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Abstract

This computational study investigates the primary instabilities of the flow produced by a
circular cylinder with simple harmonic motion in quiescent fluid and additionally exam-
ines the effect on the flow structures generated by combining this with a rotational oscil-
lation. A circular cylinder performing simple harmonic rectilinear oscillations in a quies-
cent fluid, or, alternatively, oscillating flow past a stationary cylinder, at low Keulegan–
Carpenter numbers, KC, and Stokes numbers, β, is known to produce a number of flow
regimes within the control-parameter range (KC ∈ [0, 10], β ∈ [0, 100]), each with
distinctive spatial and temporal characteristics. The identification and location of these
regimes in (KC,β)-space has in the past primarily been achieved through experimental
visualisation of dye and particle shedding patterns. In this investigation the characteristics
and locations of the two- and three-dimensional instabilities of the initially two-dimen-
sional symmetric flow generated by a circular cylinder in rectilinear oscillation are deter-
mined via Floquet analysis and direct numerical simulation. Additionally, it has also been
shown numerically that by combining a rotational oscillation with the rectilinear motion,
a thrust can be generated in a direction perpendicular to the axis of rectilinear oscillation.
This thrust is examined and the influence of the velocity ratio between the two oscillations
is qualitatively studied.

At very low amplitudes and frequencies of rectilinear oscillation the flow produced
by a circular cylinder is known to be symmetrical and two-dimensional. It is found that
while the initial bifurcations produced by increasing the parameters can be to three-di-
mensional flows, much of the behaviour can be explained in terms of two-dimensional
symmetry breaking instabilities. These have two primary manifestations: at low Stokes
numbers, the instability is synchronous with the imposed oscillation, and gives rise to a
boomerang-shaped mode, while at higher Stokes numbers, the instability is quasi-perio-
dic, with a well-defined second period, which becomes infinite as Stokes numbers are
reduced along the marginal stability boundary, ‘freezing’ the quasi-periodic mode into
a synchronous one. The synchronous two-dimensional mode is, with further small in-
crease in control parameter, unstable to three-dimensional secondary instabilities with the
resultant flow resembling the flow observed by experimental visualisation. A three-di-
mensional instability mode occurs at approximately the same location as a portion of the
two-dimensional quasi-periodic mode. It has the same signature temporal characteris-
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tics of the two-dimensional quasi-periodic mode and resembles experimentally observed
flows at the same location in (KC,β)-space. At low Keulegan–Carpenter numbers, and
high Stokes numbers, below the onset in (KC,β)-space of a portion of the two-dimen-
sional quasi-periodic mode, a primary three-dimensional instability occurs. This primary
instability arises directly from the two-dimensional symmetrical state and gives rises to
flows that were first reported by Honji (1981).

When rotational oscillation is added to the two-dimensional rectilinear oscillation of
a circular cylinder in quiescent fluid it is possible to generate time-mean forces in a di-
rection perpendicular to the axis of rectilinear oscillation. If the cylinder is permitted to
move along the axis perpendicular to the rectilinear oscillation in response to the time-
mean force it eventually reaches a terminal velocity, at which point the time-mean force
propelling the cylinder is balanced by the force due to the incident flow. The force pro-
pelling the cylinder is due to both a viscous component and a pressure component that
arise from the combination of oscillations employed. Particular ratios of the rectilinear
to rotational velocity are found to be more effective at creating a time-mean force. The
velocity ratio of the oscillations also produces significant changes in the wake of the
‘swimming’ cylinder with the narrowest wake structure corresponding with the highest
terminal velocity.
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Nomenclature

Symbol Description

β Stokes number.
βθ Rotational Stokes number.
χ Angle between rectinlinear oscillation and free stream flow.
φ Phase angle between rotational and rectilinear oscillations.
θ Angular displacement.
ν Kinematic viscosity.
µ Floquet multiplier.

Dynamic viscosity.
ρ Density.
λ Spanwise wavelength.
ξ Vorticity vector.
σ Floquet exponent = log(µ/T ).
ωx, ωy, ωz Vorticity components along the x, y and z axis respectively.
Ω Computational domain.
∇ Vector gradient operator (grad).
∇2 Del squared (or div grad) operator.
a Acceleration vector of the reference frame.
Aθ Amplitude of rotational oscillation in radians.
At Amplitude of rectilinear oscillation.
b Damping constant.
B Operator evolving the perturbation to the base flow over one period, T .
c Stiffness constant.
Ĉfy Peak coefficient of force per unit length along the y-axis.
Cpb Base pressure coefficient.
Cpx Coefficient of force due to pressure in the x-direction.
Cvx Coefficient of force due to viscosity in the x-direction.
C̄x Mean force coefficient in the x-direction.
D Cylinder Diameter.
Ek Normalised amount of energy in each Fourier mode k.

Continued on next page...
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Symbol Description

fθ Frequency of rotational oscillation.
fn Natural frequency of vortex shedding.
ft Frequency of rectilinear oscillation.
fv Frequency of vortex shedding.
fp Force vector due to pressure.
fv Force vector due to viscosity.
fT Total force vector.
Fx Net force per unit length along the x-axis.
H1 A spatio-temporal symmetry.
H2 A spatio-temporal symmetry.
k Spanwise wavenumber.
K Order of Krylov matrix.
Kx Reflection symmetry in x = 0.
Kz Reflection symmetry in z = 0.
KC Keulegan–Carpenter number.
L Linear operator of the Navier–Stokes equations.
LN Legendre polynomial of degree N .
Lz Spanwise length scale.
m Mass per unit length.
n Vector normal.
Nel Number of elements in a computational domain.
Np Order of the spectral element interpolants.
NU T -periodic linearised operator ≡ (u′ · ∇)U + (U · ∇)u′.
N(u) Non-linear advection term in the Navier–Stokes equations.
p Pressure field.

Interpolant polynomial order.
p′ Pressure field of perturbation.
p̃ Field coupling the momentum and continuity equations.
P Kinematic pressure = p/ρ.
Rα Translation symmetry along the z − axis.
Re Reynolds number based on free stream velocity and cylinder diameter.
Ret Reynolds number of an oscillating cylinder = KCβ.
St Strouhal Number.
Stf Strouhal Number based on frequency of rotational oscillation.
t Time.
T Oscillation period.
Ts Secondary oscillation period.

Continued on next page...
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Symbol Description

u, v, w Velocity components in the x, y and z directions respectively.
ũ(t) T -periodic Floquet eigenfunction.
u Velocity vector.
un Semi-discrete approximation (in time) to the velocity vector.
u′ Perturbation velocity vector.
uθ Rotational velocity vector of a point on the surface of the cylinder.
û Fourier component of the velocity field.
U Two-dimensional ‘base’ flow.
Up Prescribed velocity on a boundary of the comptutational domain.
Urms Root Mean Square velocity.
U∞ Free stream velocity.
vt Peak velocity of rectilinear oscillation.
vθ Peak velocity of rotational oscillation.
v Velocity vector of the reference frame.
Vr Velocity ratio between translational and rotational oscillation = vt/vθ.
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Chapter 1

Introduction

This thesis presents the results of a numerical investigation into the flows produced by a
bluff body subjected to oscillatory motion in a Newtonian fluid. Oscillatory flow about
bluff bodies is a situation that occurs in a multitude of cases involving man-made struc-
tures and throughout nature. In such cases the oscillatory flow relative to the bluff body
can, dependent upon the amplitude and frequency of oscillation, produce flow structures
that are either constant or varying along the cylinder span, which in turn, results in a va-
riety of hydrodynamic forces acting upon the bluff body. Typical situations where this
occurs with man-made structures are seen by analysing the action of waves against pier
pylons and past the support structures of offshore oil platforms. In nature, a number
of oceanic animals have evolved a highly efficient propulsive mechanism that is, in its
simplest form, a body subjected to both a lateral and twisting oscillatory motion. This
means of propulsion, known as Carangiform motion, involves the animals tail fin being
subjected to a twisting motion at the extreme ends of the fins lateral oscillatory motion. It
is a highly effective form of propulsion and is used by a number of the fastest swimming
oceanic lifeforms such as dolphins, marlin and some families of sharks. The symmetrical
winglike fins used in generating this thrust all have a large aspect ratio in common and are
decidedly streamlined. However in this thesis, a circular cylinder is used as the bluff body
due to its geometrical and mathematical simplicity, its applicability to man made struc-
tures and the abundance of literature and previous investigations regarding flow-cylinder
interactions.

The structures formed by an oscillating cylinder are highly dependent upon the char-
acteristics of the cylinder oscillation and are additionally influenced by the presence of an
external flow. In a quiescent fluid, at very low amplitudes and frequencies of rectilinear
oscillation, the flow about a circular cylinder is symmetric about its axis of oscillation
and is two-dimensional (it has no variation along the span), attached and non-turbulent.
However as either, or both, of these parameters increase, the flow structures produced
by the cylinder change dramatically. The initial symmetry is lost and a number of two-
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and three-dimensional structures are seen in the cylinder wake. An example of this is the
‘streaked flow’ observed by Honji (1981) wherein regularly spaced chains of dye were
seen to form along the cylinder span for a particular envelope of amplitudes and frequen-
cies of oscillation.

If, in addition to the translational oscillation of the cylinder relative to the surrounding
flow, a rotational oscillation is imposed upon the cylinder, the structures formed and the
forces produced on the cylinder alter substantially. There have been many studies of sim-
ple individual cases of cylinders performing a single oscillation type in either a quiescent
or free stream flow. However, there is a notable absence of research into the effects of
combining the rotational and rectilinear oscillation types. To date only a limited investi-
gation by Elston (1997), Blackburn, Elston and Sheridan (1998) and Blackburn, Elston
and Sheridan (1999) has been performed into this topic. A key finding of these investiga-
tions was that a time-averaged net thrust could be generated by the forced oscillation of a
circular cylinder in a combination of rotational and translational motion.

The previous paragraphs outlined two aspects that were focused upon in this inves-
tigation: namely the onset of two- and three-dimensional flow structures for a cylinder
in rectilinear motion and secondly the situation where an additional rotational oscillation
was applied to the cylinder in rectilinear motion. This investigation was conducted using
a spectral element method to directly model the fluid dynamics. As a component of the
research involves determining stability boundaries and three-dimensional wavelengths, a
technique know as Floquet analysis was implemented in addition to the Direct Numeri-
cal Simulation (DNS) method used. This stability technique enabled the determination
of which three-dimensional wavelengths would become unstable and was used to investi-
gate the stability of the two and three dimensional flows and as an aid in the subsequent
three-dimensional DNS simulations.

2



1.1. RESEARCH PROBLEM DEFINITION

1.1 Research Problem Definition

The problem being considered here involves a circular cylinder being subjected to one or
more modes of oscillation while surrounded by either an externally imposed flow or by
a quiescent fluid. The surrounding fluid was considered to be incompressible and New-
tonian. Simple harmonic forms of translational and rotational oscillation were used for
all the modes of imposed oscillation considered in this thesis. The equations of motion
detailing how the cylinder moves under the action of these forcing oscillations and the
parameters affecting these oscillations are detailed in the following paragraphs and illus-
trated in the schematic of figure 1.1.

x

y

U

D

χ

t

A

θ

θ

A

Figure 1.1: Schematic showing the two-dimensional problem geometry and impor-
tant parameters relevant to the forcing oscillations.

For a cylinder subjected to a combined rotary and translational oscillation there are
five dimensionless parameters governing its motion. The rotational and translational os-
cillations each have two parameters which define the respective motions and an additional
fifth parameter exists which is the phase angle between these harmonic motions.

The equation of motion for a cylinder of diameter D in rectilinear oscillation along
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1.1. RESEARCH PROBLEM DEFINITION

the y-axis is described by:
y(t) = At cos(2πftt) (1.1)

where At is the amplitude of oscillation and ft is the frequency of oscillation for a cylinder
oscillating along the y-axis. The rotational oscillation of the cylinder about its axis is
described by:

θ(t) = Aθ cos(2πfθt + φ) (1.2)

where Aθ is the oscillation amplitude and fθ is the oscillation frequency. The angle, φ,
represents the phase angle between the rotational and rectilinear oscillations.

The five dimensionless parameters controlling the oscillations are defined as follows.
Two parameters determine the state of the rectilinear oscillation in a fluid of kinematic
viscosity ν. These are the Keulegan–Carpenter number

KC =
2πAt

D
(1.3)

and the Stokes number.
β =

ftD
2

ν
(1.4)

The Keulegan–Carpenter number was introduced by Keulegan and Carpenter (1958) who
found that the average values of the drag coefficients of a vertical cylinder subjected to a
standing wave were functions of this parameter. The Stokes number is originally derived
from Stokes’s work on a vibrating string at very low Reynolds numbers, although recent
literature attributes the use of this nomenclature to Sarpkaya (1986). An alternative to
either of these parameters is the Reynolds number, Ret = KCβ, although this is less
common in the published literature than the use of KC and β.

In the same manner, two parameters determine the state of the rotational oscillation.
Previous research into rotary oscillations, such as that of Taneda (1978) or Tokumaru and
Dimotakis (1991), have involved a freestream flow of constant velocity which was used
to nondimensionalise the frequency of oscillation. This is not applicable to the situation
where a quiescent fluid is present and therefore a convention similar to that used above for
the rectilinear oscillation was settled upon. The parameter adopted to nondimensionalise
the frequency of rotary oscillation is:

βθ =
fθD

2

ν
(1.5)

The amplitude of the rotary oscillation, Aθ, was used as the fourth governing parameter
and required no nondimensionalisation as it is an angle. This is inline with the convention
used by Taneda (1978) who also used this as a governing parameter. The fifth parameter
is that of the phase angle, φ, between the two harmonic motions.

The spanwise length of the cylinder projects into the third dimension (the z-axis) and
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1.1. RESEARCH PROBLEM DEFINITION

is considered to be infinite in the numerical simulations to be discussed, although when
results are compared with experimental results the impact of a finite spanwise length will
be discussed as appropriate. While the majority of the investigation comprises rectilinear
oscillations in a quiescent fluid, in some cases a cross flow can occur. In these cases the
angle, χ, between the direction of the cross-flow and axis of the rectilinear oscillation
becomes a relevant parameter. In this thesis the direction of an external flow will be
taken as being from the left (with reference to figure 1.1) or along the x-axis. Rectilinear
oscillations that are at right angles (χ = 90) to this are defined as translational oscillations
while those with zero angle (χ = 0) are defined as inline.

It should be noted that the aspect of rectilinear oscillation of a cylinder in fluid, ei-
ther in a quiescent fluid or in a cross-flow, has received a great deal of attention in the
published literature. Largely this has been motivated by application to marine environ-
ments at high β numbers while at lower β numbers there has been considerable interest
in the way in which vortices are created and shed. In the low (KC,β)-space a number of
regimes have been identified, typically through experimental visualisation, by their two-
and three-dimensional spatial and temporal characteristics of particle shedding. However
little attention has been paid to why the transitions between these regimes occur, nor to
the nature of these transitions. Additionally most of the previous research has been ei-
ther experimental or two-dimensional numerical simulations. In contrast, the combined
rotational and translational oscillation of a cylinder has received very little attention. In
a two-dimensional simulation, Blackburn, Elston and Sheridan (1999) have shown that a
cylinder subjected to this form of motion can produce a net thrust. However, to date, no
three-dimensional simulations or experimental research has investigated this result.

The investigation is composed of two components:

1. The principle focus is an investigation of the primary two- and three-dimensional
transitions for a cylinder performing rectilinear oscillation in a quiescent fluid. The
investigation will focus upon identifying the type of transition occurring and in the
event of a three-dimensional transition, determine the critical wavenumbers of the
instability. To facilitate this a Floquet stability analysis technique is implemented
in order to perform a linear stability analysis of the underlying periodic flow.

2. The mechanism resulting in the combined rotational and rectilinear oscillation of
a circular cylinder producing a time-averaged thrust is examined. Additionally the
influence of rotational oscillation on the near wake structure and the time-averaged
thrust is investigated.

A spectral element method is used for the DNS computations. A spectral element
spatial discretisation is applied for three-dimensional simulations in the x-y plane while
along the z-axis a Fourier discretisation is employed. The technique implemented uses a
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1.1. RESEARCH PROBLEM DEFINITION

fixed computational grid attached to the cylinder which does not deform to allow cylinder
motion, instead it moves with the cylinder. The consequence of this is that the force
experienced by the cylinder is different than the force it would experience if it had been
been fixed and the fluid oscillated about it. The Floquet stability analysis technique is
implemented using the spectral element technique to provide the periodic flows whose
stability is to be examined.
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1.2. STRUCTURE OF THE THESIS

1.2 Structure of the Thesis

The thesis is structured as follows:

Chapter 2: A review of the relevant literature is conducted in order to assess the cur-
rent state of knowledge, and to highlight unanswered questions and gaps in the existing
research.

Chapter 3: The computational method used to simulate the nonlinear flows is outlined. A
spectral element discretisation is used for two-dimensional flow simulations. In the three-
dimensional simulations the same spectral element discretisation is employed in a two-di-
mensional plane while in the direction perpendicular to this plane a Fourier discretisation
is employed.

Chapter 4: A core component of the research presented in this thesis is the use of linear
stability analysis. In this chapter the technique and details of implementation of Floquet
stability analysis are described.

Chapter 5: An investigation of the flow generated at very low amplitudes and frequencies
of rectilinear oscillation is made. This chapter serves to illustrate the properties of the
symmetric base flows and to define the symmetries present in this base flow state.

Chapter 6: The location, in a restricted two-dimensional space, of the onset of a bifur-
cation from the symmetric base flow outlined in the previous chapter is determined. The
nature of the resultant states are explored using nonlinear DNS and Floquet analysis.

Chapter 7: The location, in a full three-dimensional space, of the onset of a bifurcation
from two-dimensional symmetric base flows or flows that have broken two-dimensional
symmetry are determined. The nature of the resultant states are explored using nonlinear
DNS and Floquet analysis.

Chapter 8: The ‘swimming’ cylinder problem of a cylinder in combined rectilinear and
oscillatory motion is examined briefly. The mechanism by which a force is generated is
explored and the impact of the various parameters controlling the motion of the resultant
flow is investigated.

Chapter 9: The results obtained in the previous chapters are summarised and potential
future directions for research in this area are discussed.

Appendix A: A bibliography that contains all the references cited throughout the body of
this thesis.
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Chapter 2

Literature Review

In the following sections previous research into aspects of a cylinder oscillating in a fluid
are examined. In particular two specific phenomena that, in part, provided the motivation
for this research will be examined in greater detail. The first of these phenomena arises
from the research of Honji (1981), Williamson (1985) and Tatsuno and Bearman (1990)
who collectively observed that the rectilinear oscillation of a circular cylinder at low am-
plitudes and frequencies of oscillation in a quiescent fluid, or equivalently a fixed cylinder
in sinusoidally oscillating flow, can generate a set of intriguing flow structures. Tatsuno
and Bearman (1990) defined a number of unique regimes, on the basis of the distinctive
flow structures shed from the cylinder, that were observed to occur over a very small range
of Keulegan–Carpenter and Stokes numbers.

The second phenomenon of interest is observed when a harmonic rotational oscilla-
tion is imposed upon the cylinder in addition to the aforementioned rectilinear motion. It
has been computationally shown by Blackburn, Elston and Sheridan (1999) that, for par-
ticular phase angles between the two forms of oscillations, a net thrust can be produced by
the cylinder which acts upon the surrounding fluid and results in a time-averaged flow past
the cylinder. This motion combination has also been identified, see for example Lighthill
(1986), as being the propulsion mechanism used by the fastest deep sea marine animals.
These animals, a small sample of which includes tuna, swordfish, sharks, whales and dol-
phins, utilise a form of tailfin motion identified as carangiform motion that in its simplest
form can be related back to a bluff body performing translational and rotary oscillation.
Although in carangiform motion, the phase angle between the rotational and translational
motions is the reverse of that found to produce a thrust by Blackburn, Elston and Sheridan
(1999) with a circular cylinder.

In the following sections previous work on cylinders oscillating in either a rotational
or translational motion in a fluid will be examined. As this combination of oscillations has
been shown to produce a net external flow, studies of forced oscillations in both quiescent
and external flows will be examined. Initially we start by reviewing a stationary cylinder

8



2.1. STATIONARY CYLINDER IN A FREE STREAM

with no oscillation in a free stream and then review the influence of the addition of either
oscillatory motion types with or without the free stream presence.

2.1 Stationary Cylinder in a Free Stream

Steady flow past a circular cylinder in an infinite medium has been one of the most ex-
tensively studied problems of fluid dynamics. One of the most notable and historically
significant of these studies was that by Strouhal (1878) who examined the Aeolian tones
produced by wires vibrating in the wind. His observations permitted him to conclude
that the dynamics of this experiment were characterised by a relationship between the
frequency of sound produced by the wire and the fluid velocity past the wire. In a simi-
lar manner the fluid dynamics of flow past a fixed cylinder have been characterised by a
number of parameters, of which the most critical is the Reynolds number. This defining
parameter, which relates the flow inertia to the viscous effects on a body, has been used by
many researchers as a means of reducing and compacting their observations and results
to a common form. In the case of the fixed cylinder in a free stream, the location of the
major regimes of vortex shedding and the critical transition points between these regimes
are typically characterised in terms of the Reynolds number.

The regimes can be distinguished through a number of qualitative and quantitative
means, the most common of which are plots of the base pressure coefficient Cpb, or
Strouhal number St, as a function of Reynolds number. In figure 2.1 measurements of the
base pressure coefficient are plotted as function of the Reynolds number over the range
10 − 1000 in order to illustrate the four regimes that occur over this Reynolds number
range and to serve as a basis for further discussion. There exist a substantial number of
regimes above Re = 1000, however these are beyond the domain of interest of this inves-
tigation and will not be considered here. The values quoted in Figure 2.1 and in the fol-
lowing discussion for the locations of the Regime transitions are derived from Barkley and
Henderson (1996). These are numerically derived values and the variation of these from
experimentally derived values, such as those cited in the review of Williamson (1996b),
can in some cases be ascribed to experimental aspects such as roughness, turbulence lev-
els, cylinder aspect ratio and blockage. However this is insufficient to completely describe
the variance and in the following sections these regimes and the discrepancies between
the numerical and experimental transition locations will be examined in more detail.

2.1.1 Laminar Steady Regime (Re < 46)

In the Reynolds number range 0 < Re < 46 a steady two-dimensional recirculation re-
gion forms behind the cylinder, see Figure 2.2. This wake region consists of two vortices
symmetrically placed on either side of the wake centreline, which together form a sym-

9



2.1. STATIONARY CYLINDER IN A FREE STREAM

Figure 2.1: Variation of base suction coefficient (−Cpb) over the Reynolds number
range 10− 1000. Data is obtained from the experiments of Williamson and Roshko
(1990), ◦, the numerical computations of Henderson (1995), — ,and the numerical
analysis of Barkley and Henderson (1996), - - -.
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Figure 2.2: Streamlines of fluid flow in the Laminar Steady Regime.

metric recirculation region. Williamson (1996b) notes that the length of this region has
been experimentally (Taneda (1956); Gerrard (1978); Coutanceau and Bouard (1977))
and numerically (Dennis and Chang (1970)) shown to increase as the Reynolds number
increases.
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2.1. STATIONARY CYLINDER IN A FREE STREAM

2.1.2 Primary Wake Instability (Re ≈ 46)

As the Reynolds number is further increased it exceeds a critical value at which point
an instability has been shown by Taneda (1956) and Gerrard (1978) to manifest itself in
the form of sinuous waves which propagate along the boundary of the wake recirculation
in the downstream direction. This primary instability of the laminar steady regime has
been established by the numerical results of Jackson (1987) and the experimental results
of Provansal, Mathis and Boyer (1987) to be at Re ≈ 46. At this point the flow is
observed to undergo a supercritical Hopf bifurcation and the flow transitions to a two-
dimensional oscillatory flow. Provansal et al. (1987) found that the von Kármán vortex
street, see figure 2.3, that forms is the saturated end-product of this instability. They
also established that the shedding frequency in the saturated state, for Reynolds numbers
close to the critical Reynolds number (Recrit), matches that obtained using linear stability
theory. This result was achieved using a Stuart-Landau nonlinear model equation for the
amplitude of wake oscillations. The Stuart-Landau equation for the complex amplitude
of the wake oscillation is shown in equation 2.1, where σ and λ are complex coefficients.

dA/dt = σA − λ|A|
2A (2.1)

In a Hopf bifurcation, the parameter σ can be expanded in powers of (Re − Recrit).
Provansal et al. (1987) found that by using the leading linear term of this expansion while
searching for a steady state solution (dA/dt = 0) they could obtain a relationship that
matched the results of their vortex shedding experiments.

2.1.3 Laminar Vortex Shedding Regime (46 < Re < 188.5)

As a consequence of the Hopf bifurcation (the primary instability) the wake in this regime
oscillates periodically. As the Reynolds number is further increased within this regime,
the amplitude of these oscillations increase and vortices are released periodically into the
wake to form the classical von Kármán vortex street as shown in Figure 2.3. In an ideal
case the cylinder is of infinite spanwise length, however in any laboratory experiment
the cylinder is of a finite length and the experiment’s spanwise boundary conditions have
been shown to exert considerable influence over the flow. Williamson (1996b) observes
that if the experimental spanwise boundary conditions are carefully manipulated then the
flow is periodic and vortex shedding is parallel to the cylinder. Oblique forms of vortex
shedding, where the vortex shedding is not parallel to the cylinder, can result in non-
periodic shedding. However, this form of shedding will not be considered in this review
because the end conditions are considered to be infinite in the numerical simulations to
be presented.

The advent of vortex shedding into the flow results in the loss of the symmetry about
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2.1. STATIONARY CYLINDER IN A FREE STREAM

Figure 2.3: Kármán vortex street behind a circular cylinder at Re = 105. The image
shows streaklines produced by electrolytic precipitation in water. Photograph by
Sadatoshi Taneda. Reproduced from Van Dyke (1982).

the wake centreline, a dominant feature of the Laminar steady regime, however it retains
the same form of symmetry in the spanwise direction (a two-dimensional flow). A feature
of the primary instability is the inception of periodic shedding of vortices alternately from
either side of the cylinder which in turn results in a periodic force being experienced by
the cylinder. This force has been found to have components in the direction normal to
the free stream, which oscillates at the shedding frequency of the vortices, as noted in the
review of Bearman (1984), and a component inline with the stream, which oscillates at
twice the shedding frequency, as noted in the review of Sarpkaya and Isaacson (1981).

2.1.4 Secondary Instability (Re ≈ 188.5)

The transition from the Laminar vortex shedding regime is first observed in experiments
as a sharp discontinuity of the Strouhal number, as shown in figure 2.4, where the Strouhal
number can be seen to drop rapidly at Re ≈ 180. This rapid experimental transition is
characterised as the secondary instability of steady flow past a fixed circular cylinder.
Williamson (1996b) observes that the upper-limit of the previous laminar vortex shed-
ding regime has been found to vary considerably in experiments, from Re = 140 − 194.
This large variation in the experimentally measured point of transition was ascribed by
Williamson (1996b) to be a consequence of experimental sources of perturbation to the
ideal flow. Cylinder roughness, free-stream turbulence amplitude, blockage and end ef-
fects are some of the perturbation sources cited which tended to have the effect of reducing
the point of transition to a lower Reynolds number.

Barkley and Henderson (1996) numerically investigated the secondary instability via
numerical techniques, using a Floquet stability analysis, with the objective of quantifying
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2.1. STATIONARY CYLINDER IN A FREE STREAM

Figure 2.4: Variation of Strouhal number with Reynolds number for the cylinder
wake. Shown are experimental results: ◦, Williamson (1989); •, Hammache and
Gharib (1991) and numerical results: +, Barkley and Henderson (1996). Wake
instabilities up to Re = 300 are labelled: Re1 (the primary instability), Re2 (the
secondary instability) and Re

′

2
(the trinary instability). Reproduced from Barkley

and Henderson (1996).

the nature and location of the transitions to three-dimensionality. Their results placed the
secondary instability transition location at Re = 188.5 ± 1.0, as shown in Figure 2.4.
This value for the location of the secondary instability is at the upper end of the range
of experimentally achieved values. The discrepancy between the experimental values and
their numerically derived counterparts was explained as the consequence of three factors.
The first of these was that of experimental noise which, as stated earlier, has the effect
of reducing the transition location in Re. Secondly, the nonlinear bifurcation at this Re

was found to be weakly subcritical by Henderson and Barkley (1996). A consequence
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2.1. STATIONARY CYLINDER IN A FREE STREAM

of the subcritical nature of the bifurcation results in a hysteresis occurring, thus making
the location of the transition dependent on whether Re is increasing or decreasing at this
point. This has since been verified experimentally by Williamson (1988) and Leweke
and Provansal (1995). Additionally, this subcriticality makes the critical point physically
unreachable as any finite amplitude disturbance will cause the flow to transition to the
upper-branch of the hysteresis. However, the hysteresis was considered to only influence
the transition for a smaller range of Reynolds numbers, that being from 180 to 190. The
third complication is due to the means of experimentally determining the point of transi-
tion. Typically, the experimental point at which the transition is stated to occur is when a
sharp drop in shedding frequency is measured. This measure of instability which utilises
the change in shedding frequency is in sharp contrast to the result obtained numerically.
The numerical method of Floquet instability analysis predicted a real and positive leading
Floquet multiplier. A real multiplier introduces no new temporal frequency into the flow
and thus does not predict a change in frequency. It is suggested that the drop in shedding
frequency is a result of strongly nonlinear phenomena in the near vicinity of the transition,
which the Floquet method is unable to model. In further defence of their results Barkley
and Henderson (1996) point out that this inability of linear theory to predict this nonlin-
ear phenomena does not negate the value of their research as the information derived can
provide important information about the structures at or near the onset of the instability.

2.1.5 3-D Wake Transition Regime (188.5 < Re < 259)

Williamson (1988) observed at the onset of this regime the formation of regular three-
dimensional flow structures, which he labeled as a mode ’A’ structure. This structure,
which has been demonstrated experimentally in Williamson (1988), and again in more
detail in Williamson (1996a), is characterised by a wavy deformation of the primary vor-
tices and by the presence of streamwise vortex pairs which form vortex loops. Subsequent
numerical simulations by Thompson, Hourigan and Sheridan (1996) confirmed the pres-
ence of these structures and compared favourably with the experimental results provided
by Williamson (1996b) shown in Figure 2.5. The wavelength between the streamwise
vortex pairs was determined experimentally by Williamson (1996b) to be λ = 4.01D

and again this compares favourably with the Floquet analysis of Barkley and Henderson
(1996) which yielded values of 3.96D ± 0.02 for the wavelength of mode A.

Just beyond the onset of the mode A instability Henderson (1997) found that the flow
was chaotic. This transition to chaos was attributed as being due to the broad-band nature
of the mode A instability and a subsequent competition between the global modes arising
from this instability. It was noted that the regular flow patterns that are a consequence of
the modes A and B appear only as transients or when the spanwise boundaries conditions
are manipulated to achieve spanwise periodicity.
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Figure 2.5: Mode A 3-D instabilities. (a) The left image shows a visualisation at
Re = 200 obtained experimentally using fluroscein dye and laser light. Reproduced
from Williamson (1996b). (b) Isosurfaces of vorticity and pressure at Re = 210.
Shown are the horizontally aligned pressure isosurfaces (red) and vertically aligned
isosurfaces of positive and negative vorticity. Reproduced from Thompson et al.
(1995). The two images are scaled differently. While a direct comparison between
the two images is not possible, due to the different means of producing these im-
ages, it can be seen that the experimental and computational results are consistent.

The upper boundary of this regime is delineated by a second discontinuous change
in the shedding frequency, as shown in Figure 2.4. At this location a second form of
shedding was observed to dominate the flow. This form of shedding, labeled as mode B
shedding by Williamson (1988) and illustrated in Figure 2.6, is comprised of finer scale
streamwise vortices than that of mode A and shows less spanwise deformation of the
primary vortices. The emergence of this regime is observed to occur experimentally over
a range of Reynolds numbers of approximately 230 − 250 and can be seen as the second
discontinuity on a St -Re plot (Figure 2.4). Barkley and Henderson (1996) have found
that the linear transition to mode B occurs at Re = 259 which is clearly not in accord with
the experimental results. Barkley and Henderson (1996) speculated that this discrepancy
arises for a number of reasons. At the critical point of transition to Mode B the two-
dimensional wake used as the basis for their linear analysis, is already unstable to Mode
A. Consequently it was likely that any bifurcation at this point would consist of both mode
A and B instabilities. The nonlinear interactions in this flow were beyond the scope of
the linear approximations in the Floquet method used and therefore it was not possible to
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explain why Mode B structures appeared in experiments before the critical point predicted
by linear analysis.

Figure 2.6: Mode B 3-D instabilities. (a) The left image shows a visualisation at
R = 270 obtained experimentally using fluroscein dye and laser light. Reproduced
from Williamson (1996b). (b) Isosurfaces of vorticity and pressure at Re = 250.
Shown are the horizontally aligned pressure isosurfaces (red) and vertically aligned
isosurfaces of positive and negative vorticity. Reproduced from Thompson et al.
(1995). The two images are scaled differently.

In contrast to the transition to mode A, the transition to mode B is not hysteretic and in-
stead involves a transfer of energy from mode A to mode B as Re is increased. Although
the transfer of energy between these two modes is gradual, Williamson (1996a) asserts
that during the transition phase there is an intermittant swapping between the modes,
rather than the coexistence of both modes simultaneously. Barkley, Tuckerman and Gol-
ubitsky (2000) theoretical examined the transition scenario between modes A and B and
presented a scenario which explained why mode B (a supercritical bifurcation) was ob-
served before the linearly predicted point of instability at Re ≈ 259 and the non-hysteretic
transition from mode A to B where a mixed mode state is observed to occur. At Re ≈ 230

a mix-mode branch appears in which both modes A and B are unstable. With increasing
Re the mode B component of this state dominates the flow until at Re ≈ 265 this branch
was found to terminate at the point where it intersects the pure mode B branch which
forms at Re = 259. Figure 2.7 shows the critical wavelengths for instability of these
two modes found via the Floquet analysis of Barkley and Henderson (1996). Experi-
mental measurements of the Mode B shedding wavelength by Williamson (1996a), Wu,
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Sheridan, Soria and Welsh (1994) and Mansy, Yang and Williams (1994) have yielded a
wavelength of λ/D ≈ 1.0 which is consistent with the value of λ/D = 0.82 calculated
by Barkley and Henderson (1996).

Figure 2.7: Spanwise instability wavelengths for mode A and B versus Re. Two
distinct wavelengths for the mode A and B instabilities are observed. The shaded
bands of unstable wavenumbers are from the Floquet analysis of Barkley and Hen-
derson (1996) with the solid line providing an indication of the wavelength with
the largest linear growth rate. Also shown are the dominant spanwise wavelengths
observed in experiments: �, Williamson (1987); �, Wu et al. (1994); 4, Mansy
et al. (1994);•, Williamson (1996a).

2.1.6 Fine Scale 3-D Wake Regime (259 <Re< 1000)

This regime initially consists of mode B shedding. Subsequent increases in Re towards
the limits of our consideration (Re = 1000) result in the flow becoming increasingly
disordered, leading to a reduction in two-dimensional Reynolds stresses and an increasing
length of the formation region.

