Φ is that the vortices for this range are located further apart

(≈ 4D) as opposed to those seen at Φ = 150◦ case, where the spacing is typically

2D. All the cases mentioned so far are synchronised with the motion except for the

Φ = 180◦ case. From Φ = −90◦ onward reducing the phase angle difference makes the

flow desynchronised; the vortices not well-defined anymore and are dissipated at a closer

distance to the cylinder. Confirmation of this pattern can also be seen in figure 6.17 by

looking at the rms vorticity contours. The phase-averaged rms vorticity patterns for
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Figure 6.11: Motion phase-locked V/U∞ velocity contours taken at the motion-phase of
t = T for At = D/4, fN=0.6 Hz, VR=0.5, FR=1 and Re=1 274. The velocity contours are
shown for different phase angle differences between the two imposed oscillatory motions. The
flow direction is from left to right. V/U∞ velocity contours are evenly spaced over the range
[−0.2 : 2.4]; with ∆(V/U∞) = 0.2.

the Φ = ±180◦,−90◦,−120◦ and −150◦ cases are similar to the unlocked phases of the

VR = 1 case. The vorticity patterns are not well formed and their structures are not

coherent. This pattern shows that the flow is not synchronised and the perturbations

are clearly visible in those regions and hence the vortices are all unlocked.

Figures 6.18 and 6.19 also confirms the changes through the U and V velocity

contour patterns. Figure 6.19 clearly shows that the V velocity contour pattern has

changed dramatically for the unlocked cases and for distances further downstream than

approximately 3D the dissipation of vortices is more apparent.

Figures 6.20, 6.21, 6.22 and 6.23 present motion phase-locked vorticity, rms vortic-

ity, U and V velocity contours, respectively, taken at t = T for various phase angle

differences at At = D/4, Aθ = 0.5 and VR = 1.0 in the near-wake (case 3 of Table 6.1).

Keeping the VR = 1.0 and reducing the translational amplitude necessitates reducing

the rotational amplitude also. It can be observed from the figures that the vortices in
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Figure 6.12: Motion phase-locked vorticity contours taken at the motion-phase of t = T
for At = D/2, fN=0.6 Hz, VR=FR=1 and Re=1 322. The near-wake vorticity is shown for
different phase angle differences between the two imposed oscillatory motions. Of particular
interest is the asynchronous (unlocked) wake with the imposed translational motion for the
phase Φ = −90◦ and Φ = −120◦. The flow direction is from left to right. Vorticity contours
are evenly spaced over the range [−0.1 : 0.1]; with ∆ωz = 0.01.

this case are all larger than that of figure 6.8 and well formed. The near-wake for all of

the Φs is synchronised with the translation motion and the shedding mode is 2S. It can

be seen that even though the VR = 1.0 is the same for the two cases 3 and 4 of Table 6.1

the near-wake structure is completely different. No transition between shedding modes

can be observed as Φ is varied. As shown in table 6.1, in case 3 the rotational amplitude

is half that of case 4. Thus, the rotational motion has the capacity to add more mo-

mentum into the flow, making the vortices more compact and meaning that the phase

angle difference cannot influence the synchronisation of the near-wake nor the vortex

shedding mode. This means the vortices are now harder to disturb. The rms vorticity

and velocity contours of figures 6.21, 6.22 and 6.23 confirm the synchronisation of the

near-wake. The velocity patterns are qualitatively similar to the previous locked cases

and no evidence of transition between states can be observed.
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Figure 6.13: Motion phase-locked vorticity contours (lines) and root-mean-square vortic-
ity (gray-scale) contours taken at the motion-phase of t = T for At = D/2, fN=0.6 Hz,
VR=FR=1 and Re=1 322. The near-wake rms vorticity is shown for different phase angle
differences between the two imposed oscillatory motions. Of particular interest is the asyn-
chronous (unlocked) wake with the imposed translational motion for the phase Φ = −90◦ and
Φ = −120◦. The flow direction is from left to right. Root-mean-square vorticity contours are
evenly spaced over the range [0.02 : 0.1]; with ∆ωz = 0.02, and vorticity contours are evenly
spaced over the range [−0.1 : 0.1]; with ∆ωzrms = 0.01.

6.3.2 Comparison with numerical simulations

The comparison which was previously made between the phase-locked vorticity and rms

vorticity contours does not however give an indication of how locked or unlocked the

flow is. In addition to the experiments, numerical simulations have been undertaken

to elucidate the flow synchronisation behaviour and to confirm certain aspects of the

unlocked regime. The numerical simulations are conducted based on the methods ex-

plained and discussed in §5.4. Although these (two-dimensional) numerical simulations

are performed at a much lower Reynolds number, the near-wake predictions are pre-

dominantly consistent with the experimental results (e.g. the vorticity pattern). This is

likely to be sufficient to match against experiments, provide insight into the mechanisms

by which transitions occur and also due to the strong forcing, to partially override the
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Figure 6.14: Motion phase-locked U/U∞ velocity contours taken at the motion-phase of
t = T for At = D/2, fN=0.6 Hz, VR=FR=1 and Re=1 322. The velocity contours are
shown for different phase angle differences between the two imposed oscillatory motions. Of
particular interest is the asynchronous (unlocked) wake with the imposed translational motion
for the phase Φ = −90◦ and Φ = −120◦. The flow direction is from left to right. U/U∞
velocity contours are evenly spaced over the range [−1 : 1.8]; with ∆(U/U∞) = 0.2.

modifying effect of three-dimensional transition, at least for the near-wake. Due to the

time constraint of this part of research the numerical simulations were only performed

for the conditions of figure 6.12.

The description of the numerical methodology will be brief because it has been ade-

quately described in §5.4 and also in previous papers and is not the focus of this thesis.

Details of the general method and its implementations can be found in Karniadakis

& Sherwin (2005); Thompson et al. (1996). The code employed has been well-proven

for use in bluff-body problems (Ryan et al. 2005; Leontini et al. 2007; Lo Jacono et al.

2008) and is the same as the one used for the “swimming cylinder” case in Chapter 5.

The time-asymptotic wake flows for the present study were calculated by solving the

incompressible, time-dependent Navier–Stokes equations in a translating accelerating

frame-of-reference attached to the cylinder. The discretisation method employed was

a spectral-element method, using seventh-order Lagrange polynomials associated with
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Figure 6.15: Motion phase-locked V/U∞ velocity contours taken at the motion-phase of
t = T for At = D/2, fN=0.6 Hz, VR=FR=1 and Re=1 322. The velocity contours are
shown for different phase angle differences between the two imposed oscillatory motions. Of
particular interest is the asynchronous (unlocked) wake with the imposed translational motion
for the phase Φ = −90◦ and Φ = −120◦. The flow direction is from left to right. V/U∞
velocity contours are evenly spaced over the range [−0.2 : 2.4]; with ∆(V/U∞) = 0.2.

Gauss–Lobatto–Legendre quadrature points. The computational domain, consisting of

a semicircular upstream section and a rectangular downstream section, extended at

least 30D in all directions. This was split into 518 elements, the majority of which

were concentrated in the cylinder boundary layer and wake regions. At the cylinder

surface, a time-dependent Dirichlet condition was used that varied sinusoidally in time

according to the driven rotational oscillation. In all cases the numerical simulations

were performed for more than 200 cycles and started at rest. This was found to be

sufficient for the asymptotic state to be achieved.

Various methods were used to analyse and characterise the predictions. Lissajous

figures of the lift and drag coefficients against the transverse forcing mechanism for

each phase angle difference have been produced. From these one can assess whether

the flow was periodic, quasi-periodic or highly irregular (or chaotic). Examples for

two different cases are given in figure 6.24. The left-hand figures show quasi-periodic
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Figure 6.16: Motion phase-locked vorticity contours taken at the motion-phase of t = T for
At = 3D/4, fN=0.6 Hz, VR=1.5, FR=1 and Re=1 291. The near-wake vorticity is shown for
different phase angle differences between the two imposed oscillatory motions. Of particular
interest is the asynchronous (unlocked) wake with the imposed translational motion for the
phase Φ = −90◦, Φ = −120◦, Φ = −150◦ and Φ = ±180◦. The flow direction is from left to
right. Vorticity contours are evenly spaced over the range [−0.1 : 0.1]; with ∆ωz = 0.01.

behaviour with the phase plots repeating after 5 forcing periods. The right-hand figures

indicate chaotic behaviour since the trajectories do not repeat.

To understand the flow in the far-wake of the cylinder, some representative base

flows are displayed in figure 6.25. Despite the Reynolds number difference (simulations

Re = 225, experiments Re ≈ 1 322) these qualitatively reproduce the near-wake be-

haviour of the PIV results. For Φ > −20◦ a single-row of vortices is displayed. For

−30◦ ≤ Φ ≤ −20◦ a double-row of vortices appears after a single-row of vortices.

The number of vortices in a single-row diminishes as we approach Φ = −30◦. For

−70◦ ≤ Φ ≤ −30◦, the wake no longer displays an initial single-row but instead im-

mediately forms a double-row. These vortex rows interact further downstream to form

a quasi-periodic far-wake. The number of vortices forming the double-row diminishes

as Φ diminishes. For −130◦ ≤ Φ ≤ −80◦ the wake immediately transitions to a fully

chaotic state. For Φ < −130◦ the flow undergoes a succession of double-row, to sin-
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Figure 6.17: Motion phase-locked vorticity contours (lines) and root-mean-square vorticity
(gray-scale) contours taken at the motion-phase of t = T for At = 3D/4, fN=0.6 Hz, VR=1.5,
FR=1 and Re=1 291. The near-wake rms vorticity is shown for different phase angle differ-
ences between the two imposed oscillatory motions. Of particular interest is the asynchronous
(unlocked) wake with the imposed translational motion for the phase Φ = −90◦, Φ = −120◦,
Φ = −150◦ and Φ = ±180◦. The flow direction is from left to right. Root-mean-square vor-
ticity contours are evenly spaced over the range [0.02 : 0.1]; with ∆ωz = 0.02, and vorticity
contours are evenly spaced over the range [−0.1 : 0.1]; with ∆ωzrms = 0.01.

gle then double-row, until a unique single-row pattern. See the top wake pattern of

figure 6.25 as representative of this final case.

Table 6.2 reports the experimental and numerical behaviour of the wake flow for

the same set of parameters but with Re = 225 for the numerical results. It can be seen

that the discrepancy in the value of the Reynolds number does not have an impact on

the synchronisation for Φ values close to the loss of synchronisation. The numerical

simulations confirm the loss of synchronisation for qualitatively the same region as the

experiments. Given this agreement between experimental and numerical predictions of

the lock-in regions the numerical simulations were then used to deduce the synchro-

nisation of the near-wake from the experimental results of other cases. Note that the

numerical simulations revealed that the unlocked regime contains quasi-periodic and

chaotic patterns. The chaotic regime appears to be surrounded by quasi-periodicity.
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Figure 6.18: Motion phase-locked U/U∞ velocity contours taken at the motion-phase of
t = T for At = 3D/4, fN=0.6 Hz, VR=1.5, FR=1 and Re=1 291. The velocity contours
are shown for different phase angle differences between the two imposed oscillatory motions.
Of particular interest is the asynchronous (unlocked) wake with the imposed translational
motion for the phase Φ = −90◦, Φ = −120◦, Φ = −150◦ and Φ = ±180◦. The flow direction
is from left to right. U/U∞ velocity contours are evenly spaced over the range [−1 : 1.8]; with
∆(U/U∞) = 0.2.

ft/fN ft/fN
Φ [◦] Exp Num Φ [◦] Exp Num

≈ 1 0.9 1.0 1.1 ≈ 1 0.9 1.0 1.1

-30 L L L L -110 UL L C C
-40 QP L L -120 UL L C C
-50 QP L QP -130 L C C
-60 L QP QP QP -140 L QP C
-70 UL QP QP C -150 L L L C
-80 UL QP QP C -160 L L L
-90 UL QP C C -170 L L L

-100 UL QP C C -180 L L L L

Table 6.2: Summary of the synchronisation around the unlocked regime. L (light green),
QP (orange) and C (dark red) stands for locked-on, quasi-periodic and chaotic respectively.
The unlocked regime (UL, dark red) for the experimental results are likely to be chaotic. ft
and fN stands for forced frequency and natural frequency for a fixed cylinder.
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Figure 6.19: Motion phase-locked V/U∞ velocity contours taken at the motion-phase of
t = T for At = 3D/4, fN=0.6 Hz, VR=1.5, FR=1 and Re=1 291. The velocity contours
are shown for different phase angle differences between the two imposed oscillatory motions.
Of particular interest is the asynchronous (unlocked) wake with the imposed translational
motion for the phase Φ = −90◦, Φ = −120◦, Φ = −150◦ and Φ = ±180◦. The flow direction
is from left to right. V/U∞ velocity contours are evenly spaced over the range [−0.2 : 2.4];
with ∆(V/U∞) = 0.2.

