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Summary

In this dissertation, an object-oriented finite element and spectral element library has been
developed and applied to two physical problems. The first problem considered is vortex
breakdown flow in a confined swirling cylinder, with the second part of the thesis looking at
interaction of multiple sphere wake flows.

Chapter 2 introduces a range of numerical techniques used in the current work. A basic
outline on the finite element method, along with the spectral element variation of this method,
are giving. The penalty pressure treatment is introduced within this context, with the high-
order temporal scheme being described for treatment of time-dependant problems.

Chapter 3 overviews the structure of the computation code developed, including aspects of
the object-oriented and parallel design of the current code. A series of numerical experiments
are reported, showing that the parallel performance is acceptable on the tested hardware.

Chapter 4 deals with vortex breakdown, and reviews a number of existing models of
vortex breakdown. Most of these existing models have been applied to vortex breakdown in
pipe apparatus. Chapter 5 examines one of the more successful of these theories, the trapped
wave model, in the context of the confined apparatus. This theory is shown to do a good job
describing the onset of vortex breakdown in the confined apparatus, once allowance is made
for the inherently coupled nature of the confined flow.

Chapter 6 outlines a series of simulations on two-dimensional and axisymmetric wake
flows, which are used to validate the results of the high-order spectral method for shedding
wake flows. In Chapter 7 these results are extended to study flow past a single sphere at
higher Reynolds numbers, where the flow develops into a shedding flow with a doubly looped
wake.

In Chapter 8 interaction of multiple sphere wakes is examined at a Reynolds number
of 300. This Reynolds number corresponds with the shedding wake frequency of the single
sphere flow, and is seen to produce a complex interaction between the two shedding wakes.

Chapter 9 provides a summary of the results of this dissertation, along with suggestions

of future directions and improvements in the current work.
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Chapter 1

Introduction

Solution of the Navier-Stokes equations has been a core technique in the study of fluid
dynamics for over a century. For much of this time, computer simulation has been a key
solution technique. However, the gap between what is achievable with current computers
and the accurate simulation of fluid flows of interest in the real world is still significant.

Early numerical simulations of fluid flow relied mainly on the finite difference method,
which has proved to be quite successful at solving flows on simple flow domains. Recently,
the finite volume and finite element methods have become common, especially for use in
commercial fluid dynamics codes. There have been literally thousands of papers and hundreds
of books written about these techniques. Amongst these, the series of Becker et al. (1981)
provides many practical details on the finite element method.

Along with these low order methods, global spectral methods have shown great potential
for high accuracy simulation, and have been especially successful in direct numerical sim-
ulation of turbulent transition flows. Much of the groundwork for the spectral method is
outlined in Gottlieb and Orszag (1977).

A relatively new tool in simulation of fluid dynamics is the spectral element method.
While this technique clearly builds on previous finite element and spectral methods, the
term spectral element method was first used to describe high order Galerkin methods by
Patera (1989). The spectral element method inherits the ability to model complex domains
from the finite element method, while also being capable of simulating equations to a high
order of accuracy - a property associated with spectral methods. This potential for high
order simulations of complex domains, however, comes at a price. The relative complexity
of implementation of the finite element method is also associated with the spectral element

method. While the spectral element method shares the capability to produce high order
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solution with the spectral method, care must be taken to ensure that problems are sufficiently
resolved for exponential accuracy to become effective.

As well as advances in the numerical techniques used to study fluid flows, there have also
been many changes in the actual computers used to run these simulations. The most drastic
change in computing technology has been an exponential increase in the density of computer
chips, with a corresponding increase in computer speeds (Moore’s ‘Law’, which states that
transistor density will double every 18 months has remained a good approximation for the
last 20 years. Moore (1965)). As well as CPU speeds the amount of memory and storage
present, on systems has increased at a similar pace.

As well as increases in processor speed, the push to simulate more complicated physical
flows has led to the increased use of parallel computing; the linking of multiple CPUs to
work on a single problem. Implementations of parallel architectures range from relatively
small systems sharing common memory, usually on a single motherboard, up to extremely
large system with thousands of processors, typically linked by relatively slow networking
technology.