2.2 Forced Cylinder Vibration in a Free Stream

The study of vortex-induced vibrations (VIV) is important to a large number of disci-
plines such as fluid mechanics, structural vibrations, acoustics, offshore engineering, heat
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exchanger design, bridge design and aeronautical engineering. Accordingly, substantial
research time and publications have been devoted to this phenomenon. The approaches
to studying and understanding this problem have tended to fall into two categories; the
study of the response of an elastically mounted cylinder in a free stream or of a cylinder
that has been subjected to forced rectilinear oscillations in a free stream. This review will
primarily focus on the later approach, as it is the most relevant to the current investiga-
tion where the motion of the cylinder is proscribed. In forced rectilinear oscillations the
cylinder axis is translating along a linear path at some orientation relative to the incident
flow. Here we primarily consider two particular orientations relative to the free-stream:
transverse oscillation where the direction of cylinder oscillation is at right angles to the
incident flow; and inline oscillation where the direction of cylinder oscillation is aligned
with the free stream. Other orientations will only be briefly touched upon.

2.2.1 Transverse Oscillations

The large volume of studies into a cylinder in simple harmonic cross-flow oscillation
has identified a number of significant features of the fluid-cylinder interaction. Foremost
amongst these are:

• The primary Lock-In region.

• The shedding of distinctive vortex structures.

• Sensitivity of the timing of vortex formation within the Lock-In region.

These features are reviewed in the following sections.

2.2.1.1 Primary Lock-In Region

A significant feature of the fluid-structure interaction for a cylinder in transverse oscilla-
tion is the ability of the cylinder to “capture” the vortex shedding frequency (fv) so that
it oscillates at the cylinder oscillation frequency (ft) instead of the natural frequency of
shedding (fn) for a fixed cylinder. At very small amplitudes this phenomenon has been
demonstrated to occur when the frequency ratio ft/fn is near 1.0. Subsequent increases
of the amplitude of oscillation has been shown to increase the envelope of frequencies
over which the primary lock-in regime will occur. A lock-in envelope derived from re-
sults presented in the reviews of Blevins (1977) and Sarpkaya (2004) can be seen in figure
2.8 which shows the boundaries of this region for low-Re experiments. The comparison
between the results of Koopmann (1967) and Cheng and Moretti (1991) illustrate that in-
creasing the Reynolds number results in a widening of the lock-in envelope. In the cases
shown, the central frequency of the lock-in envelope is tilted towards the lower frequen-
cies (< 1). Additionally, the envelope of frequencies found by Cheng and Moretti (1991)
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exhibits an onion-shaped region. According to Sarpkaya (2004), the Reynolds number
has a strong influence on the upper frequency lock-in boundary.

Figure 2.8: Primary Lock-In regime. Shown are the boundaries of the lock-in
regime as a function of the frequency ratio between the excitation and natural
shedding frequency and the non-dimensionalised amplitude of oscillation. Low
Reynolds number results from Koopmann (1967) are at: 4, Re = 100; �,
Re = 200 and O, Re = 300. The experimental results of Cheng and Moretti
(1991) were obtained at Reynolds numbers of 1500,�, and 1650,N.

As the amplitude of oscillation approaches zero the lock-in envelope narrows such
that ft/fn approaches 1.0. The results of Koopmann (1967), shown in Figure 2.8, have
a minimum amplitude at which lock-in was found to occur, A/D ≈ 0.05. However,
the results of Cheng and Moretti (1991), also presented in Figure 2.8, show that much
lower values of A/D in the lock-in regime can be achieved. Blackburn and Henderson
(1999) suggested that the minimum amplitude was associated with presence of oblique,
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instead of parallel, vortex shedding for the stationary circular cylinder. Further it was
speculated that it is likely for three-dimensionally unstable flows that their does exist a
limiting minimum amplitude for lock-in to occur in experiments due to the perturbation
imposed by the cylinder on the flow being insufficient to control the turbulent wake.

2.2.1.2 Vortex Shedding Structures

Williamson and Roshko (1988) visualised the vortex wake patterns for a cylinder sub-
jected to harmonic transverse motion in a uniform cross-flow over a Reynolds number
range 300-1000. The non-dimensionalised oscillation parameters of amplitude, A/D,
and wavelength, λ/D, were used to characterise their study, where λ = UTe is equal to
the product of the free-stream velocity, U , and the period of cylinder oscillation Te. The
parameters were varied over the range 0 < A/D < 5.0 and 0 < λ/D < 15.0. A number
of different regimes were observed where each regime was characterised by the number
of single vortices (S) or vortex pairs (P) formed over each cycle of vortex shedding. Their
results can be seen in Figure 2.9, which shows the modes in the vicinity of the lock-in
regime. The classical antisymmetric von Kármán vortex street which sheds two single
vortices per cylinder oscillation is thus labelled as a ’2S’ mode using this notation.

Blevins (1977) showed that lock-in increases the span-wise correlation of vortex shed-
ding along the cylinder axis. Figure 2.10 shows the effects that cylinder oscillation can
have on the span-wise correlation, where a value of 1.0 corresponds to two-dimensional
flow.

2.2.1.3 Vortex Shedding Timing in the Lock-In Regime

Within the lock-in regime it has been shown that the timing of vortex formation and
release with respect to the cylinder motion is sensitive to the frequency of oscillation
by a number of studies including those of Carberry, Sheridan and Rockwell (2001),
Williamson and Roshko (1988) and Ongoren and Rockwell (1988a). As the ratio ft/fn

is increased through ft/fn ≈ 1 a simultaneous jump in the amplitude and phase of the
lift force is observed. Ongoren and Rockwell (1988a) demonstrated, through a set of flow
visualisations, that the jump in phase angle was matched by a switch in the timing of vor-
tex shedding. Williamson and Roshko (1988) made the deduction that this phase angle
jump within the lock-in regime corresponds to a change in the vortex shedding mode,
from the 2S to the 2P mode, i.e.. see figure 2.9. The numerical computations of Black-
burn and Henderson (1999) have also found that the jump in the lift force coincided with
the change in the vortex shedding structure. It has been established that the mechanical
energy, E, transferred from the fluid to the cylinder is influenced by the phase angle, φ,
between the cylinder displacement and the fundamental harmonic of the lift force acting
on the cylinder. When energy is being transferred from the fluid to the cylinder, E is
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Figure 2.9: Map of vortex synchronisation patterns near the fundamental lock-in
region. The critical curve marks the transition from one mode of vortex formation
to another. Reproduced from Williamson and Roshko (1988).

positive and the phase angle is found to lie in the range 0 − 180◦.

2.2.2 Inline and Oblique Oscillations

The study of forced oscillations at angles, χ, with respect to the freestream that are not
transverse ( 0◦ ≤ χ < 90◦) have received considerably less attention than the transverse
case. Primarily this appears to have occurred because the forces arising from transverse
oscillations are substantial greater than those arising from inline oscillations. Addition-
ally, studies of cylinders, see e.g. Blackburn and Karniadakis (1993) and the review of
Williamson and Govardhan (2004), where the cylinder was permitted to freely oscillate
in both the inline and transverse directions, have observed that the cylinder generally per-
forms a figure-eight trajectory and that permitting inline motion results in little influence
on the cylinder response, the forces experienced and vortex wake modes of the cylinder.
Although Jauvtis and Williamson (2003, 2004) have observed significant alteration of
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Figure 2.10: Span-wise correlation of vortex shedding for a rigid cylinder during
lock-in. Reproduced from Blevins (1977).

the fluid-structure interactions when the mass ratio between the cylinder and surrounding
fluid is reduced below 6. In this scenario, a new response branch was observed with much
larger amplitudes of inline oscillation and a vortex shedding mode that resulted in a triplet
of vortices being formed in each half-cycle.

Ongoren and Rockwell (1988b) presented hydrogen bubble visualisations of a circu-
lar cylinder subjected to forced oscillations at angles to the cross-flow ranging from the
inline case, χ = 0◦, to the transverse case, χ = 90◦. They observed the formation of
five distinct vortex shedding modes. These modes could further be classified as having
symmetric, denoted as SY, or antisymmetric, denoted as AY, vortex formation, where the
axis of symmetry is taken with respect to the freestream direction. Only one symmetric
mode, SY-I, was observed and this occurs when a pair of vortices is shed in phase sym-
metrically from both sides of the cylinder. Only one pair is shed per oscillation and using
the notation of Williamson and Roshko (1988) this would be described as a P mode of
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shedding. This mode can only occur when there is a symmetrical perturbation to the flow
imparted by the cylinder motion and thus only occurs for χ 6= 90◦. There are four forms
of the antisymmetric modes, AY-I to AY-IV, of which three of these, AY-II to AY-IV, are
a consequence of the symmetric perturbation to the flow by the cylinder motion that only
occurs for 0◦ ≤ χ < 90◦. The first of the antisymmetric modes, mode AY-I, involves the
alternate shedding of two out of phase single vortices per oscillation from either side of the
cylinder to form the classical von Kármán street ( a 2S mode ). The other antisymmetric
modes AY-II to AY-IV are shed at double the period of the primary antisymmetric mode,
AY-I, and the symmetric mode, SY, which have the same period of shedding. Mode AY-II
is essentially the same as mode AY-I except that the period has doubled. In the remaining
modes one (AY-III) or both (AY-IV) of the single vortices shed are replaced by a pair of
counter-rotating vortices. Griffin and Ramberg (1976) in an inline study only, χ = 0◦,
experimentally visualised two modes of vortex shedding. These modes correspond to the
symmetric, SY, and antisymmetric, AY-I, observed by Ongoren and Rockwell (1988b).

Griffin and Ramberg (1976) and Ongoren and Rockwell (1988b) found the lock-in
region for inline oscillations was centered at a frequency which is double the Strouhal
frequency of shedding, 2fs, as compared to the lock-in region for transverse oscillations
which is centered at the Strouhal frequency. Ongoren and Rockwell (1988b) also found
that lock-in was possible for all the modes they observed. When the vortex shedding was
not synchronised to the oscillation frequency a competition between the symmetrical and
antisymmetrical modes was observed. It was found that the near-wake structure locks on
to each mode for a number of cycles and then abruptly switches to the next mode.

2.3 Rotational Oscillation in a Free Stream

It has long been known that the steady rotation of a cylinder placed in a free-stream in-
troduces a net circulation into the fluid and produces a time-averaged force normal to the
flow direction, in a phenomenon known as the Magnus effect. In contrast, the effects of
rotary oscillation upon the wake structures and forces experienced by the cylinder are less
well established. A series of visual observations by Taneda (1978) demonstrated that the
wake structure can be substantially altered by rotary oscillation. Taneda (1978) performed
a series of visualisations, using aluminium dust and electrolytic precipitation techniques,
for the Reynolds number range 30 to 300 and Strouhal numbers between 0 and 55. By al-
tering the frequency and amplitude of rotary oscillation he was able to determine a critical
value of the Strouhal number where the dead water region behind the cylinder vanishes.
In these experiments the Strouhal number was based on oscillation frequency, Stf (f =
frequency of rotary oscillation) instead of the classical shedding frequency. The critical
Strouhal number, Stc, was found to vary inversely with the oscillation amplitude but was
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independent of the Reynolds number over the range of values considered. Increasing Stf

from 0 was found to cause the separation points to move rearward until Stc was attained.
At this point the recirculation region of the wake vanished and the wake was found to be
narrow with no reverse flow. At values of Stf greater than Stc, the streamlines were found
to converge at the back of the cylinder and approach a potential flow solution. Figure 2.11
shows clearly the effects mentioned for Stf = 0 and Stf = 3.4, where Stc = 2.8.

Figure 2.11: Streamline and streak-line patterns at Re = 33.7, D = 1.0cm, θ =
45o. (a) Stf = 0, (b) Stf = 3.4. At a critical frequency of oscillation the wake
region behind the cylinder is much reduced. Reproduced from Taneda (1978).

Experiments at a higher Reynolds number of 1.5 × 104 by Tokumaru and Dimotakis
(1991) have yielded related results. At this Reynolds number the rotational frequency
(forcing Strouhal number, Stf ) and the normalized peak rotation rate of Ω1 were varied,
where the rotation rate, Ω(t), is defined as

Ω(t) =
θ̇D

2U∞

= Ω1 sin(ωt) (2.2)

and θ̇ is the angular velocity of the cylinder. The drag coefficient, Cd, and the wake dis-
placement thickness were evaluated at a single location, 4.5D downstream of the cylin-
der. The results showed that the wake displacement thickness could be made substantially
larger or smaller than in the unforced case by altering the rotary motion of the cylinder.
It was found that the minimum wake displacement area occurred in the neighbourhood
of Stf = 1 and Ω1 = 3, where it was half the value for the unforced case. The cylin-
der wake-mean velocity profiles in figure 2.12 clearly demonstrate the influence of the
rotational frequency. The minimum Cd was found to approximately coincide with the
minimum wake area. The rate of rotation affected the number of vortices shed per cycle
and four distinct modes of vortex shedding per cycle were identified. It was concluded
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Figure 2.12: Cylinder wake mean velocity profiles, measured at midspan (Ω1 = 2):
2, unforced; ©, Sf ≈ 0.2;4, Stf ≈ 1. (Tokumaru & Dimotakis, 1991)

that when the forcing frequency is similar to the natural vortex shedding frequency, the
greatest control can be exerted over the wake. In both studies there was no net circula-
tion introduced by the rotary oscillation and consequentially there was no time-mean lift
generated.

2.4 Rectilinear Oscillation in Quiescent Fluid

Sinusoidally oscillating flow about a circular cylinder has been extensively researched in
the past century due to its application in physical situations such as the forces experi-
enced by man-made structures in a marine environment. However, most of the research
into these applications involves flow with much higher Keulegan-Carpenter and Stokes
numbers and consequentially is not considered here. Of primary interest to the current
investigation are the flow visualisation studies of Honji (1981), Williamson (1985) and
Tatsuno and Bearman (1990).

It is well established that a two-dimensional secondary streaming flow about a cylinder
is induced when a cylinder is in oscillatory rectilinear motion relative to the surrounding
fluid. The resulting secondary flow is symmetrical about the axis of oscillation and has
been visualised by many studies (e.g. the visualisations of Schlichting (1932) and later
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by M. Tatsuno as shown in figure 2.13). When the Keulegan–Carpenter or Stokes number
exceeds a critical value the flow is altered by the formation and subsequent separation of
vortices on the cylinder surface, leading to a loss of this symmetry and the formation of
three-dimensional flow.

Figure 2.13: Secondary streaming induced by an oscillating cylinder. This image
was produced by illuminating glass beads with a stroboscope. The image was taken
at an oscillation amplitude of A/D = 0.085 and at Re = 70 (based on frequency).
Reproduced from Van Dyke (1982). Photograph by Masakazu Tatsuno.

Williamson (1985) investigated the behaviour of vortices shed from a cylinder in si-
nusoidal flow using a combination of two dimensional flow visualisations and force mea-
surements for KC < 60 and two β values of 255 and 730. Using two-dimensional
visualisations of the repeatable patterns produced on the water tank surface a set of flow
regimes were identified as a function of KC. This regime map, reproduced in figure 2.14,
identifies each regime according to the number of vortices shed in each half-cycle and the
corresponding lift force fluctuations per oscillation.

The regular lift force fluctuations were shown to be directly related to the repeatable
vortex shedding patterns observed in the cylinder wake. It was found that the lift force
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Figure 2.14: An approximate guide to the flow patterns produced from an oscillat-
ing cylinder as a function of the Keulegan–Carpenter number. Annotations describe
the number of vortices shed per oscillation half-cycle. Regimes are based on ob-
servations conducted for β values of 255 and 730. Reproduced from Williamson
(1985).

fluctuation frequency was a multiple of the forcing frequency and that this was directly
tied to the shedding of a specific number of vortices in each half-cycle. In each of the
regimes identified in figure 2.14 a specific number of vortices was shed in each half-
cycle. The subsequent pairing of vortices shed in the present half-cycle with those of the
preceding half-cycle was identified as being a core feature leading to the formation of the
repeatable vortex patterns. In the first regime identified (0 < KC < 7) a pair of attached
vortices are formed in the wake in each half-cycle. These are shed from the cylinder as it
reverses direction and are symmetrical about the axis of oscillation up to KC ≈ 4 where
it was observed that the vortices formed are no longer equal in magnitude and are not shed
at the time of cylinder reversal. This led to the detection of a lift force varying with the
oscillation frequency. This regime should reasonably be sub-divided into two sub-regimes
which are distinguished by the breaking of the symmetry about the oscillation axis.

In the transverse street/single pair regime (7 < KC < 15), see figure 2.15, a single
vortex is shed per half-cycle which pairs up with the shed vortex from the previous half-
cycle. A series of cycles results in a number of pairs being formed and shed on the same
side of the cylinder. These pairs form a transverse street which convect away from the
cylinder. In the lower end of the range (7 < KC < 13) the direction of the street was
observed to be approximately perpendicular to the oscillation axis, as shown in figure
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Figure 2.15: Transverse street wake for KC = 12.0. The cylinder is approaching
it lowest point of its oscillation. This regime is delineated by the distinctive trail
of vortices which convects away at around 90◦ to the oscillation axis. Reproduced
from Williamson (1985).

2.15, while in the upper end of the range (13 < KC < 15) the direction of the street was
observed to be at an angle of approximately 45◦ to the oscillation axis. Initial conditions
were thought to determine which side of the cylinder that the street formed on, although
it was also observed that the shedding could intermittently change sides. Higher regimes
(Double pair, Three pairs and Four pairs) were distinguished by the formation of more
vortices per cylinder oscillation cycle. In each case the process of pairing of the shed
vortices was fundamental to the pattern formed.

Williamson’s (1985) visualisations lent a good deal of insight into the flow dynamics
despite the inherent limitation due to their two dimensional nature. A prior study by
Honji (1981) produced visualisations of the three-dimensional structures that can arise
in the same (KC,β) parameter space. Honji visualised the flow around a transversely
oscillating cylinder in a quiescent fluid, for Stokes numbers in the range 68.8 to 700
and Keulegan–Carpenter numbers less than 7.5, and produced excellent visualisations
of a three-dimensional flow instability. The presence of mushroom shaped vortices was
observed, in a plane normal to the direction of cylinder motion, which were arranged
alternately along each side of the cylinder span in a double row. These vortices were
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convected away from the cylinder by the induced flow to form equally spaced chains
of dye. Each chain of dye retained its mushroom like form for a number of diameters
away from the cylinder. The spanwise streak spacing was found to only weakly depend
on the Stokes number and increased as the Keulegan–Carpenter number was increased.
Honji (1981) also found that for Keulegan–Carpenter numbers above a second critical
line “no clear streaked flow forms” which he attributed to the onset of turbulence. These
structures were named the ‘Honji Instability’ by Sarpkaya (1986) although Honji simply
referred to the patterns formed as ‘streaked flow’. Honji suggested that the instability
mechanism leading to this flow pattern was ’a kind of centrifugal one’. While Honji does
not explicitly state that this was a Taylor–Görtler instability, it is probable that he was
referring to this form of instability, which arises from the centrifugal forces induced by
the curvature of the boundary layer.

Hall (1984) performed a theoretical stability analysis of the two-dimensional flow
induced by a transversely oscillating cylinder in a viscous fluid. Using the assumption of
a large oscillation frequency (β � 0) Hall derived an equation for the critical Keulegan–
Carpenter number, KCcr, at which the two-dimensional flow became linearly unstable to
spanwise perturbations. This equation may be written as (see Sarpkaya; 1986, 2002):

KCcr = 5.78β−
1

4 (1 + 0.21β−
1

4 + . . .) (2.3)

The curve where KC = KCcr is the curve of neutral stability and for KC > KCcr the
flow was deemed linearly unstable to Taylor–Görtler vortices. This relationship appears to
be in excellent agreement with the results of Honji (1981). However, as noted in Sarpkaya
(2002), to date, the inception of three-dimensional instabilities due to streamwise vorticity
has not been verified experimentally or numerically. Additional nonlinear analysis by
Hall (1984) predicts the nature of the bifurcation to be subcritical, a result which was
unexpected because in the classical Taylor problem the bifurcation is supercritical. In
Sarpkaya’s (2002) investigation at much higher Stokes numbers (β ≤ 1.4 × 106) a set of
correlations for the primary onset of a three-dimensional instability was provided:

KCcr = 12.5 β−2/5 (2.4)

For a β ≈ 100 this is in agreement with (2.3) and for β > 100 the value of KCcr is
less than Hall’s (1984) predictions. Hall (1984) provides a value for the dimensionless
spanwise wavenumber at the high-β limit, permitting the derivation of this relationship:

λcr/D = 6.95 β−1/2 (2.5)
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The correlation provided in Sarpkaya’s (2002) investigation is:

λcr/D = 22 β−3/5 (2.6)

These equations agree at β = 1.5 × 105.

Figure 2.16: A classification of distinctive vortex shedding patterns into unique
regimes. Regime B corresponds to the boundaries of the streaked flow regime
found by Honji (1981). This map is a derivation of the original, found in Tat-
suno and Bearman (1990), and does not display the experimental data points, only
the interpolated regime boundaries.

A detailed visual study by Tatsuno and Bearman (1990) of the flow around an os-
cillating circular cylinder in the range 1.6 < KC < 15 and 5 < β < 160 identified
a varied set of flow regimes. Like Williamson and Honji, they observed symmetrical
flow separation and vortex development about the oscillation axis of the cylinder for very
low Keulegan–Carpenter numbers. However, as the Keulegan–Carpenter number was in-
creased, and eventually exceeded a critical value, the onset of an asymmetry in the vortex
development and flow separation was observed. The consequence of this was shown to be
the formation of a number of different regimes as evidenced by the visualisation of their
unique two and three dimensional vortex shedding characteristics. A reduced version of
the (KC, β)-space map they produced, which classified the unique flows identified into
regimes, is shown in figure 2.16. These regimes appear to dovetail well with the obser-
vations of Honji (1981) and Williamson (1985). Honji’s (1981) results were obtained for
an overlapping region, 68.8 < β < 700, within which Tatsuno and Bearman’s (1990)
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observations closely agree. Williamson’s (1985) results were obtained at a larger Stokes
number, β ≈ 255, and due to the two-dimensional limitation of Williamson’s (1985) vi-
sualisations no observation of ‘streaked flow’ was made. However, the two-dimensional
characteristics observed for KC < 7 resemble those identified by Honji (1981) and Tat-
suno and Bearman (1990) for β > 60. A sample of the cross-sectional images that ap-
peared in Tatsuno and Bearman (1988, 1990) illustrating these different regimes is shown
in figure 2.17. The nomenclature introduced by Tatsuno and Bearman in labelling these
regimes will be used for clarity from this point forward. Flows of regime A∗were found
to have no vortex shedding. They observed no flow along the span of the cylinder (i.e.
two-dimensional flow) and found the flow to be symmetrical about the oscillation axis
as shown in figure 2.17. Regime A is distinguished from A∗ due to the formation and
shedding of vortices which was not observed in regime A∗. In other respects it retains
the same characteristics of regime A∗Ṫhe boundary between these regimes was not ex-
plicitly delineated in the original diagram of Tatsuno and Bearman (1990) while in our
reproduction, figure 2.16, it is shown as a dashed line. The lack of a distinct boundary
was attributed by Tatsuno and Bearman to it being very difficult to determine the onset
of vortex shedding and a consequence of the visual means used to evaluate this. In figure
2.17(A) the concentrations of dye that could be mistaken as the presence of vortices actu-
ally represent a periodic mass convection away from the cylinder. Tatsuno and Bearman
stated that the vortices formed and shed in each half-cycle of cylinder motion are con-
vected back towards the cylinder in the subsequent half-cycle and are then annihilated by
mixing with vorticity in the boundary layer.

The flow of regime B was characterised by the presence of spanwise, periodic struc-
tures in the induced flow due to a three-dimensional instability. Both Honji (1981) and
Tatsuno and Bearman (1990) visualised the formation of streaked flow, as illustrated in
figures 2.18(a-c), which was formed and shed alternately along the cylinder span at regular
intervals. It was concluded that these regular ‘streaks’ were due to pairs of contra-rotating
longitudinal vortices being formed along the cylinder span and extending out into the flow
in the direction of oscillation. The boundaries for this regime almost exactly match those
identified by Honji (1981) for the formation of ‘streaked flow’. Through measurements of
the streak spacing, these vortices were found to have a spanwise wavelength ratio (λ/D)
that increased as the Keulegan–Carpenter number is also increased. Despite the onset of
a three-dimensional instability the spanwise average of the flow in regime B was found to
preserve symmetry, as shown in figure 2.17(B)

The flow of regime C was found to be three-dimensional but appeared to have no
periodic spanwise structure as shown in figures 2.18(d,e). In the cross-sectional plane the
vortices initially shed from the cylinder were seen to roll up into large vortices, figure
2.17(C), and form a street of vortices similar to that of the von Kármán street, although
in this case the sense of rotation of the vortices was opposite to that of the von Kármán
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Figure 2.17: Two-dimensional visualisations of the vortex shedding patterns found
for Regimes A∗–G. The cylinder is shown oscillating along the horizontal axis of
the page. The image for regime F appeared in Tatsuno and Bearman (1988), while
the others are from Tatsuno and Bearman (1990); All images are reproduced with
their permission.
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street, i.e. jet-like. It was noted that the large vortices are formed in succession for
equal numbers of oscillation cycles, however it is unclear how many oscillation cycles are
required for the formation of a large vortex.

Regime D flows were found to break a symmetry that characterised the previously
discussed flows; in this regime the induced flow no longer convected along the axis of
oscillation, as it did for regimes A∗–C, but at an angle to the axis of oscillation as shown
in figure 2.17(D). No mention was made of the actual angle to the oscillation axis that the
flow initially convected along, however from the figures presented it can be estimated to
be approximately 25◦. This feature was attributed to an asymmetry in the development of
a vortex pair in each half-cycle. While the resultant flow breaks symmetry about the axis
of oscillation (the x-axis), it was observed that the time-periodic symmetry about the y-
axis was retained, i.e. the flow was still synchronous with the cylinder oscillation. Along
the span the formation of regular ’tubes’ was found, see figure 2.18(f), within which the
fluid was observed to be travelling faster than the surrounding fluid. The spanwise spacing
between the tubes was found to be independent of KC and only weakly to decrease with
increasing Stokes numbers.

The flow in regime E exhibited spatial patterns in the cross-section similar to that
of regime D see figure 2.17(E), but it was found that the direction to which the flow
convected intermittently changed direction between the +x and −x side of the cylinder.
The irregular switching to either side is in contrast to regime D where the direction was
fixed. Along the span there was evidence of some three-dimensional structures, see figure
2.18(g), although no periodic wavelength could be established. The structures that were
present were found to be obscured by the switching of the flow convection direction.

Regime Fexhibits a similar behaviour to regime D except that in this case the convec-
tions arms depart the near wake region at opposing angles with respect to the oscillation
axis (see Figure 2.17(F)). Along the span, a periodic structure was found with pairs of
counter rotating vortices observed to form at regular intervals along the span as shown
in figure 2.18(h). The spacing between these structures was found to vary in the same
manner as it did for its neighbouring regime, D.

A circulatory streaming motion around the cylinder was observed to occur in regime
G, figure 2.17(G). Increases in KC or β within this region resulted in the onset of tur-
bulent motion and the streaming flow generated by the cylinder motion was observed
to irregularly change direction. No regular formation of structures along the span was
observed.

Yang and Rockwell (2002) observed sinusoidal spanwise variations in the flow about
a cylinder subjected to wave loading at a relatively low KC = 4.5. Along the span
of the cylinder regular patterns of streamwise vorticity were observed. The spanwise
wavelength between vorticity of like sign ranged from 1 . λ/D . 4.5, which at this
value of KC is compatible with the observations Tatsuno and Bearman (1990). At larger
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.18: Visualisations of the three-dimensional structures observed in
Regimes B to F. The images were produced using an electrostatic precipitation
method and show the variation in the flow along the cylinder span. The span of the
cylinder (z-axis) is orientated horizontally in all these images with the cylinder os-
cillating along the y-axis. Images (a), (d), (f), (g) and (h) are taken in the y-z plane
while images (b), (c) and (e) are taken in the x-z plane. Presented are Regime B
[ (a), (b) & (c) ], Regime C [ (d) & (e) ], Regime D [ (f) ], Regime E [ (g) ] and
Regime F [ (h) ]. All the images appeared in Tatsuno and Bearman (1990) and are
reproduced with their permission.
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values of KC (10 and 18) larger scale regular variations along the span were observed.
These variations were of the order 10 . λ/D . 110 which was greater than the distances
between individual concentrations of streamwise vorticity.

Using a two-dimensional finite-difference numerical technique Justesen (1991) was
able to predict the transverse street and other vortex shedding regimes, as found by
Williamson (1985) and shown in figure 2.9.Despite this study being under-resolved in
some regions of its parameter space, it was conducted for β in the range 196–1035 and
KC between 0 and 26, and being restricted to two dimensions they were able to obtain
good agreement between calculated drag and inertia coefficients and experimental data.
The onset of an asymmetry in the flow was found to occur at KC ≈ π for β = 196 and
to decrease slightly for higher Stokes numbers.

A comparison between LDA measurements and two-dimensional computations was
performed by Dütsch, Durst, Becker and Lienhart (1998) for three regimes: A, F and
E. In regime A they found good agreement between the velocity fields produced by both
techniques. This was in accord with Tatsuno and Bearman’s (1990) work which had previ-
ously established that this flow was two-dimensional. In regime F they found that the flow
was asynchronous using both techniques. As a consequence of the formation of a vortex
pair that was unequal in magnitude a vortex street was observed to form that convected
away from the cylinder at an angle of approximately 27◦. This again matches previous
results, e.g. see figure 2.17(F), but is interesting because it was achieved by both LDA
and two-dimensional computation suggesting that the breaking of symmetry about the
oscillation axis and the asynchronous behaviour are largely two-dimensional phenomena.
In the final regime studied, E, they presented vorticity contours which matched the flow
fields generated by Tatsuno and Bearman (1990) in figure 2.17(E). However, they found
that their simulations were stable after 15 cycles and that periodic shedding resulted. This
is in direct contrast to Tatsuno and Bearman (1990) who observed an irregular switching
of the direction of vorticity shedding between the +x and −x sides of the cylinder.

A finite-element study by Iliadis and Anagnostopoulos (1998) located a boundary in
(KC,β)-space where the two-dimensional symmetric flow became asymmetric. Con-
ducted over the range KC ≤ 15 and 6 ≤ β ≤ 100 it was in good agreement with the
experimental boundaries presented in figure 2.16 for β > 40, but in the low Stokes number
region the match was poorer. At a low Stokes number (regime D) their vorticity contours
match experimental visualisations both in their spatial and temporal (synchronous) na-
ture. Investigations of flows that lay in regimes E and F yielded results that showed no
intermittent switching of the shedding direction as found in experiments. This led them
to conclude that the switching of flow direction is associated with the three-dimensional
nature of the flow.

Three-dimensional numerical investigations of this parameter space have been more
sparse. An investigation into the onset of three-dimensionality by Zhang and Dalton
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(1999) using a numerical technique at β = 196 yielded a set of results that agreed with
experimental results. The onset of three-dimensionality was observed for KC = 2 and
separation was subsequently observed to occur at KC = 3.2 before the flow became
chaotic at KC = 4. Nehari, Armenio and Ballio (2004) examined two three-dimensional
states, both at β = 20; one at KC = 6.5 (Regime D) and the other at KC = 8.5 (Regime
F). They found that in both cases irregular switching of the vortex streets between the +x

and −x directions was observed. This behaviour was able to to be reproduced using purely
two-dimensional simulations and therefore it was concluded that this is related to a two-
dimensional instability, a finding in direct contrast to that of Iliadis and Anagnostopoulos
(1998). It was noted that three-dimensionality appears after the underlying two-dimen-
sional symmetry has been broken. It was speculated that this switching of vortex shedding
direction in combination with the onset of three-dimensionality would contribute to the
formation of the sinuous S-mode witnessed in Yang and Rockwell (2002).
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2.5 Combined Rotational and Rectilinear Oscillation

To date no detailed studies into the effects of combining an oscillatory rotational and
translational motion of a circular cylinder in either quiescent fluid or in external flow are
known. However, a similar form of motion is observed in nature and recent research
into this is discussed in §2.5.1. A set of preliminary studies into the effect of combining
rotational and rectilinear oscillations of a circular cylinder by Elston (1997); Blackburn
et al. (1998, 1999) have demonstrated a number of interesting results.

In a series of two-dimensional numerical simulations it was shown that this combina-
tion of motions was able to produce a variety of flows, as shown in figure 2.19. In these
simulations the phase angle, α, between the two motions was found to have a significant
effect upon the near wake structure. In the results shown, the computational domain has
periodic boundaries and for the α = 45.0◦, 67.5◦ and 90.0◦ this permitted vortex pairs
to leave the domain and reenter on the opposite side. The phase angle between the mo-
tions seems to influence the degree to which cross-annihilation of vorticity occurs and the
distance from the cylinder at which vorticity persists.

A further consequence of the phase angle is the ability of the cylinder’s motion to
result in net force being exerted upon the surrounding flow. Of particular interest are the
α = 0◦ and 157.5◦ cases. In these cases a net force was found to act on the surrounding
fluid at an angle perpendicular to the oscillation axis. Further investigation by Blackburn,
Elston and Sheridan (1999) of the solitary jet of fluid produced in a direction normal
to the translational axis for the α = 0◦ yielded interesting results. Two scenarios were
examined for this case: firstly where the cylinder was held fixed in the horizontal plane
and secondly where the cylinder was permitted to freely move in the horizontal plane.
The translational oscillation had the parameters KC = π and β = 90 which was shown
to result in a regime B flow with no rotary oscillation present. The frequency of the rotary
oscillation was set to be synchronous with the translational oscillation and the amplitude
of oscillation was one radian.

For the first scenario where the cylinder was fixed in the horizontal direction, see
figure 2.20, a streaming flow along this axis is apparent in the vorticity contours. A cor-
responding simulation of particles being shed from the cylinder surface further illustrates
the jet that results. A wake velocity profile at x/D = 2.0 downstream revealed this jet
to have a double-peaked nature as suggested by the particle transport map. In the second
scenario, where the cylinder was allowed to move in response to the forces exerted by
the jet, a terminal velocity approximately 1/3 of the magnitude of the maximum transla-
tional velocity was achieved. The instantaneous vorticity contour and particle transport
maps are shown in figure 2.21. In these maps the high-speed pulsating nature of the jet is
shown as discrete ’puffs’ of particles.

The mechanism by which a thrust is generated was only briefly touched upon in Black-
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Figure 2.19: Instantaneous vorticity contours for a cylinder with both translational
and rotational oscillation, shown at t/T = 45.75 for a range of phase angles: (a),
α = 0◦; (b), α = 22.5◦; (c), α = 45◦; (d), α = 67.5◦; (e), α = 90◦; (f ), α = 112.5◦;
(g), α = 135◦; (h), α = 157.5◦. Reproduced from Blackburn et al. (1998).

burn et al. (1999). In figures 2.20(a) and 2.20(b) it can be seen that the vorticity on the
left side of the cylinder is greater in magnitude than that of the right side, this is consis-
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2.5. COMBINED ROTATIONAL AND RECTILINEAR OSCILLATION

(a)

(b)

Figure 2.20: Flows produced by a cylinder with oscillatory translation and rotation:
(a) instantaneous vorticity contours; (b) fluid particle transport. The cylinder is at
its maximum vertical position and most negative angular displacement at the instant
shown. The rest position of the cylinder is indicated by cross-hairs, and the radial
line shows the radial displacement of the cylinder from the horizontal. Reproduced
from Blackburn et al. (1999)

tent with the fact that the surface-tangential component of cylinder acceleration is always
larger on the left face of the cylinder due to the particular combination of translational and
rotational oscillation employed. It is speculated that a simplified explanation for the thrust
produced by this motion combination is due to the pressure difference across the cylinder.
This can be explained by applying Bernouilli’s equation at the cylinder’s surface. If we
consider two points placed on opposite sides of the cylinder ( denoted left(L) and right(R)
) and neglect the effect of gravity then Bernouilli’s equation becomes:

1

2
(V 2

L − V 2

R) =
1

ρ
(PR − PL). (2.7)

where P is pressure and V is velocity. For the specified combination of motion it is
known that the left face has a greater tangential velocity than the right face and therefore
PR > PL leading to a thrust in the left direction, as observed.