Also the likelihood of an unlocked regime is greater when the ratio FRN is higher than

unity.

To further examine this behaviour, Poincaré maps have been constructed for each

phase angle difference. The horizontal and vertical velocities are sampled at a pre-

chosen point downstream, (x, y) = (7D, 0), at the end of each forcing period T . For

example, figure 6.26 illustrates the quasi-periodicity of the case where Φ = −80◦. Here

the periodicity of the flow is of 5T as can be seen from the distribution of 5 distinct

islands of points in the phase diagram. The chaotic nature of the regime in the case of

Φ = −130◦ can be readily seen, with the distribution of points in the phase diagram

showing no preferred region or cycle.

It appears that synchronisation may be a more complex process than at first thought.

Both the experimental and numerical results show that the size of the nearly periodic
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Figure 6.20: Motion phase-locked vorticity contours taken at the motion-phase of t = T for
At = D/4, Aθ = 0.5 rad, fN=0.6 Hz, VR=1.0, FR=1 and Re=1 366. The near-wake vorticity
is shown for different phase angle differences between the two imposed oscillatory motions.
The flow direction is from left to right. Vorticity contours are evenly spaced over the range
[−0.1 : 0.1]; with ∆ωz = 0.01.

near-wake region is very much a function of the phase angle difference. Both sets of

results show that this section of the wake becomes very short for Φ ' −100◦. Fur-

ther downstream the wake undergoes a rapid transition to a chaotic state. For other

phase angle difference ranges, the ordered near-wake persists further downstream but

still can be subject to secondary transitions resulting in a quasi-periodic or chaotic far

wake. If one measures the wake response using integral measures such as the lift or

drag coefficient, then these will be affected to some extent by the far-wake behaviour,

even though they primarily respond to the wake state near the cylinder. If the ordered

near-wake region is long, then these global measures should indicate synchronisation.

As the near-wake is reduced in length, the far-wake behaviour can influence the signal

recorded at the cylinder so that it contains low frequency components, or even increase

the frequency content to such an extent that the behaviour is chaotic. Interestingly,

quasi-periodic and chaotic far-wake behaviour can be observed for elliptical shaped
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Figure 6.21: Motion phase-locked vorticity contours (lines) and root-mean-square vorticity
(gray-scale) contours taken at the motion-phase of t = T for At = D/4, Aθ = 0.5 rad, fN=0.6
Hz, VR=1.0, FR=1 and Re=1 366. The near-wake rms vorticity is shown for different phase
angle differences between the two imposed oscillatory motions. The flow direction is from left
to right. Root-mean-square vorticity contours are evenly spaced over the range [0.02 : 0.1];
with ∆ωz = 0.02, and vorticity contours are evenly spaced over the range [−0.1 : 0.1]; with
∆ωzrms = 0.01.

cylinders (Johnson et al. 2004) and the normal flat plate (Najjar & Balachandar 1998),

even in the unforced case. Experiments and numerical simulations (not shown here)

suggest that the suppression mechanism also holds for smaller amplitudes of motion

(Aθ and At).

6.3.3 Effect of varying FRN

Figures 6.27, 6.28, 6.29 and 6.30 present near-wake motion phase-locked vorticity, rms

vorticity, U and V velocity contours, respectively, taken at t = T for various FRN at

At = D/4, Aθ = 0.5, VR = 1.0 and Φ = −90◦. It was seen from figure 6.12 that

the near-wake becomes unlocked at Φ = −90◦. This happened at the case where the

two motions were oscillating at the same frequency, i.e. FR = FRN = 1.0. Now the

question of how sensitive the synchronisation of the near wake to FRN is investigated.
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Figure 6.22: Motion phase-locked U/U∞ velocity contours taken at the motion-phase of
t = T for At = D/4, Aθ = 0.5 rad, fN=0.6 Hz, VR=1.0, FR=1 and Re=1 366. The velocity
contours are shown for different phase angle differences between the two imposed oscillatory
motions. The flow direction is from left to right. U/U∞ velocity contours are evenly spaced
over the range [−0.2 : 2.4]; with ∆(U/U∞) = 0.2.

The frequency ratio between the imposed oscillatory motions and the natural vortex

shedding frequency was varied from FRN = 0.85 to FRN = 1.15 in increments of 0.05.

The top left image of figure 6.27 shows the vorticity contours for FRN = 0.85. The

very near-wake vortex structures are coherent, well defined and synchronised. As the

FRN ratio is increased the region where the near-wake vortices are coherent and well

defined becomes shorter and gets closer to the cylinder. The very far-wake starts to

dissipate. Increasing the FR ratio to 0.95 and 1.0, shows that the dissipation region

becomes shorter and get closer to the near-wake region. The near-wake vortices are all

still locked which can also be seen from figures 6.28, 6.29 and 6.30. Once the frequency

ratio becomes greater than unity, the near-wake also starts to become desynchronised

and by increasing the FRN ratio this desynchronisation region becomes smaller and

smaller towards the cylinder. This can also be clearly seen in figure 6.30. It was

possible through observing the dynamics of the wake as recorded in animation. The
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Figure 6.23: Motion phase-locked V/U∞ velocity contours taken at the motion-phase of
t = T for At = D/4, Aθ = 0.5 rad, fN=0.6 Hz, VR=1.0, FR=1 and Re=1 366. The velocity
contours are shown for different phase angle differences between the two imposed oscillatory
motions. The flow direction is from left to right. V/U∞ velocity contours are evenly spaced
over the range [−0.2 : 2.4]; with ∆(V/U∞) = 0.2.

recorded animations clearly showed the lock-on behaviour and this is not as clear in

the presented figures. This is also evident in figures 6.28, 6.29 and 6.30.

6.3.4 Effect of varying FR

All the results presented in the previous sections were obtained when the frequencies

of the translational and rotational oscillations were the same, i.e. FR = 1. This section

deals with the case where the frequencies are different. Two cases with FR = 0.5 and

FR = 2 are investigated. Figures 6.31, 6.32, 6.33 and 6.34 present near-wake motion

phase-locked vorticity, rms vorticity, U and V velocity contours, respectively, taken at

t = T for various phase angle differences at At = D/2, Aθ = 0.5, VR = 1.0, FR = 0.5

and Re = 1 251. The top left image of figure 6.31 shows the Φ = 120◦ case; similar to

previous cases we observe a 2S mode in a single-row. Interestingly and contrary to all

the previous cases, the vortices are not shed in the medial plane. They are shed with an

angle to the centreline. This is seen in all the cases investigated at FR = 0.5. It can also
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Figure 6.24: Lissajous pattern defined horizontally with the translational forcing mechanism
(y) and vertically with lift (CL and top) or drag (CD and bottom) coefficient (case 5 of
Table 6.1).

Figure 6.25: Typical flow features for different imposed phase differences. Top: single-row of
vortices transitioning downstream to a double-row followed by a further secondary instability
in the far-wake (Φ = −170◦). Centre: double-row of vortices followed by a quasi-periodic
pattern (Φ = −40◦). Bottom: chaotic pattern of vortices (Φ = −100◦). The domain of the
numerical simulation was extended to 100D downstream for these cases.
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Figure 6.26: Poincaré map for two typical unlocked regimes for Re = 225. Left: quasi-
periodic behaviour for Φ = −80◦; Right: Chaotic regime for Φ = −130◦. The phase diagram
shows the horizontal and the vertical velocities at 7D downstream on the centreline.

be seen that all the vortices are well defined and coherent. They are also located widely

apart from each other. As the phase angle difference reduces the vortices approach

each other and the cylinder. The angled shedding of the vortices can be observed for

all the phase angle differences studied. Figures 6.32, 6.33 and 6.34 clearly show that

there is no transition between modes in the rms, U and V velocity contours. As it

can be seen from figures 6.35, 6.36, 6.37 and 6.38 all the Φ cases are unlocked for the

case of FR=2.0. It was observed that only the negative sign vortex attached to the

cylinder is synchronised and once shed it cannot pick the natural shedding frequency

and becomes desynchronised. As the translational motion is oscillating at a higher

frequency than the rotational motion in this case the rotational motion doesn’t add as

much momentum into the shed vortices as it does for the FR < 1 cases. The vortices

dissipate quickly beyond 3D downstream of the cylinder, they are not as well-defined

and coherent as in the FR < 1 cases. The rms vorticity and velocity contours also

confirm the patterns related to unlocked cases, similar to what was seen in previous

unlocked cases like Φ = −90◦ of figure 6.12.

6.4 Chapter Summary

In this chapter we presented, for the first time, experimental results of a cylinder near-

wake when the cylinder is experiencing combined rotary and translational oscillation.

The effect of phase angle difference between the two forced motions for a given Reynolds

number and combination of VR and FR reveals that regular shedding can be suppressed

for particular phase angle differences. The range of phase difference the suppression
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Figure 6.27: Motion phase-locked vorticity contours taken at the motion-phase of t = T
for At = D/4, Aθ = 0.5 rad, fN=0.6 Hz, VR=1.0, Φ = −90◦ and Re=1 247. The near-wake
vorticity is shown for different phase angle differences between the two imposed oscillatory
motions. Of particular interest is the asynchronous (unlocked) wake with the imposed transla-
tional motion for the frequency ratios between the oscillatory motions and the natural vortex
shedding of FRN = 0.9 to FRN = 1.15. The flow direction is from left to right. Vorticity
contours are evenly spaced over the range [−0.2 : 0.2]; with ∆ωz = 0.02.