While parallel computing offers the possibility of significant speedups for numerical pro-
grams, allowing the simulation of significantly more complicated fluid dynamics, this speedup
comes at a price. Parallel programming is inherently more complicated than serial program-
ming of the same tasks. Source code compilers, which for decades have successfully optimized
FORTRAN programs at levels as good as or better than hand written assembly code, have
only been moderately successful at parallelizing programs on shared memory machines. On
distributed memory machines automatic code generation is even less advanced, typically
working only for so called ‘embarrassingly parallel’ problems.

With the possibility of high-accuracy parallel simulations in mind, the following work
aims to implement and apply a parallel finite element and spectral element code to two fluid
dynamics problems. The first problem considered is the simulation of vortex breakdown in a
confined torsionally driven cavity. The torsionally driven cavity is a simple apparatus, defined
by only two free parameters, and yet exhibits vortex breakdown over a range of parameter
values. Vortex breakdown, the sudden change of a compact vortex core into a larger, slowly
recirculating zone, is of relevance to the study of industrial mixing problems, aeronautical
stability of delta wings and meteorological flows.

In the current work a number of mechanisms for vortex breakdown from existing literature
are examined. These mechanisms have typically been formulated in the context of swirling
pipe flow, and one of the aims of the current work is to test the effectiveness of one of the
more successful pipe breakdown models within the context of confined swirling flow.

The second problem considered in this thesis is the simulation of compact bluff body flow,
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which has relevance to many industrial and geophysical applications. In this context, flow
past a single sphere and flow past two interacting sphere wakes are studied.

A series of simulations are performed on two dimensional cylinder flow to validate the
effectiveness of the current model. Additionally, flow past a single sphere at moderately low
Reynolds numbers is simulated over a range where the resulting flow is axisymmetric. Again,
this low Reynolds number flow provides and important validation of the current model.

Flow past a sphere is simulated at an increased Reynolds number, where the flow is seen
to change from an axisymmetric flow to a simple shedding flow with a single wake frequency.
Finally, this work is extending to examine the interaction of shedding wakes behind two

spheres at varying separations.



Chapter 2

Numerical Methods

2.1 Introduction

The following chapter outlines the key numerical techniques used in this work. Over the
course of this work both the steady and time dependant Navier-Stokes equations are solved.
To solve the steady equations, a Galerkin finite element method with a penalty pressure
technique is employed. In the penalty method, a penalty term is used to approximate pressure
in the steady form of the Navier-Stokes equations, reducing the steady equations to a function
of velocity only.

For the numerically more demanding time-dependant swirling and compact bluff body
flow simulations a high order spectral element method is employed. While the derivation of
the spectral element method is quite similar to that of the finite element method, modifi-
cations are introduced to allow for the efficient use of high order elements. For sufficiently
smooth problems this method gives the possibility of exponential convergence of the solutions
with increasing element order. A multi-step projection scheme with high order boundary con-

ditions is used for the temporal discretisation.

2.2 Governing Equations

The current work deals exclusively with the simulation of the incompressible Navier-Stokes
equations. Under the incompressibility assumption the density of the fluid is considered to
be constant; an assumption that is equivalent to assuming an infinite sound speed within the
fluid. This assumption is reasonable when fluid speeds are considerably less than the sound

speed, which is true of the problems parameters considered in the current work.



Numerical Methods 2.2 Governing Equations

To reduce the number of free parameters the Navier-Stokes equation can be non-dimensionalised.

These equations can be written as

ou 1
—+(U-V)ll = —Vp'f'E

2
5 Vu (2.1)
Veu = 0 (2.2)

where u is the non-dimensionalised velocity vector and p is the non-dimensionalised pressure.
The Reynolds number, Re, is a dimensionless parameter defined as Re = % for a typical
velocity U, typical length L and kinematic viscosity v.

The flow domain, indicated here as Q, can be separated into an interior Q region and a
boundary (992 +T') . The boundary sections denoted by 9 represent parts of the bound-
ary with essential boundary conditions and the boundary sections represented by I' are
boundaries with natural (derivative) boundary conditions. The boundary conditions for the

Navier-Stokes equations are then written as

u=u on oN (2.3)
Ou
= on r (2.4)

where % is the derivative in the direction normal to the boundary T'.