To date, no three-dimensional numerical simulations of this flow have been performed.
This potentially could have a significant impact upon the thrust observed as the flow for
a cylinder in purely translational motion at this point in the (KC,β)-parameter space
has been prooven to be three-dimensional. Additionally while these simulations have
been implemented with all possible care and testing, no physical experiments exist which
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2.5. COMBINED ROTATIONAL AND RECTILINEAR OSCILLATION

(a)

(b)

Figure 2.21: Flows produced by a cylinder with oscillatory translation and rotation
with no restraints applied in the horizontal direction: (a) instantaneous vorticity
contours; (b) fluid particle transport. The cylinder is moving at terminal speed in
the −x direction. Reproduced from Blackburn et al. (1999).

confirm that these effects occur. On the other hand, there does exist a similar motion in
nature, that is a combination of rotational and translational motion, which is used as a
propulsion mechanism. This motion will be discussed in the following section.
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2.5. COMBINED ROTATIONAL AND RECTILINEAR OSCILLATION

2.5.1 Carangiform Motion

In the animal kingdom, the process of evolution has led to highly efficient methods of
propulsion being developed. Of particular relevance to the combined motion outlined in
§2.5 is the means of propulsion developed by animals of three distinct groups, that include
all of the fastest, continuously swimming animals in the ocean. These animals, such as
tuna, marlin, sharks, whales and dolphins, all have an identical means of propulsion which
is based upon their fins (or tails) being given a characteristic combination of rectilinear
and rotational oscillation. This mode of oscillation, which is called Carangiform motion,
utilizes a twist of the animals’ wing-like surface at the extreme ends of the fins rectilinear
oscillation (Lighthill; 1986).

In comparison, the results for the circular cylinder have the change in rotational ve-
locity at the midpoint of the cylinders translation. The propulsive jet that is produced
from carangiform motion occurs when the oscillations are phase-locked and in phase, in
contrast to the preliminary results for the swimming cylinder, which occurred when the
translational and rotational oscillations were in anti-phase (Blackburn et al.; 1999). It has
been suggested that this disparity in the phase angle between carangiform motion and the
numerical results could be linked to the features which act to influence and control the
fin’s wake. The magnitude of thrust from the fin is also much larger than that from the
oscillating cylinder, but it is likely that much of the thrust comes from the aerodynamic
shape of the fin. It is possible that the oscillatory motion of the fin could serve as a drag
reduction mechanism.

Experimental research into thrust producing oscillating foils has tended to focus on
marine propulsion and has correspondingly been conducted at much higher Reynolds
numbers than the present study, i.e. Triantafyllou, Triantafyllou and Yue (2000). A study
into oscillating foils by Anderson, Streitlien, Barrett and Triantafyllou (1998) has found
that high efficiency is associated with the formation of a reverse Kármán street (e.g. see
figure 2.21) and that the phase angle between the transverse oscillation and angular motion
is the critical parameter affecting the vorticity formation and propulsion efficiency.
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2.6 Summary

Translational oscillation of a cylinder in both a free-stream and in quiescent fluids has
been well researched. A ‘Lock-In’ region has been identified for cylinders oscillating in a
free-stream. The boundaries of the region vary depending upon the Reynolds number of
the incident flow and the amplitude and frequency of the oscillation. Within the Lock-In
region the frequency of vortex shedding is captured by the cylinder oscillation frequency
and a number of forcing and wake structure events are observed to occur. For a cylinder
oscillating in a quiescent fluid, a number of different wake regimes have been identified by
Williamson (1985) that are selected on the basis of the cylinder’s amplitude of oscillation.
The effects of rotational oscillation of a cylinder in a uniform stream have been less well
documented, but recent research has shown how the rotary oscillation of a cylinder can
dramatically increase or decrease a cylinders wake and alter the normal pattern of vortex
shedding.

At low amplitudes and frequencies of rectilinear oscillation in a quiescent fluid the
resulting flow has been observed to form a number of unique flow structures that quickly
transition to different forms of flow structures for relatively small changes in the control-
ling parameters. Little investigation has occurred into these transitions with the majority
of the existing research consisting of experimental visualisations. Some limited numeri-
cal computations have been performed although these have been two-dimensional (in the
x-y plane) and haven’t explained the nature of these transitions. The rectilinear oscilla-
tion when combined with a rotational oscillation has been shown numerically to produce a
time-averaged net force perpendicular to the direction of rectilinear oscillation. A hypoth-
esis has been proposed that this is due to a pressure variation across the cylinder diameter
caused by the phase-locked oscillations, however no research has confirmed this.
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Chapter 3

Numerical Method: Spectral Element

Method

In this chapter the high order numerical method used for direct numerical simulation of
the incompressible, unsteady Navier–Stokes equations is outlined. The chosen method, a
spectral element method, is used for both direct analysis of the flows to be studied and to
produce the periodic flows used in Floquet analysis, as will be discussed later in chapter
§4. The source code for this method was obtained from H. M. Blackburn1 and has been
used extensively, with modifications for different geomtries and coordinate systems, to
produce a number of publications, of which a small selection includes Blackburn et al.
(1999); Blackburn and Henderson (1999); Blackburn and Lopez (2002, 2003). In the
implementation used here the incompressible Navier–Stokes equations are solved in an
accelerating reference frame attached to the cylinder.

The form of the nonlinear equations modelled by this code is presented in §3.1. In
the subsequent section, §3.2, the numerical techniques used for spatial and temporal dis-
cretisation are examined. Throughout the results to be presented a number of variables are
calculated via post-processing of the primitive variables (u, v, w), i.e. vorticity; the means
by which these are calculated are discussed in §3.3. Finally, in §3.4 the choice of domain
extent, the elemental discetisation and the timestep for the simulations are discussed.

1CSIRO Manufacturing and Infrastructure Technology, Australia
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3.1. GOVERNING FLOW EQUATIONS

3.1 Governing Flow Equations

Considered in this study are Newtonian, unsteady, incompressible flows with constant
properties governed by the Navier–Stokes equations expressed in the form:

∂u
∂t

= −∇P + N(u) + ν∇2u (3.1a)

∇ · u = 0 in Ω (3.1b)

where u ≡ (u, v, w), P = p/ρ, p is the kinematic pressure and Ω is the computational
domain. On the cylinder boundaries a no-slip velocity condition, u = 0, is applied while
at the outer boundaries a prescribed velocity condition is applied that takes into account
the moving frame of reference, as will be described in §3.1.1.

The nonlinear advection term, N(u), can be represented in one of three forms:

N(u) = − (u · ∇)u (3.2a)

= −
1

2
[(u · ∇)u + ∇ · (uu)] (3.2b)

= −
1

2
∇(u · u) − u ×∇× u (3.2c)

These are known as the convective form, skew-symmetric form and rotational form, re-
spectively. While these three forms are equivalent in a continuum treatment they behave
differently in discrete implementations. As noted in Henderson and Karniadakis (1995),
the skew-symmetric form (3.2b) has been shown to be better at minimizing aliasing errors
and will be used herein.

3.1.1 Moving Frame of Reference

The problem being considered here deals with a cylinder in relative rectilinear motion
to the surrounding fluid. Computationally there are three general techniques of dealing
wih this. One technique is to have a computational grid which deforms to allow cylin-
der motion. This technique has the substantial disadvantage of not permitting the use of
optimised solvers which have been developed for static meshes. The second technique
is to attach the coordinate system to the body and impose an oscillating inflow and outl-
fow on the outer boundaries. A third technique is to attach the coordinate system to the
body, and solve the governing equations in a moving frame of reference. The second and
third options utilise fixed computational meshes and therefore permit the use of optimised
solvers. Although both the second and third options are simply a change in the frame of
reference, the third technique is the technique that is used here because of the later desire
to study the forces experienced by the cylinder.

In order to accommodate the externally applied motion of the cylinder, the Navier–
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3.1. GOVERNING FLOW EQUATIONS

Stokes equations (3.1) are solved in a moving reference frame attached to the cylinder
as described in Blackburn and Henderson (1996). Consequently, the governing equations
and the boundary conditions outlined in §3.1 require some modification.

When the reference frame in which the Navier–Stokes equations are being solved has
a rectilinear acceleration, a, then (3.1) becomes:

∂u
∂t

= −∇P + N(u) + ν∇2u − a (3.3a)

∇ · u = 0. (3.3b)

The prescribed velocity boundary conditions become:

u = Up − v, (3.4)

where v is the velocity of the reference frame and Up is the prescribed value, in this case
Up = 0. The pressure boundary condition is obtained by taking the normal component of
(3.3a) to make

∂P

∂n
= n · [N(u) − ν∇×∇× u −

∂u
∂t

− a]. (3.5)

The form of the viscous term is obtained from ν∇2u using the vector identity∇×∇×u =

∇∇ · u −∇2u and incorporating in the incompressibility constraint ∇ · u = 0.
On the cylinder boundary (a solid wall) ∂u/∂t = 0 and therefore (3.5) becomes

∂P

∂n
= n · [N(u) − ν∇×∇× u − a], (3.6)

while on prescribed velocity boundaries ∂u/∂t = −a and (3.5) becomes

∂P

∂n
= n · [N(u) − ν∇×∇× u]. (3.7)
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3.2 Spectral Element Method

Spectral element methods combine the advantages of high-order methods, which offer fast
convergence and small numerical errors, and finite element methods, which provide the
ability to simulate more complex geomtries and localise mesh refinement. In the method
implemented here the domain to be investigated is broken up into elements and within
each element it is spatially evaluated using Gauss–Lobatto–Legendre (GLL) polynomial
interpolants in the x–y plane and Fourier expansions along the spanwise z-axis, as de-
scribed in §3.2.2. Details of the high-order time-splitting scheme used to integrate 3.3 are
described in §3.2.1.

3.2.1 Temporal Discretisation

A second–order time splitting scheme, as advanced by Karniadakis, Israeli and Orszag
(1991), was used for the temporal discretisation. With this scheme a discrete set of times
is introduced, tn ≡ n∆t, and a semi-discrete approximation to the velocity is introduced
un ≡ u(x, tn) (full spatial discretisation will be considered in the subsequent section
§3.2.2). Using this semi-discrete approximation the momentum equation (3.3) is inte-
grated over a single time step to obtain:

u(t + ∆t) = u(t) +

∫ t+∆t

t

[N(u) −∇P + ν∇2u − a]dt. (3.8)

This equation can then be broken up into discrete substeps which treat the advection,
diffusion and pressure/mass conservation terms of the momentum equation separately.

u(1)
− un =

∫ t+∆t

t

[N(u) − a]dt (3.9a)

u(2)
− u(1) =

∫ t+∆t

t

−∇Pdt (3.9b)

un+1
− u(2) =

∫ t+∆t

t

ν∇2udt, (3.9c)

where u(1) and u(2) are intermediate velocity fields introduced to facilitate the decoupling
of the pressue, advection and diffusion terms so that different integration methods can be
used for each.

A high-order multi-step integration scheme is used to increase the time accuracy of
the integration in (3.9) to O(∆tJ). Derivatives in time are approximated to order J with
a backward difference of the form:

∂u
∂t

≈ ∆t(γ0un+1
−

J−1∑

q=0

αqun−q), (3.10)
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3.2. SPECTRAL ELEMENT METHOD

J γ0 α0 α1 α2 β0 β1 β2

1 1 1 1
2 3/2 2 -1/2 2 -1
3 11/6 3 -3/2 1/3 3 -3 1

Table 3.1: Integration coefficients for a stiffly-stable multi-step scheme of order J .

where γ0 =
∑

αq for consistency. Integration of the reference frame acceleration and
the nonlinear term in (3.9a) is accomplished via explicit extrapolation, again of order
J , where the weights used for the calculation of the integration and time derivatives are
outlined in Table 3.1.

∫ tn+1

tn

[N(u) − a]dt ≈ ∆t

J−1∑

q=0

βq[N(un−q) − a(n−q)], (3.11)

where
∑

βq = 1.
The incompressibility constraint (3.3b) is incorporated into the second substep of the

timesplitting scheme (3.9b) when the assumption is made that u(2) satisfies this condition.
An additional assumption is also made that u(2) satisfies the Dirichlet boundary conditions
in a direction normal to the boundary (n · u(2) = n · un+1). In (3.9b) the pressure integral
is replaced with:

∇p̃ ≡
1

∆t

∫ tn+1

tn

1

ρ
∇Pdt (3.12)

and then a separately solveable Poisson equation for the pressure can be derived by incor-
porating in the above assumptions.

∇
2p̃ =

1

∆t
(∇ · u(1)) (3.13)

The field p̃ couples the momentum and continuity equations. The Neumann boundary
conditions for p̃ are obtained by taking the normal component of (3.3a) such that:

∂p̃

∂n
= n · [N(un) − ν∇×∇× un]. (3.14)

On the cylinder boundary the pressure boundary condition is,

∂p̃

∂n
= n · [N(u) − ν∇×∇× u − a]. (3.15)

These boundary conditions, introduced by Karniadakis et al. (1991), minimize the effect
of numerical errors introduced by the time-splitting method.
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The linear terms in the third sub-step (3.9c) are approximated implicitly in time

∫ tn+1

tn

ν∇2udt ≈ ∆t

J−1∑

q=0

γ0ν∇
2u(n+1−q). (3.16)

After incorporating in the above modifications the sub-steps are now:

u(1)
−

J−1∑

q=0

αqun−q =∆t
J−1∑

q=0

βq[N(un−q) − a(n−q)] (3.17a)

∇
2p̃ =

1

∆t
(∇ · u(1)) (3.17b)

u(2)
− u(1) = − ∆t∇p̃ (3.17c)

γ0un+1
− u(2) =∆t

J−1∑

q=0

γ0ν∇
2u(n+1−q) (3.17d)

These equations comprise the fully three-dimensional semi-discrete equations required
to integrate the Navier–Stokes equations. In order to solve these equations the following
are required for each time step: the solution to one Poisson equation for the pressure, the
solution to a Helmholt equation for the diffusion in each direction and a number of spatial
derivatives. The evaluation of these equations and derivatives requires knowledge of the
spatial discretisation and this will be discussed in the following section.

3.2.2 Spatial Discretisation

Spatial discretisation of the computational domain is solved in two parts: in the x–y plane
the domain is broken up into quadrilateral elements within which a high order interpolant
is utilised; along the cylinder span, the z-axis, a Fourier decomposition is employed.
The treatment of these, which is only briefly outlined here, is further described in detail
in (amongst others) Blackburn and Lopez (2003), Henderson and Karniadakis (1995),
Karniadakis et al. (1991), Karniadakis (1990) and Karniadakis and Sherwin (1999). We
will first consider the solution of an elliptic problem in Cartesian coordinates on a fully
two-dimensional domain and then subsequently extend it to the case where a Fourier
expansion in used in the z-direction.

3.2.2.1 Two-Dimensional Spectral Element Discretisation

In this section the Galerkin formulation for the solution of an elliptic problem on a two-
dimensional domain is outlined. The Helmholtz elliptic problem can be stated in strong

form as: given b ∈ < and smooth functions c : Ω → <, g : Γg → <, and h : Γh → <,
find u such that

∇
2u − b2u + c = 0 in Ω (3.18)
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subject to the boundary conditions

u =g on Γg, (3.19a)

n · ∇u =h on Γh (3.19b)

where Ω is the unit domain −1 ≤ x, y ≤ 1. If b = 0 then this equation is called
Poisson’s equation while if both b and c are 0 then this is known as Laplace’s equation.
For the solution of our semi-discrete equations (3.17) we need to solve both Helmholtz
and Poisson equations.

With spectral element methods the above strong form is rewritten into a weaker for-
mulation that is more readily solved. This is achieved by defining a residual function, R,
and a set of weighting functions, w, such that

R(u) =

∫

Ω

w(∇2u − b2u + c)dΩ. (3.20)

Setting R(u) = 0 and integrating this equation once by parts results in the variational
form of the problem:

a(u, w) = (c, w) + (h, w)Γh
(3.21)

where the following symmetric bilinear forms have been used:

a(u, w) =

∫

Ω

(∇u∇w + b2uw)dΩ (3.22)

(c, w) =

∫

Ω

cwdΩ. (3.23)

Integrating by parts has resulted in the requirement that the trial, u, and test, w, functions
both have square integratable first derivatives and that both sets of functions belong to the
Sobolev space H1. In addition the symmetry of the equation leads to less computatuonal
effort later. The sets of trial and test functions are defined as:

S = {u | u ∈ H1, u = g on Γg} (3.24)

V = {w | w ∈ H1, w = 0 on Γh}.

The space H1 has two properties central to the use of a Galerkin approximation. Firstly
it is a ‘linear space’ and secondly, it is ‘infinite-dimensional’. The ‘linear space’ property
simply means that linear combinations of members of H 1 are also members of H1. The
space is ‘infinite-dimensional’ in that it is required to specify an infinite number of param-
eters in order to define a unique function within the space. The Galerkin approximation
represents the infinite dimensional space using a finite collection of n basis functions
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(φ1, φ2, ...φn) to represent the members of S and V such that

un =
n∑

p=1

αpφp (3.25)

wn =
n∑

p=1

βpφp. (3.26)

When these are inserted into the variational statement of the problem (3.21) the fol-
lowing form can be arrived at

n∑

p=1

βp

( n∑

j=1

Kpqαj − Fp

)
= 0 (3.27)

where,

Kpj = a(φp, φj) and (3.28)

Fp = (φp, c) + (h, φp)Γh
(3.29)

As the choice of βp is arbitary the result problem becomes the matrix problem Kα = F

where α is the vector of coefficents αp.
What remains now is to select an appropriate set of basis functions, φn. Details of the

properties required by these functions can be found in most textbooks, such as Hughes
(1987) or Becker, Carey and Oden (1981). In the implementation used in this thesis,
Gauss-Lobatto-Legendre (GLL) quadrature points are used in conjunction with a set of
GLL polynomial interpolants as the basis for the numerical solution. The GLL quadrature
points used are the roots of the equation

(1 − ξ2)L
′

N(ξ) = 0 with − 1 ≤ ξ ≤ 1, (3.30)

where LN is the Legendre polynomial of degree N . The GLL interpolants can be written
as

φi(ξ) = −
(1 − ξ2)L

′

N (ξ)

N(N + 1)LN(ξi)(ξ − ξi)
. (3.31)

These interpolants have been found to converge exponentially fast and the polynomials,
quadrature points and weights can be numerically generated using recursive algorithms
that are stable for N . 100. The number of basis functions used for construction of the
test and weighting functions is known as the polynomial order (or degree) of the solu-
tion. Substition of the basis functions and their coefficents into the variational equation
results in a matrix system that can be solved to determine the coefficents of the basis func-
tions. Selection of the polynomial order required to accurately model the flow dynamics
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is achieved through convergence tests which are detailed in a later section §3.4.

3.2.2.2 Three-Dimensional Fourier Discretisation

In the cases where a three-dimensional direct numerical simulation was required a Fourier
expansion in the spanwise z-direction was employed. The velocity vector, u(x, y, z, t), is
projected onto a Fourier basis in z using

ûq(x, y, t) =
1

Lz

∫ Lz

0

u(x, y, z, t)e−i(2π/Lz)qzdz, (3.32)

where q is an integer and represents the Fourier mode number, i =
√
−1 and Lz is a

spatial length scale. A scaled wavenumber is defined as kq = (2π/Lz)q. This projection
is reconstructed using the Fourier series

u(x, y, z, t) =

∞∑

q=−∞

ûq(x, y, t)eikqz. (3.33)

Naturally, for an infinite spectrum of wavenumbers, k, this is an exact projection and
reconstruction. However, an infinite spectrum of wavenumbers is not feasible in prac-
tice, nor desirable as typically only a certain range of wavenumbers contain energy and
therefore need to be simulated. The number of wavenumbers considered is consequently
restricted to a finite number based upon the required accuracy. Use of a Fourier basis has
altered the problem from a three-dimensional one to a set of two-dimensional problems
which are coupled through the nonlinear term. Computationally this is convienent for
parallel computing as communication between the Fourier modes is only required during
evaluation of the nonlinear term. Additionally as the flow is real, the Fourier modes are
symmetric, û−q = ûq, and only the half the spectrum of modes is required (q > 0). The
selection of the wavenumber range, M , can be determined through the use of either a
resolution study or a linear stability analysis to determine the unstable wavelengths.
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3.3 Post Processing

A number of variables are calculated from the primitive variables (u, v, w), either after a
set number of iterations or at the end of a computation, for the purpose of diagnostics or to
obtain derived variables. We present here the means by which force acting on the cylinder
(§3.3.1), vorticity (§3.3.2) and spanwise energy (§3.3.3) are calculated from these.

3.3.1 Force Calculation

The total force acting on the cylinder surface is due to the viscous and pressure force
components. The spectral element method has the conceptual advantage that the velocity
and pressure fields are continuous, so that the corresponding forces can be computed by
direct integration of an appropriate quantity over the surface of the cylinder. The pressure
and viscous forces per unit spanwise length are given by:

fp =

∮
pn ds (3.34)

fv = −

∮
µn · [∇u + (∇u)T ]ds (3.35)

fT = fp + fv (3.36)

where n is the unit outward normal of the fluid domain and the integration is performed
around the circumference of the cylinder, again using GLL quadrature.

3.3.2 Vorticity Calculation

The vorticity contours and isosurfaces presented in this study were produced through
post-processing of the velocity vectors. The following equation was used to add the three
components of vorticity to the data set containing the velocity vectors. This was sufficient
to permit visualisation of the vorticity fields.

ξ =∇× u (3.37a)

=iωx + jωy + kωz (3.37b)

=i(
∂w

∂y
−

∂v

∂z
) + j(

∂u

∂z
−

∂w

∂x
) + k(

∂v

∂x
−

∂u

∂y
) (3.37c)
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3.3.3 Energy Calculation

As outlined in Blackburn and Lopez (2002) the normalised amount of kinetic energy in
each Fourier mode k is

Ek =
1

2AU2
max

∫

A

ûk · û?
kdA (3.38)

where A is the area of the two-dimensional cross-section. This measure can be used
to determine the number of spanwise wavenumbers needed to model the computational
domain to the required accuracy.
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3.4 Validation

The technique outlined in this chapter has been previously implemented and validated,
e.g. in a two-dimensional subspace in Blackburn and Henderson (1999) and with Fourier
expansions along the z-axis in Blackburn and Karniadakis (1993). Temporal accuracy was
achieved using second–order time integration and sufficiently small timesteps so that the
results are independent of step size. Consequently the following validation tests are not
focused upon testing this implementation but in choosing the geometries and parameters
required to accurately model the scenarios outlined in §1.1. In the following sections
the choice of domain extent, the elemental geometry, the GLL interpolant order and the
timestep are examined.

3.4.1 Mesh Selection

The following selection of the domain extent, the number of elements and interpolant
order are based on accurately modelling a cylinder undergoing forced simple–harmonic
rectilinear oscillations in a two-dimensional subspace. It is for this problem that the ma-
jority of research presented in this thesis has been performed. Meshes required for other
problem scenarios, such as the swimming cylinder, will be presented and validated as
required. The following meshes use two-dimensional distorted quadrilateral elements as
their fundamental building block. In the following sections we investigate firstly the im-
pact of the domain extent and secondly the impact of the GLL interpolant order.

3.4.1.1 Temporal Resolution

In all the simulations presented in this study second–order time integration was employed
and the time step, ∆t, was selected to satisfy the required accuracy. The selection of
a suitable timestep is dependent upon the mesh and the polynomial order used for this
mesh. Presented here is a resolution study for the mesh/polynomial combination that was
used predominantly throughout this thesis. The details of the selection of the mesh and
polynomial order used in this study are considered in the subsequent sections.

In Table 3.2 the variation of the coefficent of force along the axis of oscillation is
presented as a function of the number of timesteps per period of oscillation. In the three
separate locations in (KC,β)-space shown the peak coefficient of force was found to
vary little across the range of timesteps considered. The timestep was chosen to be 3000
timesteps per period which achieves an accuracy of four decimal places.
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(KC, β)
Steps per Period (2.5, 100) (8, 10.0) (8, 11.0)

1000 9.69562 5.66330 5.10862
1500 9.69567 5.66183 5.11440
2000 9.69570 5.66298 5.11479
2500 9.69572 5.66270 5.11467
3000 9.69572 5.66290 5.11481
3500 9.69574 5.66288 5.11504
4000 9.69574 5.66288 5.11504
4500 9.69577 5.66293 5.11494
5000 9.69577 5.66288 5.11504
5500 9.69577 5.66295 5.11508
6000 9.69580 5.66288 5.11506
6500 9.69580 5.66295 5.11502

Table 3.2: Variation of the peak coefficent of force Ĉfy per unit length along the
y-axis as a function of the number of timesteps per period of oscillation, T . Simu-
lations were conducted on the 40D×40D mesh with a interpolant order of Np = 8.

3.4.1.2 Domain Size Resolution

The extent of the domain surrounding the oscillating cylinder could potentially impact
upon the results. In the previous experiments of Honji (1981) and Tatsuno and Bearman
(1990) different sized domains were employed, however their results agreed within a
reasonable margin of experimental error. As a result it is difficult to draw any conclusion
from their domains about the optimum domain size and any potential impact this may
have. In the initial numerical study of this problem by Elston (1997) a 20D × 20D mesh
was used, see figure 3.1(a), for two-dimensional modelling of regime B. The vorticity
contours generated appeared to be in excellent agreement with the flows visualised in
Tatsuno and Bearman (1990).
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(a)

(b)

(c)

(d)
Figure 3.1: Outlines of (a), 144-element 20D × 20D domain; (b), 164-element
40D×40D domain; (c), 192-element 30D×30D domain; (d), 192-element 80D×

80D domain. All meshes are shown scaled to a common cylinder diameter and
relative to each other. The horizontal and vertical axis’s, where not shown, are x/D
and y/D respectively, with the reference point co-located with the center of the
cylinder.
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To determine the impact of the domain size upon the flow dynamics a number of
meshes of differing size were examined. The diagnostic used to determine the influence
of the domain extent was the peak coefficient of force Ĉf exerted along the y-axis on the
cylinder.

Ĉfy =
2f̂ty

ρU2
rmsD

(3.39)

where f̂ty is the peak total force acting on the cylinder in the y-direction (inline with the
oscillation), and Urms is the root mean square velocity. The results of an investigation of
four different meshes, figures 3.1(a)–(d), which increased in domain extent from 20D ×

20D to 80D × 80D are shown in Table 3.3. This series of meshes shares a common core
section for −8 < (x2 + y2)

1

2 < 8. The meshes shown have additional elements added
around this core section to increase the domain extent to the desired size. A preliminary
study in Elston (1997) has indicated that, at the chosen point in (KC,β)-space, (KC = 2.5

β = 100), an interpolant order of Np = 8 was sufficient to resolve the flow dynamics.
The results in Table 3.3 indicate that the range of domain extents considered had very

little impact upon the peak force coefficient with only a 0.40% variation occurring across
the entire series. The 40D × 40D domain was subsequently chosen for the simulations
of a cylinder in simple–harmonic rectilinear motion as it is of the same order of domain
as the physical domain used by Tatsuno and Bearman (1990) and the peak coefficient of
force has converged to four-figure accuracy. Subsequent increases in the domain extent
resulted in less than a 0.1% decrease in the peak force coefficent.

Domain size 20D × 20D 40D × 40D 60D × 60D 80D × 80D
Nel 144 164 192 192
Ĉf 9.717 9.687 9.682 9.678

Table 3.3: Peak coefficients of y-component force per unit length for different do-
main sizes and number of elements, Nel, with the order of the tensor-product in-
terpolant function employed within each element held constant at Np = 8. Each
simulation was performed at (β = 100, KC = 2.5) and allowed to reach a periodic
state.
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Figure 3.2: Outline of the 700-element 40D × 80D domain used for a small pro-
portion of the results presented here.

3.4.1.3 Spatial Order Resolution

The order of the tensor-product interpolant used was determined through an investigation
at a number of locations in (KC,β)-space using the chosen 40D × 40D mesh. Addi-
tionally a 700 element, 40D × 80D mesh which was required for Floquet analysis was
also investigated. For tests in (KC,β)-space where the resulting flow would have broken
Kx symmetry, a half mesh was created which was simply the full mesh sliced in half at
x = 0. At the mesh boundary x = 0, symmetry boundary conditions were employed so
that all the simulations were consistent and Kx symmetry was enforced. The symmetry
boundary conditions are:

u = 0

∂v

∂n
= 0

(3.40)

with a high-order boundary condition imposed on the pressure field.
The results of a convergence study into the interpolant orders using the 40D × 40D

and 40D × 80D mesh are shown in Table 3.4. An interpolant order of 8 was chosen for
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(β,KC) \ Np 6 8 10 12
(a) (12.5, 8) 5.433 5.434 5.434 5.434

(40, 4.5) 6.080 6.080 6.080 6.080
(100, 2.5) 9.687 9.687 9.687 9.686

(b) (12.5, 8) 5.420 5.420 5.420 5.420
(100, 2.5) 9.682 9.682 9.681 9.681

Table 3.4: Np-convergence results for peak coefficients of y-component force per
unit length, Ĉf , obtained using (a) the 164-element 40D × 40D mesh, and (b) the
700-element 40D × 80D mesh. Simulations at (β = 12.5, KC = 8) conducted
with enforced Kx symmetry.

use with the 40D × 40D mesh and an order of 10 for the 40D × 80D mesh. The choice
of these interpolant orders was sufficient to enable four-figure accuracy with each of the
meshes.
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3.5 Chapter Summary

In this chapter the technique used to directly model fluid flows of the types outlined in §1.1
has been outlined. The spectral element method was briefly introduced and the means by
which spatial and temporal discretisation has been accomplished with this method was
covered. Critical to the accuracy of this method is the selection of the tensor-product
interpolant order and spatial extent of the meshes. The convergence studies presented
show the impact of the spatial extent and interpolant order for the case of a cylinder in
simple-harmonic rectilinear motion. The choice of interpolant order and domain for the
‘swimming’ cylinder problem is considered later in chapter 8.
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Chapter 4

Numerical Methods: Floquet Stability

Analysis

The implementation of the Floquet analysis technique is outlined in this chapter. This
technique examines the linear stability characteristics of a periodic system to infinites-
imal perturbations. It has been used in a number of recent research publications, such
as that of Barkley and Henderson (1996) where it was used to identify the three-dimen-
sional modes ‘A’ and ‘B’ of the oscillating wake behind a circular cylinder and further,
to accurately determine the onset of these modes as a function of Re. In contrast to that
application where the periodicity of the base flows is the result of a Hopf bifurcation and
the flows are autonomous, the flows studied here involve periodicity due to an external
forced oscillation of the cylinder.

Additionally, while previous investigations have focused on using this technique to
determine the susceptibility of two-dimensional periodic flows to three-dimensional dis-
turbances, in this investigation it is also applied to determining the susceptibility of two-
dimensional periodic flows to two-dimensional perturbations. Outlined in the following
sections are the process of linearisation of the Navier–Stokes equations (§4.1), the tech-
nique of linear stability analysis of steady state flows (§4.2) and finally the Floquet anal-
ysis technique (§4.3).

An implementation of the Floquet stability analysis technique was obtained from D.
Barkley, which the author is led to believe was employed in the research resulting in the
recent publication of Barkley and Henderson (1996). This implementation required mat-
ing with the DNS technique outlined in the previous chapter. Additionally, alterations
to the DNS implementation were required to solve the linearised Navier–Stokes equa-
tions. Consequently, the last section of this chapter (§4.4) outlines the tests the code was
subjected to during its development and validation.
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4.1. LINEARISED NAVIER–STOKES FORMULATION

4.1 Linearised Navier–Stokes Formulation

The incompressible Navier–Stokes equations, (3.1), are linearised by assuming that the
flow, u(x, y, z, t), at the onset of an infinitesimal perturbation, is the linear sum of a three-
dimensional perturbation, u′(x, y, z, t) and a two-dimensional base flow, U(x, y, t), such
that:

u =U + u′ (4.1)

p =P + p′. (4.2)

In this implementation the perturbation is, at times, restricted to a two-dimensional sub-
space in the x-y plane. However, in this description of the technique the full three-di-
mensional implementation is discussed. Insertion of these terms into the Navier–Stokes
equations (3.1) results in the linearised Navier–Stokes equations for the evolution of the
perturbation once terms that satisfy the Navier–Stokes equations for the base flow are
removed, and assuming that the perturbation is infinitesimally small |u′|, |p′| << 1:

∂u′

∂t
= −

1

ρ
∇p′ − (u′

· ∇)U + (U · ∇)u′ + ν∇2u′ (4.3a)

∇ · u′ = 0. (4.3b)

The linearised advection terms are written in convective form here instead of the skew-
symmetric formulation used for this term in the fully nonlinear implementation (3.2).
Wilhelm and Kleiser (2001) have shown that use of the linearised skew-symmetric formu-
lation results in numerical instability and during the development of this Floquet solver,
before becoming aware of this, the author also observed this to be the case. The bound-
ary conditions on the perturbed velocity are: u′ = 0 on both the outer walls and on the
cylinder surface. These equations can be rewritten more compactly in the ‘schematic’
form:

∂tu′ = (NU + L)u′ (4.4)

where the operator NU is the T -periodic linear operator (u′ · ∇)U + (U · ∇)u′. The linear
operator L corresponds to the viscous diffusion term. The pressure is set to the solution
of a Poisson equation that has the divergence of the advection terms as forcing. These
terms were calculated using the spatial discretisation and time-stepping discussed in the
previous chapter §3. The entire operator (NU + L) is T -periodic because the linearised
advection term is.
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4.2 Stability Analysis of Steady-State Flows

A number of techniques are available to examine the linear stability of U when it is a
steady state flow. The method implemented here is a version of the exponential power
method, as described in Tuckerman and Barkley (2000), that permits multiple solutions
to be obtained and is outlined in the following section. When the base flow is steady,
U(t) = U, and infinitesimal perturbations to this state evolve according to the linearised
stability equations (4.4) then the stability of U is governed by the eigenvalues, λ, of the
operator NU + L.

(NU + L)u′ = λu′ (4.5)

A positive real component of any eigenvalue indicates an unstable mode and the cor-
responding eigenvector provides the form of the unstable perturbation to the base flow.
The size of the matrices involved can rapidly become so large that a direct solution of the
problem rapidly becomes unfeasible for all but the smallest and simplest problems. How-
ever, this can be overcome as only the leading eigenvalues of the spectrum are required,
and their matching eigenvectors. This can be found using an iterative method, such as a
variation of the power method. The basic power method produces a sequence of vectors
by acting repeatedly upon an arbitrary initial vector, u0, with the operator NU + L:

un = (NU + L)nu0. (4.6)

The sequence of vectors, un, eventually approaches the dominant eigenvector. As dis-
cussed in Tuckerman and Barkley (2000), two modifications are required to this technique
to make it applicable to the linearised Navier–Stokes problem: firstly, to determine more
than one eigenpair; and secondly to determine the leading eigenvalues (largest real part),
as distinct from the dominant eigenvalues (largest magnitude).