occurs depends on the VR and FR of the oscillations and the oscillation frequency ratio to

natural vortex shedding frequency of a fixed cylinder. This experimental study raised

several interesting features that were further investigated with the aid of numerical

simulations.
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Figure 6.28: Motion phase-locked vorticity contours (lines) and root-mean-square vorticity
(gray-scale) contours taken at the motion-phase of t = T for At = D/4, Aθ = 0.5 rad, fN=0.6
Hz, VR=1.0, Φ = −90◦ and Re=1 247. The near-wake rms vorticity is shown for different
phase angle differences between the two imposed oscillatory motions. Of particular interest
is the asynchronous (unlocked) wake with the imposed translational motion for the frequency
ratios between the oscillatory motions and the natural vortex shedding of FRN = 0.9 to
FRN = 1.15. The flow direction is from left to right. Root-mean-square vorticity contours
are evenly spaced over the range [0.02 : 0.1]; with ∆ωzrms = 0.02, and vorticity contours are
evenly spaced over the range [−0.2 : 0.2]; with ∆ωz = 0.02.
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Figure 6.29: Motion phase-locked U/U∞ velocity contours taken at the motion-phase of
t = T for At = D/4, Aθ = 0.5 rad, fN=0.6 Hz, VR=1.0, Φ = −90◦ and Re=1 247. The
near-wake streamwise velocity is shown for different phase angle differences between the two
imposed oscillatory motions. Of particular interest is the asynchronous (unlocked) wake with
the imposed translational motion for the frequency ratios between the oscillatory motions
and the natural vortex shedding of FRN = 0.9 to FRN = 1.15. The flow direction is from
left to right. U/U∞ velocity contours are evenly spaced over the range [−0.5 : 1.5]; with
∆(U/U∞) = 0.1.
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Figure 6.30: Motion phase-locked V/U∞ velocity contours taken at the motion-phase of
t = T for At = D/4, Aθ = 0.5 rad, fN=0.6 Hz, VR=1.0, Φ = −90◦ and Re=1 247. The
near-wake transverse velocity is shown for different phase angle differences between the two
imposed oscillatory motions. Of particular interest is the asynchronous (unlocked) wake with
the imposed translational motion for the frequency ratios between the oscillatory motions
and the natural vortex shedding of FRN = 0.9 to FRN = 1.15. The flow direction is from
left to right. V/U∞ velocity contours are evenly spaced over the range [0.2 : 7.4]; with
∆(V/U∞) = 0.4.
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Figure 6.31: Motion phase-locked vorticity contours taken at the motion-phase of t = T for
At = D/2, Aθ = 1.0 rad, fN=0.6 Hz, VR=1, FR=0.5 and Re=1 251. The near-wake vorticity
is shown for different phase angle differences between the two imposed oscillatory motions.
Of particular interest is the asynchronous (unlocked) wake with the imposed translational
motion for the phase Φ = −90◦, Φ = −120◦, Φ = −150◦ and Φ = ±180◦. The flow direction
is from left to right.
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Figure 6.32: Motion phase-locked vorticity contours (lines) and root-mean-square vorticity
(gray-scale) contours taken at the motion-phase of t = T for At = D/2, Aθ = 1.0 rad, fN=0.6
Hz, VR=1, FR=0.5 and Re=1 251. The near-wake rms vorticity is shown for different phase
angle differences between the two imposed oscillatory motions. Of particular interest is the
asynchronous (unlocked) wake with the imposed translational motion for the phase Φ = −90◦,
Φ = −120◦, Φ = −150◦ and Φ = ±180◦. The flow direction is from left to right.
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Figure 6.33: Motion phase-locked U velocity contours taken at the motion-phase of t = T
for At = D/2, Aθ = 1.0 rad, fN=0.6 Hz, VR=1, FR=0.5 and Re=1 251. The near-wake
streamwise velocity is shown for different phase angle differences between the two imposed
oscillatory motions. Of particular interest is the asynchronous (unlocked) wake with the
imposed translational motion for the phase Φ = −90◦, Φ = −120◦, Φ = −150◦ and Φ =
±180◦. The flow direction is from left to right.
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Figure 6.34: Motion phase-locked V velocity contours taken at the motion-phase of t = T
for At = D/2, Aθ = 1.0 rad, fN=0.6 Hz, VR=1, FR=0.5 and Re=1 251. The near-wake
transverse velocity is shown for different phase angle differences between the two imposed
oscillatory motions. Of particular interest is the asynchronous (unlocked) wake with the
imposed translational motion for the phase Φ = −90◦, Φ = −120◦, Φ = −150◦ and Φ =
±180◦. The flow direction is from left to right.
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Figure 6.35: Motion phase-locked vorticity contours taken at the motion-phase of t = T for
At = D/2, Aθ = 1.0 rad, fN=0.6 Hz, VR=1, FR=2 and Re=1 251. The near-wake vorticity
is shown for different phase angle differences between the two imposed oscillatory motions.
Of particular interest is the asynchronous (unlocked) wake with the imposed translational
motion for the phase Φ = −90◦, Φ = −120◦, Φ = −150◦ and Φ = ±180◦. The flow direction
is from left to right.
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Figure 6.36: Motion phase-locked vorticity contours (lines) and root-mean-square vorticity
(gray-scale) contours taken at the motion-phase of t = T for At = D/2, Aθ = 1.0 rad,
fN=0.6 Hz, VR=1, FR=2 and Re=1 251. The near-wake rms vorticity is shown for different
phase angle differences between the two imposed oscillatory motions. Of particular interest
is the asynchronous (unlocked) wake with the imposed translational motion for the phase
Φ = −90◦, Φ = −120◦, Φ = −150◦ and Φ = ±180◦. The flow direction is from left to right.
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Figure 6.37: Motion phase-locked U velocity contours taken at the motion-phase of t = T
for At = D/2, Aθ = 1.0 rad, fN=0.6 Hz, VR=1, FR=2 and Re=1 251. The near-wake
streamwise velocity is shown for different phase angle differences between the two imposed
oscillatory motions. Of particular interest is the asynchronous (unlocked) wake with the
imposed translational motion for the phase Φ = −90◦, Φ = −120◦, Φ = −150◦ and Φ =
±180◦. The flow direction is from left to right.
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Figure 6.38: Motion phase-locked V velocity contours taken at the motion-phase of t = T
for At = D/2, Aθ = 1.0 rad, fN=0.6 Hz, VR=1, FR=2 and Re=1 251. The near-wake
transverse velocity is shown for different phase angle differences between the two imposed
oscillatory motions. Of particular interest is the asynchronous (unlocked) wake with the
imposed translational motion for the phase Φ = −90◦, Φ = −120◦, Φ = −150◦ and Φ =
±180◦. The flow direction is from left to right.
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Chapter 7

Conclusions and recommended
future work

This thesis deals with analysis and experimental investigation of a new class of wake

flows generated by the combined translational and rotational oscillation of a circular

cylinder. Numerical simulation was also used as a tool to provide further insight into

the wake flows produced. The translational and rotational oscillations are harmonic

and specifically the translational and rotational oscillatory amplitudes have the form

y(t) = At sin(2πftt) and θ(t) = Aθ sin(2πfθt + Φ), respectively. In general, there have

been three related themes of study presented in the preceding chapters. The majority

of the investigation focused on an examination of the flow around combined transitional

and rotational oscillatory motions of a circular cylinder. In the following sections the

major conclusions arrived at for each theme are stated.

7.1 Translational Oscillations of a Circular Cylinder

The major objective of this study was to quantitatively investigate the structure and

dynamics of the flow induced by a circular cylinder performing pure translational os-

cillations in a quiescent fluid within the range of control parameters 0 ≤ KCt ≤ 10,

0 ≤ βt ≤ 100, the same parameter range as that of Tatsuno & Bearman (1990). All of

the two- and three-dimensional regimes of the Tatsuno & Bearman (1990) map except

regime C (the quasi-periodic regime), were investigated. The results were obtained

using flow visualisation and PIV techniques. The following summarises the important

findings of the second part of this research:

• We quantified the flow around a purely translational oscillating cylinder in a

quiescent fluid for the ranges of 1.6 < KCt < 15 and 5 < βt < 160.
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• The results for regime B, reveal the onset of three-dimensionality and symmetry

breaking, as was suggested by Tatsuno & Bearman (1990).

• The two-dimensionality of the flow for regimes A∗ and A was confirmed and

investigated.

• Contrary to the two-dimensional numerical investigations of Iliadis & Anagnos-

topoulos (1998) and Dütsch et al. (1998) and the results of Nehari et al. (2004),

the intermittent switching in the direction of the V-shaped vortex pattern in

regime E was observed. However, this switching was observed to be irregular and

its cause has not been yet determined but, as mentioned by Tatsuno & Bearman

(1990), this is presumably triggered by small disturbances in the flow.

• Tatsuno & Bearman (1990) defined regime F as a double-pair diagonal regime, in

which vorticity is shed diagonally with respect to the axis of oscillation. Elston

(2005) also performed a series of numerical simulations on this regime. Examina-

tion of Elston (2005)’s numerical results reveal that a single vortex shed from the

cylinder can also be identified and it is clearly present in his results (figure 4.9).

It is proposed from the present study that this regime could be characterised as

the 2P + S pattern, so regime F should be defined as a double-pair and single

vortex diagonal regime instead.

7.2 The “Swimming” Cylinder

The purpose of this part of the research was to investigate not only the near-wake

structure of the combination of the two forcing mechanisms, but also to extend this to

examine the three-dimensional nature of the wake, which is yet to receive any atten-

tion. The results of the present chapter incorporate both experimental and numerical

studies, although the main focus is on the experimental investigations. The numerical

simulations, i.e. Floquet stability analysis and DNS, were used as tools to provide fur-

ther insights into the wake flows produced. To characterise the experimental flows, as

discussed in Chapter 3, PIV was employed. The study is restricted to the case with

the phase angle set to Φ = π, and for large amplitude oscillations, corresponding to

a swimming cylinder. The following summarises the important findings of the second

part of this research:
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• The previous numerical study (Blackburn et al. 1999) showed that for the swim-

ming cylinder case, because of the phase difference, the oscillation velocities at

the cylinder surface cancel on one side and reinforce on the other. This eventu-

ally leads to preferential vorticity generation and transport on one side, and the

cylinder rotational motion sweeps this vorticity around to the other side produc-

ing a thrust wake. For the first time the present experimental investigation of

such flows confirms the transportation of generated vorticities to only one side of

the cylinder, hence generation of the thrust wake. The present study also shows

that the flow around the swimming cylinder is unsteady and not two-dimensional,

undergoing transition to three-dimensionality soon after startup.

• This work shows that the wake becomes three-dimensional at a Reynolds num-

ber of approximately 100 due to a three-dimensional instability with a spanwise

wavelength of approximately 2 cylinder diameters (long wavelength mode).

• The Floquet analysis also shows that the two-dimensional base flow is also unsta-

ble to another three-dimensional instability with a shorter wavelength (λ ≈ 0.7D)

for Re ≥ 226; however, the experimental results, even at much higher Reynolds

numbers do not show any sign of the occurrence of this mode.

• The two long (observed and confirmed experimentally) and short (only observed

numerically) wavelength modes are broadly analogous to the three-dimensional

wake transition mode for a circular cylinder, despite the distinct differences in

wake/mode topology. The stability of the long wavelength mode was confirmed

by experimental measurements.

• The experimental results indicate that the development of three-dimensionality

in the wake leads to significant distortion of the previously two-dimensional wake.

7.3 Combined translational and rotational oscillatory mo-
tion in free-stream

The focus of this part of the study was on the experimental investigation and numerical

results of the wake flow created in a free-stream behind a cylinder undergoing forced

combined oscillatory motions. The motion consists of two independent oscillations:

cross-stream translation and rotation. In this study the effect of another independent
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variable, i.e. Reynolds number, was investigated. The primary focus here was on the

effect of the phase difference between the two motions. The effect of change of trans-

lational amplitude has also been briefly investigated. In general, the results show that

there is an unexpected loss of synchronisation of the wake for a finite range of phase dif-

ferences at a given Reynolds number. The following summarises the important findings

of the third part of this research:

• For the first time, experimental results of a cylinder near-wake when the cylinder

is experiencing combined rotary and translational oscillation are presented.

• The effect of the phase differences between the two forced motions for a given

Reynolds number and combination of VR and FR reveals that regular shedding

can be suppressed for particular phase differences. At lower values of VR, over the

range of phase difference angle studied, no transition to different wake modes is

observed. All the vortices in the near-wake region of the cylinder are synchronised

and coherently shed in the 2S mode. Increasing the VR value beyond a certain

value changes the wake modes and synchronisation effect of the vortices in the

near-wake. The vortices become unlocked and less coherent as VR is increasing

further for a range of Φ.