2.2.1 Weak Formulation

A common way to solve equations (2.1) and (2.2) is to introduce the method of weighted
residuals (see Becker et al. (1981) for full details). In this approach equations (2.1) and (2.2)
are integrated over the domain 2 with respect to the vector weight function w and scalar

weight function wj, respectively. The weak form of these equations is

ou 1 _
/{Z(E+(U-V)U+VP—EV U)‘W‘dx =0 (2:5)

/ (V-u)wpdz = 0. (2.6)
Q

To reduced the order of the highest derivatives, occurring in the viscous and pressure terms,

integration by parts is performed on equation (2.5) to yield

A(%—?%—(U-V)u) -w dx

+/ (iVu-Vw—pV-w> dx
Q Re

+/89+FV(u-n)-wds=0. (2.7)
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On the essential boundary 92 values of u are known and need not be solved. The
corresponding weight functions w are also set to zero at these points to maintain a consistent
system of equations. On the boundary T the value of Vu - n is the specified boundary value
Tn from equation (2.4). Substituting these boundary values simplifies the weak form of the

Navier-Stokes equations to

ou 1
/Q ((Eﬁ-(U-V)u) ‘W+EVU'VW_I7VW> dx

= —/an ds (2.8)
r
/ (V-u)wpde =0 (2.9)
Q
with the essential boundary condition
u=u, on 0. (2.10)

2.3 Spatial Discretisation

To approximate the flow equations in the spacial coordinates the finite element method, along
with the spectral element method variation, have be used in the current work. Both of these
techniques rely on the underlying idea of splitting the simulation domain into a number of

discrete areas, generally refered to as elements.

2.3.1 Element Representation

A key feature of finite and spectral elements is the reduction of the global system (2.8) and
(2.9) to a series of coupled element equations. This greatly simplifies the solution process on
complex domains, as the system can be built on a geometrically regular domain (the master
element) and assembled back into a global system for solution. Since the master element is
defined as having a regular coordinate system, the same element construction routine can be
used for geometrically different elements.

The composition of the global domain € from n, elements 2., and the corresponding
splitting of the boundary T into np. boundary elements Iy, gives the element version of

equations (2.8) and (2.9) as
Ou 1
; [‘/Qe ((E +(u-V)U+VP> ‘We‘f'ﬁvu'VWe) dx]
- _Z/ TaWe ds (2.11)
Tbe Fbe
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> [/Q (V- u) wde] =0 (2.12)

Ne
This decomposition is made possible by restricting the element weight functions w, to be
non-zero only on a corresponding element 2.. Nodes on the boundaries of elements will
usually be members of adjoining elements (or boundary elements), and it is these nodes that

couple the elements together into a global system.

2.3.2 Element Shape Functions

To produce a discrete representation of (2.11), the flow variables (u,p) are represented as a

sum of local trial functions,

n

u oy g, (2.13)
s=1
m ~

P~ Y P (2.14)
s=1

where n and m are the respective orders of approximation of the trial functions <;3 and 1& In
general n and m will not be equal.

The finite element and spectral element methods are both examples of Galerkin methods
where the test functions (w,w,) are chosen from the same space of functions as the trial

functions, so for each element the set of weight functions

w= %), t=1.mn (2.15)

are used.

2.3.3 Master Element Transformation

To avoid having to build the local equations in a different coordinate system for each element,
it is convenient to transform the equations to a so-called master element. This element is
defined with coordinates (£,7, () in the range —1 < &,7,( < 1.