To determine multiple eigenpairs to the eigensystems a variant of the Arnoldi method
(Saad; 1992) is employed. In the technique implemented a Krylov subspace is formed
from the sequence u0, (NU + L)u0, ..., (NU + L)K−1u0, where K is both the order of the
Krylov-space and the number of eigenpairs sought. The eigenpairs in this subspace are
the dominant eigenpairs of the system.

The second change to the underlying power method is to convert the method to de-
termine the leading eigenvalues, i.e. those with largest real part, instead of the dominant
eigenvalues. In the exponential variation to the power method the solution to (4.4) is

u(t + ∆t) = e∆t(NU+L)u(t). (4.7)

The leading eigenvalues of the operator NU+L are the dominant ones of e∆t(NU +L) for any
positive ∆t. By using the exponential version the leading eigenvalues will be obtained.
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The final technique is a hybrid of the Arnoldi technique which obtains multiple eigenpairs
of the system and the exponential power method which finds the leading eigenpairs of the
system. The Krylov-space dimension used with this system is selected to accommodate
all the leading eigenpairs of interest.
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4.3 Floquet Analysis

Floquet analysis is employed when the underlying base flow, whose stability to infinitesi-
mal perturbations is sought, is T-periodic instead of steady (time invariant) as outlined in
the previous section. This requires modification to the exponential power method used for
the steady-state analysis as the linear operator of (4.4) is no longer constant. The stability
of this system is now determined by eigenvalues of the operator

B ≡ exp

(∫ t0+T

t0

(NU(t′) + L)dt′
)

. (4.8)

The operator B evolves the perturbation, u′, subject to the linearised Navier–Stokes equa-
tions, over a single period of time, T . As a consequence of the T -periodic nature of the
base flow, it is essential to monitor the growth or decay of any perturbation to this system
over an entire period of the base flow in order to determine its stability characteristics.
The starting point, t0, becomes irrelevant as a result of monitoring the growth of the per-
turbation over an entire period of the base flow. The eigenvalues µ of B are known as
Floquet multipliers. The trial solutions to (4.4) are now of the form:

u(t) = ũ(t mod T )eσt (4.9)

where σ = log(µ/T ) is called a Floquet exponent and ũ(t mod T )eσt is called a Floquet
mode. The Floquet eigenfunctions, ũ(t), are T -periodic however, they are only deter-
mined at an arbitrary starting phase, t0. Determining the stability now requires integrating
the linearised stability equations over one full period and using the resultant vector as the
vectors for the Krylov subspace. A requirement of this is that the base flow is now known
for each ∆t over one period. This is accomplished by storing a number of velocity fields
equally spaced over one period of the base flow and reconstructing the base flow from this
using a Fourier series. This is an ideal way to represent the base flow because it is known
that it is periodic. The selection of the number of base flow fields required to accurately
model the base flow is determined by calculating the spread of kinetic energy in each
Fourier mode for increasing numbers of slices per period. In the simulations presented
later it was found that 32 fields were sufficient, however 64 fields were used to provide
accuracy.
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The algorithm implemented by D. Barkley is outlined below, where LNS( u, T ) spec-
ifies the evolution of the velocity field, u, over one period, T.:

1. Set first vector of Krylov matrix of dimension kdim to initial condition.

2. Fill Krylov matrix:

f o r i = 2 to kdim
K[ i ] = LNS ( K[ i −1 ] , T )

3. Iterate over Krylov matrix until converged or maximum iterations are reached.

(a) Roll matrix and add new vector:

f o r i = 1 to kdim
K[ i −1 ] = K[ i ]

K[ kdim ] = LNS ( K[ kdim −1 ] , T )

(b) Calculate eigenvalues of K:

i. Perform Q R decomposition using MGS algorithm.
ii. Compute Hessenberg matrix, H = Q * LNS() Q

where Q*LNS() = R
iii. Calculate eigenpairs of H, which are the Floquet multipliers

achieved using a standard linear package, i.e. LAPACK
iv. Determine residuals from eigenvectors of H as a measure of convergence.
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4.4 Validation Tests

Two tests were used to validate the implementation of the iterative solver and Floquet
method. These were chosen and performed in a specific order such that each successive
test added an extra feature or layer of complexity to the previous test. The tests chosen all
had previously published results with either quantitative or graphical data to compare the
results with. The first test was a stability analysis of a steady state flow. In this the two-di-
mensional stability of a two-dimensional steady flow between two parallel walls (planar
Poiseuille flow) was examined as a test of the iterative eigenvalue solver. In the second
test the Floquet analysis technique was employed. In the second test the extra complexity
of testing for three-dimensional instabilities of a two-dimensional periodic base flow was
added. This was done by examining the stability characteristics of the two-dimensional
periodic wake of a circular cylinder at Re = 220.
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4.4.1 Poiseuille Flow - A Steady State Problem

A well documented problem of interest is that of two-dimensional incompressible flow
in a straight channel, otherwise known as plane Poiseuille flow. A number of studies,
such as those of Orszag (1971) and Canuto, Hussaini, Quarteroni and Zang (1988), have
focused on the linear stability of the time-invariant solution to this flow. In both of these
works, quantitative results for the growth of the perturbations are presented as functions
of the Reynolds number and the streamwise wavenumber, which makes these ideal cases
for testing the iterative eigenvalue solver. The critical Reynolds number for growth of
a perturbation has been found to be 5772.22 with a streamwise wavenumber of 1.02056
(Orszag; 1971).

The two-dimensional time-invariant velocity and pressure fields that forms between
two walls placed at y = −1 and y = +1 are described in (4.10). The walls are imper-
meable and have non-slip boundary conditions. The Reynolds number is based upon half
the channel height, h, and the centre-stream velocity such that Re = 1/ν, where ν is the
kinematic viscosity.

u(x, y, t) = 1 − y2

v(x, y, t) = 0 (4.10)

p(x, y, t) = − 2νx

A two-dimensional solution of the following form is assumed for the velocity field of
the base and perturbation flows:

u(x, y, t) =U(x, y) + u′(x, y, t) (4.11)

u(x, y, t) =(1 − y2) + εRe{φ(y)eiαx−iωt
} (4.12)

where ε is the amplitude of the perturbation. A solution has been presented in Canuto
et al. (1988), where results for one particular case are cited with the parameters Re =

7500 and a streamwise wavenumber of α = 1. Using a domain of length Lx = 2π/α

they calculated that the eigenfrequency of the growing mode was ω = ωr + iωi, where
ωr = 0.24989154 and ωi = 0.00223497. Orszag (1971) reported values for a case at a
slightly higher Reynolds number of 10000 with a streamwise wavenumber of 1.0 where
an eigenfrequency of ω = 0.23752649 + 0.00373967i was found. Both of these cases
were employed as tests of the solver.

The simulations were carried out using the mesh shown in figure 4.1 with interpolant
orders of 8, 10, 12 and 14. The domain has length Lx = 2π and has periodic boundary
conditions applied at x = −π and x = +π. The equilibrium solution (4.10) was imposed
upon this mesh and used as the base flow, U. A Krylov matrix with a dimension of 3 was
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Re = 7500 Re = 10000
Canuto et al. (1988) Orszag (1971)

GLL order (Np) ωr ωi ωr ωi

Calculated 0.2498915 0.00223497 0.2375265 0.00373967
8 0.2498901 0.00223634 0.2375274 0.00374272

10 0.2498917 0.00223577 0.2375265 0.00373971
12 0.2498916 0.00223511 0.2375265 0.00373975
14 0.2498916 0.00223510 0.2375265 0.00373978

Table 4.1: Comparison of the eigenvalues produced by the linear solver with two
sets of previously calculated values published in Canuto et al. (1988) and Orszag
(1971) In both cases increasing the interpolant order improved the accuracy of the
solution. With an interpolant order of Np = 10 the eigenvalues were accurate to
four significant figures.

used. The initial perturbation vector used was seeded with random numbers to excite all
possible modal frequencies.

Figure 4.1: 24 element mesh used for simulations of Poiseuille flow. The upper
and lower boundaries at y = −1 and y = +1 have non-slip boundary conditions
applied on them while the boundaries at x = −π and x = +π are periodic with
each other.

The results of the simulations for both of these cases are presented in Table 4.1. In
both scenarios the iterative solver produced results that were accurate to three significant
figures for a GLL interpolant order of 8. Increasing the interpolant order increased the ac-
curacy slightly. The implementation of the linear eigensystem solver achieved the correct
result with the required accuracy in this case.
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4.4.2 Circular Cylinder Wake - A Floquet Problem

This test case introduced the aspect of examining the linear stability of a two-dimension-
al periodic flow, as compared to the previous case which had a steady base flow. This
test focuses on examining the three-dimensional stability of the two-dimensional periodic
flow past a circular cylinder, which is know to bifurcate to a mode ’A’ instability, as
has been previously discussed extensively in §2.1. Barkley and Henderson (1996) have
established a neutral stability curve, see figure 2.7, for the onset of three-dimensional
structures in the periodic wake past a circular cylinder. In particular, Floquet multiplier
magnitudes were presented as a function of the Reynolds number and the wavenumber, k.
The focus here was to replicate one specific example of this, that of the series at Re = 220

with wavenumbers less than k = 2.5.

Figure 4.2: Spectral element mesh used for simulation of the periodic wake past a
circular cylinder. The mesh contains 218 elements and is scaled by the reference
length of the cylinder diameter, D = 1.

The spectral element mesh shown in figure 4.2 was used to simulate the periodic
wake of the cylinder. On the inflow (left), upper and lower boundaries the velocity was
prescribed as u = 1, v = 0, while on the outflow (right) boundary a standard Neumann
boundary condition was implemented. No-slip boundary conditions were applied on the
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cylinder surface. A periodic base flow was generated by simulating the flow with DNS
until a periodic state was reached. The periodic fields were stored by taking 32 equi-
spaced in time snapshots of the fields over one period. This permitted the calculation of
the base flow velocity fields at any time within the period using a Fourier reconstruction.

Figure 4.3: Floquet multiplier results for the three-dimensional stability of the peri-
odic wake of a circular cylinder at Re = 220 as a function of spanwise wavenumber
k. Shown are the results, ◦, and those of Barkley and Henderson (1996), ×. Values
of the Floquet multiplier |µ| > 1 indicate a point that is unstable.

The results of the Floquet analysis are reproduced alongside those of Barkley and
Henderson (1996) in figure 4.3. The results are in reasonable agreement and the discrep-
ancy could be due to a number of factors. These factors include, but are not limited too,
the aspects of the domain sizes being different, the data of Barkley and Henderson (1996)
being extracted from a reproduction and only a minimal study into the dependence of the
GLL interpolant orders being conducted.
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4.5 Chapter Summary

The Floquet analysis technique used to determine the stability of periodic systems to
infinitesimal perturbations was outlined in this chapter. Its implementation was discussed
and then validated through testing against a known steady flow problem and a Floquet
problem. In both cases it was found to produce results that were quantitatively comparable
to previously published results to within the desired accuracy.
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Chapter 5

Rectilinear Oscillation:

Symmetric Synchronised Flow

5.1 Introduction

It is well known that the flow produced by a cylinder in rectilinear oscillation at extremely
low amplitudes and frequencies of oscillation is both symmetric about the oscillation axis
and synchronised with the cylinder oscillation. A number of researchers (Honji; 1981;
Williamson; 1985; Tatsuno and Bearman; 1990) have shown that small increases in either
of these oscillation parameters can result in the formation of flow states with a different
set of spatial and temporal symmetries. The bifurcations between these new states and the
initially symmetric flow can break one or more of the symmetry properties that the ini-
tially symmetric flow possessed. The focus of this investigation will be on identifying the
nature of the bifurcations occurring, the point of onset of the primary and secondary bifur-
cations that occur and, if the transition is three-dimensional (along the span), determining
the critical three-dimensional wavenumbers of the bifurcation. Where not explicitly stated
the use of the terminology ‘two-dimensional’ refers to the plane perpendicular to the span
of the cylinder and implies that there is no spanwise variation of the flow.

In order to determine a transition from one state to another, the properties of the initial
state need to be known accurately. In this chapter the spatial and temporal properties of
the flow occurring for very low Keulegan–Carpenter and Stokes numbers are examined
and classified according to the symmetry properties present. In subsequent chapters we
investigate the transitions that occur when either or both of the control parameters are
increased while the domain is either restricted to a two-dimensional subspace perpendic-
ular to the cylinder span (chapter 6) or in a fully three-dimensional space where spanwise
variations are taken into account (chapter 7).

In this chapter the properties of the stable flow will be established through an ex-
amination of the flows produced at a set of four points in (KC,β)-space that have been
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shown visually to lie in stable regions on a KC-β plot. The regimes these points lie in,
regimes A∗, A and B, were identified visually by Tatsuno and Bearman (1990) as having
synchronous and symmetric flow about the cylinders oscillation axis. It should be noted
that flows of regime B have been shown to be three-dimensional, however as one com-
ponent of the investigation is examining flows restricted to a two-dimensional subspace
it is appropriate to identify its symmetry properties so that transitions from this initial
state could be determined. From the examination of the flows produced in these four in-
stances a set of properties will be established (§5.4) which are then used in later chapters
to characterise the instability modes.

74



5.2. TWO-DIMENSIONAL BASE STATES

5.2 Two-Dimensional Base States

The objective of this section is to establish the properties of the symmetric and syn-
chronous flows that will be known in later chapters as ‘base flows’. Through the ex-
perimental visualisations of Honji (1981) and Tatsuno and Bearman (1990) a number of
properties of these stable flows have been identified. However, these have been experi-
mental visualisations only and as the subsequent chapters are centered around a numerical
stability analysis of these flows it is important to numerically duplicate these flows and to
accurately define the properties that are lost or altered through a bifurcation arising from
a change in the oscillations control parameters.

Figure 5.1: Map of vortex shedding regimes (A∗–G), from Tatsuno and Bearman
(1990), and the locations examined for their symmetry properties. Four points are
shown where the symmetrical properties of the initial flow states are examined here.
These points are located in (KC,β)-space at I: (2.0, 80.0), II: (4.0, 40.0), III: (7.0,
10.0) and IV: (3.0, 80.0). It should be noted that although three of the points, I–III,
are located in regimes experimentally reported to be two-dimensional(no spanwise
variation), the fourth point, IV, is located in a regime reported to be three-dimen-
sional. This point was examined because in simulations restricted to a two-di-
mensional subspace this point is likely to preserve the symmetry characteristics
observed in regimes A∗ and A.

In their experimental visualisations, Tatsuno and Bearman identified two regimes, A∗

and A, in which symmetrical flow structures were observed to form about the cylinders
oscillation axis. Images of these structures can be seen in figures 2.17(A∗) and 2.17(A).
The formation of these structures was observed to be synchronised with the motion of
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the cylinder. In both of these regimes, the formation of structures that varied along the
cylinder span were not observed. Additionally, the formation of an induced flow that
approached the cylinder from a direction perpendicular to the oscillation axis and departed
the cylinder vicinity along the oscillation axis was noted to occur. The distinction between
regimes A∗ and A lies in the assertion that in regime A∗ there was no vortex shedding
while in regime A vortex shedding does occur. It is assumed, due to the visual nature of the
study, that the determination of the presence of vortex shedding arises from the patterns
formed by the particles and dye being shed from the surface of the cylinder, although
it is noted that far from the cylinder the concentrations of dye do not represent vortices
but instead mark periodic mass convection from the boundary layer of the cylinder. Due
to the difficulty in determining the onset of vortex shedding the boundary between these
regimes was not explicitly delineated, as was done for the boundaries between the other
regimes identified.

In regime B the onset of a regular spanwise variation in the structures visualised was
experimentally observed. It is clear from these visualisations that a bifurcation from the
two-dimensional flows of regimes A∗ and A has occurred resulting in the formation of
three-dimensional structures. However, when restricted to a two-dimensional subspace,
flows in this regime retain the symmetry characteristics of regimes A∗ and A. The im-
plication of this is that the onset of a two-dimensional transition occurs after regime B
and therefore when determining the onset of two-dimensional subspace transitions it is
important to know the symmetry characteristics of regime B when it is restricted to the
two-dimensional subspace.

In the following sections four points located in regimes A∗, A and B are selected and
analysed with respect to their symmetry properties. The location of these four points is
(as shown in figure 5.1):

I. KC=2, β = 80.0

II. KC=4, β = 40.0

III. KC=7, β = 10.0

IV. KC=3, β = 80.0

These points were selected on the basis of being representative of the regimes they lie in
and also being near the boundary where a detailed transition study will occur in chapters
6 and 7.
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5.2.1 Point I: KC=2, β = 80.0

The first point to be examined is at KC=2, β = 80.0, which using the regime map of
Tatsuno and Bearman (1990), see figure 5.1, lies in regime A∗. At this location a two-
dimensional DNS was evolved until the flow has settled into a limit cycle. A number of
measures were available to determine if the flow had reached an asymptotic state. These
included examining the time traces of the velocity components at a number of points in
the domain, or alternatively by calculating the forces experienced by the cylinder and
it could be qualitatively derived by inspection of the vorticity contours over a period of
oscillation. In the first instance the velocity variables (u, v) at four discrete locations in
the domain were plotted against each other over a discrete period of time. In figure 5.2
these are plotted for one period of oscillation. In this case the four traces result in closed
loops where the loop was terminated at the end of one period of motion. This indicates

Figure 5.2: Plot of the u vs. v velocity components (relative to a fixed cylinder)
over one period of motion at four discrete locations in the domain. The two-di-
mensional DNS simulation was carried out at KC=2, β=80.0. The plot at each
location of an entire period forms a complete circuit indicating that the flow at
this spatial location is periodic and synchronised with the forcing period. The four
locations are (relative to the centre of the cylinder): I x = 0.0D, y = 2.0D, II
x = 2.0D, y = 0.0D, III x = 2.0D, y = 2.0D and IV x = 5.0D, y = 5.0D.
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that the flow at these points in the domain is periodic and synchronised with the forcing
period. When these traces were examined over one hundred periods the same limit cycles
were found to occur. This demonstates that at these spatial locations the flow has reached
an asymptotic state. At later stages of the thesis these diagrams are not shown and the
flow is simply referred to as having reached a limit cycle. Typically this was established
by examining such limit cycles over at least one hundred periods of oscillation.

t=0 t=T/8 t=2T/8 t=3T/8

t=4T/8 t=5T/8 t=6T/8 t=7T/8

Figure 5.3: A sequence of instantaneous vorticity contours extracted over one mo-
tion period, T , at KC=2, β=80.0. Positive (anti-clockwise) and negative vorticity
contours are denoted by red and blue colours respectively. The crosshairs denote
the fixed point that the cylinder is oscillating about.

The sequence of eight images in figure 5.3 is of the instantaneous vorticity contours
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generated over one period of motion. In these vorticity contours the symmetry of the flow
about the axis of oscillation can be seen as an inverse reflection of the vorticity field about
this axis. The synchronisation of the flow with the forcing frequency is also evident by
comparing any single image with one half a period later. In these cases performing an
inverse reflection about the x-axis of one set of vorticity contours will result in an set of
vorticity contours that is identical to the flow state at a time T/2 later. An interesting
aspect of these images is that the vorticity contours are all connected back to the near
cylinder region and that there are no far field concentrations of vorticity. This is consistent
with the lack of vorticity shedding observed by Tatsuno and Bearman (1990).

Figure 5.4: Plot of the coefficient of total y-force exerted on the cylinder over one
period of cylinder motion. The simulation was carried out at KC=2, β=80.0. The
force is non-dimensionalised with respect to the root mean square of the cylinders
proscribed y-axis velocity. Also shown is the cylinders displacement (dashed line)
over one period of motion.

When the forces experienced by the cylinder are examined in the x and y directions,
the symmetry of the flow and its synchronisation with the forcing frequency of oscillation
can be detected. In figure 5.4 a time trace of the coefficient of y force exerted on the cylin-
der over a single period is presented. The equivalent time trace of the x-force coefficient
(not shown) shows the x force to be zero and constant over a period of oscillation. This is
consistent with the flow being symmetrical about the oscillation axis and thus the x com-
ponent of force resulting from the flow on one side of the cylinder is negated by the equal
and opposite force experienced by the flow on the other side of the cylinder. An examina-
tion of the time-trace of y-force component, figure 5.4, over one period shows that there
is a periodic variation of the force experienced by the cylinder. This force is synchronised
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with the cylinder motion and its maxima occur just after the cylinder reaches the peak of
the sinusoidal oscillation.

Figure 5.5: Particle shedding image. Over 15 periods of motion conducted at KC=2,
β=80.0, with two-dimensional DNS, ten equally spaced points on the cylinder sur-
face released massless particles into the surrounding fluid.

In figure 5.5 a particle-track plot of this symmetric and periodic flow is presented.
This image was created by placing ten sources of massless particles equally around the
cylinder circumference at a very small distance from the cylinder surface and evolving the
flow using two-dimensional DNS. The particles were released into the surrounding fluid
over 15 periods of motion. It is interesting to note that the particles all remained in the near
vicinity of the cylinder. This appears to be in contrast to the result of Tatsuno and Bearman
(1990) for this regime, see figure 2.17(A∗), which shows a jet of particles moving away
from the cylinder along the oscillation axis. However, their figures are at different Stokes
numbers, β=52.5 in figure 2.17(A∗), and the placement of the particle sources around the
cylinder was at a set of discrete points in comparison to the experimental implementation
which could influence the patterns formed. In figure 5.6 streamlines of the average flow
over one oscillation are presented. The induced flow can be seen to form eight cells of
rotating fluid. This images closely resembles the experimental visualisation of figure 2.13
which was produced at (KC = 0.53, β = 132).

The results of a three-dimensional Floquet analysis of this flow are shown in fig-
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ure 5.7. In this instance no Floquet multiplier exceeded a magnitude of 1.0 for all the
wavenumbers tested. This indicates that this flow is linearly stable to three-dimensional
perturbations and agrees with the visualisations of Tatsuno and Bearman (1990) who also
saw no evidence of three-dimensional spanwise structures in this regime.

Figure 5.6: Streamlines of the secondary streaming induced by an oscillating cylin-
der. This image was produced from an average of the velocity fields over one period
of oscillation at (KC = 2, β = 80). The cylinder is oscillating in the vertical di-
rection.
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Figure 5.7: Results of a three-dimensional Floquet analysis conducted at KC=2,
β=80.0 showing dependence of the dominant Floquet multiplier, µ, on spanwise
wavenumber, k. The value |µ| = 1 corresponds to the onset of instability. 64
time-slices were used in the construction of the stable, two-dimensional base flow.
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5.2.2 Point II: KC=4, β = 40.0

The second point to be examined at KC=4, β = 40.0 lies in regime A. A two-dimensional
DNS was evolved at this location until it was determined the simulation had reached an
asymptotic state. That it had reached a periodic limit cycle was established by examining
both the time traces of the velocity components at a set of locations and by examining the
forces experienced by the cylinder over many oscillation periods.

t=0 t=T/8 t=2T/8 t=3T/8

t=4T/8 t=5T/8 t=6T/8 t=7T/8

Figure 5.8: A sequence of instantaneous vorticity contours extracted over one mo-
tion period, T , at KC=4, β=40.0. Positive (anti-clockwise) and negative vorticity
contours are denoted by red and blue colours respectively.
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The sequence of eight images in figure 5.8 is of the vorticity contours generated over
one period of motion. The flow can clearly be seen to be symmetric about the axis of
oscillation as is visualised in the inverse symmetry of the vorticity contours about this
axis. As with the previous case in §5.2.1 the synchronisation with the forcing period
is also detected. This is seen by applying an inverse reflection about the x-axis of any
image to obtain the image shown half a period later. No far field local concentrations of
vorticity were detected for this case and all the vorticity contours connected back to the
near cylinder region. Tatsuno and Bearman (1990) identified this location as belonging
to regime A with its definitive characteristic, in relation to the flows of regime A∗, being
the presence of vortex shedding. These vorticity contours suggest that this location in
(KC,β)-space should belong to regime A∗.

Figure 5.9: Plot of the coefficient of total y-force exerted on the cylinder over one
period of cylinder motion. The simulation was carried out at KC=4, β=40.0. The
force is non-dimensionalised with respect to the root mean square of the cylinders
proscribed y-axis velocity. Also shown is the cylinders displacement (dashed line)
over one period of motion.

The net force experienced by the cylinder in the x direction is zero and does not vary
over an entire oscillation. This confirms that the simulation is symmetrical about the oscil-
lation axis as the net x-component of force exerted on the cylinder is zero. Examination
of the y-component of force exerted on the cylinder, see figure 5.9, shows a sinusoidal
variation of the net force that is synchronised with the cylinder motion. The force exerted
on the cylinder has a small phase lag to the displacement of the cylinder.

Examination of the particle track plot of figure 5.10 shows a jet of particles travelling
away from the cylinder along the oscillation axis. It shows no discrete packets of particles
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separating from the near cylinder region into the flow. It closely resembles the image of
regime A∗ from Tatsuno and Bearman (1990), see figure 2.17(A∗), which was obtained for
KC=3.14, β=52.8. The vorticity contour plots in figure 5.8 also show no shedding of vor-
ticity. However, this location is supposed to lie in a regime whose defining characteristic
is the shedding of vorticity.

A three-dimensional Floquet analysis of this flow was conducted to verify that this
flow has no structures that vary in the spanwise direction as observed by Tatsuno and
Bearman (1990). The result, shown in figure 5.11, shows that no Floquet multipliers were
of an absolute magnitude greater than 1.0 and consequently it can be concluded that this
flow is two-dimensional.

Figure 5.10: Particle shedding image. Over 15 periods of motion conducted at
KC=4, β=40.0 with two-dimensional DNS, ten equally spaced points on the cylin-
der surface released massless particles into the surrounding fluid.

5.2.3 Point III: KC=7, β=10.0

The third point to be examined, like the previous point, lies in regime A. However it is at
a much higher Keulegan–Carpenter number than the previous point and correspondingly
its Stokes number is reduced to keep it within regime A. A two-dimensional DNS was
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Figure 5.11: Results of a three-dimensional Floquet analysis conducted at KC=4,
β=40.0 showing dependence of the dominant Floquet multiplier, µ, on spanwise
wavenumber, k. The value |µ| = 1 corresponds to the onset of instability. 64
time-slices were used in the construction of the stable, two-dimensional base flow.

evolved at this location until it was established that the flow had reached an asymptotic
state.

The sequence of eight vorticity contour images presented in figure 5.12 was generated
by taking eight equi-spaced in time snapshots of the flow over one period of cylinder
motion and then subsequently calculating the vorticity fields. As with the previous cases
the symmetry of the flow about the oscillation axis at any one instant is seen as an inverse
reflection of the vorticity contours about the oscillation axis. The vorticity contours in this
case are all connected back to the near cylinder region and no far field concentrations of
vorticity have been found to exist. This would indicate the absence of vorticity shedding
from the cylinder. A finding in contrast to the observations of Tatsuno and Bearman
(1990) for a simulation at this location in (KC,β)-space.

The component of force acting along the oscillation axis can be seen, figure 5.13, to
oscillate with the same period as the cylinder oscillation and with a small phase lag from
the cylinders displacement. The component of force acting perpendicular to this axis is
zero and remains constant over the period of oscillation. This indicates that the flow is
symmetrical as the forces resulting from the vorticity in the flow is balanced across the
oscillation axis.

Inspection of the particle track plot at this location, figure 5.14, shows a series of
‘puffs’ of particles being convected away from the cylinder by the induced flow. While
these suggest the presence of vorticity shedding, especially given that their shape changes
with distance from the cylinder, the vorticity contours show no sign of vorticity shedding.
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t=0 t=T/8 t=2T/8 t=3T/8

t=4T/8 t=5T/8 t=6T/8 t=7T/8

Figure 5.12: A sequence of instantaneous vorticity contours extracted over one mo-
tion period, T , at (KC=7, β=10.0). Positive (anti-clockwise) and negative vorticity
contours are denoted by red and blue colours respectively.

The shape change of the ‘puffs’ of particles is instead due to the flow not being uniform
and the corresponding velocity gradients in this region. As with the previous cases, the
vorticity contours support the conclusion that there is an absence of vorticity shedding. A
three-dimensional Floquet analysis at this location, shown in figure 5.15 shows no linearly
unstable spanwise modes.
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Figure 5.13: Plot of the coefficient of total y-force exerted on the cylinder over one
period of cylinder motion. The simulation was carried out at KC=7, β=10.0. The
force is non-dimensionalised with respect to the root mean square of the cylinders
proscribed y-axis velocity. Also shown is the cylinders displacement (dashed line)
over one period of motion.

5.2.4 Point IV: KC=3, β = 80.0

The fourth and final point to be examined is at KC=3, β = 80.0. The location of this
point on the (KC,β) map of Tatsuno and Bearman (1990) places it within regime B. One
of the defining characteristics of regime B is the presence of structures which regularly
vary along the span of the cylinder. In this respect this case has broken a symmetry
property and is no longer considered an initial state. However, as a component of this
investigation involves restricting the domain to a two-dimensional subspace it is important
to establish the properties of this location in the reduced space. Accordingly a two-dimen-
sional DNS was conducted at this location and evolved until it was established through
the examination of limit cycles that an asymptotic flow state had formed.

The sequence of eight vorticity contour images presented in figure 5.16 was generated
by taking eight equi-spaced in time snapshots of the flow over one period of cylinder
motion and then subsequently calculating the vorticity field. Experimental observations
of the full three-dimensional flow do not show a symmetry about the oscillation axis
when considered at a discrete spanwise location, however when two experimental images
taken half a spanwise wavelength apart are superimposed the symmetry does appear to be
present. In this two-dimensional simulation the vorticity contours resemble those of the
previous cases where an inverse reflection of the vorticity contours about the oscillation
axis was observed. In this case, like all the previous cases, the vorticity contours are all
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Figure 5.14: Particle shedding image. Over 15 periods of motion conducted at
KC=7, β=10.0 with two-dimensional DNS, ten equally spaced points on the cylin-
der surface released massless particles into the surrounding fluid.
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Figure 5.15: Results of a three-dimensional Floquet analysis conducted at KC=7,
β=10.0 showing dependence of the dominant Floquet multiplier, µ, on spanwise
wavenumber, k. The value |µ| = 1 corresponds to the onset of instability. 64
time-slices were used in the construction of the stable, two-dimensional base flow.

connected back to the near cylinder region and no far field concentrations of vorticity are
observed to occur.

Examination of the time traces of the force experienced by the cylinder reveals that
the flow is symmetric about the oscillation axis and periodic. The x-component of force
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t=0 t=T/8 t=2T/8 t=3T/8

t=4T/8 t=5T/8 t=6T/8 t=7T/8

Figure 5.16: A sequence of instantaneous vorticity contours extracted over one
motion period, T , at KC=3, β=80.0. Positive (anti-clockwise) and negative vorticity
contours are denoted by red and blue colours respectively.

experienced by the cylinder remains zero over an entire period from which it can be con-
cluded that the flow is symmetrical about the oscillation axis (x=0). The component of
force inline with the oscillation, figure 5.17, shows a periodic variation that is synchro-
nised with the period of oscillation. Additionally a small phase lag, with reference to the
cylinders displacement, is also visible. It is concluded that the flow is symmetrical about
the oscillation axis and synchronised with the oscillation in the case where the flow is
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restricted to a two-dimensional subspace.

Figure 5.17: Plot of the coefficient of total y-force exerted on the cylinder over one
period of cylinder motion. The simulation was carried out at KC=3, β=80.0. The
force is non-dimensionalised with respect to the root mean square of the cylinders
proscribed y-axis velocity. Also shown is the cylinders displacement (dashed line)
over one period of motion.

In the interests of completeness the two-dimensional particle shedding plot for this
location is shown in figure 5.18. However it must be noted that this flow is strongly
three-dimensional and spanwise fluctuations along the span would definitely perturb the
particle shedding diagram. It would appear that a particle shedding pattern similar to
those of points II & III is formed. In combination with the matching vorticity contours it
can be seen that the discrete ‘puffs’ of particles are not representative of vortex shedding
figure but are instead formed in the near cylinder region and transported away from the
cylinder by the induced flow. In figure 5.19 the Floquet analysis of this location clearly
show that the flow is linearly unstable to mode with a wavenumber ≈ 5D. The aspect of
three-dimensionality will be considered in more detail in chapter 7.
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Figure 5.18: Particle shedding image. Over 15 periods of motion conducted at
KC=3, β=80.0 with two-dimensional DNS, ten equally spaced points on the cylin-
der surface released massless particles into the surrounding fluid.
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Figure 5.19: Results of a three-dimensional Floquet analysis conducted at KC=3,
β=80.0 showing the dependence of the dominant Floquet multiplier, µ, on spanwise
wavenumber, k. The value |µ| = 1 corresponds to the onset of instability. 64 time-
slices were used in the construction of the stable, two-dimensional base flow.
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5.3 Discussion

In the previous sections four test locations have been examined in detail. These four points
were chosen because they were representative of the regimes established by Tatsuno and
Bearman (1990) and for being at a point in (KC,β)-space where a detailed study of the
transitions that occur to this flow, as either of these parameters is increased, is later made.
In examining these four points a number of common features in the flow were identified.
These features are:

• T -Periodicity: All of the two-dimensional DNS presented eventually evolved into
an asymptotic flow state that was synchronised with the period of cylinder motion,
T . This feature was found to be present in the time-traces of the velocity at points in
the domain, in the time-traces of the force experienced by the cylinder and visually
in the sequence of vorticity contours presented over one period of motion.

• Spatial reflection about x = 0: In all of the cases examined a symmetry about the
axis of cylinder oscillation (the y-axis) was observed. When presented in terms
of vorticity contours this was shown as an inverse reflection of the z-component
of vorticity about x = 0. This symmetry was also evident when the component
of force experienced by the cylinder in a direction perpendicular to the motion was
examined. In all the cases examined this net force was found to be zero and constant
over a period of oscillation, indicating that the force experienced by either side of
the cylinder about x = 0 was equal in magnitude and opposite in sign. This is
consistent with a vorticity field that has an inverse reflection about x = 0.

• Spatio-Temporal reflection about y = 0: When the vorticity contours of the pre-
vious cases are examined an additional symmetry is observed that is dependent on
both time and spatial location. When an image out of either of figures 5.3, 5.8, 5.12
or 5.16 is examined, it can clearly be seen in the vorticity contours that the flow
state at t = T/2 is an inverse reflection about y = 0 of the flow state at t = 0.

• Spanwise Symmetry: For each of the previous cases a three-dimensional Floquet
stability analysis was conducted. In only one case, as expected for the case KC =

3, β = 80.0, was an unstable spanwise mode detected. This corresponds with the
previous experimental visualisations of Honji (1981) and Tatsuno and Bearman
(1990). In the other three cases considered no spanwise linearly unstable modes
were detected. This is supported by the existing experimental visualisations where
regimes A∗ and A showed no variation along the span.

These four properties are the essential characteristics that define the initial state known
as the ‘base flow’. When restricted to the x–y plane (conventionally referred to as the two-
dimensional flow throughout this thesis) which is perpendicular to the cylinder span, only
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three of these properties are applicable and in this case all four test cases can be considered
as ‘base flows’. However, when considered in a fully three-dimensional space, the flow at
KC = 3, β = 80.0 is clearly three-dimensional and the spanwise symmetry property of
the flow has been altered from being constant along the span to having a regular variation
along the span. Clearly this indicates that there is a transition occurring between the point
at KC = 2, β = 80.0 and this point. However, in a restricted two-dimensional subspace
this point satisfies all the properties of the base flow and will be used as such.