• The effect of changing translational and rotational amplitudes for a given VR,

i.e. VR=1.0, was also investigated. It seems that at higher At and lower Aθ the

vortices in the near-wake are more compact and larger in size. Changing the At

and Aθ did not seem to have any effect on the synchronisation of the vortices and

the wake modes.

• The experimental and numerical results were compared successfully. The results

reveal that the discrepancy in the value of the Reynolds number does not have an

impact on the synchronisation for Φ values close to the loss of synchronisation.

The numerical simulations confirm the loss of synchronisation for the same region

as the experiments.

• The numerical simulations revealed that the unlocked regime contains quasi-

periodic and chaotic patterns. The chaotic regime appears to be surrounded

by quasi-periodicity. Also the likelihood of an unlocked regime is greater when

the ratio FRN is higher than unity. It appears that synchronisation may be a
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more complex process than at first thought. Both the experimental and numeri-

cal results show that the size of the nearly periodic near-wake region is very much

a function of the phase difference. Both sets of results show that this section

of the wake becomes very short for Φ ' −100◦. Further downstream the wake

undergoes a rapid transition to a chaotic state. For other phase difference ranges,

the ordered near-wake persists further downstream but still can be subject to

secondary transitions resulting in a quasi-periodic or chaotic far-wake.

• The range of phase difference over which the suppression occurs depends on the

VR and FR of the oscillations and the oscillation frequency ratio to natural vortex

shedding frequency of a fixed cylinder. The results show that the vortices are

synchronised in the near-wake at FRN values less than unity and unlocked when

FRN > 1.0.

7.4 Recommendations for Future Work

It is hoped that the present investigation has provided some additional understanding

of the dynamics of flows created by oscillating bluff bodies. However it has also raised a

number of issues that warrant further investigation. In relation to a cylinder performing

translational oscillations some of these include:

• Further examination of the flow transition close to boundaries between the regimes

experimentally.

• Simultaneous force measurements can give more insight into the physics of flow

at low KCt and βt.

Because the “Swimming” cylinder problem has been studied so little in the past

there is a great deal of further work which could be done. At this stage, one of the

pieces of work might be to investigate the effect of frequency and amplitude ratios

between the two forcing motions on the three-dimensionality of the flow.

Other factors which could be examined are listed below:

• As was mentioned several times previously, because of the phase difference, the

oscillation velocities at the cylinder surface cancel on one side and reinforce on

the other. Although previous two-dimensional simulations have shown that this

mechanism leads to self propulsion orthogonal to the translational oscillatory
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motion, the question of whether this will be effective at higher Reynolds numbers

remains.

• The experimental results indicate that the development of three-dimensionality

in the wake leads to significant distortion of the previously two-dimensional wake.

The effect on the self-propulsion is yet to be determined.

• The forces experienced by the cylinder have not yet experimentally examined.

Measuring forces exerted on the cylinder can give more insight into understanding

the physics of flow.

• The experimental and numerical results of the present research revealed that a

thrust wake is generated around the swimming cylinder. This thrust has not

yet experimentally been measured. This can be used to understand the thrust

generating ability of the swimming cylinder and find an optimum thrust.

The combined translational and rotational oscillatory motion in free-stream problem

also raises a number of questions that have not been addressed in this initial study:

• The present study only investigated the cross-stream translational oscillatory mo-

tion. Al-Mdallal (2004) and Kocabiyik & Al-Mdallal (2005) showed that the

in-line translational oscillation also has strong effect on the synchronisation of

vortices, this is yet to be investigated thoroughly experimentally.

• If one measures the wake response using integral measures such as the lift or

drag coefficient, then these will be affected to some extent by the far-wake be-

haviour, even though they primarily respond to the wake state near the cylinder.

If the ordered near-wake region is long, then these global measures should indicate

synchronisation. So it is highly recommended to measure forces exerted on the

cylinder to further investigate the synchronisation effect.

• The effect of various independent variables like FRN , FR and VR was investi-

gated experimentally for the first time. All the experiments need to be further

investigated for a wider parameter range of independent variables.
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Appendix A

Symmetry Definitions

The following defines the spatial and/or temporal properties of flow. The characteristics

of the two-dimensional symmetric state can be summarised as (Elston 2005):

1. T -periodic flow.

2. A reflection symmetry about the axis of oscillation, x/D = 0.

3. A T/2 reflection symmetry about y/D = 0.

4. A spanwise invariance of the flow.

With the coordinate system fixed to the cylinder axis the two spatial symmetries

for the velocity fields of the base flow can be written as:

x−reflection : Kx(u, v, w)(x, y, z, t) = (−u, v, w)(−x, y, z, t), (A.1)

z−translation : Rα(u, v, w)(x, y, z, t) = (u, v, w)(x, y, z + α, t), (A.2)

z−reflection : Kz(u, v, w)(x, y, z, t) = (u, v,−w)(x, y,−z, t). (A.3)

With some advance knowledge from the visualisations of Tatsuno & Bearman (1990),

about the way in which the flow states change, the spatio-temporal symmetries can be

written accordingly. The T/2 reflection symmetry about y = 0 and the T -periodicity

are written as two spatio-temporal symmetry forms:

H1(u, v, w)(x, y, z, t) = (u,−v, w)(x,−y, z, t+ T/2), (A.4)

H2(u, v, w)(x, y, z, t) = (−u,−v, w)(−x,−y, z, t+ T/2). (A.5)
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These two forms together define the spatiotemporal symmetry. In figure A.1 the

ways in which the two-dimensional symmetry can be broken are illustrated in schematic

form. The reflection symmetry, Kx, when applied twice returns the original starting

point.

Figure A.1: Schematics illustrating representative ways in which the two-dimensional sym-
metries of the basic state can be broken. The basic state, (a), has the three symmetries Kx,
H1, H2, while in (b − d), two out of three break, and the outcomes are labelled with their
remaining symmetry. The images appeared in Elston (2005) and is reproduced by permission.
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Appendix B

Journal publications arising from
research reported in this thesis

This chapter presents copies of the two papers as were appeared in the Physics of Fluids

journal arising from the results and findings of Chapters 5 and 6. The reference for the

papers are:

1. Nazarinia, M., Lo Jacono, D., Thompson, M. C. & Sheridan, J. 2009

The three-dimensional wake of a cylinder undergoing a combination of transla-

tional and rotational oscillation in a quiescent fluid. Physics of Fluids 21 (6),

064101.

2. Nazarinia, M., Lo Jacono, D., Thompson, M. C. & Sheridan, J. 2009

Flow behind a cylinder forced by a combination of oscillatory translational and

rotational motions. Physics of Fluids 21, (5), 051701.
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The three-dimensional wake of a cylinder undergoing a combination
of translational and rotational oscillation in a quiescent fluid

M. Nazarinia, D. Lo Jacono, M. C. Thompson, and J. Sheridan
Department of Mechanical and Aerospace Engineering, Fluids Laboratory for Aeronautical
and Industrial Research (FLAIR), Monash University, P.O. Box 31, Melbourne, Victoria 3800, Australia

�Received 18 February 2009; accepted 5 May 2009; published online 4 June 2009�

Previous two-dimensional numerical studies have shown that a circular cylinder undergoing both
oscillatory rotational and translational motions can generate thrust so that it will actually self-propel
through a stationary fluid. Although a cylinder undergoing a single oscillation has been thoroughly
studied, the combination of the two oscillations has not received much attention until now. The
current research reported here extends the numerical study of Blackburn et al. �Phys. Fluids 11, L4
�1999�� both experimentally and numerically, recording detailed vorticity fields in the wake and
using these to elucidate the underlying physics, examining the three-dimensional wake development
experimentally, and determining the three-dimensional stability of the wake through Floquet
stability analysis. Experiments conducted in the laboratory are presented for a given parameter
range, confirming the early results from Blackburn et al. �Phys. Fluids 11, L4 �1999��. In particular,
we confirm the thrust generation ability of a circular cylinder undergoing combined oscillatory
motions. Importantly, we also find that the wake undergoes three-dimensional transition at low
Reynolds numbers �Re�100� to an instability mode with a wavelength of about two cylinder
diameters. The stability analysis indicates that the base flow is also unstable to another mode at
slightly higher Reynolds numbers, broadly analogous to the three-dimensional wake transition mode
for a circular cylinder, despite the distinct differences in wake/mode topology. The stability of these
flows was confirmed by experimental measurements. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3147935�

I. INTRODUCTION

A circular cylinder undergoing a combination of oscilla-
tory translation and rotation in quiescent fluid has not re-
ceived much attention until now. It is well known that when
a bluff body is oscillating translationally in a quiescent fluid,
secondary streaming is generated around the body because
of nonlinear effects.1 However, the combination of two os-
cillatory forcing mechanisms, under specific conditions de-
tailed later, results in a net thrust being experienced by the
circular cylinder in a direction normal to the translational
axis.2 The cylinder experiencing thrust, while undergoing a
series of pitch and plunge, has been labeled the swimming
cylinder.

Numerous studies involving pure oscillatory motions, ei-
ther translational or rotational, exist for different flow
conditions.3–13 Among them Honji3 for the first time pro-
duced visualizations of the three-dimensional structures of
such flows. Honji3 visualized the flow around a transversely
oscillating cylinder in a quiescent fluid, and produced excel-
lent visualizations of a three-dimensional flow instability.
The presence of mushroom shaped vortices was observed, in
a plane normal to the direction of cylinder motion, which
was arranged alternately along each side of the cylinder span
in a double row. These structures were named the “Honji
instability” by Sarpkaya14 although Honji simply referred to
the patterns formed as “streaked flow.” Also Tatsuno and
Bearman5 produced a control space map, classifying the
space into eight flow regimes each with a two- or three-

dimensional flow structure and vortex shedding characteris-
tics. Using two different flow visualization techniques, they
comprehensively investigated translational harmonic oscilla-
tion in a quiescent fluid over a range of two independent
variables, e.g., the amplitude and frequency of oscillation.

More recent numerical works15–17 studied the instability
of such flows, as well as Nehari et al.18 who numerically
looked at three dimensionality of the flow at low amplitudes
and frequencies. Elston et al.15,16 investigated the wakes us-
ing direct numerical simulation with Floquet analysis. They
isolated and classified the symmetry breaking instabilities
from the two-dimensional basic states as a function of Tat-
suno and Bearman’s5 control parameters.

Although not strictly relevant to the present study being
in a quiescent fluid, the flows around a rotationally oscillat-
ing cylinder have also been investigated thoroughly.9–13,19,20

Taneda9 experimentally investigated the effects of rotary
cylinder oscillations over a low Reynolds number range
�Re= �30–300�� using flow visualization. Experiments at a
higher Reynolds number10 of 1.5�104 have yielded related
results to those of Taneda.9 Numerical studies of vortex shed-
ding from a rotationally oscillating cylinder,19,20 recorded the
transition and selection of different vortex shedding modes
and the lock-on phenomenon. More recently, Poncet11 looked
at the three dimensionality of flow around a cylinder under-
going rotational oscillation.