In the investigation of Tatsuno and Bearman (1990) the defining visual characteristic
separating flows of regime A∗ from those of A was the presence of vortex shedding.
However, due to an acknowledged difficulty in determining the onset of vortex shedding,
the boundary was not delineated in their map of the flow regimes. In the figures of the
vorticity contours presented in this chapter no evidence is seen of any concentrations of
vorticity separating from the near cylinder region. Other than a stretching of vorticity
contours along the oscillation axis, due to the increased amplitudes of oscillation, the
vorticity diagrams presented are all very similar. In the numerical two-dimensional results
there is only one distinguishable difference between flows in either regime. The difference
that was detected was the contrast between the particle shedding image of regime A∗ and
the experimental visualisation of figure 2.17(A∗). In this case the particles were observed
to remain in the near vicinity of the cylinder. It is suggested that the figure presented
in Tatsuno and Bearman (1990) for regime A∗ belongs instead to regime A and that an
experimental image where the dye or particles remain in the cylinder vicinity is a more
appropriate image for this regime.
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Figure 5.20: Two-dimensional symmetric base flows at low KC and β. Panel (a)
illustrates the coordinate system (the spanwise, z, coordinate is normal to the (x, y)
plane), and contours of positive (black) and negative (grey) vorticity, which have
symmetry (5.6). Panels (b) and (c) illustrate the spatial (Kx) and spatio-temporal
(H1, H2) symmetries of the base flow velocity.

5.4 Symmetry Definitions

In the previous sections the characteristics common to the symmetric and periodic base
flow were highlighted and qualitatively discussed. To enable a concise means of estab-
lishing exactly which symmetry property has broken through a bifurcation, in this section
these spatial and/or temporal properties are formally defined. In the previous section four
characteristics of the two-dimensional symmetric state were established:

1. T -periodic flow.

2. A reflection symmetry about the axis of oscillation, x = 0.

3. A T/2 reflection symmetry about y = 0

4. A spanwise invariance of the flow.

With the coordinate system fixed to the cylinder axis, as shown in figure 5.20, the two
spatial symmetries for the velocity fields of the base flow can be written as

x-reflection: Kx(u, v, w)(x, y, z, t) = (−u, v, w)(−x, y, z, t), (5.1)

z-translation: Rα(u, v, w)(x, y, z, t) = (u, v, w)(x, y, z + α, t), (5.2)

z-reflection: Kz(u, v, w)(x, y, z, t) = (u, v,−w)(x, y,−z, t), (5.3)

With some advance knowledge from the visualisations of Tatsuno and Bearman (1990),
about the way in which the flow states change, the spatio-temporal symmetries can be
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t = t0

t = t0 + T/2
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Figure 5.21: Schematics illustrating representative ways in which the two-dimen-
sional symmetries of the basic state can be broken. The basic state, (a), has the three
symmetries Kx, H1, H2, while in (b–d), two out of three break, and the outcomes
are labelled with their remaining symmetry.

written accordingly. The T/2 reflection symmetry about y = 0 and the T -periodicity are
written as two spatio-temporal symmetry forms:

H1(u, v, w)(x, y, z, t) = (u,−v, w)(x,−y, z, t + T/2), (5.4)

H2(u, v, w)(x, y, z, t) = (−u,−v, w)(−x,−y, z, t + T/2). (5.5)

These two forms together define the spatio–temporal symmetry observed in the initial
flow state. The first symmetry listed previously, that of the T -periodic flow, is a subset
of (5.4) and (5.5) and is broken when both the H1 and H2 symmetries are broken. All
the symmetries listed are written with three velocity components because the flow insta-
bilities may be three-dimensional. In figure 5.21 the ways in which the two-dimensional
symmetry can be broken are illustrated in schematic form. The reflection symmetry, Kx,
when applied twice returns the original starting point.

The symmetry equations corresponding to 5.1, 5.4 and 5.5 for the two-dimensional
base flow expressed in terms of the z-component of vorticity are:

ξ(x, y, z, t) = −ξ(−x, y, z, t), (5.6)

ξ(x, y, z, t) = −ξ(x,−y, z, t + T/2), (5.7)

ξ(x, y, z, t) = ξ(−x,−y, z, t + T/2). (5.8)
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5.5 Summary

In this chapter the symmetry properties of the base flow have been established. Two-
dimensional DNS’s were run for a number of cases that had been shown experimentally
to be symmetric and periodic. These cases were evolved until they reached a terminal
state, which in all cases was a periodic limiting state. A number of measures were used
to establish the properties of the base flow which included monitoring the time-traces of
the velocities at spatial locations in the domain, monitoring the forces on the cylinder
decomposed into directions along and perpendicular to the oscillation axis, examining the
vorticity field over a period of cylinder motion and examining the particle shedding plots.
From this information regarding the flow properties at these four locations the symmetry
properties of the base flow were defined.

An interesting feature that was also clarified was the absence of vorticity shedding
observed in regime A. Tatsuno and Bearman (1990) delineated the difference between
regimes A∗ and A as the presence of vorticity shedding in regime A. In the observation of
flows in both regimes, no far field concentrations of vorticity were observed to occur and
it is concluded that there is no difference between the flows of either regime in terms of
the vorticity contours. One noticeable difference that was observed was that the particles
shed for low Keulegan–Carpenter numbers remained in the near cylinder region. The
difference between regimes A∗ and A might better be defined by the breakdown of the
flow cells seen in figure 5.6 so that particles shed from the cylinder surface are transported
away from the cylinder.
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Chapter 6

Rectilinear Oscillation: Symmetry

Breaking in a Two–Dimensional

Subspace

In chapter 5 the properties of the stable, symmetric flow generated by a rigid cylinder
with rectilinear oscillation in the plane normal to the cylinder span were examined. It
was found that this flow, the ‘base flow’, possessed five distinct symmetries that can be
summarised as:

1. Kx: a spatial reflection in x = 0,

2. H1: a spatio-temporal symmetry about y,

3. H2: a second spatio-temporal symmetry about y,

4. Kz: a spatial reflection in z,

5. Rα: a spatial translation along z.

At this stage of the study the domain of investigation is restricted to the two-dimensional
plane perpendicular to the cylinder span for this chapter. A consequence of this is that
only the symmetries Kx, H1 and H2 can be broken.

In this chapter the transitions that occur in this two-dimensional subspace are investi-
gated using a combination of Floquet analysis and DNS. In particular the focus is on the
nature of these transitions and the symmetries that are broken by the different types of
transitions. Although the principal focus is on the first transition (the primary transition)
from the base flow, subsequent two-dimensional transitions are also briefly examined.

In the following sections Floquet analysis is employed firstly to isolate the curve of
marginal stability in (KC,β)-space (§6.1) and secondly to identify the nature of the re-
sultant transition. The two transitions that are identified, corresponding to a either a real
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Floquet multiplier or a pair of complex-conjugate multipliers crossing the unit circle, are
explored in sections §6.2 and §6.3 respectively. In both of these sections the spatial and
temporal characteristics of the flow is examined from the perspective of both the linearised
and the non-linear dynamics of the system. In §6.4 the nature of the subsequent transitions
is briefly explored and finally in §6.5 these results are discussed and summarised.
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6.1. CURVE OF MARGINAL STABILITY

6.1 Curve of Marginal Stability

The critical curve which denotes the marginal stability of the base flow was identified
using Floquet analysis to find the point at which the magnitude of the Floquet multiplier,
|µ|, was equal to unity. The procedure used to determine a single point on the critical
curve is as follows: at any chosen location in (KC,β)-space a two-dimensional base flow
is generated using DNS. This is performed on half the computational domain, x > 0,
with symmetry boundary conditions enforced on the line of bisection of the full domain,
at x = 0, to ensure that the resultant base flow is symmetric about the axis of oscillation.
Once a time-periodic flow has evolved on this half domain, it is then projected onto the full
domain using a reflection about x = 0. 64 equi-spaced in time snapshots of the velocity
fields were stored over one period, which could then be used to recreate the base flow
velocity vectors, via a Fourier reconstruction, at any time t. A Floquet stability analysis
was then performed on this base flow with the initial perturbation vector set to a small level
of noise. Alternatively the initial perturbation vector can be set to a previously calculated
field, however no difference in the resultant instability was observed between starting
from a previous solution or from noise, except in the computational time required. At each
new location in (KC,β)-space to be tested the first perturbation vector was set to noise.
Owing to computational limits, only a certain number of iterations could be performed
per simulation. Consequently, in order to achieve the desired accuracy, a simulation was
often run multiple times, each time restarting from the solution of the previous simulation.
Through a series of these simulations, usually at either a fixed Keulegan–Carpenter or
Stokes number, the critical point in (KC,β)-space where a unity Floquet multiplier, |µ| =

1, exists was identified. Using both bisection and extrapolation techniques new locations
in the (KC,β)-space where selected for testing. In the results presented the critical values
of KC and β were determined to within ±0.05 in both control-parameters, which typically
required 5 − 15 individual locations to be tested.

In some cases extrapolation was required because of difficulties in resolving the stable
component, |µ| < 1, of the multiplier branches. This difficulty arises because a multiplier
with a magnitude just less than unity is being detected as the dominant multiplier for the
analysis in stable regions. This ‘unity’ multiplier is a consequence of the base flow being
driven in simple harmonic motion over much of the domain. Iooss and Joseph (1990,
§VII.6.2) argue that for a set of autonomous ODEs, a neutrally stable multiplier µ = +1

exists for a solution in simple harmonic motion. While a simple harmonic motion can
arise as the solution of a set of autonomous ODEs, in this case the flow is driven, not
autonomous. However, the flow in this case is in simple harmonic motion over much of
the domain and therefore a multiplier arises just less than unity. An unfortunate impli-
cation of the presence of this spurious multiplier was the inability to accurately resolve
the multiplier branches when their values were below one. Consequently, in most cases,
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6.1. CURVE OF MARGINAL STABILITY

stable base flows beyond the point of instability onset were required. Additionally the
technique of bisection to locate the critical point in (KC,β)-space could not always be
employed as values of the multiplier below one were not achievable. In the case of the
primary transition this difficulty was managed by using a base flow that is solved in a
half-domain, x > 0, and enforcing the symmetry of the flow at x = 0. However, this
difficulty presented an insurmountable obstacle in determing subsequent instabilities as
the ‘base flows’ no longer had the same symmetry characteristics that could be enforced
by means such as using a symmetry boundary condition and a half domain. The alterna-
tive of detecting a multiplier branch before it becomes unstable and watching it increase
through |µ| = 1 as the control parameters are varied was not possible due to the inability
to resolve stable branches, |µ| < 1.

Figure 6.1: Curve of marginal stability for the primary transition in a two-dimen-
sional subspace. The curve shown denotes the points at which real or a pair of
complex-conjugate critical Floquet multipliers were found in the (KC,β) control
space, with the insets illustrating the placement of critical multipliers on the unit
circle in the complex domain. The dashed lines indicate the approximate values of
βf and KCf at which the critical multiplier switches between a real and a pair of
complex-conjugate multipliers.

In figure 6.1 the curve of marginal stability is shown for the range of control-space
parameters investigated (KC 6 10, β 6 100). Two types of the three possible forms of
the critical Floquet multiplier occur along this curve. In the upper Keulegan–Carpenter
number, low Stokes number region, denoted by the letter ‘S’, a real positive critical Flo-
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quet multiplier, µc = +1, occurs which indicates an unstable mode that is synchronous
with the base flow. Further along the curve, with increasing Stokes numbers, a pair of
complex multipliers arise, µc = exp±iθ, marking the manifestation of an unstable mode
in the flow that, in addition to the spatial consequences, introduces a new temporal pe-
riod. This new secondary period, Ts, if incommensurate with the period of oscillation, T ,
results in a quasi-periodic variation of the flow. The regime that arises from this mode
is denoted as ‘QP’ in figure 6.1. The third possible form of a critical Floquet multiplier
is the case where a real negative multiplier occurs, µc = −1, corresponding to period
doubling. This form is not found at any point on the critical curve. The point at which the
real and complex branches of the critical multiplier curve meet is denoted as the ‘freezing
point’ and is indicated by the variables KCf and βf . The exact values at which this point
occurs are discussed in the following paragraphs.

Figure 6.2: Curve of marginal stability for the primary transition in a two-dimen-
sional subspace shown with the experimental regimes of Tatsuno and Bearman
(1990). The dashed lines indicate the approximate position at which the critical
multiplier switches between real and complex-conjugate pair multipliers.

Figure 6.2 shows the critical curve plotted alongside a selection of the nearest experi-
mental regime boundaries of Tatsuno and Bearman (1990). The results of this study are in
excellent agreement with a selection of Tatsuno and Bearman’s boundaries. In particular
the boundaries denoting the transitions between regimes A-D and B-E match the critical
curve very closely in the limits KC → 10, β → ∞ respectively. This is despite the fact
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6.1. CURVE OF MARGINAL STABILITY

that the calculations in this chapter are restricted to a two-dimensional subspace and do
not take into account spanwise variations which are plainly evident in Tatsuno and Bear-
man’s images of regimes B, D and E. The correlation between the critical curve and the
regime boundaries in the neighbourhood of regime C is not as close. This discrepancy
is not large and, as will be shown in a later section, the flow dynamics reported by Tat-
suno and Bearman (1990) match those predicted by the two-dimensional Floquet analysis
and DNS computations. It must also be noted that Tatsuno and Bearman’s boundaries
are derived by interpolating between a discrete set of experimentally derived points and,
as such, some error in these boundaries may be expected. In the results presented here
the points between which the critical point was established to lie in (KC,β)-space were
located 0.05 apart in either KC or β.

Along the critical curve a transition occurs from real to complex-conjugate pair mul-
tipliers at the ‘freezing point’, (KCf , βf ). This point signifies the location at which a
quasi-periodic mode ‘freezes’ into a synchronous one. In figure 6.3(a) the phase angles
along the critical curve are shown and it can be seen that the freezing point occurs ap-
proximately at βf ≈ 12 and, using figure 6.1, KCf ≈ 7.4. At this stage it is interesting to
note that this point occurs not at an intersection of the boundaries between the three-di-
mensional flow regimes but instead in the middle of the boundary denoting the transition
between the flows of regimes A and D. As a complex-conjugate multiplier gives rise to
a quasi-periodic mode it is expected that the resultant flow would be quasi-periodic, in-
stead, experimentally the formation of the synchronous regime D is observed to occur for
locations beyond the marginal curve both above and below the freezing point with respect
to KC. In section §6.4 this apparent inconsistency is examined, but for now, note that the
change from regime S to QP is only defined very close to the marginal stability curve.

As mentioned previously complex-conjugate pair multipliers having a magnitude great-
er than unity signify the growth of a mode with a period that is distinct from the period
of cylinder oscillation. This secondary period, Ts, is related to the phase angle of the
multipliers such that:

Ts

T
=

2π

θ
. (6.1)

However, this relationship only holds if θ < 2π which is the case here. In figure 6.3(a)
this relationship is illustrated. As β → β+

c , Ts/T → ∞, while for β → 100, Ts/T → 7

approximately.
In the following sections the synchronous and quasi-periodic periodic transitions are

explored in more detail. In particular, transitions in three locations are examined in the
two-dimensional subspace that are representative of the transitions between the three-di-
mensional regimes A↔D, A↔C and B↔E. A detailed three-dimensional treatment of
these transitions follows in chapter 7. In the section following these the extent of the
regimes S and QP is examined and the apparent conflict between between the prediction
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6.1. CURVE OF MARGINAL STABILITY

(a)

(b)

Figure 6.3: Complex multiplier phase angle and secondary period variation along
the curve of marginal stability for the primary transition in a two-dimensional sub-
space. Figure (a) shows the phase angles of the critical multipliers and figure (b)
shows the ratios of the corresponding secondary periods Ts to those of the base
flows, T , both as functions of β. The dashed lines indicate the approximate position,
βf , at which the critical multiplier switches between real and complex-conjugate
pair multipliers.

of an unstable quasi-periodic flow and the experimentally observed synchronous flow that
occurs in regime D is addressed.
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6.2 Synchronous Regime S

The transition from the symmetrical base state to the synchronous flows of regime S oc-
curs for very low values of β and comparatively high values of KC, as shown in figure
6.1. At a fixed Keulegan–Carpenter number of KC = 8.0 the dependence of the critical
Floquet multiplier on the Stokes number was determined, as presented in figure 6.4. Ex-
amination of this figure shows the dominant unstable multiplier branch to consist of real
multipliers that intersects the neutral stability point at β ≈ 10.15.

Figure 6.4: Dependence of the Floquet multiplier µ on the value of Stokes number
β for a Keulegan–Carpenter number of 8. A critical Floquet multiplier denoting the
onset of linear instability is found to lie at β ≈ 10.15. Shown are the real Floquet
multipliers, •, and unity multipliers, �.

The physical significance of an unstable linear mode with a real Floquet multiplier can
be seen by examining the state of the flow after this transition has occurred. A two-dimen-
sional nonlinear simulation, which was evolved from a quiescent fluid and not from the
mode shape determined through Floquet analysis, was employed at a location in (KC,β)-
space just beyond the predicted point of onset. This simulation was evolved until a final
periodic state was achieved. In figure 6.5 a set of eight instantaneous vorticity contours
from this simulation are shown over one period of cylinder motion. The distinctive fea-
ture that is seen here in comparison to the base flow is the broken symmetry about the
oscillation axis. The induced flow now departs the near cylinder region at an angle to
the oscillation axis. Consequently the vorticity contours, and by extension, the flow, now
form a ‘boomerang’ like shape with the broad apex of this geometry being defined by the
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6.2. SYNCHRONOUS REGIME S

amplitude of oscillation. In terms of the equations of symmetry, the spatial symmetry Kx

(5.1) is clearly broken by the onset of this instability.

t=0 t=T/8 t=2T/8 t=3T/8

t=4T/8 t=5T/8 t=6T/8 t=7T/8

Figure 6.5: A set of instantaneous vorticity contours extracted over one motion pe-
riod, T , at KC=8, β=10.2. Positive (anti-clockwise) and negative vorticity contours
are denoted by red and blue colours respectively. The crosshairs denote the fixed
point that the cylinder is oscillating about.

The temporal nature of this flow is established through examination of both the limit
cycles and by the forces experienced by the cylinder. In the same manner as shown in
chapter 5 for the base flows, the limit cycles for this flow form complete circuits over
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one period of oscillation. An inspection of the force-time series for the cylinder shows a
definite difference from those of the base flows. The force-time series for the coefficient
of y-force is barely altered from its state before a transition to regime S occurred, however,
the temporal variation of the coefficient of x-force is no longer constant and shows a bi-
periodic variation for every cylinder oscillation. Additionally the mean of the coefficient
of x-force is no longer zero over an entire period. This is entirely consistent with the
broken symmetry in the vorticity contours seen in figure 6.5, which would result in a
mean force exerted along the x-axis.

(a) (b) (c) (d)

Figure 6.6: Flows of two-dimensional synchronous regime S, computed at (β =
13.75, KC = 7): (a), instantaneous vorticity contours for the basic state, with the
cylinder at y = ymax; (b), vorticity contours of the Floquet eigenfunction at the
same phase of the motion cycle; (c), instantaneous vorticity contours obtained from
two-dimensional DNS, again at y = ymax; (d), computed positions of massless
particles advected from close to the cylinder.

In terms of the symmetry properties it can be concluded that for the resultant flow of an
unstable mode, due to a real Floquet multiplier, that both the spatial symmetry Kx (5.1)
and the spatio-temporal symmetry H2 (5.5) are broken, while the other spatio-temporal
symmetry, H1 (5.4), is preserved. In figure 6.6(a) the instantaneous vorticity contours
for the base flow at (KC=7, β=13.75) are presented for the time at which the cylinder
is at its maximum displacement in the y direction. Figures 6.6(b) and 6.6(c) show the
vorticity contours at the same phase of the motion cycle for the Floquet eigenfunction
and the resultant DNS flow. Although calculated at a different location in (KC,β)-space
to those in figure 6.5 the vorticity contours of the DNS flow in figure 6.6(c) definitely
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belong to regime S. However, a significant difference exists between these two images. In
figure 6.5 the angle of deviation of the flow has occurred towards the −x direction while
in figure 6.6(c) it has occurred in the +x direction. Throughout the simulations conducted
in regime S the symmetry was found to break in either the +x or −x direction with no
apparent preference for either direction. This is not an unexpected result because the base
flow is symmetrical about the oscillation axis (Kx symmetry) and consequently a break
in either direction is equally probable.

The vorticity eigenfunction of the unstable mode, figure 6.6(b), shows a positive sym-
metry of the vorticity contours about the y-axis, or equivalently a negated symmetry when
considered in velocity variables. The combination of this even Kx symmetry with the odd
Kx symmetry of the base flow results in the flows seen in figure 6.6(c) where the Kx

symmetry is absent. A change in sign of the Floquet eigenfunction results in the flow
breaking to the left, or −x direction, as compared to the right, or +x direction, version
seen in 6.6(c). An additional consequence of a left or right handed break is that the sign
of the net force in the x-direction changes accordingly.

In figure 6.6(d) an instantaneous image is shown of the computed positions of massless
particles released into the flow from near the cylinder surface. Although this image of
particles in the flow shows evidence of locally concentrated regions of particles that are
possibly suggestive of vortex shedding, the corresponding vorticity contours show no
corroborating far-field concentrations of vorticity. The far-field vorticity distribution is
quite smooth and of very low magnitude in comparison to near the cylinder where the
vorticity is formed. Instead these particle concentrations are formed near the cylinder and
then advected away through the action of the induced flow.

An experimental visualisation of regime D in the x-y plane from Tatsuno and Bear-
man (1990) is shown alongside the computation obtained from two-dimensional DNS in
figure 6.7. These match extremely well even though the DNS was conducted in a two-di-
mensional subspace. Experimental visualisations have detected distinct regular spanwise
variations that are not accounted for in the two-dimensional simulations. However, de-
spite the absence of spanwise variations the point of onset of this regime and the dynamics
of the flow in the x-y plane match those obtained experimentally. The impact of the span-
wise variations will be addressed in chapter 7.

The angle of deviation of the resultant flow in regime S from the axis of oscillation
was found to increase with the distance in (KC,β)-space from the point of onset. In
figure 6.8 a set of instantaneous vorticity contours of the flow are seen from the point of
onset of the synchronous regime at β = 10.10 up until β = 10.40 for a fixed KC = 8.
The angle of deviation is seen to increase with increasing β. The change in the angle of
deviation is reflected in the measurement of the x component of force on the cylinder. In
figure 6.9 the increase of the peak x-component of force on the cylinder can be seen as
the distance in (KC,β)-space from the point of onset is increased. The peak force acts as
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(a) (b)

Figure 6.7: Visualisations of flows in regime D: (a) produced by two-dimension-
al DNS at KC = 7, β = 13.75 with massless particles released close to the
cylinder; (b) experimental visualisation produced by electrostatic precipitation at
KC = 6.28, β = 18.0. Image supplied by M. Tatsuno and P. Bearman.

a measure of energy in the solution and in this case it is seen to smoothly depart zero with
no discontinuity when the onset of this mode occurs. Consequentially this bifurcation
is considered to be supercritical. Note also that the value obtained through DNS for the
onset of this instability, β ≈ 10.15, matches the value found earlier through the use of
Floquet analysis.
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β = 10.10 β = 10.11 β = 10.13 β = 10.15

β = 10.20 β = 10.25 β = 10.30 β = 10.40

Figure 6.8: The influence of increasing Stokes number on the instantaneous vor-
ticity contours extracted at the peak of the motion cycle for a fixed KC=8. With
increasing distance in (KC,β)-space from the curve of marginal stability the angle
of deviation of the induced flow increases. Positive (anti-clockwise) and negative
vorticity contours are denoted by red and blue colours respectively. The crosshairs
denote the fixed point that the cylinder is oscillating about.
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Figure 6.9: Bifurcation diagram for two-dimensional symmetry breaking to
regime S at KC = 8, showing coefficients of the peak x-component of force as
functions of the bifurcation parameter: β. At β = 10.15 the break in symmetry
about the axis of oscillation results in a force component normal to the axis of
oscillation.
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6.3 Quasi-Periodic Regime QP

The transition from the symmetrical base state to the flows of regime QP are signalled in
the Floquet analysis by an unstable mode with a complex-conjugate pair of multipliers.
Within the (KC,β)-space considered, shown in figure 6.2, this transition coincides well
with the three-dimensional transitions between regimes A to C and B to E. In the following
investigation of the transition to the QP regime, two locations that are representative of
the transitions A → C and B → E are focused on. The chosen values of β that are used
for this purpose are β = 44.2 which represents the A → C transition and β = 80.0 which
represents the B → E transition. For each location the nature of the transition and the
resultant flow are examined in detail.

Figure 6.10: Dependence of the Floquet multipliers on KC at β = 44.2. Shown are
the complex-conjugate pairs of multipliers (◦), real multipliers (×) and spurious
multipliers due to the ‘unity’ multiplier issue, (•), as discussed in §6.1. The critical
value at which the complex-conjugate locus crosses the unit circle at |µ| = 1.0 is
KC = 4.515.

The dependence of the Floquet multiplier on KC at β=44.2 is shown in figure 6.10. At
a critical value of KC ≈ 4.515 a complex-conjugate pair of multipliers crosses the curve
of neutral stability. At values of KC less than this critical value the ‘unity’ multiplier,
as discussed in §6.1, is present which makes it difficult to determine values of the com-
plex-conjugate branch of multipliers that have not crossed the unit circle, |µ| < 1. After
crossing through neutral stability the complex-conjugate pair of multipliers increases in
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magnitude until a value of KC = 4.78 is reached. At which point the complex-conju-
gate pair of multipliers ceases to exist and two branches of real multipliers are detected.
Further increasing KC beyond KC = 4.78 causes one of these branches to rapidly drop
below the neutral stability curve while the other branch increases. The dependence of
the phase angle of the complex-conjugate multipliers on KC is shown in figure 6.11. At
the point of marginal stability (KC ≈ 4.515) the phase angle is approximately 0.5. As
KC is increased the phase angle decreases until it reaches zero at the same point that the
complex-conjugate multipliers cease to exist and the pair of real multiplier branches form.

Figure 6.11: Dependence of the phase angle of the complex-conjugate pair of Flo-
quet multipliers (◦) on KC at β = 44.2. The critical value at which the complex-
conjugate locus crosses the unit circle at |µ| = 1.0 is KC = 4.515 with θ ≈ 0.5.

The dependence of the Floquet multiplier on KC at β=80.0 is shown in figure 6.12.
An identical behaviour to that seen at β=44.2 is observed to occur, although for this case
the critical value at which the complex-conjugate pair of multipliers branch crosses the
curve of neutral stability is KC = 3.815. After crossing the curve of marginal stability
subsequent increases in the value of KC correspond to a linear increase in the magnitude
of the complex-conjugate pair multiplier branch. At the same time the phase angle of
the complex-conjugate multipliers decreases, although not in a linear fashion, as shown
in figure 6.13. In both cases the physical significance of the subsequent bifurcation of
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the complex-conjugate multipliers to a set of real branches is unknown. Critically the
use of Floquet analysis is predicated on determing the first critical linear instability to a
known periodic base flow. In this case the onset of a mode with a complex-conjugate pair
of multipliers and the associated secondary period means that the underlying flow may
no longer be periodic and/or symmetric. Consequently the condition under which the
bifurcation from the complex-conjugate branch to the pair of real branches occurs may no
longer exist as the unstable mode will have perturbed the periodic base flow. This issue is
further investigated in §6.4 when secondary transitions are examined.

Figure 6.12: Dependence of the Floquet multipliers on KC at β = 80.0. Shown are
the complex-conjugate pairs of multipliers (◦), real multipliers (×) and spurious
multipliers due to the ‘unity’ multiplier issue, (•). The critical value at which the
complex-conjugate locus crosses the unit circle at |µ| = 1.0 is KC = 3.815.

The temporal impact of a complex-conjugate pair of multipliers can be detected through
an examination of the forces experienced by the cylinder. In figures 6.14 and 6.15 the
x-component force-time series over two hundred and fifty periods of oscillation are pre-
sented for the β = 44.2 and β = 80.0 cases respectively. The impact of the secondary
period introduced by the complex-conjugate pair of multipliers is clearly visible in the
time series of coefficient of x-component force experienced by the cylinder. No longer
is it constant over an entire period but it is now seen to vary with a period that is incom-
mensurate with the oscillation period of the cylinder. The time series of the coefficient of
y-component force shows no visible influence of the secondary period. However, there
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Figure 6.13: Dependence of the phase angle of the complex-conjugate pair of
Floquet multipliers on KC at β = 80.0. The critical value at which the complex-
conjugate locus crosses |µ| = 1.0 is KC = 3.815 with θ ≈ 0.82.

is an order of magnitude difference between the peak x and y forces experienced by the
cylinder. This would explain why the secondary period is not visible in the time series of
the y force because the variation caused by the new mode is much less that the forces gen-
erated in the symmetric stable mode. The secondary period in both of the cases presented
is Ts ≈ 13.8T and Ts ≈ 7.9T for the β = 44.2 and β = 80.0 cases respectively. As
the critical curve is traversed from the ‘freezing point’ towards β → 100 the secondary
period is found to decrease which is a result of the increasing phase angle of the com-
plex-conjugate pair of multipliers which increases as β → 100 (see figure 6.3). Exact
determination of the secondary period found in the DNS requires a spectral analysis and
consequently long simulations in order to provide enough data to the FFT. This is compu-
tationally expensive and was only performed for one transition, the results of which are
shown later.

In figures 6.16 and 6.17 a set of instantaneous vorticity contours are displayed at eight
points in time over one motion cycle for β = 44.2 and β = 80.0 respectively. These are at
different points in the (KC,β)-space and as a consequence they have different secondary
periods present. However, it can be seen that they are very similar and belong to the same
flow regime: QP. In both of these figures evidence of vortex shedding is clear with the
presence of far field concentrations of vorticity clearly visible. It is therefore concluded
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Figure 6.14: Plot of the coefficient of total x-force exerted on the cylinder over two
hundred and fifty periods of motion. The simulation was carried out at KC=4.55,
β=44.2. The force is non-dimensionalised with respect to the root mean square of
the cylinders prescribed y-axis velocity and the cylinder diameter, D.

Figure 6.15: Plot of the coefficient of total x-force exerted on the cylinder over two
hundred and fifty periods of motion. The simulation was carried out at KC=3.85,
β=80.0. The force is non-dimensionalised with respect to the root mean square of
the cylinders prescribed y-axis velocity and the cylinder diameter, D.

that at the onset of this regime there is no difference in the restricted two-dimensional
subspace between the transitions A → C and B → E and in the flows that result near this
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transition boundary. Both cases also indicate the presence of vortex shedding. The only
aspect that differs is the secondary period introduced into this flow by the bifurcation,
which varies along the critical curve. In terms of the symmetry properties present in
the base symmetric state, that of Kx, H1 and H2, all three symmetries are seen to be
broken. A cursory inspection of these plots would suggest that perhaps the symmetry H1

is present, however, this is not the case and this is explained in greater detail in subsequent
paragraphs when the impact of the secondary period Ts is discussed.

The secondary period Ts has been mentioned previously in this text, however until
now, only limited comments have been made in regard to its variation with the control
parameters away from the marginal stability boundary. From the linear Floquet analysis
the phase angle of the complex-conjugatepair of multipliers are obtained, which can then
be related to the secondary period introduced into the flow, as described in (6.1). It must be
emphasised that this is the linear prediction of what occurs. To determine the nonlinear
response to the onset of an unstable quasi-periodic mode, two-dimensional DNS was
employed to obtain a time series of the coefficient of x force over a very long period of
time. A FFT was then applied to this force history to obtain the dominant frequencies. In
figure 6.18 a comparison between these two sources of data is presented. Near the point
of the instability onset, both the nonlinear and linear methods agree on the secondary
period. Increasing KC beyond this point results in the value predicted by Floquet analysis
increasing exponentially such that as the phase angle approaches zero, Ts → ∞. However
over the same range of KC, and even beyond the point at which the complex-conjugate
pair of multipliers phase angle ceases to exist, the secondary period determined from DNS
remains finite and shows only a mild increase in relation to its value at the onset of regime
QP. It is concluded that the coalescence of the complex-conjugate pair of multipliers has
no physical significance in the restricted two-dimensional subspace and that the prediction
of the Floquet analysis is accurate at the onset of an instability mode.

Figure 6.19 shows instantaneous vorticity contours for two-dimensional saturated DNS
at (KC = 4.7, β = 40), at eight phase points equi-spaced over the secondary period
Ts. In contrast with a conventional planar Kármán wake, the signs of rotation associated
with concentrations of vorticity are reversed, instead a pair of phase-locked Kármán-street
planar jets are seen. A single vortex pair is shown to be shed from the attached jets,
both above and below the cylinder, for each secondary period. These shed vortices are
convected away from the cylinder by the induced flow. Additionally the angle of deviation
from the oscillation axis of the upper and lower jets cycles from +x to −x and back again
once for each secondary period. It is for this reason that this flow breaks the H1 symmetry
because the wake oscillates with the secondary period and the vortices are shed at the
secondary period and not the oscillation period.

116



6.3. QUASI-PERIODIC REGIME QP

t=0 t=T/8 t=2T/8 t=3T/8

t=4T/8 t=5T/8 t=6T/8 t=7T/8

Figure 6.16: A set of instantaneous vorticity contours extracted over one motion
period, T , at (KC=4.55, β=44.2). Positive (anti-clockwise) and negative vorticity
contours are denoted by red and blue colours respectively. The crosshairs denote
the fixed point that the cylinder is oscillating about.
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t=0 t=T/8 t=2T/8 t=3T/8

t=4T/8 t=5T/8 t=6T/8 t=7T/8

Figure 6.17: A set of instantaneous vorticity contours extracted over one motion
period, T , at (KC=3.85, β=80.0). Positive (anti-clockwise) and negative vorticity
contours are denoted by red and blue colours respectively. The crosshairs denote
the fixed point that the cylinder is oscillating about.
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Figure 6.18: Comparison of the secondary period, Ts/T , obtained from the phase
angle of a pair of complex-conjugate Floquet multipliers (—), with the secondary
period obtained via two-dimensional DNS (×). Simulations were conducted for a
fixed β = 44.2. The dashed line represents the critical KC number for stability.

In figure 6.20 instantaneous vorticity contours are shown for the base flow, the real
and imaginary parts of the critical Floquet eigenfunction and for the saturated DNS. Also
shown is particle tracking image at the same location. All are presented at the instant when
the cylinder is at its maximum y displacement for (KC = 4.7, β = 40). The base flow and
the eigenfunctions have the same symmetries as the case presented earlier with the real
multiplier (see figure 6.6). As before the eigenfunctions have an even reflection symmetry
about x = 0 in comparison to the base flow with its odd reflection symmetry about x = 0

(Kx). The eigenfunctions vorticity fields are normalised to the same energy level in both
cases and the contouring levels are identical. The difference between the two eigenfunc-
tions are subtle but are present, one such example can be seen just above the cylinder
in the second eigenfunction where a region of negative vorticity has formed that is not
present in the first eigenfunction. The real and imaginary components are related and one
can be obtained from the other by evolution, at |µ| = 1, with the linearised Navier–Stokes
equations through a suitable fraction of the secondary period. e.g the imaginary eigen-
function can be obtained from the real component by evolution through Ts/4 as described
in Blackburn and Lopez (2003). The presence of both real and imaginary eigenfunctions
enables the construction of real Floquet modes that have an arbitrary starting phase with
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t = 0 Ts/8 2Ts/8 3Ts/8

4Ts/8 5Ts/8 6Ts/8 7Ts/8

Figure 6.19: A set of instantaneous vorticity contours for the quasi-periodic two-
dimensional flow of regime QP, computed at (KC = 4.7, β = 40), where Ts/T =
15.6, at eight phases of the secondary period Ts. Positive (anti-clockwise) and
negative vorticity contours are denoted by red and blue colours respectively. The
crosshairs denote the fixed point that the cylinder is oscillating about.
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(a) (b) (c) (d) (e)

Figure 6.20: Flows of two-dimensional quasi-periodic regime QP, computed at
(KC = 4.7, β = 40): (a), instantaneous vorticity contours for the basic state, with
the cylinder at y = ymax; (b, c), vorticity contours of the real and imaginary parts of
the Floquet eigenfunction at the same phase of the motion cycle; (d), instantaneous
vorticity contours obtained from two-dimensional DNS, again at y = ymax; (e),
computed positions of massless particles advected from close to the cylinder.

respect to the base flow, as required by the quasi-periodic nature of the flows.
In figure 6.20(d) the vorticity contours from the saturated DNS show the presence of far

field concentrations of vorticity and indicate the presence of vorticity shedding. An image
of structures formed by particle tracking is shown in figure 6.20(e). The relationship be-
tween the vorticity concentrations and the particle locations is clearly evident when these
two figures are compared. At a number of diameters from the cylinder the small scale
puffs of particles shed with the frequency of oscillation form into larger scale structures.
The period of formation of these larger structures is that of the secondary period, Ts. In
figure 6.21 the same image of particle tracking is again presented, although now it has
been scaled and rotated 180◦ about the cylinder axis so that it has the same orientation
as the experimental visualisation of Tatsuno and Bearman’s image of regime C. Despite
being produced at slightly different locations in (KC,β)-space the images are clearly very
similar. This is remarkable given that the numerical image was produced in a restricted
two-dimensional subspace and the experimental image is produced in a regime that shows
quite clear and definite spanwise variations that do not appear to be regular along the span.
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(a) (b)

Figure 6.21: Visualisations of flow: (a) produced by two-dimensional DNS at
(KC = 4.7, β = 40.0) in regime QP with massless particles released close to
the cylinder; (b) experimental visualisation produced by electrostatic precipitation
at (KC = 4.4, β = 44.2) in regime C. Image supplied by M. Tatsuno and P. Bear-
man.

The nonlinear property of this bifurcation can be determined from figure 6.22. In
this figure the β control parameter has been held fixed at β = 80 while KC has been
varied across a parameter range that includes the point of marginal stability. As for the
synchronous regime S, the measure of energy, the peak coefficient of x-force, increases
smoothly from zero with no discontinuity as the critical bifurcation parameter is passed.
It is concluded that this transition is supercritical.
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Figure 6.22: Bifurcation diagram for two-dimensional symmetry breaking to
regime QP at a fixed β = 80.0, showing coefficients of peak x-component force
as functions of the bifurcation parameter: β.
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6.4 Secondary Transitions beyond Criticality

Transitions that occur above the curve of marginal stability in (KC,β)-space are not the
primary focus of this investigation. Also it should be emphasised that the Floquet predic-
tions of the S and QP regimes only holds on the marginal stability curve. However it is
clear from the DNS results presented previously these regimes exist beyond the marginal
stability curve and that the extent of the regimes S and QP are bounded e.g. the behaviour
at KC = 7 where two-dimensional Floquet analysis predicts a quasi-periodic flow yet
experimental visualisations show a synchronous flow. In addition the complex-conjugate
multiplier has been shown to only exist over a short range of KC before it coalesces and
forms two real branches of multipliers, one decreasing and the other increasing, yet, as
noted in §6.3, two-dimensional DNS flows above this coalescence point belong to the
quasi-periodic regime. At the other end of the parameter range considered, KC → 10,
Tatsuno and Bearman (1990) have shown a second form of synchronous flow, regime F,
where possibly the symmetry H1 is broken yet H2 is not. In the examination of the extent
of these regimes it would be convenient to use Floquet analysis to identify the locations
in (KC,β)-space of secondary transitions. However, this is not possible for a number of
reasons. Firstly a periodic base flow is required to use Floquet analysis and this is not
achievable with the flows of regime QP. Secondly the ‘unity’ multiplier issue forces the
search for a marginal stability curve to occur above the point of transition. In the case
of regime S this means a synchronous flow with broken Kx symmetry must be enforced
beyond any secondary transition, something that is not feasible at present as their is no
reflection symmetry about x = 0. In the following section the extent of the regimes S
and QP are considered and the boundary between these two regimes is examined using
two-dimensional DNS.

In figure 6.23 a set of time series of coefficients of force in the x direction are shown
for simulations started from rest. These results were produced at KC = 7.0, with Stokes
numbers β = 13.5 − 13.75. In the plot of marginal two-dimensional stability, figure
6.1, the fixed value of KC = 7.0 intercepts the neutral stability curve below the freezing
point, consequently quasi-periodic behaviour would be expected near this point of onset.
However, according to the regime map of Tatsuno and Bearman (1990, see figure 2.16)
these parameters all lie within the synchronous regime D, with reported extent from β ≈

13 to β ≈ 20 at KC = 7. In contrast, the two-dimensional DNS result at β = 13.5

in figure 6.23(a) is clearly quasi-periodic with Ts/T ≈ 200. A slight increase in the
Stokes number to between β = 13.75 and β = 15 results in flows that belong to the
synchronous regime S. Subsequent increases in β beyond β = 13.75 lead to flows that
demonstrate irregular switching of the angle of deviation of the flow about the oscillation
axis from +x to −x. This behaviour has been reported to be a characteristic of regime E,
for example, and is one that is clearly not a characteristic of regimes S or QP.
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(a)

(b)

(c)

(d)

(e)

Figure 6.23: Time series of coefficients of force normal to oscillation axis for two-
dimensional flows at KC = 7. (a), β = 13.5; (b), β = 13.75; (c), β = 15; (d),
β = 16; (e), β = 17.5.

In the following paragraphs a number of locations in (KC,β)-space are examined as
examples of what can occur at a distance in (KC,β)-space from the marginal stability
curve. No attempt has been made to accurately determine a set of boundaries for the
onset of flows of these types. The points considered are indicated in figure 6.24 by a ×

symbol. The extent of regime S for increasing Stokes numbers is bounded by either the
formation of a quasi-periodic type mode with intermittant switching (see figure 6.23) or, at
higher Keulegan–Carpenter numbers by a flow state that breaks the H1 symmetry. Figure
6.25 shows the instantaneous vorticity contours for two-dimensional DNS at (KC = 8,
β = 25.0) and (KC = 10, β = 20.0) at the maximum displacement of the cylinder.
In both cases two jets of vortices are formed above and below the cylinder. The axis of
the convection of these jets is displaced horizontally from the axis of oscillation. The
orientation of the jets above and below the cylinder is similar but not identical. In the two
cases shown the far field orientation of these jets is different in each case. It is this aspect
that would suggest that the symmetry property H2 does not apply. The jets also appear to
be composed of localised concentrations of vorticity which would suggest that vorticity
shedding is occurring here, an aspect not present in regime S.
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Figure 6.24: (KC,β)-space map showing the two-dimensional marginal stability
curves for real (—) and complex-conjugate (- -) multipliers. Also shown are a se-
lection of boundaries and regimes from Tatsuno and Bearman (1990). Point marked
with an × indicate a location discussed in §6.4.

Figure 6.26 shows four time series of the x-component of force on the cylinder for high
Keulegan–Carpenter numbers. At (KC = 8.0, β = 20.0) it can be seen that the forcing
characteristic of the synchronous regime is not present and that a more chaotic forcing is
experienced by the cylinder. This type of forcing is typical of flows in regime E. A slight
increase in β beyond this point to β = 25 alters the dynamics considerably. Instantaneous
vorticity contours are obtained that resemble the flows of three-dimensional regime F
(figure 6.25). The forces experienced by the cylinder reflect this with the mean force for
this case approaching zero. Additionally, it does not appear that the flow is purely periodic
with the force history exhibiting a minor, but clearly detectable, variation in the amplitude
of force. The second image of instantaneous vorticity contours for (KC = 10, β = 15)
exhibits an identical behaviour which again indicates, in conjunction with its force trace
in figure 6.26(c), that this location is in regime F.

The extent of regime QP for increasing Keulegan–Carpenter numbers is delineated by
the onset of some intermittency in the quasi-periodic shedding period. In figure 6.27 a
small subset of a time series for the x-component of force on the cylinder is presented
at the location (KC = 4, β = 80.0), as indicated in figure 6.24. Over the first twenty
five periods of oscillation the force trace resembles a quasi-periodic mode with its sec-
ondary period, however beyond this the regular beating effect is seen to be no longer

126



6.4. SECONDARY TRANSITIONS BEYOND CRITICALITY

(a) (b)
Figure 6.25: Instantaneous vorticity contours for two-dimensional flow in regime F
shown at y = ymax. The flows were computed at: (a) (KC = 8, β = 25.0); and (b)
(KC = 10, β = 20.0).

purely consisting of the oscillation period and the secondary period. Examination of the
instantaneous vorticity contours, figure 6.28, at a set of times over the subset of oscilla-
tion periods presented in 6.27, shows a number of differences that occur between this flow
and that of regime QP. At times 30T , 40T and 50T asymmetries in the far field vorticity
contours are clearly seen with pairs and triplets of vortices appearing. These were not
observed earlier in the quasi-periodic regime where a staggered array of vortices was seen
to occur in the jets. Additionally in all the contours presented, braids of vorticity can be
seen connecting the structures near the cylinder with those being convected away by the
induced flow. These braids were never visualised in the instantaneous contours of regime
QP.
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(a)

(b)

(c)

(d)

Figure 6.26: Time series of coefficients of force normal to the oscillation axis for
two-dimensional flows at: (a), KC = 8, β = 20.0; (b), KC = 8, β = 25.0; (c),
KC = 10, β = 15.0; (d), KC = 10, β = 20.0.
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Figure 6.27: Time series of coefficients of force normal to oscillation axis for
(KC = 4, β = 80.0).

t = 10T t = 20T t = 30T t = 40T t = 50T

Figure 6.28: Instantaneous vorticity contours at (KC = 4, β = 80.0), with the
cylinder at y = ymax. The vorticity contours are shown at the times corresponding
to figure 6.27.
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6.5 Discussion

The application of Floquet analysis to the two-dimensional subspace was very successful
in detecting the location in (KC,β)-space of the onset of the primary instability of the
base flow. This is despite the complication introduced by the presence of the numerical
artifact of the ‘unity’ multiplier. The curve of neutral stability in (KC,β)-space, fig-
ure 6.2, matches the location of an amalgam of the experimentally derived boundaries of
Tatsuno and Bearman (1990) extremely well in the high and low-β limits. This is quite re-
markable given that the Floquet analysis in this chapter is restricted to a two-dimensional
subspace perpendicular to the cylinder span, yet the experiments of Tatsuno and Bearman
have shown that distinctive three-dimensional structures exist in the flows bordering the
boundaries identified. In particular the transitions from regimes A to D and A to C have
been shown to be transitions from a two-dimensional flow perpendicular to the span to
flows that have both changes in the x-y plane and three-dimensional structure. Given that
the two-dimensional analysis of this chapter predicts the location of these transitions so
well it is likely that the onset of the spanwise variations in the flow are instabilities of the
resultant flows after a two-dimensional transition, although it is possible that the onset of
spanwise variations is coincident with the onset of a two-dimensional transition, an aspect
that is explored in chapter 7.

At higher Stokes numbers the boundary between regime B to E is also predicted ex-
tremely well by the Floquet analysis. Unlike the previous two transitions where the ‘base
flow’ was two-dimensional, the flow of regime B has distinctive regular spanwise varia-
tions present. By representing this flow in a two-dimensional subspace some information
regarding the dynamics of the flow is omitted, yet despite this the two-dimensional Flo-
quet analysis predicts the location of the B–E boundary at the upper limit of the Stokes
numbers employed here to within the accuracy of the experimental regime boundaries.
It is concluded from this that the transition from regime B to E is in large part due to an
instability in the dynamics of the flow in the x-y plane. However, as with the previous two
transitions, it is possible that a three-dimensional transition occurs after or coincidentally
with this two-dimensional transition. The issue of whether three-dimensional transitions
occur at the same time is explored in chapter 7.

A numerical prediction of the critical curve has been previously established by Iliadis
and Anagnostopoulos (1998) using DNS, see figure 6.29. The prediction provides a rea-
sonable qualitative match to the regime boundaries found through Floquet analysis and
experimental visualisations. However values determined for the location of the transition
in (KC,β)-space through that study appear to be shifted towards higher values than those
established in this study or experimentally. This is probably due to a limitation in the
details of the numerical treatment of Iliadis and Anagnostopoulos.

Along the marginal stability curve a change occurs from Floquet multipliers with
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Figure 6.29: Curve of marginal stability for the primary transition in a two-dimen-
sional subspace shown with the two-dimensional numerical results of Iliadis and
Anagnostopoulos (1998) and a selection of the experimental regimes of Tatsuno
and Bearman (1990). The dashed lines indicate the approximate position at which
the critical multiplier switches between real and a complex-conjugate pair of mul-
tipliers.

real multipliers, µ = +1, to a pair of complex-conjugate multipliers, µ = e±iθ at the
codimension-2 ‘freezing point’ At this point the phase angle of the complex-conjugate
pair of multipliers decreases to zero with reducing β and the complex-conjugate multi-
pliers coalesce to form the single real-multiplier branch. Prior to coalescence, for high
Stokes numbers, bifurcations crossing the marginal stability curve correspond to a pair of
complex-conjugate Floquet multipliers crossing the unit circle. After coalescence, bifur-
cations across the marginal stability curve correspond to a single real Floquet multiplier
crossing the unit circle. The bifurcations to the two-dimensional regimes S and QP (as
distinct from the three-dimensional regimes of Tatsuno and Bearman (1990)) correspond
to the single real and the complex-conjugate multiplier branches respectively.

The bifurcation to regime S appears to be analogous to the codimension-1 pitchfork
bifurcation at µ = +1, as discussed by Kuznetsov (1995, § 7.4.4). The bifurcation leads
to two conjugate solutions that correspond to a break of the Kx symmetry towards ei-
ther −x or +x. The results of this bifurcation in either direction are seen in the vorticity
contours of figures 6.5(a) and 6.6(c). The resultant flows in regime S correspond to the
visualised flows in the x-y plane of regime D. The similarity between the flows of regimes
S and D is further reinforced when a computed particle tracking image from regime S is
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compared with the experimental visualisations from regime D (see figure 6.7). Owing to
the presence of discrete concentrations of particles, both of the images shown suggest the
presence of vortex shedding. However, examination of the vorticity contours at the same
location, figure 6.6(c), contradicts this suggestion, as no concentrations of far-field vor-
ticity are seen. Tatsuno and Bearman (1990) made a similar observation, in reference to
both regimes A and D, that the dye patterns shown in their visualisations do not represent
vortex shedding, except near the cylinder. It is concluded that the onset of the single real
multiplier does not lead to the onset of vortex shedding.

The transition to regime QP arises through a complex-conjugate pair of Floquet multi-
pliers crossing the unit circle, which is a bifurcation of a Neimark-Sacker type (Kuznetsov;
1995, see § 7.4.4). As a consequence of the introduction of a secondary period into the
flow, the bifurcation produces a 2-torus about the periodic limit cycle of the base flow. It
is inferred from inspection of the particle-track image of figure 6.21(a) that the 2-torus
has H1 symmetry. In this case it is found that the secondary period is directly related to
the phase angle of the multipliers, such that Ts = 2πT/θ. Both the Floquet multipliers
and their eigenfunctions arise in complex-conjugate pairs, but it is sufficient to examine
either the real or imaginary parts of the eigenfunctions, as, at |µ| = 1, one can be ob-
tained from the other by evolution in Ts/4, as stated in Blackburn and Lopez (2003). The
portion of the marginal stability curve that signals the transition to the two-dimensional
regime QP agrees well in (KC,β)-space with two experimental regime transitions from
Tatsuno and Bearman (1990); that of regime A to C and B to E. However, no distinction
could be drawn between these two transitions in the restricted two-dimensional subspace,
except that the magnitude of the secondary period introduced varied along the curve of
marginal stability. The secondary period is found to be linked to a slow flapping of the
induced flow from +x to −x and the shedding of vortices, as illustrated in figure 6.19. It
is clear from the vorticity contours in figure 6.20(d) that for this regime discrete far-field
concentrations of vorticity are present. The relationship between the vorticity contours
and the advected particle locations is seen by comparing figures 6.20(d)&(e). The com-
parison between this particle shedding image and an experimental image of the x-y-plane
from regime B, shown in figure 6.21, shows a clear similarity. This is despite the exper-
imentally visualised presence in the three-dimensional experiments of definite spanwise
variations in the flow.

Beyond the curve of marginal stability the predictions of the linear Floquet analysis
are not guaranteed to be relevant because by definition they cannot account for nonlinear
effects. However, it is clear that some aspects, such as the value of the secondary period,
that arise at marginal stability are retained at a distance from the curve of marginal stabil-
ity e.g. see figure 6.18 where the flows at a distance from onset have been determined to
have a secondary period similar to that at onset. This is despite the fact that in linear anal-
ysis the Floquet multiplier may have ceased to be complex at this point and has coalesced
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into real branches (see figure 6.10). The conclusion from this is that while the nonlinear
dynamics may retain signature characteristics of the linear instability modes, the extent of
the nonlinear regime is not tied to the extent of the Floquet multiplier and its associated
instability mode.

In figures 6.10 and 6.12 the complex-conjugate Floquet multipliers are seen to coalesce
and then bifurcate into two real branches with increasing distance in (KC,β)-space from
the curve of marginal stability. While the subsequent bifurcation of the unstable complex-
multiplier branch into two real branches is based on a base flow that is symmetric and
T -periodic it may still have an impact on the flow dynamics, particularly if the region
in the x-y plane in which the eigenfunction grows is minimally affected by the already
unstable quasi-periodic mode. The increment in the Keulegan–Carpenter number, ∆KC,
between the onset of the quasi-periodic mode and the subsequent point of coalescence
was found to increase with Stokes number from zero at the freezing point. The narrowing
of this envelope for the existence of the quasi-periodic mode as β → β+

f may in part
explain the discrepancy between the location of the freezing point (KCf ≈ 7.4, βf ≈ 12)
and the regime boundary C to D found by Tatsuno and Bearman (1990) which occurs at
(KC ≈ 5.3, β ≈ 25). Experimentally an increasingly small regime of existence for the
quasi-periodic mode might not be detected.

The β-dependence of the flow for a fixed KC = 7 (see figure 6.23) illustrates the
codimension-2 nature of the flow. On the curve of marginal stability a complex-conjugate
pair of multipliers are the first multipliers to cross the unit circle at β = 13.5. A syn-
chronous flow regime is detected at β = 13.75. As the ∆β increment is so small at
this fixed KC between the onset of the complex-conjugate multiplier branch and the
subsequent coalescence to a real multiplier branch it is unlikely to be experimentally de-
tected. This progression from synchronous (unbifurcated) to quasi-periodic and back to
synchronous (bifurcated) behaviour is possible because the control space is two-dimen-
sional. Locations in (KC,β)-space beyond the curve of marginal stability need not retain
the characteristics of the nearest point on the marginal curve, as would be expected for
a codimension-1 control parameter, but instead, due to the codimension-2 nature of the
(KC,β)-space, can have the characteristics of different transitions. Subsequent increases
in KC at the fixed KC = 7 result in a flow that appears to intermittently transition be-
tween the flows of regime S and QP. This characteristic matches the description of regime
E provided by Tatsuno and Bearman: the “flow pattern in this regime temporarily re-

sembles that in regime D. The flow which convects to one side of the axis of oscillation,

however intermittently changes its direction to the other side”.
In their three-dimensional simulation at (KC = 6.5, β = 20) Nehari et al. (2004),

nominally investigating regime D, reported that the flow, instead of maintaining a constant
sign of broken two-dimensional symmetry as they expected from the work of Tatsuno and
Bearman (1990), switched orientation intermittently from one side of the oscillation axis

133



6.5. DISCUSSION

to the other. However, in two-dimensional simulations at the same location in (KC,β)-
space, intermittent switching behaviour like that of figure 6.23 (d, e) was found. Thus
their simulation might be better categorised as being of regime E flow, rather than D.

In the experimental visualisations of Tatsuno and Bearman (1990) the extent of regime
D at high Keulegan–Carpenter numbers is bounded by the onset of regime F for increasing
Stokes numbers. From these visualisations it would appear that the flow is periodic and
possessed of a H2 symmetry characteristic in comparison to that of regime D or the two-
dimensional regime S which have a H1 symmetry property. From the limited two-di-
mensional investigation at a number of points in regime F, see figures 6.26(b)&(c), it
appears that the resultant flow is only superficially synchronous. It is not completely
synchronous as variations of small magnitude in the envelope of force are detected, see
figures 6.26(b)&(c). These variations are most probably due to the absence of symmetry
in the angle that the vortex jets depart the cylinder at. In figure 6.25 the instantaneous
vorticity contours of two cases exhibiting regime F characteristics are shown. In these
two cases the vortex jets above and below the cylinder are not symmetrical displaced
about the axis of oscillation and also their orientation varies slightly with time which
would lead to a slight imbalance in the force experienced by the cylinder.

While three-dimensional bifurcations will be discussed more fully in the following
chapter, it should be noted that for β > 15 increasing the Keulegan–Carpenter number
has been observed by Tatsuno and Bearman (1990) to result in a transition to the three-di-
mensional regime E. As noted previously at (KC = 7, β = 16), figure 6.23(d), the force
experienced by the cylinder in the two-dimensional representation of this regime resem-
bles an intermittent mix of the forcing experienced in the quasi-periodic and synchronous
regimes. This is further illustrated through consideration of the forcing experienced by
the cylinder at the other end of the (KC,β)-space considered, for high Stokes numbers.
In figure 6.27 the time series of the x-component of force at (KC = 4, β = 80) demon-
strates behaviour that for the first ≈ 20 periods is indicative of the QP regime. After 20
periods some intermittency is seen to appear in the force trace, although it does not lead
to a complete breakdown in the quasi-periodic oscillation of the force. It should be noted
that the Floquet multiplier at this location, (KC = 4, β = 80), is just on the point of
coalescence (figure 6.12). A set of instantaneous vorticity contours taken every 10T over
the same force history is shown in figure 6.28. The contours of figure 6.28(a) are similar
to those shown of regime QP with the formation of a reverse Kármán street in the induced
flow. At successive times later the nature of the vortices in the induced flow has changed
from a staggered arrangement of oppositely signed vorticity to that of vortex pairs and
triplets being convected away by the induced flow. It is speculated that onset of regime
E may be caused by the onset of an instability of the quasi-periodic mode which leads to
intermittency in the vorticity shed from the cylinder.

Along the curve of marginal stability it was found that for the onset of both regimes
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S and QP the type of nonlinear bifurcation was supercritical. This implies a smooth
departure of bifurcated solutions symmetry as control parameters are increased. In the
synchronous regime the impact of this is readily seen as an increasing deviation of the
induced flow from the axis of oscillation, see figure 6.8. In the quasi-periodic regime it
is thought that the supercriticality has the effect of increasing the peak angle of deviation
of the induced flow near the cylinder. However, this is less clear than for the synchronous
regime as the oscillatory nature of the flow and the lack of synchronisation make observa-
tions of the angle of deviation very phase dependent. Eventually the increase in deviation
cannot be sustained leading to breakdown of either synchronicity or the quasi-periodicity.
In the quasi-periodic regime this effect is observed where the increasing angle of devia-
tion may lead to breakdown of the shedding mode of single vortices per 1/2Ts into one
that sheds vortex pairs and triplets for each Ts, as seen in figure 6.28.
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6.6 Summary

In this chapter results of a combined two-dimensional Floquet stability analysis and DNS
investigation into the primary bifurcation from the symmetric and periodic flow state de-
tailed in chapter 5 were presented. It was found that two different types of bifurcation
were present along the curve of marginal stability that resulted in two-dimensional sym-
metry breaking. Particularly in the low-β, high-KC limit and in the high-β, low-KC limit,
the location of the marginal stability curve coincided well with existing experimentally de-
rived boundaries. This was remarkable given that the experimentally observed behaviours
of these flows following bifurcation have all been three-dimensional. The two forms of
Floquet multiplier found were (a) a single real and (b) a complex-conjugate pair which
gave rise to a synchronous regime, S, and a quasi-periodic regime, QP, respectively. In
transitioning to the synchronous regime the flow broke the spatial Kx symmetry about
the axis of oscillation but still retained a spatio-temporal symmetry of the H1 type. The
transition to regime QP also broke the Kx symmetry. Additionally in the QP regime a sec-
ondary period, Ts was introduced as a consequence of the complex-conjugate multipliers
which crossed the unit circle. A 2-torus is formed as a result of this bifurcation which has
H1 symmetry. The shedding of vortices and a flapping of the induced flow from the −x

to +x direction were found to be synchronised with the secondary period Ts. Regime QP
was also the first regime in which vortex shedding was observed.

The nonlinear behaviour beyond the onset of these regimes was also examined. It was
found that both bifurcations were supercritical. In the synchronous regime this supercriti-
cality was manifested as an increase in the angle of deviation of the induced flow from the
axis of oscillation. In the QP regime this influence was difficult to determine due to the
flapping effect observed. It is speculated that the supercriticality manifests as an increased
angle of deviation of the flapping flow. Subsequent transitions to the experimentally ob-
served regimes E and F were also briefly examined.
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Chapter 7

Rectilinear Oscillation: Symmetry

Breaking in Three–Dimensional Space

In chapter 6 the domain of investigation was restricted to a two-dimensional subspace per-
pendicular to the span of the cylinder. Within this restricted domain a curve of marginal
stability was located as a function of the controlling parameters, (KC, β), above which
several of the symmetry characteristics of the base flow identified in chapter 5 were found
to be broken. Along the curve of marginal stability two forms of bifurcation were ob-
served: a real Floquet multiplier resulting in a pitchfork bifurcation to a conjugate set of
spatially symmetric, periodic states; and a complex conjugate set of Floquet multipliers
resulting in a Neimark-Sacker bifurcation to a quasi-periodic flow.

In this chapter the domain of investigation is expanded to include the spanwise di-
mension and consequently an additional parameter, the spanwise wavelength λ or equiva-
lently wavenumber k = 2πD/λ, must be introduced to characterise the instability modes.
It is known from the results of the previous chapter in combination with the visualisa-
tions of Tatsuno and Bearman (1990) that two-dimensional symmetry breaking occurs at
nearly the same location in (KC,β)-space as three-dimensional symmetry breaking for
the transition from regime A to D. However it is not established if the two-dimensional
and three-dimensional symmetry breaking are coincidental or if one occurs before the
other. Additionally it is not known if the three-dimensional symmetry breaking is depen-
dent on the two-dimensional symmetry breaking. In the case of the transition A∗ to B the
previous chapter established that it is a purely three-dimensional transition as it occurs
below the onset of two-dimensional symmetry breaking. For both of these transitions a
combination of Floquet analysis and DNS is employed to investigate the transition and
the nature of the resultant flow. The technique of enforcing the symmetry about the axis
of oscillation of the base flow is also used to determing the impact of two-dimensional
symmetry breaking on the three-dimensional symmetry breaking.

In contrast to the aforementioned cases where the resultant three-dimensional flow has
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been experimentally observed to be synchronous with the oscillation, the flow of regime
C has been observed to be unsynchronised with the cylinder oscillation. This lack of
synchronisation was identified as being caused by the onset of a two-dimensional qua-
si-periodic instability in the previous chapter. However, this was in a restricted two-di-
mensional subspace and it remains to be determined whether this still holds when this
restriction is removed. As Floquet analysis requires a periodic base flow it cannot be
used to study this regime. Consequently only three-dimensional DNS is used to study this
regime and this transition.

In the following sections the curve of neutral stability and the associated critical
wavenumbers determined using Floquet analysis are presented in §7.1. Three transitions
are identified using Floquet analysis that each have different underlying two-dimensional
base flows. These three transitions to regimes B, D and a modified regime D with forced
Kx symmetry are examined with Floquet analysis and DNS in §§7.2 and 7.3. In §7.4 the
transition to regime C and the nature of the flow in this regime are examined using DNS
only. In §§7.5 and 7.6 the results of these five sections are discussed and summarised.
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7.1. MARGINAL STABILITY CURVES

7.1 Marginal Stability Curves

The locations in (KC,β)-space of the primary three-dimensional instability identified us-
ing Floquet analysis are presented in figure 7.1. The procedure used to determine this
curve was more complicated than that used to determine the two-dimensional curve of
marginal stability due to the presence of an additional parameter: the spanwise wavenum-
ber, k. In the initial stages the procedures are nearly identical in that a two-dimensional
base flow was produced and stored using 64 equi-spaced in time snapshots of the velocity
fields over one period of oscillation. Although in this section, unlike the previous chap-
ter, the base flow was permitted to break Kx symmetry about x = 0, depending on the
location in (KC,β)-space and the aspect being tested, and was computed on the full do-
main. Typically this increased the computational time required owing to the number of
extra calculations needed per time-step and the additional time required for the base flow
to converge to a final periodic solution. It is at the Floquet analysis stage that the inves-
tigation of the three-dimensional flow becomes much more computationally expensive.
Whereas for the two-dimensional analysis a single Floquet analysis would be employed
on each base flow, in this case a Floquet analysis was used for each wavenumber that
was tested. Typically a minimum of ten wavenumbers were tested for each location in
(KC,β)-space. This procedure was repeated at numerous locations in (KC,β)-space in
order to determine the location of the marginal stability curves and the critical wavenum-
bers on these curves. The entire process is approximately ten times more computationally
expensive than the two-dimensional Floquet analysis. The difficulty mentioned in §6.1
due to the presence of a ‘unity’ multiplier did not arise for the majority of the cases tested,
as only three-dimensional modes close to the two-dimensional subspace are afflicted.

In contrast to the curve of two-dimensional symmetry breaking where both complex
and real Floquet multipliers were found, in this case only unstable modes with real mul-
tipliers are found. A consequence of this is that the three-dimensional instability modes
that are identified are synchronous with the cylinder oscillation. In the low Stokes num-
ber, high Keulegan–Carpenter number region the transition to three-dimensionality is ob-
served to occur at approximately the same location as the two-dimensional transition to
regime S, as shown by multiplier branch I in figure 7.1(a). The base flows used for deter-
mination of this boundary were calculated on a full domain and therefore were permitted
to break Kx symmetry. The exact nature of this transition and the resultant flows are
discussed in detail later in §7.3.

The two curves in figure 7.1(a) having circular data points, multiplier branches II and
III, were achieved using base flows that were constrained to be Kx-symmetric. This was
done for two reasons: firstly to continue the lower curve, branch II, above the two-dimen-
sional symmetry breaking curve; and secondly to isolate the impact that the break in Kx

symmetry has on the onset of three-dimensional symmetry breaking. The mode whose
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7.1. MARGINAL STABILITY CURVES

(a)

(b)

Figure 7.1: Marginal stability curves for three-dimensional modes. For data la-
belled •, ◦, the base flow had two-dimensional reflection symmetry, and respec-
tively the three-dimensional modes have H1 and H2 spatio-temporal symmetry at
any z. For data labelled �, the base flow had broken two-dimensional symmetry. In
(a), the curve of two-dimensional symmetry breaking from figure 6.1 (a) is shown.

curve crosses the two-dimensional transition from below, for the most part, did not require
the use of a base flow that was constrained to be Kx-symmetric and the same result was
achieved for base flows that were not constrained and were naturally Kx-symmetric. The
only point where this was required was the point above the curve of marginal two-dimen-
sional stability. The curve lying entirely above the two-dimensional symmetry breaking
curve, branch III, is a fictional result. It is fictional in the sense that the base flow from
which it was produced, a Kx symmetric base flow, no longer exists as the two-dimensional
symmetry breaking curve above which it lies breaks the Kx symmetry. However, it does
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7.1. MARGINAL STABILITY CURVES

establish an important characteristic of the three-dimensional symmetry breaking: the
three-dimensional symmetry breaking curve (branch I) found for 5 6 β 6 20 requires the
Kx symmetry to be broken in order to occur. In the absence of the broken Kx symmetry
no three-dimensional transition was observed for 5 6 β 6 20.

(a)

(b)

Figure 7.2: Marginal stability curves for three-dimensional modes. For data la-
belled •, ◦, the base flow had two-dimensional reflection symmetry, and respec-
tively the three-dimensional modes have H1 and H2 spatio-temporal symmetry at
any z. For data labelled �, the base flow had broken two-dimensional symmetry. In
(a), the curve of two-dimensional symmetry breaking from figure 6.1 (a) is shown.
In (b), wavenumber data from Tatsuno and Bearman (1990) are represented by ×

(regime B) and + (regime D).

On the curve of marginal two-dimensional symmetry breaking there is a large gap
between the end of branch I and the onset of branch II. In this region the underlying
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7.1. MARGINAL STABILITY CURVES

two-dimensional flow has been shown to be quasi-periodic. This quasi-periodicy breaks
a fundamental requirement for the application of Floquet analysis, that of a periodic base
flow, and hence, as stated earlier, no Floquet results could be obtained here for the primary
onset of a three-dimensional instability.

The locations of the three-dimensional transitions found using Floquet analysis com-
pare favourably with the regime boundaries of Tatsuno and Bearman (1990), as shown in
figure 7.2(a). The lower curve, branch II, agrees well with the experimental observations
of a transition between regimes A∗ and B. Additionally from the experimental observa-
tions of regime B it would appear that these flows have H1 symmetry at any z-location.
A more detailed treatment of this regime and this three-dimensional transition is provided
in §7.2.

In contrast to branch II the onset of three-dimensionality occurs after the onset of two-
dimensional symmetry breaking for branch I. The underlying break in two-dimensional
symmetry is the transition to regime S and the base flow breaks the spatial Kx symmetry
and the spatio-temporal H2 symmetry but preserves H1. The subsequent onset of three-
dimensionality occurs almost immediately after the two-dimensional transition. From the
location of the three-dimensional transition branch III, which was created using base flows
forced to be Kx-symmetric, it can be concluded that the flow of regime S is unstable to
three-dimensional perturbations. The location of branch III of the Floquet multipliers does
not agree with any experimental regime boundaries, a fact that is not surprising given that
it was artificially created by enforcing Kx symmetry of the base flow. A detailed treatment
of the nature of branches I and III is provided in §7.3. Regime C has been observed to
have three-dimensional characteristics, however, Floquet analysis cannot be applied in
this regime. Consequently DNS studies are used to investigate the nature of this transition
to three-dimensionality and the subsequent flows that result. These investigations are
detailed in §7.4.

In figures 7.1(b) and 7.2(b) wavenumbers for the most unstable three-dimensional
modes are presented. The wavenumbers for the fictitious branch III are seen to be sub-
stantially higher than the neighbouring branches. Tatsuno and Bearman (1990) did not
record any wavelengths for this region of (KC, k)-space as the experimental flows of
regime C and E were observed to have no regular spanwise variations. The wavenumber
values predicted for the onset of regime D are in excellent agreement with that experi-
mentally recorded. In figure 7.2(b) the line of best fit through the Floquet results has been
extrapolated to encompass the range of β values recorded by Tatsuno and Bearman (1990)
and in all cases the predictions are well within experimental error margins. The predic-
tions for the wavenumbers at the onset of regime B are reasonable. While not as good a
match as for the onset of regime D, the predicted values are close and follow the same
pattern as the experimental results. Potential reasons for the discrepancies are discussed
later in §7.5.
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7.2. REGIME A∗ – B

7.2 Regime A∗ – B

In this section both the three-dimensional transition of branch II in figure 7.1(a) and the
resultant flow are investigated in detail. In this case the underlying base flow on either
side of this transition has not broken two-dimensional symmetry. In simulations with
either the full or half domain (to enforce Kx symmetry) the Floquet results obtained were
identical. Due to this expected result the half-domain was used to produce the base flows
as it was computationally cheaper and it permitted the tracking of this transition above
the onset of two-dimensional symmetry breaking.