So far, to the best knowledge of the authors, only the
investigations by Blackburn et al.2 and more recent ones21–24
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reported on the combined oscillatory motion of a cylinder.
Among them the work by Blackburn et al.2 is the only one
on the swimming cylinder �i.e., the quiescent case�. A num-
ber of interesting features have been shown to occur as a
result of combining the two motions. Of principal interest is
the jet flow produced by the cylinder when the two imposed
motions are in opposition of phase. The propulsive force
produced by the cylinder causes it to accelerate until even-
tually reaching a terminal speed of 33% of the peak transla-
tional speed.2 Naturally, the above mentioned phenomena is
also true when the two motions are in phase, the difference
being the side where the jet flow is produced. The combina-
tion of oscillatory motions has also been shown to be capable
of producing a wide variety of flow patterns depending on
the phase. Figure 1 shows an example of the near wake struc-
ture for a different phase. It can be seen that by changing the
phase angle, the flow field around the cylinder changes dra-
matically. Notably it is clear that only the in phase or oppos-
ing phase cases ��=0,�� produce a jetlike flow. The other
phases result in a flow with a somewhat preferred direction
without the jetlike feature. The results by Blackburn et al.2

were obtained via numerical simulations but to date, no de-
tailed experimental studies into the effect of combining an
oscillatory rotational and translational motion of a circular
cylinder in either quiescent fluid or in external flow are
known. However, a similar form of motion, Carangiform
motion, is observed in nature. This mode of oscillation ne-
cessitates a twist at each extreme of the oscillation to give
backward inclination to the moving winglike surface, that is,
to a vertically oscillating cetacean tail, or to a fish’s horizon-
tally oscillating caudal fin. However, the propulsive jet that is
produced from Carangiform motion only occurs when the
oscillations are in phase.25 The purpose of the present study
is to investigate not only the near wake structure of such a
combination of forcing mechanisms, but also to extend this
to examine the three-dimensional nature of the wake, which
is yet to receive any attention. The present study incorporates
both experimental and numerical results. To characterize the
experimental flows, the authors employed particle image ve-
locimetry �PIV�. Direct numerical simulation and Floquet
analysis are also used to provide further insight in the wake
flows produced. In Secs. II–IV, after defining the problem
under investigation, the experimental and numerical tech-

niques utilized are described. Some validation with previous
studies is then presented. The results and discussion sections
follow, ending with conclusions.

II. PROBLEM DEFINITION

When the relative flow past a cylinder is undergoing
combined sinusoidal translational and rotational oscillations,
the structure of the flow generated by the cylinder depends
mainly on five independent parameters. The equations of the
forcing motion are defined as

y�t� = At sin�2�f tt� , �1�

��t� = A� sin�2�f�t + �� , �2�

where At �A�� is the amplitude of the translational
�rotational� motion, f t �f�� is the frequency of translational
�rotational� oscillation, and � is the phase between rotational
and translational motions.

The dimensionless quantities representative of amplitude
and frequency of each motion are usually defined as follows:

KCt =
Umaxt

f tD
=

2�At

D
, KC� =

Umax�

f�D
= �A�, �3�

�t =
f tD

2

�
, �� =

f�D
2

�
, �4�

where KCt �KC�� and �t ���� are the translational �rotational�
Keulegan–Carpenter number and Stokes number,
respectively; Umaxt

�Umax�
� is the maximum translational

�rotational� velocity of the cylinder motion, D is the cylinder
diameter, and � is the kinematic viscosity of the fluid.

A Reynolds number can also be defined as a combina-
tion of two of the above dimensionless parameters. The as-
sociated translational Reynolds number, Ret, is then

Ret =
Umaxt

D

�
= KCt�t. �5�

Figure 2 shows a schematic of the problem studied with
some relevant notations and features. The Cartesian coordi-
nate system in use is defined such that the origin is located at
the center of the circular cylinder �at t=0� at the window
shown in Fig. 2, with x, y, and z representing the streamwise,
transverse, and spanwise directions, respectively �see Fig. 2�.

FIG. 1. �Color online� Contours of vorticity around the cylinder undergoing
combined translational and rotational oscillation at KC=�, �=90, and �a�
�=�, �b� �=� /2, �c� �=� /4, taken at t /T=0 from numerical simulation.
The dashed lines �enclosing blue� correspond to clockwise direction of vor-
ticity �negative�. The solid lines �enclosing red� correspond to counterclock-
wise direction of vorticity �positive�.

x

y

D

Aθ

At

y

z

���
end plate

���
field of view

window �

FIG. 2. Schematic of the problem geometry and important parameters rel-
evant to the combined forcing. Left: the two-dimensional overview
�xy-plane� of the cylinder. Right: spanwise view of the cylinder �yz-plane�
with end plate and field of view �PIV�.
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III. METHODS AND TECHNIQUES

A. Experimental setup

The experiments were conducted in the FLAIR free-
surface closed-loop water channel at the Department of
Mechanical and Aerospace Engineering, Monash University.
Experiments were performed for a particular set of param-
eters which was shown earlier to be that of a swimming
cylinder:2 The frequency ratios were held to be the same
�t=��=� and the phase difference between the two motions
set to �=�. The associated translational and rotational
Keulegan–Carpenter numbers are KCt=KC�=�. The
nondimensional frequency was chosen to cover the range
45���200, consequently the range of Ret covered was
141�Ret�628.

The experimental model used for these experiments was
a hollow circular cylinder of length 800 mm and outer diam-
eter 20 mm, giving an aspect ratio of 40, see Fig. 2. The
cylinder was made of carbon fiber and suspended vertically
from an actuator that was controlled by a microstepping step-
per motor. The cylinder was fitted with an end plate to reduce
the end effects. The end plate was designed following rec-
ommendations by Stansby26 and consisted of a circular plate
with a diameter of 9D. For PIV purposes, a small section of
the cylinder was replaced by a thin-walled transparent cylin-
der, whose interior was filled with distilled water. The results
shown later in the xy-plane are taken through this window.

The cylinder was oscillated translationally and rotation-
ally by using two high-resolution stepper motors. The trans-
lational stepper motor actuated the rodless in-line mounting
actuator and the rotational stepper motor was connected di-
rectly to the vertically mounted cylinder. The stepper motors
were controlled using a two-axis indexer and two high-
resolution drivers �running at 50 800 steps rev−1�. A pure
sinusoidal profile, as defined in Eqs. �1� and �2�, was used
throughout the paper. A TTL-signal triggered other devices
�camera and laser�, thus images could be captured at prese-
lected phase angles in the oscillation cycle �phase locked�.

During each set of experiments the fluid was initially at
rest, i.e., it was quiescent. Special care was always taken to
ensure near quiescency of the flow. Prior to each set of ex-
periments, a honeycomb device was drawn through the
working volume to break up large-scale flow structures into
smaller scales, minimizing the time required to reach the
background noise level. Typically, this background level,
measured by the norm of velocity magnitude, was kept less
than 1.41% of Umaxt

�0.1 mm s−1 or less�.

B. Experimental techniques

The velocity vector fields around the combined oscillat-
ing circular cylinder were measured using PIV. The PIV
setup, illustrated schematically in Fig. 2, was based on that
originally described by Adrian27 and developed in-house
over the past decades. The flow was seeded with spherical
polyamide particles with a mean diameter of 20 �m and
specific weight of 1.016 g cm−3. In this system, the particles
were illuminated using two miniature Nd:YAG �yttrium alu-
minum garnet� laser sources �Continuum Minilite II

Q-Switched�. The planes of interest for these experiments
were the yz- and xy-planes, being the spanwise and stream-
wise directions, as shown in Fig. 2. The thickness of the laser
sheet was measured to be approximately less than 2 mm.
Pairs of images were captured on a high-resolution charge
coupled device camera with a maximum resolution of
4008�2672 pixels. The camera was equipped with a
105 mm lens �Nikon Corporation, Japan�. At a particular
phase of the oscillation cycle, a number of image pairs over
successive cycles were taken and stored for further process-
ing. The timing of the laser and camera triggering was con-
trolled by a special in-house designed timing unit, with an
estimated accuracy of 1 �s.

Each image pair was processed using in-house PIV
software.28 This software uses a double-frame, cross-
correlation multiwindow algorithm to extract a grid of dis-
placement vectors from the PIV images. An interrogation
window of 32�32 �with an initial window size of 64�64�
pixels was found to give satisfactory results with 50% over-
lap. More than 98% of the vectors were valid for all the
experiments. This window size corresponds to an average
interrogation window of 0.064D�0.064D. It was possible to
obtain a measurement resolution of 249�166 �total of
41334� vectors in each field of view. The overall field of
view was 4008�2672 pixels �8.0D�5.3D�.

Phase-averaged vorticity and velocity fields are pre-
sented using 30 or more instantaneous measurements. The
vorticity fields were calculated with the technique described
previously.29 The velocity and spatial coordinates are non-
dimensionalized by the maximum velocity of the transla-
tional cylinder motion, Umaxt

, and the cylinder diameter, D,
respectively.

Our PIV setup and technique have been validated against
the previous numerical and experimental results5,8 for the xy-
and yz-plane measurements. The validation case studied is
for a purely translational oscillation in a quiescent fluid. Fig-
ure 3 demonstrates an excellent agreement with the experi-
mental and numerical study by Dütsch et al.8 The numerical
results �explained in Sec. III C� also match well with those of
Dütsch et al.8 Other profiles �not shown� at different loca-
tions are also in good agreement. For three-dimensional vali-
dation, the measured spanwise wavelength �	=1.04D� for
the KCt=2.51 and �t=142 �Ret=356� case, corresponding to
regime B of Tatsuno and Bearman5 control parameter map
�Fig. 12 of Ref. 5�, was found to be within 4% of the previ-
ously reported value5 �	�1.0D�, where 	 is the wavelength
along the span of the cylinder.

C. Numerical formulation

The description of the methodology will be purposefully
brief because of descriptions given in previous papers. De-
tails of the method in general,30 and details of the implemen-
tation used here31 can be found elsewhere. The code em-
ployed has been well proven for use in bluff-body problems,
and Floquet stability analysis.17,32–34 However, a brief outline
of the method is given. The base flows for the present study
were calculated by solving the incompressible, time-
dependent Navier–Stokes equations. The discretization
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method employed was a spectral-element method, using
seventh-order Lagrange polynomials associated with Gauss–
Lobatto–Legendre quadrature points. The time integration
was executed using a three-step splitting scheme.35–37 A com-
putational domain extending 30D�30D was split into 518
elements, the majority of which were concentrated in the
boundary layer. The resolution, element distribution and do-
main size are consistent with those used successfully in pre-
vious similar studies. At the cylinder surface, a time-
dependent Dirichlet condition was utilized that varied
sinusoidally in time according to the driven translational and
rotational oscillations. The calculations were performed in an
accelerating frame of reference attached to the cylinder. The
frame acceleration was added to the Navier–Stokes equations
to account for this. The method employed is second order in
time and time stepping is governed by the Courant condition
on the explicit convective substep. The unit time step em-
ployed was 0.010 ��1250 time step/cycle� for ��70 and
0.005 ��2500 time step/cycle� for �
70.

Floquet stability analysis employing a power method to
resolve the most dominant Floquet mode �and the magnitude
of the largest Floquet multiplier� has been used. Floquet sta-
bility analysis is a linear method designed to deduce the
stability of periodic systems. The stability is deduced by cal-
culating the Floquet multiplier, �, which can be thought of
as the ratio of growth in amplitude of a perturbation from
one period to the next, for a perturbation of a given spanwise
wavelength, 	 /D. If this ratio is such that ���
1, then the

perturbation grows each period, and the two-dimensional
base flow is said to be unstable to three-dimensional pertur-
bations. Conversely, if ����1, the perturbation decays each
period, and will eventually die away, meaning the base flow
is stable. Generally, this relies on the fact that a random
perturbation of a given wavelength can be decomposed into a
summation of eigen- or Floquet modes, each of which grows
or decays at a certain rate. It is the fastest-growing or slowest
decaying Floquet mode—the dominant mode—which domi-
nates asymptotically with time. That is, after a certain
amount of time, a perturbation decays to the dominant
Floquet mode, with the size of the Floquet multiplier relative
to unity determining the stability of the base flow. Details of
the formulation can be found elsewhere.38

Figure 4 shows a validation of our technique with previ-
ous numerical simulations.16 The validation case studied is a
pure translational motion with KCt=2.75 and �t=80
�Ret=220�, corresponding to regime B.5 The agreement was
found to be excellent throughout the range tested.