Figure 7.3: Floquet multipliers as function of wavenumber and Keulegan–
Carpenter number for the three-dimensional instability of regime B at β = 80.

In figure 7.3 the variation of the Floquet multiplier is presented as a function of the
spanwise wavenumber for a number of fixed Keulegan–Carpenter numbers. The results
are shown for a fixed β = 80, however a wider range of Stokes numbers was examined
in order to produce the critical point data, as can be seen in figure 7.1. This particular
Stokes number was arbitrarily chosen as being representative of this bifurcation. Although
only a portion of the spanwise numbers examined are shown 4 6 k 6 8, beyond this
range no unstable wavenumbers were found near the point of onset. Obviously as the
point in (KC,β)-space is increased beyond the point of marginal stability an increasing
range of wavenumbers became unstable and it is possible that wavenumbers beyond that
shown in figure 7.3 will be unstable. However, as the application of Floquet analysis is
applicable at the onset of an instability it is deemed unnecessary to quantify this change
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7.2. REGIME A∗ – B

in the unstable wavenumber ranges. The critical multiplier branches shown in figure 7.3
consist entirely of real Floquet multipliers. Consequently Floquet analysis predicts that
the resultant flow will be synchronous with the cylinder oscillation and that the bifurcation
will introduce no new frequencies into this flow. By interpolation the critical point at a
fixed β = 80 is (KCc = 2.564, kc = 5.88). In figure 7.4 the force time-series for
the saturated DNS computations are presented. Inspection of these series shows that
the flow remains synchronous with the cylinder oscillation and that x-force component
remains zero and constant. With reference to the temporal characteristics of the flow, the
prediction of the linear stability analysis matches the DNS computations.

(a)

(b)
Figure 7.4: Plot of the coefficients of total y- & x-force per unit spanwise length
exerted on the cylinder over eight periods of cylinder motion. The simulation was
carried out at (KC=2.6,β=80.0). The force is non-dimensionalised with respect
to the root mean square of the cylinders prescribed y-axis velocity and the cylinder
diameter D. Also shown is the cylinders displacement (dashed line) over one period
of motion.
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7.2. REGIME A∗ – B

Figure 7.5: Instantaneous vorticity isosurfaces for the regime B instability at (KC =
2.58, β = 80, k = 5.88), showing the Floquet mode. Four spanwise repetitions are
represented, at the instant when the cylinder is at ymax. The solid isosurfaces show
y-component vorticity of equal magnitude but opposite signs.

In figures 7.5 and 7.6 isosurface visualisations of the most unstable Floquet mode and
those obtained from saturated DNS computed at (KC = 2.58, β = 80, k = 5.88) are
presented. The location these computations were performed at in (KC,β)-space lies just
above the point of marginal stability. In both cases four spanwise repetitions of a single
simulated wavelength are shown. For the DNS, eight spanwise Fourier modes (16 real
data planes) were employed to discretise a single spanwise wavelength. In both figures
an alternating array of y-component vorticity can be seen above and below the cylinder.
Given the shape and alignment of this array of vortices, it might be expected to give rise
to a spanwise waviness of the induced flow past the cylinder. This matches the experi-
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7.2. REGIME A∗ – B

Figure 7.6: Instantaneous vorticity isosurfaces for the regime B instability at (KC =
2.58, β = 80, k = 5.88), showing the DNS result. Four spanwise repetitions are
represented, at the instant when the cylinder is at ymax. The solid isosurfaces show
y-component vorticity of equal magnitude but opposite signs, while additionally
translucent isosurfaces show z-component vorticity.

mental observations of Honji (1981), who observed that regime B was characterised by
regular spanwise streaks in the flow, and those of Tatsuno and Bearman (1990), e.g. fig-
ure 2.18(a). Evidently flow obtained through DNS, and correspondingly experimentally
visualised, is closely related to the Floquet instability mode.

In figures 7.7(a) & (b) isosurface visualisations of the Floquet mode and those ob-
tained from saturated DNS computed at (KC = 2.58, β = 80, k = 5.88) are presented
from a different perspective than those shown previously. In these figures the main influ-
ence of the nonlinear interaction on the three-dimensional instability can be seen in three
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7.2. REGIME A∗ – B

(a)

(b)

(c)

(d)
Figure 7.7: Instantaneous vorticity isosurfaces and experimental visualisations for
the regime B instability. Shown are the (a) Floquet mode and (b) DNS result at
(KC = 2.58, β = 80, k = 5.88). Four spanwise repetitions are represented, at
the instant when the cylinder is at ymax. The solid isosurfaces show y-component
vorticity of equal magnitude but opposite signs. Figures (c) and (d) are from Tat-
suno and Bearman (1990) and show visualisations of the flow structure at (c) 2.5D
above the x-z plane for (KC = 2.93, β = 77.7) and (d) 5D above the x-z plane for
(KC = 3.14, β = 72.6)
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7.2. REGIME A∗ – B

aspects: firstly, in the way that the vortex pairs on the shoulders of the cylinder are drawn
more closely together and are clearly paired; secondly, in the way this pairing alternates
on either side of the cylinder; and thirdly, the orientation of the array of vortices above
and below the cylinder is no longer parallel to the x-y plane. In figures 7.7(c) & (d) exper-
imental visualisation from Tatsuno and Bearman (1990) are shown. These figures match
the vorticity contours shown. In particular, in figure 7.7(c), the small streaks crossing over
the cylinder exhibit an alternating orientation to the x-y-plane in the same manner as the
vortex array in figure 7.7(b) does.

t = 0 T/8 2T/8 3T/8

4T/8 5T/8 6T/8 7T/8

Figure 7.8: Contours of instantaneous kinetic energy in the fundamental spanwise
harmonic for three-dimensional synchronous flow in regime B, obtained over one
temporal period via saturated DNS at (β = 80, KC = 2.6, k = 5.88).

At any spanwise location, the sign of y-vorticity above and below the cylinder (and
also at ±x, for any y-location), is the same, but near the shoulder of the cylinder there is a
change of sign of y-vorticity on a radial traverse. Although as noted previously, nonlinear
effects may result in a change of magnitude of the vorticity at ±x, for any y-location. It
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Figure 7.9: Bifurcation diagram for three-dimensional symmetry breaking in
regime B, showing normalised time-average kinetic energy in the first spanwise
harmonic, 〈E1〉 as a function of KC at β = 80, and k = 5.88. Values of E1 are
small because the normalisation has the computational domain area in the denomi-
nator, while most of the three-dimensional energy is concentrated near the cylinder.

appears that the y-vorticity at locations above and below the cylinder is generated on the
cylinder surface, and is advected away from the cylinder by the oscillatory flow. The outer
vorticity structures near the shoulders of the cylinder apparently remain in a broadly sim-
ilar location relative to the cylinder over a motion cycle, and preserve their sense of spin.
In figure 7.8 contours of kinetic energy in the first spanwise harmonic from the saturated
DNS are presented, plotted at T/8 increments. This measure highlights the spatial regions
in the x-y plane that have the highest spanwise velocities and are therefore indicative of
where this mode is formed. The energy is closely confined to the near-cylinder region and
coincides with the innermost y-vorticity structures of both signs shown in figures 7.5 and
7.6. Also evident in figure 7.8 is the spatio-temporal symmetry that occurs every T/2. It
appears that, in agreement with the high-β-asymptotic stability analysis of Hall (1984),
the likely underlying mechanism for this mode is a centrifugal instability arising in the
boundary layer flows as they sweep past the shoulders of the cylinder.

To examine the nonlinear properties of the bifurcation and the agreement between the
Floquet prediction and the DNS computations for the onset of this bifurcation, the varia-
tion of the normalised time-average kinetic energy in the fundamental spanwise harmonic,
〈E1〉 from saturated DNS is explored. In figure 7.9 the outcome of this investigation is
plotted for various Keulegan–Carpenter numbers at a fixed β = 80. Also displayed in
this figure is the critical KCc number arising from the Floquet analysis. The onset of
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the bifurcation in DNS agrees well with the linear stability analysis. The nature of this
bifurcation is clearly supercritical, as shown by the continuous increase in energy after
the point of onset. This finding of supercriticality disagrees with Hall (1984)’s sugges-
tion that the bifurcation is subcritical in the high-β limit, although it should be noted that
there is no requirement for the nonlinear nature of a bifurcation (sub- or supercritical) to
be invariant along the curve of marginal stability, and also that Hall was rather equivocal
about his prediction.
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7.3 Regime A – D

In this section the three-dimensional bifurcation corresponding to the Floquet multiplier
branch I of figure 7.1 and the resultant flow are investigated. It has been established in
chapter 6 that a two-dimensional bifurcation occurs at approximately the same location in
(KC,β)-space as the three-dimensional transition A–D visualised by Tatsuno and Bear-
man (1990). In §7.1 it was reported that the critical Floquet multiplier branch was detected
after the onset of the two-dimensional symmetry breakage had occurred.

Figure 7.10: Floquet multipliers as function of wavenumber and Stokes number for
the three-dimensional instability of regime D at β = 8.

In figure 7.10 the variation of the Floquet multiplier is presented as a function of the
spanwise wavenumber for a number of fixed Stokes numbers. The results are shown for
a fixed KC = 8, however a wider range of Keulegan–Carpenter numbers was examined
in order to produce the critical point data, as can be seen in figure 7.1. This particular
Keulegan–Carpenter number was chosen as being representative of this bifurcation. Al-
though only a portion of the spanwise numbers examined are shown, 0.5 6 k 6 3.0,
beyond this range no unstable wavenumbers were found near the point of onset. As with
the bifurcation to regime B, subsequent increases of the control parameters beyond the
critical value cause the band of unstable wavenumbers to increase. With each increase the
apex of this band of wavenumbers is seen to also increase, both in Floquet multiplier mag-
nitude and in the value of the spanwise wavenumber it occurs at, as shown by the dashed
line in figure 7.10. The critical multiplier branches shown in figure 7.10 consist entirely
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of real Floquet multipliers. Consequently Floquet analysis predicts that the resultant flow
will be synchronous with the cylinder oscillation and that the bifurcation will introduce
no new frequencies into this flow. By interpolation the critical point at a fixed KC = 8 is
(βc = 10.58, kc = 1.51).

(a)

(b)
Figure 7.11: Plot of the coefficients of total y- & x-force per unit spanwise length
exerted on the cylinder over eight periods of cylinder motion. The simulation was
carried out at (KC=7, β=14.25). The force is non-dimensionalised with respect
to the root mean square of the cylinders prescribed y-axis velocity and the cylinder
diameter D. Also shown is the cylinders displacement (dashed line) over one period
of motion.

In figure 7.11 the force time-series for the saturated DNS computations are presented.
Inspection of these series shows that the flow remains synchronous with the cylinder
oscillation and that the x-force component retains the bi-periodic, non-zero charactertic
of the two-dimensional regime S. With reference to the temporal characteristics of the
flow, the prediction of the linear stability analysis matches the DNS computations.

Instantaneous vorticity isosurfaces for the leading Floquet mode and for saturated
DNS computed at (KC = 7, β = 14.15, k = 1.75) are shown in figures 7.12 and
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Figure 7.12: Instantaneous vorticity isosurfaces for the regime D instability at
(KC = 7, k = 1.75, β = 14.15), showing the Floquet mode. Three spanwise
repetitions are represented, at the instant when the cylinder is at ymax. The solid
isosurfaces show y-component vorticity of equal magnitude but opposite signs.

7.13. The location these computations were performed at in (KC,β)-space lies just past
the point of marginal stability. In both cases three spanwise repetitions of a single sim-
ulated wavelength are shown. For the DNS, eight spanwise Fourier modes (16 real data
planes) were employed to discretise a single spanwise wavelength. The feature domi-
nating the macro structure of both figures is immediately recognisable as the broken Kx

two-dimensional symmetry. In the cases shown it breaks to the left of the page, although
the alternative break to the right is equally probable. With the knowledge that the Floquet
multiplier is real, and consequently introduces no new frequencies into the flow, and from
figure 7.12, it is clear that the Floquet mode preserves the H1 symmetry of the regime
S basic state. Likewise, the resultant saturated DNS flow has been shown to experience
a force that is synchronised with the cylinder oscillation and from the contours of figure
7.13 it can also be seen that this flow preserves the H1 symmetry of the regime S basic
state.
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Figure 7.13: Instantaneous vorticity isosurfaces for the regime D instability at
(KC = 7, β = 14.15, k = 1.75), showing the DNS result. Three spanwise rep-
etitions are represented, at the instant when the cylinder is at ymax. The solid iso-
surfaces show y-component vorticity of equal magnitude but opposite signs, while
additionally translucent isosurfaces show z-component vorticity.

Figures 7.14 and 7.15 present the same instantaneous vorticity isosurfaces from a dif-
ferent viewpoint. In these figures the changes resulting from nonlinear interactions are
more readily visualised and related back to the experimental observations of Tatsuno and
Bearman (1990). In both figures the coupling of alternately signed vorticity into pairs can
be seen. In the vorticity contours on the shoulders of the cylinder pairs of vorticity are
seen to roll up towards each other in the same manner as was observed for flows of regime
B. As with regime B, an array of alternating vorticity is seen to emanate from above and
below the cylinder. However, in contrast to the DNS flow of regime B, where the primary
influence of the nonlinear interactions was seen to result in an alternating twisting of the
orientation of the vorticity, here it is seen to result in the pairing of adjacent vorticity. Con-
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(a)

(b)
Figure 7.14: Instantaneous vorticity isosurfaces for the regime D instability. Shown
are the (a) Floquet mode and (b) DNS result at (KC = 7, β = 14.15, k = 1.75).
Three spanwise repetitions are represented, at the instant when the cylinder is at
ymax. The solid isosurfaces show y-component vorticity of equal magnitude but
opposite signs.
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(a) (b)
Figure 7.15: Instantaneous vorticity isosurfaces for the regime D instability. Shown
are the (a) Floquet mode and (b) DNS result at (KC = 7, β = 14.15, k = 1.75).
Three spanwise repetitions are represented, at the instant when the cylinder is at
ymax. The solid isosurfaces show y-component vorticity of equal magnitude but
opposite signs.

sequently the spacing between sequential vorticity ‘spikes’ varies depending on whether
it is coupled with the previous spike. Tatsuno and Bearman (1990) noted that “...tubes

seemed to be formed perpendicular to the cylinder at certain intervals along the axis of

the cylinder, in which fluid is travelling faster than the surrounding fluid.” It is likely that
these tubes are a consequence of the stronger pairing of the vorticity ‘spikes’ above and
below the cylinder.

The stronger nonlinear effects present and the breaking of the Kx symmetry mean
that the mechanism of vorticity production and transport for regime D is more compli-
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t = 0 T/8 2T/8 3T/8

4T/8 5T/8 6T/8 7T/8

Figure 7.16: Contours of instantaneous kinetic energy in the fundamental spanwise
harmonic for three-dimensional synchronous flow in regime D, obtained over one
temporal period via saturated DNS at (β = 14.15, KC = 7, k = 1.75).

157



7.3. REGIME A – D

cated than that of regime B. As with regime B, it retains the feature that at any spanwise
location the sign of y-vorticity that advects far away from the cylinder agrees with that
generated at the cylinder surface, and is opposite that which appears most prominent near
the shoulder of the cylinder in figures 7.12 and 7.13. In figure 7.16 a sequence of contours
of kinetic energy in the first spanwise harmonic from the saturated DNS are presented,
plotted at T/8 increments. Unlike their equivalents for regime B, the energy distribution
is not symmetric and it appears most of the energy in the spanwise mode arises with each
oscillation from a sweep past a single shoulder of the cylinder. The shoulder for which
this occurs is on the opposite side of the cylinder from the direction the resulting flow
breaks toward. This is consistent with Tatsuno and Bearman’s description of a stronger
vortex being formed only on one side of the cylinder per half-cycle. Again it appears
likely that the three-dimensional structure of regime D results from a centrifugal instabil-
ity, re-energised in each sweep past a (in this case, principally a single) shoulder of the
cylinder.

Figure 7.17: Bifurcation diagram for three-dimensional symmetry breaking in
regime D, showing normalised time-average kinetic energy in the first spanwise
harmonic, 〈E1〉 as a function of β at KC = 8, k = 1.55. Also indicated is the
Stokes number for two-dimensional symmetry breaking at the same oscillation am-
plitude.

To examine the nonlinear properties of the bifurcation and the agreement between the
Floquet prediction and the DNS computations for the onset of this bifurcation, the varia-
tion of the normalised time-average kinetic energy in the fundamental spanwise harmonic,
〈E1〉 from saturated DNS is explored. In figure 7.17 the outcome of this investigation is
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plotted for various Stokes numbers at a fixed KC = 8. The onset of the bifurcation in
DNS agrees well with the three-dimensional linear stability analysis value, βc (3D). The
nature of this bifurcation is clearly supercritical, as shown by the continuous increase in
energy after the point of onset. Also shown is the location of the two-dimensional linear
stability analysis value, βc (2D). The margin between the two-dimensional and three-di-
mensional bifurcation onsets is most likely due to the two-dimensional bifurcation being
supercritical. It was established through use of forced Kx-symmetric base flows, as seen
by branch III of figure 7.1(a), that this three-dimensional bifurcation requires the two-di-
mensional bifurcation to have occurred prior to its onset. As the two-dimensional bifur-
cation is supercritical it will develop with distance in (KC,β)-space space from the point
of onset and it is likely that the three-dimensional bifurcation requires a certain saturation
of regime S type flow before it can occur.
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7.4 Regime C

The section of the two-dimensional symmetry breaking curve, see figure 7.1(a), between
the onset of the three-dimensional modes I and II denotes the onset of a quasi-periodic
mode. This two-dimensional bifurcation introduces a new period into the flow and con-
sequently breaks a core requirement for the use of Floquet analysis: a periodic flow. The
onset of the quasi-periodic mode results in a flow that resembles the experimental images
of regime C in the x-y-plane. In order to study the bifurcation to three-dimensionality
along this curve three-dimensional DNS has been employed. This has a much greater
computational expense than Floquet analysis and introduces more parameters into the
computations such as the appropriate choice of spanwise wavenumber and the number of
spanwise planes required to accurately model the flow. In order to reduce the computa-
tional overhead a number of restrictions were made to the scope of investigation. Instead
of determining the marginal stability curve in (KC,β)-space for this bifurcation, attention
was restricted to a single Stokes number: β = 40. Additionally, the stability characteris-
tics of a particular wavenumber were determined by monitoring the time-averaged kinetic
energy in the spanwise harmonic associated with this wavenumber. This meant that DNS
could be employed with a single spanwise mode to model the flow. Although this does
not result in a completely accurate modelling of the flow, it is sufficient to determine if a
particular wavenumber has energy associated with it. DNS with multiple spanwise modes
is employed later to visualise the results.

Figure 7.18(a) presents the results of a large number of three-dimensional DNS com-
putations in (KC,k)-space with a single spanwise mode. The simulations required longer
computational times to achieve a result in comparison to the Floquet analysis simulations.
Locations in (KC,k)-space were classified as stable or unstable depending on the time-
averaged kinetic energy in the spanwise mode. The boundaries of the unstable regions
were detected by the sudden jump in the time-averaged kinetic energy.

Three bands of wavenumbers, CI, CII, and CIII, were identified which represent re-
gions in (KC,k)-space that contain unstable wavenumbers. The boundaries of these
bands are not explicitly defined, although some refinement at the tips of these regions
was achieved, due to the computational expense involved in mapping them out. The first
band of wavenumbers, band CI, found to have energy in the spanwise mode was centered
about (KC ≈ 4.6, k = 0.5). It is possible that this band of wavenumbers emanates
from k = 0, i.e. as perturbations of two-dimensional flow, however it was not possible
to accurately determine the stability of spanwise modes with k < 0.5. Additionally this
band of wavenumbers occurs prior to the onset of the two-dimensional QP mode and it
is speculated that the nature of the bifurcation to this mode is sub-critical. The second
band of wavenumbers to become unstable was centered about k ≈ 1.75. When plot-
ted against predicted wavelengths from Floquet analysis, figure 7.1(b), this wavelength
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(a)

(b)
Figure 7.18: Results of a stability analysis using DNS with a single spanwise mode
at a fixed β = 40. Figure (a) shows the variation of the stability of points in this
control space as a function of KC and the spanwise wavenumber, k. Points are
classified as: � unstable or + stable. The three shaded regions, CI, CII, and CIII,
indicate possible bands of unstable wavenumbers. In (b) are shown the variation of
the Floquet multiplier magnitude and phase angle at β = 40.

lies on a curve extrapolated through the points denoting the transition to regime D. It is
therefore considered likely that this band of wavenumbers is arising from regime D like
structures in the flow which would form quasi-periodically as a consequence of the two-
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dimensional regime QP. The third band of wavenumbers, which again occurs for a slight
increase in KC is centered around k = 2.5. This band could conceivably be part of the
second band of unstable wavenumbers, however doing so would encompass a stable point
at (KC = 4.85, k = 2.5). This point was found to be stable and thus bands CII, and CIII

are drawn as two separate regions.
An attempt was made to isolate a fourth band of wavenumbers for KC = 5.2, 5.0 6

k 6 5.5. As noted previously in this chapter, Kx symmetry was enforced in the Flo-
quet analysis and the location of the unstable wavenumbers that would occur for flows
with enforced symmetry was computed, see branch III on figure 7.1(a). At the locations
predicted by three-dimensional Floquet analysis, see figure 7.1(b) for values, no unstable
wavenumbers were detected using DNS.

Figure 7.19: Instantaneous vorticity isosurfaces for the regime C instability, ob-
tained from DNS at (β = 40, KC = 4.8, k = 0.5). Two spanwise repetitions of
equal-magnitude positive and negative isosurfaces of spanwise vorticity component
are shown in a perspective view.
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(a)

(b)

Figure 7.20: Views of structures for the regime C instability in the y-z plane. In
(a) are shown instantaneous vorticity isosurfaces, obtained from DNS at (β = 40,
KC = 4.8, k = 0.5). Two spanwise repetitions of equal-magnitude positive and
negative isosurfaces of spanwise vorticity component are shown. The isosurface
magnitudes are higher than those shown in figure 7.19. In (b) an experimental
image, provided by Tatsuno and Bearman, at (β = 50.1, KC = 4.4) is shown. The
plane of visualisation is through the centre of the cylinder. Images are not shown to
the same scale.

Three-dimensional DNS was conducted at (β = 40, KC = 4.8, k = 0.5), which lies
within the first instability region, CI, with 32 spanwise Fourier modes. In figures 7.19,
7.20 and 7.21 isosurfaces of the spanwise vorticity component are presented. Additionally
in figures 7.20 and 7.21 experimental visualisations from Tatsuno and Bearman (1990)
obtained from the same spatial viewpoint are presented. The isosurfaces in figure 7.19
are suggestive of a travelling wave which in combination with the progression of the
contours of vorticity in the x-y-plane figure 6.19 would indicate that the slantwise vortices
are travelling to the right in the figure 7.19. In figure 7.20 a side view of these vorticity
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(a)

(b)
Figure 7.21: Views of structures for the regime C instability in the x-z plane. In
(a) are shown instantaneous vorticity isosurfaces, obtained from DNS at (β = 40,
KC = 4.8, k = 0.5). Two spanwise repetitions of equal-magnitude positive and
negative isosurfaces of spanwise vorticity component are shown. The isosurface
magnitudes are higher than those shown in figure 7.19. In (b) an experimental
image, provided by Tatsuno and Bearman, at (β = 46.9, KC = 4.4) is shown.
The plane of visualisation is 4.5D above the centre of the cylinder. Images are not
shown to the same scale.

isosurfaces are shown alongside a dye visualisation of Tatsuno and Bearman. While the
angle between the cylinder and the array of chevron-like shapes is different, there is a
definite similarity between the two. The difference in this angle could be caused by the
different location in (KC,β)-space that the two image were produced at. The top views,
figure 7.21, also have a remarkable similarity between them.

In figure 7.22 a sequence of contours of kinetic energy in the first spanwise harmonic
from saturated DNS is presented, plotted at T/8 increments. Near the cylinder the con-
tours more closely resemble those of regime B, see figure 7.8, with the energy contours
seeming to be split equally about the cylinder as it oscillates. Although, unlike regime B, it
is not perfectly symmetrical about the y-axis and with increasing distance from the cylin-
der this becomes more evident. However, further from the cylinder the contours have a
passing resemblance to those of regime D, see figure 7.16, with its distinctive boomerang
like shape.
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t = 1T/8 2T/8 3T/8 4T/8

5T/8 6T/8 7T/8 T

Figure 7.22: Contours of instantaneous kinetic energy in the fundamental spanwise
harmonic for three-dimensional synchronous flow in regime C, obtained over one
temporal period via saturated DNS at (KC = 4.8, β = 40, k = 0.5).
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7.5 Discussion

The marginal stability curves identified by three-dimensional Floquet analysis were found
to be in excellent agreement with an amalgam of the regime boundaries identified by
Tatsuno and Bearman (1990) (see figure 7.2). The multiplier branches I and II matched
the locations of the three-dimensional transitions A→D and A∗→B, respectively. It is
however the result of branch III that is particularly notable. It was stated previously
that this branch is a spurious result and it has been detected neither by experiments or
three-dimensional DNS. The interest in this result lies in its relationship to the bifurcation
that actually occurs along branch I: enforcing Kx symmetry shifts the onset of a three-
dimensional instability in (KC,β)-space from its location of branch I to the right. It
was established in §7.3 that a transition to the two-dimensional flow of regime S, with
its broken Kx symmetry, must occur before any three-dimensional transition occurs. In
addition, as the onset of regime S is supercritical, there is a very small regime beyond the
onset of regime S, see figure 7.17, and before the onset of the three-dimensional mode
where the flow remains two-dimensional. Only a very small change in either KC or β is
required before the transition to regime D occurs and it might be difficult to determine this
experimentally. The wavenumbers predicted by Floquet analysis for branch I (the A–D
transition) were in excellent agreement with the wavenumbers identified by Tatsuno and
Bearman (1990).

In figure 7.23(a) the two- and three-dimensional outcomes of the Floquet analysis for
the regimes A∗, B and E are compared with a wider selection of previous experimental
and analytical results. Branch II agrees well with the location of Tatsuno and Bearman’s
boundary between regimes A∗ and B, with the experimental results of Honji (1981), and,
towards the upper limit of the Stokes numbers we have used, with the stability analysis of
Hall (1984, here, equation 2.3), as well as the correlation of Sarpkaya (2002, here, 2.4).
As noted in §7.2 and shown again here in figure 7.23(b), the predictions of the spanwise
wavelengths are in reasonable agreement with the measurements of Tatsuno and Bearman
(1990). While these values are not as close as the agreement reached for wavelengths
on the A–D boundary (branch I), the values are quite close. Both the linear predictions
of this investigation and the experimental values of Tatsuno and Bearman (1990) for the
wavelengths along this transition lie between the correlation supplied by Sarpkaya (2002,
here, 2.4) and the high-β-asymptotic result of Hall (1984, here, 2.5). Also shown in
7.23(a) is the transition between regimes B and E which coincides well with the two-
dimensional transition to regime QP and the ‘upper curve’ of Honji (1981). The flows
of regime E have been characterised by Tatsuno and Bearman (1990) as switching the
direction of the induced flow direction from side to side intermittently. The flow of two-
dimensional regime QP switches the induced flow direction side to side on a quasi-perio-
dic basis. It is concluded that the B–E transition is fundamentally a two-dimensional one
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(a)

(b)

Figure 7.23: Comparison of previous results with those established via Floquet
analysis. In (a), thin lines with symbols show (KC,β) marginal stability boundaries
presented in previous experimental and theoretical studies (see legend), and thick
lines those established in the present Floquet analysis. Text labels A∗, B, and E are
the regime names given by Tatsuno and Bearman (1990). In (b), lines and symbols
show wavelengths of the corresponding three-dimensional instabilities.

with the intermittency in the regime E flows arising through a subsequent instability of
the two-dimensional quasi-periodic flow.

Determination of the A–C boundary was not attempted due to the inability to use
Floquet analysis. However, through the use of DNS, at greater computational expense,
an approximate map of unstable wavenumbers as a function of KC for a fixed β = 40

was constructed and is shown in figure 7.18. Three bands of unstable wavenumbers are
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shown with leading band CI, centered around k = 0.5. The interesting feature of this
band is that it can be detected at values of control parameters below the two-dimensional
linear stability boundary for the onset of the two-dimensional regime QP. Visualisations
of the three-dimensional DNS flow at this wavenumber (but above the linear stability
boundary), see figure 7.19, shows it to have a structure in the x-y plane similar to that
of the two-dimensional regime QP. Superimposed on top of this structure are spanwise-
travelling waves which give the flow the distinctive chevron-like structure seen in the
vorticity contours. Since these travelling waves break the spanwise reflection symmetry
(5.3) they will come in Kz-conjugate pairs. In figure 7.24 a close up of the boundaries of
regime C is shown along with the curve denoting the onset of the two-dimensional regime
QP. This particular region was the only region where the two-dimensional boundaries
predicted by the stability analysis did not match the regime boundaries of Tatsuno and
Bearman (1990) very well. This aspect, in combination with the detection of a three-di-
mensional mode before the onset of the two-dimensional regime QP, leads to the tentative
conclusion that a three-dimensional subcritical instability of the two-dimensional regime
QP may exist.

Figure 7.24: Close up in (KC,β)-space of regime C. Shown are regime boundaries
and labels of Tatsuno and Bearman (1990) and the two-dimensional quasi-periodic
marginal stability curve (dashed line).
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7.6 Summary

In this chapter results of a three-dimensional Floquet analysis were presented. Three
marginal stability curves in the (KC,β)-space were identified of which two corresponded
extremely well to experimental regime transition boundaries. The third marginal stability
curve did not have an equivalent in experimental results, which was due to the artificial
enforcement of a two-dimensional spatial symmetry. However, it did highlight that a nec-
essary condition for a three-dimensional transition to occur was for the underlying two-
dimensional symmetry to be broken. The predicted wavelengths from Floquet analysis
agreed with experimental results. In regime C, DNS was used to identify a spanwise-
travelling wave. It was hypothesised that the onset of three-dimensionality for the transi-
tion A–C may be subcritical in nature. The other transitions, A–D and A∗–B, were both
found to be supercritical.
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Chapter 8

The ‘Swimming’ Cylinder

The study of flows created by the combined rotational and rectilinear oscillation of a
circular cylinder has received little attention to date. It has been shown in a series of
two-dimensional studies by Elston (1997); Blackburn et al. (1998, 1999) that varying
the phase angle between the rotational and rectilinear motions can produce a variety of
flow structures in the surrounding fluid. In particular when the rotational and rectilinear
motions are synchronised and in-phase then a net thrust has been shown to result. No
three-dimensional studies or experimental validation of this result has been published. It
has been speculated that the thrust on the cylinder is due to the particular combination of
the oscillations causing a net pressure difference across the cylinder which leads to a force
being experienced by the cylinder. In this chapter the thrust experienced by the cylinder
and the influence of the relative velocity between the rectilinear and rotational oscillations
will be investigated in a two-dimensional subspace.

In §8.1 the parameters associated with the combined motions are reviewed and a new
computational domain is introduced. In §§8.2 and 8.3 the forces experienced by the cylin-
der leading to a net thrust are explored in a restricted two-dimensional subspace. In these
cases approximately the same control parameters used for the previous studies of Elston
(1997) and Blackburn et al. (1999) are employed. An examination of the influence of the
velocity ratio between the translational and rotational motions on the net thrust generated
is presented in §8.4. In the §§8.5 and 8.6 the results are discussed and summarised.
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8.1 Problem Definition & Numerical Validation

As outlined earlier in §1.1 the circular cylinder to be studied is subjected to two forms of
simple harmonic motion: one rectilinear and one rotational, as shown in figure 1.1. This
results in five dimensionless variables that combine to determine the state of the cylinder
at any time. These five variables are restated below:

• The Keulegan–Carpenter number

KC =
2πAt

D
(8.1)

• The Stokes number
β =

ftD
2

ν
(8.2)

• A rotational amplitude (in radians)
Aθ (8.3)

• A rotational Stokes number
βθ =

fθD
2

ν
(8.4)

• The phase angle between translation & rotation

φ (8.5)

where At and ft are the amplitude and frequency of rectilinear oscillation respctively, Aθ

and fθ are the amplitude (in radians) and frequency of rotational oscillation respectively
and D is the diameter of the cylinder. The velocity ratio, taken at the surface of the
cylinder, between the translational and rotational motions is expressed as:

Vr =
vt

vθ

=
β

βθ

KC

Aθπ
(8.6)

In the previous studies of Elston (1997); Blackburn et al. (1998, 1999) the Keulegan–
Carpenter number was specified as KC = π and the Stokes number as β = 90. On
a purely rectilinear oscillation basis, this places the flow generated from the cylinder in
three-dimensional regime B on a (KC,β)-space map (see figure 2.16) or, on a two-di-
mensional basis, below the curve of marginal stability denoting the transition to regime
QP. In the following investigation these parameters do not vary. The rotational Stokes
number is also fixed to a single value, that of the Stokes number, such that βθ = β =

90. This avoids a time-varying phase angle between the oscillations. Some preliminary
investigations have been conducted into the effect of varying this parameter however they
are not reported here. The phase angle between the motions is fixed at φ = π which
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has been shown in Blackburn et al. (1999) to result in net thrust being experienced by
the cylinder along the x-axis. The final parameter required to determine the motion of
the cylinder is the rotational amplitude, Aθ. In Elston (1997) and Blackburn et al. (1999)
this was set to the value Aθ = 1.0. This value will be used in the initial stages of this
investigation when the mechanism causing a net thrust is examined, although in later
stages it is varied. As a result of fixing the above parameters the equation for the velocity
ratio now becomes: Vr = 1/Aθ. This effect of varying this ratio between 0.2 and 2.0 is
investigated in §8.4.

The final aspect that is required to completely define this problem concerns the way
in which the cylinder is permitted to respond to the forces in a direction perpendicular
to the rectilinear oscillation (along the x-axis). The two scenarios that were explored in
Blackburn et al. (1999) were to: a) fix the cylinder at x = 0; and b) to permit the cylinder
to move along the x-axis in response to the forces on the cylinder surface. Using the latter
approach with two-dimensional DNS the cylinder was seen to ‘swim’ along the x-axis and
achieve a terminal velocity. In order to permit the cylinder motion the following equation
of motion along the x-axis was evaluated at each time step:

ẍ + bẋ + cx =
Fx

m
(8.7)

where b and c are the damping and stiffness constants respectively, Fx is the net force per
unit length along the x-axis and m is the mass per unit length. The cylinder is assumed to
be freely mounted and therefore: b = c = 0. In Blackburn et al. (1999) a value of 20 was
used for the mass per unit length and this value will again be used here.