IV. RESULTS AND DISCUSSION

In this section the results are presented in two parts.
For the first, the wake profiles around the cylinder in the
streamwise direction �xy-plane� for KC=�=� and �=90
are examined, and the second part investigates the three di-
mensionality of such flows for KC=�=� and a range of
20���200 �corresponding to 62.8�Ret�628�.

A. Wake profile in the streamwise direction

It has previously been found that for the case where
KC=�=� and �=90, while the cylinder translation axis is
vertical, vorticity transport is predominantly in the horizontal
direction.2 Figure 5 clearly shows this vorticity transport to
one side of the cylinder as well as comparing the same flow
between the present experimental and numerical investiga-
tion. Figure 5 also shows the excellent qualitative agreement
between the two methods used. Figure 6 depicts the se-
quence of one complete cycle of translational and rotational
oscillation. The cylinder motion, based on Eqs. �1� and �2�,
starts from the center toward the top of the page, the positive
direction of y, and at the same time starts rotating clockwise,
the negative direction of rotation angle, �. Figure 6�c� shows
the instant when the cylinder is at its maximum vertical po-
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sition and most negative angular displacement. As the oscil-
lations are in opposition of phase, the maximum surface-
tangential component of cylinder acceleration is located on
the left-hand side of the cylinder, i.e., it is where the accel-
erations are additive rather than in opposition. Morton39

showed that this combination of accelerations will result in
the �kinematic� generation of vorticity on that side of the
cylinder while the cancellation of accelerations on the other
side results in little direct vorticity generation on the right
side. The direction of rotation of the vortices will result in
their being strained and directed to only one side of the cyl-
inder and perpendicular to its translation axis. Based on the
vorticity fields, this will necessarily result in thrust genera-
tion in this direction, but it has not been effectively measured
experimentally. The thrusting effect appears to occur in a
lock-in regime and, as reported earlier,2 would be expected
to occur for all cases where the flow structure is as shown in
Fig. 1�a�. However, it may be the case that there is a thresh-
old set of amplitudes required to establish this but that has
not been determined to date. The phase angle between the
motions influences the degree to which cross annihilation of
vorticity occurs and the distance from the cylinder at which
vorticity persists �as was shown in Fig. 1�.

B. Wake profile in the spanwise direction

Figure 7 shows the experimental spanwise distribution
of flow for two values of � at KC=�=�. Figure 7�a� shows
approximately parallel streamlines indicating two-
dimensional vortex shedding around the cylinder. Here
Re�63, which the Floquet analysis, discussed later, shows
to be a two-dimensional flow regime. Figures 7�b� and 7�c�
present the y-velocity field �uy� and vorticity field �x� con-
tours along the span of cylinder, respectively. These are for
Re�283. The spanwise three-dimensional structures are
clearly seen from these two depictions. The three-
dimensional structures shown appear regular and stable, with
a constant characteristic wavelength. Further analysis of the
experimental data, not presented here, shows this to be the
case.

Figure 8 shows the Floquet multipliers, ���, for several
Reynolds numbers for a spanwise instability at KC=�=�.
Figure 8�a� shows the value of ��� as a function of the span-
wise wavelength, 	 /D. This figure clearly depicts the emer-
gence of two distinct instability modes, a short and a long

FIG. 5. �Color online� Vorticity contours around the cylinder undergoing
combined translational and rotational oscillation at KC=�=� and �=90.
The numerical result is presented at the left, and the experimental result at
the right. The experimental result is a phase-average of ten successive
cycles. The phase shown corresponds to t=0. The dashed lines �enclosing
blue� correspond to clockwise direction of vorticity �negative�, and the solid
lines �enclosing red� corresponds to counterclockwise direction of vorticity
�positive�.

FIG. 6. �Color online� Flow produced by a cylinder with combined oscilla-
tory translation and rotation. This figure shows the sequence and develop-
ment of the z vorticity for one complete cycle, �a� t=0 to �h� t=7T /8 at
KC=�=� and �=90, where T is the period of oscillation. The radial line
shows the rotational displacement of the cylinder. The dashed lines �enclos-
ing blue� correspond to clockwise direction of vorticity �negative�, and the
solid lines �enclosing red� correspond to counterclockwise vorticity
�positive�.

FIG. 7. �Color online� Experimental results of the spanwise distribution of
flow for two values of � at KC=�=�: �a� �=20, streamlines; �b� �=90, uy

velocity isocontours; �c� �=90, x vorticity isocontours; the dashed lines
�enclosing blue� correspond to clockwise direction of vorticity �negative�,
and the solid lines �enclosing red� correspond to counterclockwise vorticity
�positive�.
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FIG. 8. �Color online� Floquet multipliers for several Reynolds numbers for
the spanwise instability at KC=�=�. �a� Floquet multipliers as a function
of spanwise wavelength. The open �closed� symbols represent the shortest
�longest� wavelength mode. The circles and black line represent results for
Re=377; the squares and blue line represent results for Re=283; the dia-
monds and red line represent results for Re=226; the lower triangles and
magenta line represent results for Re=141. �b� Comparison of the Floquet
analysis predicted wavelength values as a function of Reynolds number with
experimental measurements. The blue dashed line corresponds to the wave-
length range of the longest spanwise wavelength mode. The red dashed
dotted line corresponds to the extent of the shortest spanwise wavelength
mode. The thick blue and red lines correspond to the predicted values of the
long and short wavelengths, respectively. The black circles represent the
present experimental measurements with error bars reporting the standard
deviation of the measurements.
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wavelength mode. The longer wavelength mode has a critical
Reynolds number of Rec�100, at a critical wavelength of
	�1.8D. The second instability first occurs at a much higher
Reynolds number of Rec�226 for a wavelength of
	�0.7D. The experiments show that the spanwise wave-
length observed in the wakes at various Reynolds numbers
was close to 2D at onset, decreasing to about 1.5D at
Re=600. These values are consistent with the wavelengths
corresponding to the fastest-growing modes as the Reynolds
number is varied. This is clearly depicted in Fig. 8�b�, which
shows the unstable Reynolds number range for each mode as
a function of Reynolds number and the preferred wave-
length. The experimental wavelength variation with Rey-
nolds number matches the predicted preferred wavelength
reasonably well.

These long and short wavelength modes have the same
spatiotemporal symmetries as modes A and B wake modes
for a stationary circular cylinder in a uniform flow,40 respec-
tively. These symmetry breaking bifurcations are the only
ones possible with the same period as the base flow, as
shown using group theory arguments by Blackburn et al.41 It
is interesting to note that the symmetry breaking transitions
occur in the same order as for a circular cylinder, even
though the two-dimensional base wake flow and perturbation
field distributions are completely different. Of course, for
different body geometries, the transition order can be differ-
ent, such as for an elongated streamlined leading-edge square
trailing-edge cylinder, for which the transition order is
reversed.33 Perhaps of even more interest is that for a circular
cylinder wake, the saturated second critical mode, mode B,
dominates the flow dynamics as the Reynolds number is in-
creased above the two transitions;42 in fact, for Reynolds
numbers close to 300, the wake appears to be in an almost
pure mode B state.43 Notably this corresponds to the Rey-
nolds number at which mode B growth rate grows to exceed
that of mode A. This is not the case here. Despite examining
the wakes experimentally at Reynolds numbers up to 640,
there was no sign of any evidence of the shorter wavelength
instability in the wake. There was also an attempt to artifi-
cially force the wake at this wavelength by placing thin tapes
on the cylinder spaced at the predicted optimal shorter wave-
length. This also failed to generate any long term change to
the wake, i.e., the shorter wavelength mode was visible ini-
tially but the wake quickly reverted to the longer wavelength
state, similar to that shown in Fig. 7 for the unperturbed case.
Figure 8�a� clearly shows that linear theory predicts the
growth rate of the shorter wavelength mode quickly over-
takes the longer wavelength mode, so this is somewhat sur-
prising. Of course, the growth and nonlinear saturation of the
long wavelength mode changes the base flow so this result is
not inconsistent.

Figure 9 shows the perturbation z vorticity contours of
the short and long wavelength modes associated with the
spanwise instability. This clearly shows the spatiotemporal
symmetries of the two modes: In terms of the perturbation
vorticity, for the long wavelength mode, the field repeats on
passage in time through half a period, reflection about the
centerline and reversal of sign, while for the shorter wave-
length mode the sign reversal is not required. These symme-

tries are the same as for modes A and B, respectively. The
mode structure of both modes is quite complex, with sub-
stantial mode amplitude both near the cylinder and in the
wake.

V. CONCLUSIONS

In this work we have experimentally and numerically
considered the development of three dimensionality of flow
around a cylinder undergoing a combined translation and ro-
tation oscillatory motion. The study is restricted to the case
with the phase angle set to �, and large amplitude
oscillations—corresponding to a swimming cylinder. Be-
cause of this phase difference, the oscillation velocities at the
cylinder surface cancel on one side and reinforce on the
other. This leads to preferential vorticity generation and
transport on one side, and the cylinder rotational motion
sweeps this vorticity around to the other side producing a
thrust wake. Although previous two-dimensional simulations
have shown this mechanism leads to self-propulsion orthogo-
nal to the translational oscillatory motion, the question of
whether this will be effective at higher Reynolds numbers
remains. This work shows that the wake becomes three di-
mensional at a Reynolds number of approximately 100 due
to a three-dimensional instability with a spanwise wave-
length of approximately two cylinder diameters. The Floquet
analysis shows that the two-dimensional base flow is also
unstable to another three-dimensional instability with a
shorter wavelength �	�0.7D� for Re�226; however, the
experimental results, even at much higher Reynolds numbers
do not show any sign of the occurrence of this mode. The
experimental results indicate that the development of three
dimensionality in the wake leads to significant distortion of
the previously two-dimensional wake. The effect on the self-
propulsion is yet to be determined.
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FIG. 9. Contours of streamwise perturbation vorticity taken at KC=�=�
and �=90 �Re�283� and when the cylinder is at t=0 for the following:
�left� 	=1.8D the long wavelength; �right� 	=0.7D the short wavelength.
The dashed lines correspond to the base flow clockwise direction of vorticity
�negative�, and the solid lines correspond to the counterclockwise vorticity
�positive�.
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The flow behind a cylinder undergoing forced combined oscillatory motion has been studied. The
motion consists of two independent oscillations: cross-stream translation and rotation. Previous
studies have extensively investigated the effect of these motions individually on cylinder wakes;
however, the investigation of their combined effect is new. The motivation lies in its application to
vortex-induced vibration and its suppression and to biomimetic motion. The focus is on the effect
of the phase difference between the two motions. The results show that there is an unexpected loss
of synchronization of the wake for a finite range of phase differences. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3139184�

The primary goal of this research is to understand the
physical mechanisms behind the response of a cylinder wake
to the combined forcing mechanisms of cross-stream trans-
lation and rotational oscillations. With an in-depth under-
standing of the flow physics it may be possible to propose a
novel means of actively or passively suppressing the lock-on
between vortex shedding and transverse oscillation. Also, we
are interested in the application to biomimetic motions and,
in particular, to carangiform motion.1 There has been consid-
erable research on the effect of either transverse or rotational
oscillations on cylinder wakes, as discussed in the extensive
reviews.2,3 Primarily, these have focused on the translational
oscillation due to their focus on vortex-induced vibration.
There have also been studies of the effect of rotational oscil-
lation on wakes.4,5 Previous numerical work has also been
performed on the effect of the combined motions in quies-
cent fluids6 and when there is a flow past the cylinder;7 how-
ever, the influence of an important parameter was not con-
sidered. Indeed, previous interesting results6,8 indicate that
the phase difference between the two motions is of consid-
erable importance and this is the focus of the research dis-
cussed here. This work is part of a more extensive set of
experiments that considers the full range of independent
variables.

The experiments were conducted in the FLAIR free-
surface closed-loop water channel at Monash University. A
schematic of the problem is given in Fig. 1. The cylinder
used was 800 mm in length and with an outer diameter of
D=20 mm, giving an aspect ratio of 40. The experiments
were performed for a fixed upstream velocity U�

=0.0606 m /s giving Re=U�D /�=1322. Two sinusoidal
motions were imposed, namely, translational �cross stream�,
given by y�t�=At sin�2�f tt� /D, and rotational, given by
��t�=A� sin�2�f�t+��. The frequencies are fixed close to
that of the natural frequency �T−1= f t= f�=0.6 s−1� fN�. The
natural frequency was found to be equal to fN�0.6154 s−1.

The Strouhal number based on this frequency is about St
� fND /U�=0.203 and the Strouhal number of the forcing is
Stt� f tD /U�=0.198. The experiments presented are for fixed
amplitudes of oscillation, At=D /2 and A�=1. These ampli-
tudes combined with the equal frequencies provide equal
maximum velocities from the translational and rotational
motions. The maximum velocities from the forcing are equal
to Umax=2�f tAt=0.0377 m /s which correspond to a ratio of
Umax /U�=0.62.

As mentioned earlier, the results presented here show the
effect of the phase difference ��� between the translational
and rotational motions on the wake. This parameter was cho-
sen as its variation led to interesting behavior in a quiescent
fluid. Only a brief outline of that case will be given; a more
detailed discussion can be found in Refs. 1 and 6. If the
maximum velocities of the oscillatory motions are equal, it
can easily be shown that there will be an uneven distribution
of velocity at the surface of the cylinder depending on the
phase imposed. Indeed, for opposing phases ��=180°� the
two velocities will cancel on one side �orthogonal to the
translational motion� and add on the other side. This creates
a vorticity difference between the two halves of the cylinder,
resulting in a wake flow orthogonal to the translational
movement. The method used here to characterize the wake of
this forced cylinder is via particle image velocimetry �PIV�.
The flow was seeded with spherical granular polyamide par-
ticles having a mean diameter of 55 �m and specific gravity
of 1.016. The particles were illuminated using two mini yt-
trium aluminum garnet laser sources. The plane of interest
for these experiments was orthogonal to the cylinder’s axis
�xy plane� and downstream �x direction� of the cylinder. A
small section of the cylinder is replaced by a thin-walled
transparent cylinder, whose interior is filled with distilled
water. It is located at about 9D from the end of cylinder. The
measured xy plane is located through the center of this win-
dow. The experimental setup provided a field of view of
approximately 6D�6D.

Figure 2 presents motion phase-locked vorticity isocon-
tours taken at t=T for various phase differences. The imagea�Electronic mail: david.lojacono@eng.monash.edu.au.

PHYSICS OF FLUIDS 21, 051701 �2009�

1070-6631/2009/21�5�/051701/4/$25.00 © 2009 American Institute of Physics21, 051701-1

Downloaded 20 May 2009 to 130.194.10.86. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

239



at the top left shows the case where the two motions are of
opposite phase ��=180°�; we observe a 2S mode �two single
vortices shed per period� in a single row aligned in the me-
dial plane. The field of view does not allow us to see the
double row that should occur further downstream.9–11 The
structure of a double-row wake is shown for the �=−30°
case, in which alternate vortices align in two rows offset
from the centerline. As the phase difference is reduced to-
ward being in phase, �=30°, the vortices are arranged closer
to each other and are less well aligned with the medial plane,
suggesting an earlier double-row transition. The in-phase
case, �=0°, presents the signature of a P+S mode �a single
vortex and a vortex pair formed per cycle�, at least in the
near wake. The classification of the different vortex modes is
given in Ref. 12. For this in-phase case, the vortices are shed
widely apart �nearly 4D�, readily explained by the rotational
oscillation adding momentum to the translational motion.
The resulting strain favors a transition to the P+S wake.13

Reducing the phase difference to �=−30° and �=−60°, the
vorticity pattern returns to a 2S mode in a double-row con-
figuration. It should be noted that the spacing between the
two rows reduces �from 2.5D to 2D� as we decrease �. The
cases of �=−90° and �=−120° are of particular interest:

Contrary to the other experimental cases, these two cases
were not synchronized with the translational motion beyond
2D downstream. The effect of this loss of synchronization
can be seen in the rapid downstream dissipation of the mean
vortex structures due to averaging. Only the two vortices
near the cylinder remain coherent. This a priori surprising
phenomenon might be explained by the fact that the separa-
tion between the two rows of vortices is smaller and that this
arrangement of vortices is not stable. Similar behavior can be
found behind elliptical cylinders.11 The last case �=−150°
�and necessarily the first case, �= �180°� displays vortices
in a single row.

In addition to the experiments, numerical simulations
have been undertaken to elucidate certain behavior and to
confirm certain aspects of the unlocked regime. Although
these �two-dimensional� numerical simulations are per-
formed at a much lower Reynolds number, the near-wake
predictions are predominantly consistent with the experimen-
tal results �e.g., the vorticity pattern�. This is likely due to the
strong forcing, partially overriding the modifying effect of
three-dimensional transition, at least for the near wake.

The description of the numerical methodology will be
brief because it has been adequately described in previous
papers. Details of the general method and its implementation
can be found elsewhere.14,15 The code employed has been
well proven for use in bluff-body problems.16–18 The time-
asymptotic wake flows for the present study were calculated
by solving the incompressible, time-dependent Navier–
Stokes equations in a translating accelerating frame of refer-
ence attached to the cylinder. The discretization method em-
ployed was a spectral-element method using seventh-order
Lagrange polynomials associated with Gauss–Lobatto–
Legendre quadrature points. The computational domain, con-
sisting of a semicircular upstream section and a rectangular
downstream section, extended at least 30D in all directions.
This was split into 518 elements, the majority of which were
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θ(t)

y(t)

FIG. 1. Schematic showing the problem geometry and important parameters
relevant to the combined forced oscillation and the circular cylinder model.
The streamwise direction is the x direction.
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Φ = 180◦ Φ = 150◦ Φ = 120◦ Φ = 90◦

Φ = 60◦ Φ = 30◦ Φ = 0◦ Φ = −30◦

Φ = −60◦ Φ = −90◦ Φ = −120◦ Φ = −150◦

Locked Locked Locked Locked

Locked Locked Locked Locked
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FIG. 2. �Color online� Motion phased-
locked vorticity isocontours �lines�
and root mean square vorticity �gray-
scale� taken at the motion phase t=T.
The near-wake vorticity is shown for
different phase differences between
the two imposed oscillatory motions.
Of particular interest is the asynchro-
nous �unlocked� wake with the im-
posed translational motion for the
phases �=−90° and �=−120°.
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concentrated in the cylinder boundary layer and wake re-
gions. At the cylinder surface, a time-dependent Dirichlet
condition was used that varied sinusoidally in time according
to the driven rotational oscillation. In all cases the numerical
simulations were performed for more than 200 cycles and
started at rest. This was found to be sufficient for the
asymptotic state to be achieved.

Various methods were used to analyze and characterize
the predictions. Lissajous figures of the lift and drag coeffi-
cients against the transverse forcing mechanism for each
phase difference have been produced. From these one can
assess whether the flow was periodic, quasiperiodic, or
highly irregular �or chaotic�. Examples for two different
cases are given in Fig. 3. The left-hand figures show quasi-
periodic behavior with the phase plots repeating after five
forcing periods. The right-hand figures indicate chaotic be-
havior since the trajectories do not repeat.

Some representative base flows are displayed in Fig. 4.
Despite the Reynolds number difference �simulations Re
=225, experiments Re=1322� these qualitatively reproduce
the near-wake behavior of the PIV results. For �	−20° a
single row of vortices is displayed. For −30° 
�
−20° a
double row of vortices appears after a single row of vortices.
The number of vortices in a single row diminishes as we
approach �=−30°. For −70° 
�
−30°, the wake no
longer displays an initial single row but instead immediately
forms a double row. These vortex rows interact further
downstream to form a quasiperiodic far wake. The number of
vortices forming the double row diminishes as � diminishes.
For −130° 
�
−80° the wake immediately transitions to a
fully chaotic state. For ��−130° the flow undergoes a suc-
cession of double row, to single row, then double row, until a
unique single row pattern. See the top wake pattern of Fig. 4
as representative of this final case.

Table I reports the experimental and numerical behaviors

of the wake flow for the same set of parameters but with
Re=225 for the numerical results. As we will see the dis-
crepancy in the value of the Reynolds number does not have
an impact on the synchronization for � values close to the
loss of synchronization. The numerical simulations confirm
the loss of synchronization for qualitatively the same region
as the experiments. The numerical simulations reveal that the
unlocked regime contains quasiperiodic and chaotic patterns.
It appears that the chaotic regime is surrounded by quasi-
periodicity. Also the likelihood of an unlocked regime is
greater when the ratio f t / fst is higher than unity.
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FIG. 3. Lissajous pattern defined horizontally with the translational forcing
mechanism �y� and vertically with lift �top� or drag �bottom� coefficient.

FIG. 4. Typical flow features for different imposed phase differences. Top:
single row of vortices transitioning downstream to a double row followed by
a further secondary instability in the far wake ��=−170°�. Center: double
row of vortices followed by a quasiperiodic pattern ��=−40°�. Bottom:
chaotic pattern of vortices ��=−100°�. The domain of the numerical simu-
lation was extended to 100D downstream for these cases.

TABLE I. Summary of the synchronization around the unlocked regime. L,
QP, and C stand for locked on, quasiperiodic, and chaotic, respectively. The
unlocked regimes �UL� for the experimental results are likely to be chaotic.
f t and fst stand for forced frequency and natural frequency for a fixed
cylinder.

�
�deg�

f t / fst

Expt.
�1

Numerical

0.9 1.0 1.1

�30 L L L L

�40 QP L L

�50 QP L QP

�60 L QP QP QP

�70 UL QP QP C

�80 UL QP QP C

�90 UL QP C C

�100 UL QP C C

�110 UL L C C

�120 UL L C C

�130 L C C

�140 L QP C

�150 L L L C

�160 L L L

�170 L L L

�180 L L L L
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To further examine the behavior, Poincaré maps have
been constructed for each phase difference. The horizontal
and vertical velocities are sampled at a prechosen point
downstream, �x ,y�= �7D ,0�, at the end of each forcing pe-
riod T. For example, Fig. 5 illustrates the quasiperiodicity of
the case where �=−80°. Here the periodicity of the flow is
of 5T as can be seen from the distribution of five distinct
islands of points in the phase diagram. The chaotic nature of
the regime in the case of �=−130° can be readily seen by
inspection, with the distribution of points in the phase dia-
gram showing no preferred region or cycle.

It appears that synchronization may not be a clear con-
cept. Both the experimental and numerical results show that
the size of the nearly periodic near-wake region is very much
a function of the phase difference. Both sets of results show
that this section of the wake becomes very short for
��−100°. Further downstream the wake undergoes a rapid
transition to a chaotic state. For other phase difference
ranges, the ordered near-wake persists further downstream
but still can be subject to secondary transitions resulting in a
quasiperiodic or chaotic far wake. If one measures the wake
response using integral measures such as the lift or drag co-
efficient, then these will be affected to some extent by the
far-wake behavior, even though they primarily respond to the
wake state near the cylinder. If the ordered near-wake region
is long, then these global measures should indicate synchro-
nization. As the near-wake is reduced in length, the far-wake
behavior can influence the signal recorded at the cylinder so
that it contains low frequency components or even increases
the frequency content to such an extent that the behavior is
chaotic. Interestingly, quasiperiodic and chaotic far-wake be-
haviors can be observed for elliptical shaped cylinders11 and
the normal flat plate,19 even in the unforced case.