8.1.1 Mesh and Boundary Conditions

The spectral element mesh used for this study is shown in figure 8.1. The size of the
domain, Ωs, is 33D× 25D in the x and y directions respectively, with the cylinder placed
8D in from the left edge of the domain. On the surface of the cylinder the flow satisfies
no-slip boundary conditions, u = uθ where uθ is the rotational velocity of the cylinder
surface. In both cases, where the cylinder was either fixed at x = 0 or free to ‘swim’,
the upper and lower boundaries of the domain are set to prescribed velocity conditions.
As described in chapter 3, the Navier–Stokes equations are solved in an accelerating ref-
erence frame attached to the cylinder. Consequently the velocity and pressure conditions
on these boundaries are adjusted accordingly with the prescribed velocity set as Up = 0

The form of the boundary conditions imposed on the left and right edges of the domain
depended on whether the cylinder was ‘fixed’ or ‘swimming’ along the x-axis. When the
cylinder was fixed, periodic boundary conditions were enforced on these boundaries so
that flow leaving one side would reappear on the other side. In the majority of cases flow
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Figure 8.1: Outline of the 206-element 33D× 25D domain, Ωs, used for the swim-
ming cylinder simulations.

would leave through the right edge and appear at the left edge with the same velocity that
it had when it left the domain. In contrast, the boundary conditions when the cylinder was
in the ‘swimming’ configuration were slightly time-dependent. In the initial stages of the
‘swimming’ case it was possible that the cylinder could move in the +x direction resulting
in the requirement that flow be permitted to enter the domain from the right boundary. To
permit this, at this stage of the computations the boundary conditions on the left and right
edges of the domain were the same as for the fixed case, periodic. Once the initial stage
was past and the velocity of cylinder was always −ve, the simulation was stopped and the
boundary conditions were altered. Along the left (inlet) boundary a prescribed velocity
condition was now enforced, where the velocity was set to the negative of the reference
frame velocity, while on the right (outlet) boundary an outflow boundary condition of the
following form was enforced:

p = 0, ∂u

∂x
= 0, ∂v

∂x
= 0. (8.8)

8.1.2 Convergence Studies

The polynomial order for the GLL tensor-product interpolants used with the domain Ωs

was determined through an initial two-dimensional study of a stationary cylinder in a
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p 4 6 8 10
St 0.1988 0.2009 0.2011 0.2011
Cx 1.373 1.388 1.389 1.389

Table 8.1: Results of validation tests for two-dimensional flow past a stationary
cylinder at Re = 200 showing variation in St (Strouhal number) and drag co-
efficient Cx with polynomial order p used for the tensor-product shape functions
employed in each spectral element of the domain Ωs.

cross-flow at Re = U∞D/ν = 200. The choice of this test was motivated by the availabil-
ity of an independent result and that the root mean square value of the Reynolds number
for a cylinder in rectilinear motion is Re = KCβ/

√
2 = 200. Curve fits published by

Henderson (1995), computed using values obtained in a separate set of two-dimensional
spectral element computations, give a Strouhal number St = 0.1971, mean drag coeffi-
cient Cx = 1.341 at Re = 200 for a domain size of 41 D × 56 D in the stream and cross
flow directions respectively.

Computed values of St and Cx are shown in table 8.1 against a range of polynomial
orders, p, employed for the interpolants used in each spectral element. The results ex-
hibit convergence to four significant figures at p = 8. The numerical values of both St

and Cx are slightly higher than those reported by Henderson although this is expected
due to the increased blockage associated with the smaller domain used here. For the re-
sults in table 8.1, a timestep with dimensionless value ∆tU∞/D = 0.005 was employed;
coefficients obtained with ∆tU∞/D = 0.0025 were the same to four figure accuracy.
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8.2 ‘Fixed’ Cylinder at Vr = 1.0

In this section the results are presented for the case the velocity ratio was set to one and
the cylinder was contrained in the x-axis to remain at x = 0. In figure 8.2 two sets of
instantaneous vorticity contours for half a period of oscillation are shown. The white
‘cores’ of vorticity close to the cylinder represent the highest magnitudes of vorticity
but are not shown due to the desire to achieve a reasonable resolution of the vorticity
contours of lesser magnitude. Only half a period of this flow is shown owing to the spatial
and temporal symmetry of the motion which, in this case, results in the flow having a H1

symmetry. On the right is a set of vorticity contours, at t ' 3480T , produced using the
domain Ωs with periodic boundary conditions on the left and right edges. Also shown
on the left side in figure 8.2 is a set of vorticity contours from Blackburn et al. (1998)
conducted for the same set of motion parameters but in a closed domain and at a time
much less than the set on the right: t ≈ 350T . The previously published results show
the outer layers of vorticity forming a continuous sheet, albeit of very low magnitude.
In contrast the vorticity contours on the right show that this outer sheet of vorticity has
evolved into a row of discrete vortices that are strongly interlocked with the inner vortex
sheets. Two reasons exist for this discrepancy: firstly, the closed domain employed in
Blackburn et al. (1998) will result in a different incident velocity profile than the more
recent case where the periodic boundary conditions employed result in a more laminar
velocity profile, secondly, the case on the right has been evolved approximately 10 times
longer than the published case. Correspondingly the fluid circulating through the domain
is closer to reaching its terminal velocity.

This particular combination of motion results in a jet of fluid perpendicular to the axis
of translational oscillation in the +x direction, as represented by the vorticity contours
in figure 8.2. In these figures it can clearly be seen that the regions of highest vorticity
formation are concentrated on the left-hand side of the cylinder. The equation for the
formation of vorticity in a two-dimensional incompressible flow at a no-slip boundary is
(Morton; 1984, see §3.2)

−νn · ∇ω = −n × (∇P + a). (8.9)

The combined oscillation results in the left-hand face always having a larger tangential
acceleration and thus the vorticity production term, n×a is always larger on the left-hand
side. The vortex sheets formed as a result of the oscillations rapidly cross-annihilate and
diffuse in the wake, as can be seen in the vorticity contours on the right in figure 8.2, so
that with increasing distance from the cylinder the vortex sheets are rapidly weakening.
At a distance of approximately five diameters downstream the vorticity has dissipated to
a level below the magnitude of the smallest contour.
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Figure 8.2: Instantaneous vorticity contours over half of one oscillation period, T
for a cylinder fixed at x = 0. Images are shown at intervals of T/8. Two sets of
vorticity contours are shown: on the left, in black and cyan coloring, are images
first presented in Blackburn et al. (1998) at t ≈ 350T in a closed domain, while on
the right, in red and blue coloring, are flows produced in the domain Ωs with inflow
and outflow boundary conditions at t ' 3480T . The cylinder’s rotation is indicated
by the radial line and its vertical rest position by the crosshairs.
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Figure 8.3: Variation of x-axis force components over a single period of oscillation
starting at t = 10T . Shown are the coefficient of force due to pressure, Cpx, due to
viscosity, Cvx along with the cylinders displacement y/D. The coefficients of force
are normalised using the cylinder diameter and a dynamic pressure based on the
RMS mean of the rectilinear velocity. The dashed lines represent the mean values:
C̄px = −0.068 and C̄vx = −0.088

In figure 8.3 the coefficients of force exerted on the cylinder and the displacement of
the cylinder over one period of oscillation are presented. These coefficients are shown
after 10 periods of oscillation have elapsed (the simulation was started in a quiescent
fluid) and the cylinder is now experiencing a periodic forcing with a non-zero mean. The
coefficient of force along the x-axis has been broken up into its two components: pressure
and viscosity. Examination of the mean of both components of force shows them to have
negative values: C̄px = −0.068 & C̄vx = −0.087. The significance of this is that both
components of the force are of the same magnitude and that both are acting in the same
direction and as a consequence a net force is exerted on the cylinder in the −x direction.
As the cylinder is fixed at x = 0 a propulsive jet in the +x direction arises.

Due to the nature of the periodic boundary conditions, the volume of fluid in the
domain will be accelerated by this force and therefore with time the force experienced by
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the cylinder should reach equilibrium when the drag induced by the resultant cross-flow
is equal to the force resulting from the combined oscillations. An examination of the
same force components at a much later time of evolution, t ' 3480T , finds that these
coefficients are: C̄px = 0.047 & C̄vx = −0.075. The net coefficient of force is non-zero,
C̄x = −0.028 and still acting in the −x direction, however, it is now only 18% of its
previous value at t = 10T . Given a much greater period of evolution it is likely that the
net force will attain the value of 0. The significant aspect here is that the pressure force
has changed sign and now acts to accelerate the fluid in the −x direction while the viscous
force still acts to accelerate it in the +x direction. It would appear that it is the viscous
component that is always acting as a thrust on the cylinder. Initially, in the absence of a
cross-flow, the pressure fields resulting from the combined motion also act as a thrust on
the cylinder, however, as a crossflow develops the pressure force changes sign and acts to
retard the cross-flow.

(a)

(b)

Figure 8.4: Flow produced by a cylinder fixed in the horizontal axis at x = 0 with a
velocity ratio Vr = 1.0 between the translational and rotational oscillatory motions.
Shown are: (a) fluid particle transport from ten massless particle sources placed
near the cylinder surface, and (b) instantaneous vorticity contours. The cylinder’s
rotation is indicated by the radial line and its vertical rest position by the crosshairs.

The resultant jet flow caused by this motion is illustrated in figure 8.4 by an image
of particles shed into the fluid and the instantaneous vorticity contours at the same time,
t ' 3480T . It illustrates how the vorticity cross-annihilates and diffuses so that it has
virtually gone when a distance of 5D downstream is reached. The ‘puffs’ of particles are
formed near the cylinder and then, as the vorticity diffuses, are convected downstream by
the jet of fluid. The particle image also shows clearly the H1 symmetry about the wake
centreline.
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8.3 ‘Swimming’ Cylinder at Vr = 1.0

In this section the oscillating cylinder is allowed to move in the x-direction in response
to any forces acting on it. As mentioned in §8.1 this permits a change in the boundary
conditions after an initial flow direction is established. With an inlet condition on the
left edge and an outflow boundary condition on the right edge of the moving domain,
a laminar cross-flow is achieved. The advantage of this configuration is that it is not
subject to any persistent vorticity crossing through the periodic boundary conditions that
were employed for the ‘fixed’ case. A set of instantaneous vorticity contours are shown
in figure 8.5 for an entire period of oscillation, at T/8 intervals. The absolute frame of
reference for these images is fixed and the cylinder is seen to be moving towards the

t = T/8

t = 2T/8

t = 3T/8

t = 4T/8

t = 5T/8

t = 6T/8

t = 7T/8

t = T
Figure 8.5: Instantaneous vorticity contours over one period of oscillation for the
‘Swimming Cylinder’ cylinder at Vr = 1, shown at intervals of T/8. The cylinder’s
rotation is indicated by the radial line and its vertical rest position by the crosshairs.

179



8.3. ‘SWIMMING’ CYLINDER AT VR = 1.0

left of the page. While the contours in the immediate vicinity of the cylinder resemble
those for the fixed case, the far-field contours do not. In this case the vorticity does not
completely cross-annihilate and diffuse, instead, almost immediately behind the cylinder
a distinct oscillation in the vortex sheets becomes visible. With increasing distance from
the cylinder the vortex sheets coalesce into discreet vortices to form an alternating row of
vortices in the far-field, as shown. The vortex sheet oscillation and the formation of the
far-field vortex row breaks the H1 symmetry present in the ‘fixed’ case. Additionally, as it
forms with a period of 2T it represents a period doubling bifurcation. This is also visible
in the particle transport diagram of figure 8.6 where, with increasing distance from the
cylinder, an oscillation in the particle structures becomes more pronounced.

(a)

(b)

Figure 8.6: Flow produced by a cylinder free in the horizontal axis with a velocity
ratio Vr = 1.0 between the translational and rotational oscillatory motions. Shown
are: (a) fluid particle transport from ten massless particle sources placed near the
cylinder surface, and (b) instantaneous vorticity contours. The cylinder is shown at
its maximum vertical position and with its maximum anti-clockwise rotation.

The time-average of the coefficients of pressure and viscous force on the cylinder are
at equilibrium at the instant shown. The values are (obtained over 50 periods): C̄vx =

−0.037 & C̄px = 0.037. As with the fixed cylinder case the viscous force is acting as
a thrust in the −x direction, while the pressure is acting in opposition. The cylinder
has reached an time-averaged terminal velocity, normalised by the RMS velocity of the
rectilinear motion, of 0.48.
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8.4 ‘Swimming’ Cylinder Simulations with Varying Vr

The impact of altering the velocity ratio between the rectilinear and rotational motions
is examined by visualising the matching vorticity contours and particle transport im-
ages, and by determining the terminal velocity in each case. The ‘swimming’ case
was used in preference to the ‘fixed’ case because the periodic boundary conditions
used with the ‘fixed’ case would permit vorticity to re-enter the domain from the left
edge and perturb the incident flow. The eight separate Vr cases that are examined are:
Vr = {0.2, 0.35, 0.5, 0.75, 1.0, 1.25, 1.5, 2.0}, of which one has already been studied in
§8.3. Presented in figure 8.7 is the terminal velocity attained by the ‘swimming’ cylinders
as a function of the velocity ratio. The velocity ratio was found to have a considerable
impact on both the terminal velocity and on the structure of the wake. It was found that as
the velocity ratio was decreased, and correspondingly the amplitude of rotation increased,
the terminal velocity increased. At Vr = 0.35 a peak increase in the terminal velocity of
approximately 230% over the value at Vr = 1.0 was measured. A subsequent decrease in
Vr caused the terminal velocity to decrease. Values of Vr > 1.0 resulted in a decrease in
the terminal velocity.

Figure 8.7: Variation of the two-dimensional terminal velocity, V∞ as a function of
the velocity ratio between translational and rotational motion. The terminal velocity
is normalised by the RMS velocity of the rectilinear motion.

The variation in the terminal velocity is inherently related to changes in the formation
of vorticity on the cylinder and the resulting structure of the wake. In figures 8.6, 8.8–
8.14 the particle transport images and instantaneous vorticity contours are presented for
the eight values of Vr considered. It should be noted that the contouring levels in figures
8.8–8.14 of the instantaneous vorticity plots are presented at the same levels so that a
comparison might be made in terms of the cross-annihilation and diffusion of vorticity
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(a)

(b)

Figure 8.8: Flow produced by a cylinder free in the horizontal axis with a velocity
ratio Vr = 0.2 between the translational and rotational oscillatory motions. Shown
are: (a) fluid particle transport from ten massless particle sources placed near the
cylinder surface, and (b) instantaneous vorticity contours. The cylinder is shown at
its maximum vertical position and with its maximum anti-clockwise rotation.

(a)

(b)

(c)

Figure 8.9: Flow produced by a cylinder free in the horizontal axis with a velocity
ratio Vr = 0.35 between the translational and rotational oscillatory motions. Shown
are: (a) fluid particle transport from ten massless particle sources placed near the
cylinder surface, (b) instantaneous vorticity contours, and (c) fluid particle transport
with particles leaving the domain boundary. The cylinder is shown at its maximum
vertical position and with its maximum anti-clockwise rotation.

occurring. The Vr = 1.0 case shown in figure 8.6 has an additional level included to high-
light the correspondence between the vorticity and the structures formed by the particles
in the wake.
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(a)

(b)

Figure 8.10: Flow produced by a cylinder free in the horizontal axis with a velocity
ratio Vr = 0.5 between the translational and rotational oscillatory motions. Shown
are: (a) fluid particle transport from ten massless particle sources placed near the
cylinder surface, and (b) instantaneous vorticity contours. The cylinder is shown at
its maximum vertical position and with its maximum anti-clockwise rotation.

(a)

(b)

Figure 8.11: Flow produced by a cylinder free in the horizontal axis with a velocity
ratio Vr = 0.75 between the translational and rotational oscillatory motions. Shown
are: (a) fluid particle transport from ten massless particle sources placed near the
cylinder surface, and (b) instantaneous vorticity contours. The cylinder is shown at
its maximum vertical position and with its maximum anti-clockwise rotation.

The vorticity contours produced at Vr = 0.2, figure 8.8, did not show the same degree
of diffusion and cross-annihilation found in the other cases. The vorticity present in the
wake shows little sign of decreasing in the far-field and is of much greater magnitude
than all the other cases at the same distance from the cylinder. The form of shedding
of vorticity from the cylinder into the wake is also unique as it produces only a single
vortex per half-cycle with the resultant wake immediately consisting of an alternating
row of oppositely signed vorticity. The particle transport image reflects the locations of
the shed vortices with discrete spirals of particles located at their cores, that are convected
downstream with the wake.

The largest terminal velocity was achieved for Vr = 0.35, figure 8.9. In this case the
width of the wake was at its narrowest with the majority of the cross-annihilation of the
vorticity occurring near the cylinder. With each half-cycle of motion a pair of vortices are
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(a)

(b)

Figure 8.12: Flow produced by a cylinder free in the horizontal axis with a velocity
ratio Vr = 1.25 between the translational and rotational oscillatory motions. Shown
are: (a) fluid particle transport from ten massless particle sources placed near the
cylinder surface, and (b) instantaneous vorticity contours. The cylinder is shown at
its maximum vertical position and with its maximum anti-clockwise rotation.

(a)

(b)

Figure 8.13: Flow produced by a cylinder free in the horizontal axis with a velocity
ratio Vr = 1.5 between the translational and rotational oscillatory motions. Shown
are: (a) fluid particle transport from ten massless particle sources placed near the
cylinder surface, and (b) instantaneous vorticity contours. The cylinder is shown at
its maximum vertical position and with its maximum anti-clockwise rotation.

formed. Although vorticity is detected further downstream than the other cases, where
vortex pairs are formed each half-cycle, e.g. Vr = 1.0 in figure 8.6, this is largely due
to the higher terminal velocity resulting in a lengthening of the region over which the
vorticity dissipates. The particles shed from the cylinder form a very narrow, periodic
wake, as shown in figure 8.9(c).

In figure 8.10 the increase of Vr to 0.5 has resulted in a loss of the H1 spatio-temporal
symmetry of the wake present at Vr = 0.35. The loss of symmetry is manifested in
the particle transport image as large scale oscillations of the particle structures about the
centreline of the wake. In the vorticity contours it is manifested as the beginning of the
formation of an alternating vortex row, as was seen for Vr = 1.0 in figure 8.6. However,
the vorticity has mostly cross-annihilated and diffused near the cylinder in comparison to
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(a)

(b)

Figure 8.14: Flow produced by a cylinder free in the horizontal axis with a velocity
ratio Vr = 2.0 between the translational and rotational oscillatory motions. Shown
are: (a) fluid particle transport from ten massless particle sources placed near the
cylinder surface, and (b) instantaneous vorticity contours. 32 periods of particle
shedding have elapsed. The cylinder is shown at its maximum vertical position and
with its maximum anti-clockwise rotation.

the Vr = 1.0 case, with the result that only a smaller scale oscillation forms in the wake.
A slight increase in Vr to 0.75, figure 8.11, sees the wake structure completely change.
In this case the vorticity forms an alternating double row (array) of oppositely signed
vorticity leading to the distinctive patterns seen in the particle shedding image. These
patterns clearly show that this flow is a jet as the sense of rotation associated with the
concentrations of vorticity is reversed. This reversal of rotation direction is reflected in the
particle image, where the spirals are rotating in the opposite direction from a conventional
planar Kármán wake, i.e. the wake of figure 2.3. Near the cylinder the streaks of particles
are rolling up to form small ‘puffs’ of particles. This was first distinctly observable for
Vr = 0.5, but in the Vr = 1.0 case, figure 8.6, this effect has increased and the ‘puffs’ of
particles are now a dominant feature of the wake.

The vorticity contours near the cylinder for Vr = 1.25, figure 8.12, form a distinctive
pattern of two inner sheets of oppositely signed vorticity with two outer rows of discrete
vortices. This feature is present for the cases Vr = 1.0, 1.25 & 1.5. Although the far-field
image of particle transport shows an oscillation at Vr = 1.25 the vorticity has largely
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dissipated near the cylinder. At Vr = 1.5 the far-field oscillation of the wake seen for the
previous case has grown considerably. Largely this is due to the tail of the vortex sheets
coalescing into a row of vorticity of alternating signs of very low magnitude. Only one
vortex can be seen here as the vorticity diffuses rapidly.

The flow for Vr = 2.0, figure 8.14, is considerably different from the previous cases
for a number of reasons. No longer are discrete ‘puffs’ of particles being formed near
the cylinder and convected downstream, instead two large vortices are formed behind the
cylinder that oscillate up and down with a period much greater than the oscillation of the
cylinder. The particle transport image in figure 8.14(a) shows all the particles shed over
32 periods of oscillation. The vorticity near the cylinder have a passing resemblance to
the vorticity contours of regime S (chapter 6) with the distinctive boomerang like shape.
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8.5 Discussion

It must be noted at the outset that this investigation is somewhat limited in scope owing
to time constraints. Consequently the investigation has been restricted to a two-dimen-
sional study of the forces experienced by the ‘swimming’ cylinder, as previously reported
in Blackburn et al. (1999), and a qualitative examination of the influence of the velocity
ratio on the wake structures produced by the ‘swimming’ cylinder.

The two components of force acting on a circular cylinder in a combined rotational
and rectilinear oscillation are due to the pressure and viscous forces acting on the cylinder
surface. In the initial phase of motion, when started in a quiescent fluid, it was shown
for the fixed case in §8.2 that both components are exerting a force on the cylinder in the
−x direction. This combination of oscillations has led to a mean pressure distribution
around the cylinder that acts in the −x direction. This is consistent with the simplified
explanation referred to in §2.5, where the higher velocity of the cylinder surface relative
to the fluid on the left side of the cylinder generates a lower mean pressure relative than
on the right side and thus a thrust is experienced by the cylinder to the left. However, it is
also interesting that the velocity field surrounding the cylinder has resulted in the viscous
force also acting on the cylinder in the −x direction. In the specific example provided of
a ‘fixed’ cylinder, §8.2, at t = 10T the coefficients of viscous and pressure force acting
on the cylinder were C̄px = −0.068 & C̄vx = −0.087. Both components are of the same
order of magnitude and of the same sign.

After sufficient time has elapsed a cross-flow develops relative to the cylinder. This
is either due to the jet of fluid produced when the cylinder is ‘fixed’ and the domain has
periodic boundary conditions, or it is due to the motion of the reference frame attached
to the cylinder in the −x direction for the ‘swimming’ cylinder case. At equilibrium the
time-averaged pressure and viscous forces are equal and opposite. As a consequence of
the cross-flow, the net positive pressure distribution moves from the right of the cylinder
to the left (front) of the cylinder resulting in a change in sign of the coefficient of time-
average force due to pressure. This force component now acts against the motion of
the cylinder in the −x direction. Although the magnitude has decreased slightly, the
mean force acting to keep the cylinder at a terminal velocity is the viscous force which is
acting as the thrust. Therefore it is the viscous force which consistently acts to propel the
cylinder through the fluid. It is likely that the pressue force is the sum of two components
acting in opposition: that due to the combined oscillations of the cylinder and that due to
bluff body drag which increases with the velocity of the cross-flow. It is concluded that
both the pressure differential caused by the oscillatory motion and the viscous force act
to propel the ‘swimming’ cylinder.

In the wake of the ‘swimming’ cylinder case, see figures 8.5 & 8.6, when compared
with the ‘fixed’ case, see figure 8.4, the formation of a row of alternating single vortices
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has clearly occurred. The formation of this feature represents a breaking of the H1 sym-
metry present in the wake of the ‘fixed’ case. A careful examination of figure 8.5 shows
that the two-dimensional bifurcation breaking this symmetry has resulted in a period dou-
bling in the far-field wake. It is speculated that the instability leading to this symmetry
breaking is not present in the ‘fixed’ case as the fluid circulating through the domain has
not yet attained a terminal velocity. In other cases, e.g. Vr = 0.5 − 1.5, a similar form
of symmetry breaking is observed with the wake forming structures in the flow that vary
with 2T .

Varying the velocity ratio, Vr, caused significant changes in the wake structure behind
the ‘swimming’ cylinder. Decreasing the velocity ratio, which corresponds to increasing
the amplitude and velocity of rotation, resulted in a critical value being obtained for Vr =

0.35 at which point a very narrow wake was formed. This corresponded with the highest
terminal velocity achieved. The near wake structure of the cylinder for this case was
formed by a pair of vortices being introduced by the cylinder every half-cycle. This
aspect was observed for all cases with Vr > 0.35. The wake structure at Vr = 0.2 was
substantially different from all the other cases primarily because only a single vortex is
being shed per half-cycle. This has two effects: firstly, a single row of alternating signed
vortices is formed immediately in the wake, and secondly, the vorticity does not dissipate
due to cross-annihilation and diffusion to the same degree as the other cases.

188



8.6. SUMMARY

8.6 Summary

In this chapter the results of an initial exploratory investigation into the forces providing
a thrust to a cylinder in combined rotational and rectilinear oscillation are presented. The
thrust was found to be due to both a viscous thrust induced by the particular combination
of oscillations employed and due to a thrust created by the pressure differential across
the cylinder that was induced by the combined motions. An examination of the impact
of varying the velocity ratio between the translational and rotational oscillations found a
critical value at which the highest terminal velocity was found and a very narrow wake
structure was produced. A velocity ratio less than this critical value resulted in a different
mode of vorticity shedding into the wake.
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Chapter 9

Conclusions

There have been two related themes of study presented in the preceding chapters. The vast
majority of the investigation has focused on an examination of the transitions between
different regime states for the flow produced by the rectilinear oscillation of a circular
cylinder. To a much smaller degree the flows produced by a circular cylinder in rectilinear
oscillation with an additional rotational oscillation imposed have also been investigated.
In the following sections the major conclusions arrived at for each theme are stated.

9.1 Rectilinear Oscillations of a Circular Cylinder

The objective of this study was to investigate the primary two- and three-dimensional
transitions for a circular cylinder performing rectilinear oscillations in a quiescent fluid
within the range of control parameters KC ∈ [0, 10], β ∈ [0, 100]. The results, obtained
using a combination of Floquet stability analysis and DNS, are summarised in figure 9.1.
Within the two-dimensional subspace perpendicular to the cylinder span two forms of
primary symmetry breaking bifurcations were located. The two forms of two-dimension-
al symmetry breaking are: a synchronous instability (regime S) leading to a change in
the spatial characteristics of the flow but preserving synchronisation with the cylinder
oscillation, and a quasi-periodic instability (regime QP) which introduced a second in-
commensurate frequency into the flow dynamics and consequently broke both the spatial
and temporal characteristics of the flow. The point of transition between these two forms
of instability is denoted as the ‘freezing point’ in figure 9.1.

Both forms of two-dimensional symmetry breaking were determined to be supercrit-
ical in their nature. In the synchronous instability the supercriticality was manifested
as increased deviation of the induced flow from the axis of oscillation with distance in
(KC,β)-space from the curve of marginal stability. The supercriticality of the quasi-
periodic instability was also manifested as an increased deviation of the flow from the axis
of oscillation, although due to the quasi-periodic oscillation of the flow this was harder
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Freezing point

2D

Synchronous (2D, then 3D)

Quasi-periodic (2D, 3D)

Synchronous (3D)

β

Figure 9.1: Locations and characteristics of the primary and secondary symmetry
breaking bifurcations.

to directly determine. However, the measure used to determine that this is a supercritical
bifurcation was the peak force in the direction perpendicular to the axis of oscillation,
which is related to the angle of deviation of the induced flow near the cylinder.

In three-dimensional space a symmetry breaking transition occurs slightly after the
two-dimensional synchronous transition in (KC,β)-space, as shown in figure 9.1. The
distance in (KC,β)-space space between the two-dimensional onset of regime S and the
subsequent three-dimensional bifurcation is not large and is related to the supercriticality
of the two-dimensional symmetry breaking mode. No experimental observations of a
pure regime S have been recorded and this is most likely owing to the narrowness of this
regime in (KC,β)-space. The experimentally derived boundary between regimes A and
D of Tatsuno and Bearman (1990) agrees extremely well with the predicted boundary
for the onset of the three-dimensional regime. Through an examination of the energy
in the spanwise mode the three-dimensional bifurcation associated with this transition
was determined to be supercritical. As shown in figure 9.1 the primary breakage for
the synchronous transition is the two-dimensional supercritical transition to regime S,
which is almost immediately followed by a secondary three-dimensional supercritical
bifurcation to regime D.

Within the range of consideration, for higher Stokes numbers, β & 50, and lower
Keulegan–Carpenter numbers, KC . 4, a primary three-dimensional bifurcation was de-
tected before any two-dimensional bifurcation occurred, see figure 9.1. This bifurcation
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is synchronous with the cylinder oscillation and introduces a spanwise variation into the
symmetric flow of the x-y plane. The location of this transition corresponds with the
lower boundary leading to regime B flow, which has experimentally been visualised as a
regular spanwise formation of streaks of dye. The resultant flow, regime B, is also syn-
chronous with the cylinder oscillation and was first reported by Honji (1981), analysed by
Hall (1984), noted by Tatsuno and Bearman (1990) and most recently investigated exper-
imentally by Sarpkaya (2002). The upper limit of regime B for increasing KC coincides
with the location reported for the two-dimensional transition to regime QP. The secondary
instability from regime B to E is driven by a two-dimensional transition to regime QP.

While the transition to regime E is preceded by a primary transition to regime B, the
situation for the transition to regime C is not as clear. Underlying the three-dimensional
transition to regime C is the supercritical transition to regime QP, and this is evidenced
by regime C flows being quasi-periodic. As shown in figure 9.1, the onset of regime C
appears to nearly coincide with the onset of the two-dimensional regime QP, however,
due to the techniques employed, this has not been absolutely established. In figure 9.1
the transition to three-dimensional flow is shown to occur slightly after the two-dimen-
sional onset to regime QP. The evidence regarding the type of bifurcation that occurs for
the transition to three-dimensional flow is inconclusive. On one hand it is known that
the neighbouring transition to the three-dimensional flows of regime D is supercritical.
Yet, on the other hand the greatest difference between the numerical predictions and the
results of Tatsuno and Bearman (1990) occurs for the onset of regime C, with Tatsuno
and Bearman’s boundaries occurring below the numerical prediction in (KC,β)-space.
This is the only region that the match between numerical and experimental results was
not excellent, although by no means is the current match poor. It is however consistent
with a weakly sub-critical three-dimensional bifurcation occurring to the two-dimension-
al flows of regime QP. It is speculated that the onset of regime C, in contrast to all the
other transitions, could be weakly sub-critical.

The ‘freezing point’, shown in figure 9.1, represents the location in (KC,β)-space
where the two-dimensional marginal stability curve transitions between regimes S and
QP and this is where the complex-conjugate Floquet multipliers approach the real axis
and coalesce into a single real mode. However, the experimental map of Tatsuno and
Bearman (1990) does not reflect this, with the transition between regimes D and C on the
marginal stability curve occurring at a higher value of β. This is due to the codimension-2
nature of the flow which means that beyond the curve of marginal stability the flow need
not be what was predicted on the nearest marginal stability curve. In this case, an ex-
tremely narrow extension of regime C up to the ‘freezing point’ was predicted. As it is
so narrow in (KC,β)-space it is again unlikely, although not impossible, to be observed
in experiments. This aspect represents an advantage that computational methods have
over experimental methods in that such fine-grained features can be examined. Above the
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curves of marginal stability identified by Floquet analysis in (KC,β)-space the predictions
of the linear analysis are not guaranteed to apply due to nonlinear effects. However, Flo-
quet stability analysis at the onset of the two-dimensional quasi-periodic mode predicted
the value of the secondary period introduced into the flow to make it quasi-periodic. Sub-
sequent two-dimensional DNS simulations have shown that the secondary period at onset
is retained in the flow, often at considerable distance from the onset in (KC,β)-space.

The research presented in this thesis has resolved a number of issues and introduced
new findings into the existing body of knowledge regarding bluff body flows. The primary
and secondary instabilities of the flow produced by a circular cylinder in quiescent fluid
have been located and identified, as summarised in figure 9.1. Fundamentally it has been
shown that the symmetry breaking instabilities that occur can be grouped into two-dimen-
sional and three-dimensional transitions. The three-dimensional flows that occur above
the line of marginal two-dimensional stability have been observed to have the character-
istics of the two-dimensional instabilities. Specifically the flows of regimes C and D have
been observed to have quasi-periodic and synchronous flows respectively, as predicted by
two-dimensional Floquet analysis. In both cases where the primary instability is two-di-
mensional a three-dimensional instability has been found to occur almost immediately,
one to a supercritical three-dimensional instability, regime D, and the other to a, possibly,
subcritical three-dimensional instability. Within the range of control parameters consid-
ered as β → 100 the flow has been shown to be primarily unstable to a three-dimensional
supercritical transition that results in the formation of spanwise regular structures in the
flow (regime B). It is particularly notable that the upper limit of this regime, that has been
observed experimentally, is predicted by two-dimensional analysis. Beyond transition the
flow has been illustrated to be codimension-2, that is, the state of the flow is determined by
two parameters and not necessarily the nearest marginal stability location. Additionally
the three-dimensional nonlinear flows have been shown to retain signature characteristics
predicted by two-dimensional linear analysis at considerable distances in (KC,β)-space
from the marginal stability cureve, i.e. the introduction of a secondary period.

9.2 The ‘Swimming’ Cylinder

This theme of the research focused on examining the thrust generated by a circular cylin-
der in rectilinear motion with an additional rotational oscillation imposed. The force
experienced by the cylinder was due to three components: the viscous force at the cylin-
der surface; the pressue differential caused by the relative velocity of the cylinder surface
to the surrounding of the fluid and; the pressure differential caused by a cross-flow. Ini-
tially the viscous and pressure forces act in concert to exert a thrust on the cylinder. At
equilibrium the pressure forces are opposed to the cylinder motion and are balanced by
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the viscous force, which is still acting as a thrust.
The velocity ratio between the rectilinear and rotational oscillations was found to sub-

stantially effect the terminal velocity of a cylinder permitted to move in response to the
forces on its surface. A critical value of Vr ≈ 0.35 was identified where the terminal ve-
locity was highest and the resultant wake was very narrow. The relative velocity between
the rotation and translation was also found to influence the number of vortices shed per
half-cycle, for Vr < 0.35 only one vortex was observed to be shed per half-cycle with the
consequence that the vorticity in the wake formed an alternating row of oppositely signed
vorticity that persisted far further downstream than all the other cases considered. At val-
ues of Vr > 0.35 two vortices were observed to be formed and shed into the wake each
half-cycle. Consequently the wake formed immediately behind the cylinder consisted of
two inner sheets of oppositely signed vorticity surrounded by rows of discrete concen-
trations of vorticity. Dependent upon the different values of Vr the vorticity in this wake
rapidly cross-annihilated and diffused into the flow. At Vr = 0.35 the wake was observed
to be have H1 symmetry about y = 0. With increasing Vr instabilities formed resulting in
the breakdown of the wake into a single row of vorticity of alternating signs which caused
large scale oscillations in the particle traces presented. In one case, Vr = 0.75, a double
row of alternating vorticity was formed that resembled a reverse Kármán street.
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9.3 Directions for Future Work

It is hoped that the present investigation has provided some additional understanding of
the dynamics of flows created by oscillating bluff bodies. However it has also raised a
number of issues that warrant further investigation. In relation to a cylinder performing
rectilinear oscillations some of these include:

• A detailed determination of the nature of the bifurcation to regime C.

• A more substantial investigation of further transitions beyond the primary and sec-
ondary transitions detailed here.

The ‘Swimming’ cylinder problem also raises a number of questions that have not
been addressed in this initial study:

• The different wake states have only been discretely examined, A finer-grained study
may reveal other states of shedding of fundamental interest.

• The three-dimensional nature of the ‘swimming’ cylinder problem was not ad-
dressed here. Some initial computational research (not presented) using Floquet
analysis and DNS has been conducted in this area which does show that the thrust
exists. However, more research is required.

• In particular, experimental studies of a ‘swimming’ cylinder would be a useful val-
idation of this work.
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