Experiments and numerical simulations �not shown here�
suggest that the suppression mechanism also holds for
smaller amplitudes of motion �A� and At�. For the first time
experiments have been carried out on a cylinder wake when
the cylinder is experiencing combined rotary and transla-

tional oscillations. The effect of the phase differences be-
tween the two forced motions reveals that regular shedding
can be suppressed for particular phase differences. This ex-
perimental study raised interesting features that were inter-
preted with the aid of numerical simulations, which qualita-
tively capture the near-wake behavior.
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The free surface flow in a circular cylinder driven by a rotating bottom disk is studied
experimentally using particle image velocimetry. Results are compared with computational results
assuming a stress-free surface. A dye visualization study by Spohn et al. �“Observations of vortex
breakdown in an open cylindrical container with a rotating bottom,” Exp. Fluids 14, 70 �1993��, as
well as several numerical computations, has found a range of different vortex breakdown structures
in this flow. We confirm the existence of a transition where the top of the breakdown bubble crosses
from the axis to the surface, which has previously only been found numerically. We employ a
technique by Brøns et al. �“Topology of vortex breakdown bubbles in a cylinder with rotating
bottom and free surface,” J. Fluid Mech. 428, 133 �2001�� to find the corresponding bifurcation
curve in the parameter plane, which has hitherto only been used on numerical data. The bifurcation
curve located here agrees well with previous numerical simulations. For low values of the Reynolds
number we find a regime with vortex breakdown that has not been previously identified.
Experiments deviate substantially from computations, indicating the importance of surface effects in
this regime. © 2009 American Institute of Physics. �doi:10.1063/1.3265718�

The flow in a circular cylinder driven by a rotating bot-
tom disk has proven to be a most useful setup to study sec-
ondary structures on a main vortex. Both experimental and
computational studies have shown that one or more vortex
breakdown zones or bubbles may occur in this flow. We refer
the reader to previous reviews for a summary of the central
features of vortex breakdown.1,2 In this letter we report ex-
perimental and computational results for the flow in a cylin-
der with a free surface. The first comprehensive experimental
study of the closed cylindrical container case was undertaken
by Escudier3 to obtain a map of vortex breakdown transitions
with respect to aspect ratio and Reynolds number. Numerous
computational studies4–7 have reproduced the transitions
very accurately. The first experimental study of the open cy-
lindrical container case with a free surface on the top was
undertaken by Spohn et al.8 Several computational studies of
the flow assuming a stress-free, clean, and flat free surface
are available.5,9–12 Comparing numerical and experimental
results11 shows discrepancies not present in the closed cylin-
der case. Several flow topologies which are predicted nu-
merically are not found experimentally, and the quantitative
agreement between the numerical and computational results
is generally poorer. It appears that physical effects such as
surface deformation and surface contamination not included
in this simple model influences the flow structure. Progress
in the modeling of the flow has recently been obtained by
Bouffanais and Lo Jacono13,14 who presented the results of a
full numerical simulation in which the laminar, unsteady, and
transitional flow regimes have been modeled without resort-

ing to any symmetry property. Still, many challenges remain
in modeling free surface flows15 making experimental stud-
ies of this problem especially important. There is currently a
technological interest in the cylinder flow with a free surface
as it provides a promising model for bioreactors. The steady
flow within a vortex breakdown zone has a low stress level,
making it appropriate for growth of organic tissue.16–18 Un-
derstanding the topology of the flow—the number and shape
of the breakdown bubbles—as it depends on the system pa-
rameters clearly becomes important.

In the present letter we examine the topology of vortex
breakdown flow experimentally in a cylinder with a free sur-
face using the particle image velocimetry �PIV� technique.
We compare the results with numerical simulations assuming
a flat stress-free surface. In the parameter regime we explore
there is a unique, steady stable flow. It is the variation in the
structures in this flow we explore.

The experimental setup consists of a transparent cylinder
of diameter D=2R=65 mm that was filled with water and
placed in the center of a water filled octagonal shaped con-
tainer. The octagonal shape allows the exterior faces of the
rig to be flat in order to reduce refraction effects. A similar
experimental setup was successfully used elsewhere.19,20 The
temperature of the water in the surrounding tank was con-
trolled and kept at 20 °C �Huber ministat� with a resolution
of 0.1 °C. The rotating flat circular disk was located at the
bottom of the device. The shaft of this rotating plate was
connected through a gear box �gear ratio of 40:1� to a high
resolution stepper motor. The stepper motor was computer
controlled via a high-performance motion controller at a res-
olution of 51 200 steps rev−1 �National Instrument MID-a�Electronic mail: david.lojacono@imft.fr.
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7604�. The tracer particles used were spherical granular
shaped polyamide particles with a nominal diameter of
20 �m and specific weight of 1.016 gr cm−3. The particles
were illuminated by a 2.0 mm thick laser sheet powered by
two miniature Nd:yttrium aluminum garnet lasers �Con-
tinuum Minilite II� at a wavelength of 532 nm and maximum
energy output of 25 mJ pulse−1. Pairs of images were cap-
tured on a high resolution camera with a maximum reso-
lution of 4008�2672 pixel. The camera was equipped with
a 200 mm lens. This setup gave a range of field of view
which varied between 2672�2170 and 2672�3800 pixel
�1.232�1.000R and 1.232�1.750R, respectively� for an as-
pect ratio of �=H /R=1 and �=1.75, respectively. The ac-
curacy of the aspect ratio was estimated to be about 3 pixel
at each end, equating to 1.38�10−3R at each end. It is worth
noting that special care was taken to align the objectives,
laser sheet, and camera, as any slight misalignment produces
a non-negligible bias in the results. Each image pair was
processed using in-house PIV software.19 A final interroga-
tion window of 32�32 pixel �0.48�0.48 mm correspond-
ing to 1.475�1.475�10−2R� was found to give satisfactory
results with a 50% overlap �grid spacing of 16�16 pixels
corresponding to 7.375�7.375�10−3R�. Thus, the maxi-
mum measurement resolution obtained was 236�166 vec-
tors for each field. A total number of 50 image pairs, taken at
a 1.5 Hz, were acquired. Measurements were started after
100–150 cycles after the beginning of motion, allowing suf-
ficient time to achieve steady state. These states display a
high degree of symmetry which allows the determination of
the axis of rotation. For a horizontal line at height z which is
parametrized by a variable x we determine the point of inter-
section with the axis as the value of x which minimizes the
following measure of asymmetry:

D�x� =� �w�x + �� − w�x − ���2d� . �1�

For a large region in the middle of the container this value of
x is well defined and is independent of z and hence identifies
the axis.

As the main quantity to identify changes in flow topol-
ogy we use the axial velocity at the axis w0�z�. We use di-
mensionless variables where the velocity is scaled by R�,
where � is the angular velocity of the bottom disk. The
distance is scaled by R such that z varies from 0 at the bot-
tom to � at the free surface. Furthermore, we show stream-
lines of the flow from the isocurves of the streamfunction �
satisfying

u =
1

r

��

�z
, w = −

1

r

��

�r
. �2�

We find � by integrating the second equation radially and
choosing the level �=0 for the axis and the free surface. This
method avoids using the radial velocity which is very small
close to the axis and has a high relative uncertainty here.
Away from the axis we have checked � by comparing the
measured u with the one computed from Eq. �2� and found
good agreement.

The incompressible Navier–Stokes equations were
solved numerically using a spectral-element technique. The
discretization method employed used seventh-order
Lagrange polynomials associated with Gauss–Lobatto–
Legendre quadrature points. The simulations were under-
taken on a 400 macroelement mesh carefully concentrated
toward the solid boundaries. Details of the implementation
used here can be found in Ref. 21. The code employed has
been well proven for use in bluff-body problems.22,23 Axi-
symmetry and no-slip boundary conditions were applied on
the appropriate sides of the computational domain.20

Figure 1 shows a typical sequence of flow structures for
fixed � and increasing Re. A corner bubble is present if
w0�0 in a region just below the surface. The bubble at-
taches to the axis at the point where w0=0. In all cases there
is good agreement between experiments and computations in
the lower part of the cylinder, in particular, for the Ekman
layer close to the rotating disk. Close to the free surface there
are some discrepancies between experiments and computa-
tions, most prominently at the Re close to the corner crossing
bifurcation. Experimentally, the flow topology can be clearly
identified except for Re=1850 where the sign of w0 just be-
low the surface cannot be determined unambiguously. Figure
2 summarizes our results for the corner crossing bifurcation.
The existence of the bifurcation is clearly verified experi-
mentally, and the precise location of it is in good agreement
with computations, the maximal difference being around 100
in Re at the highest values of �, with better agreement at
lower �. From the experimental data an estimate of the bi-
furcation curve can be found as follows. Let G�� ,Re�
=w0��0�, i.e., the axial derivative of the axial velocity evalu-
ated at the axis on the free surface. If G�0 a corner bubble
is present, if G�0 it is not, see Fig. 1. Hence, the bifurcation
can be located by the condition G=0. From the experimental
data a series of values of G can be obtained and a bifurcation

function Ḡ is found by fitting these numbers using a second-

order polynomial in � and Re. The bifurcation line Ḡ=0 is
shown as the dashed line in Fig. 2. The same procedure was
used on numerical data.6 While it is to be expected that nu-
merical data will depend smoothly on parameters such that
the procedure will result in unambiguous results, it is less
evident that the same holds for experimental data. However,
this is the case for the present dataset. The bifurcation func-

tion Ḡ can be generated from a subset of the available data,
and it turns out that the bifurcation curve is quite robust with
respect to that choice. In particular, one may avoid data very
close to the bifurcation line where the axial velocities close
to the surface are very small, and hence �w /�z is poorly
defined. In fact, for the curve in Fig. 2 we have only used the
data from the maximal and the minimal Re at each �. We
now turn to the flow at low Re. Both previous
computations11 and experiments8 indicate that as Re is de-
creased the corner bubble turns into a detached bubble which
then shrinks and disappears. Figure 3 shows, however, some
quantitative differences in the location of the two curves. Our
experiments reproduce the first experimental bifurcation
curve with good agreement. For decreasing Re we do find
that the detached bubble shrink but does not disappear com-
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pletely. At the same time the agreement with computations
deteriorates, and at the lowest Re we find quite large break-
down bubbles with inner structures and an axial velocity
profile which is completely different from the one obtained
computationally, see Fig. 4. This behavior is consistent for
all values of �. To the best of our knowledge, no experimen-
tal result in this regime is available in the literature. We
attribute this discrepancy to surface effects which are not
included in the computational model. We have taken great
care to eliminate error sources such as vibrations and tran-
sients, but control of the surface properties is very difficult.
Surface tension variations can give rise to stagnation points24

and the flow topology is consequently very sensitive to sur-

face effects. This effect is dominating at low Re, since at
high Re we get good agreement with computations assuming
a stress-free surface.

In conclusion, we have shown that the present experi-
mental technique allows a robust and reliable determination
of vortex breakdown structures. We have confirmed the ex-
istence of a topological bifurcation where the topology
changes from a corner bubble to an attached bubble through
a corner crossing bifurcation that has previously only been
found numerically. We have provided a proof of concept for
a technique to determine a topological bifurcation curve
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determined from the experimental bifurcation function Ḡ.
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from the quantitative data obtained experimentally. Finally,
we have explored a new region of the parameter space where
we have found vortex breakdown bubbles hitherto not ob-
served nor found computationally. The existence of these
bubbles indicate that surface effects are very important for
the overall flow at low Re.
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