To perform the change in coordinates from master element to global coordinates, the
positions can be expanded as a sum of shape functions in the same way as equation (2.14),

so that n
x() & Y x;$;(€) (2.17)
J

where the constants x; are the nodal positions supplied by the mesh geometry.
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To perform differentiation with respect to the global coordinate x, the Jacobian matrix J
is constructed by differentiating equation (2.17). In three dimensions the Jacobian is a 3 x 3
matrix, with component («, 3)
oz(®) = D,
(aaﬁ) (0‘)
J %@ Z g(ﬂ (2.18)

where x = (W2 z(3)). Inversion of the Jacobian matrix, which is once again a 3 x 3

matrix, gives

g
—1 —
Jt= (—63:@ (2.19)
so that the global derivative of the shape functions ¢ are
99; Z 1(@6) 6¢J Z 23 6¢J
= J~ 2.20
dz(®) = 9@ HEB) (2.20)

2.3.4 Lagrange Polynomials
Lagrange polynomials have the property that
hp(xq) = dpq (2.21)

where the delta function d,, = 1 when p = ¢ and zero otherwise, and the points z, represent

the nodal points of the polynomial. The Lagrange polynomial can be written as

P
Hq:O,qsﬁp ),

quzo (zp — 2q)

The choice of how to place the nodal points of the element is critical to the efficiency of the

hy(z) = (2.22)

Galerkin techniques. For finite elements (which are almost always low order), a regular spac-
ing of internal element nodes is common. To achieve accurate integration, Gauss-Legendre
numerical quadrature is used. While this is the most accurate form of integration, it requires
a loop over the quadrature points, and for each quadrature point a loop over all of the element
shape functions. As the order of the polynomials (and therefore quadrature) is increased this
process becomes increasingly expensive.

In the spectral element method the nodal points are place on the zeros of the Gauss-
Lobatto-Legendre (GLL) polynomials. This is then combined with Gauss-Lobatto-Legendre
quadrature which sums quadrature weights at the same GLL zero points. Using equa-
tion (2.21) it is then possible to loop over the quadrature points, which are also the nodal
points, once only. Since a second loop over the nodal points is not required, the efficiency of

the element sum is dramatically improved for high order elements.
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2.3.5 Numerical Quadrature

To effectively integrate the equations (2.8) and (2.9) it is necessary to use numerical quadra-
ture. As discussed in the previous section, the choice of quadrature rule will greatly affect
the efficiency of the numerical method.

For low order elements, as used in the finite element method, the number of quadrature
and nodal points is low and it is benificial to use the most accurate quadrature scheme avail-
able. Gauss-Legendre quadrature is employed. This quadrature rule sums over quadrature
points in the interior of the elements. A one dimensional Gauss-Legendre quadrature with
k points will integrate a polynomial of order (2k + 1) exactly, and the multi-dimensional
quadature is simply generated from a tensor product of the one dimensional quadratures.

For the higher order spectral element method the use of Gauss-Legendre quadrature
becomes excessively expensive. Instead, the Gauss-Lobatto-Legendre quadrature points are
used. This quadrature rule includes both end points of the domain. By choosing the nodal
points to be at the integration points of the quadrature rule, the time complexity of the
integration loop is reduced substantially.

When using the finite element method to solve the Navier-Stokes equations in cylindrical
polar coordinates, the use of Gauss-Legendre quadrature provides an additional advantage.
Integration of elements with nodes on the the pole (r = 0) need only be evaluated on the
interior of the element (on the Gauss-Legendre quadrature points). This means that the pres-
ence of terms in the Navier-Stokes involving the reciprocal of r do not pose a problem. When
the spectral element method is in use, however, the same is not true; the quadrature points
are the nodal points which will include the axis. To resolve this, Gauss-Radau-Legendre
quadrature is used on these elements. The Guass-Radau-Legendre points include only one
end point (in this case £ = 1) rather than both. The nodal points of the element are also
adjusted to sit on the Gauss-Radua-Legendre points which do not involve the pole. Use of
this quadrature rule allows for exponential convergence of the spectral element method for

problems involving a coordinate singularity.

2.4 Temporal Discretisation

2.4.1 Steady State - Penalty Pressure Approximation

The seemingly simplest approach to dealing with time derivatives in the Navier-Stokes equa-
tions is to make the assumption of steady flow, which involves neglecting the ‘Z—? terms from

the Navier-Stokes equations. With time derivatives dropped from equation (2.8) the steady
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Navier-Stokes system in weak form is

/Q<(u-v)u+Vp—év2u>-w dx = 0 (2.23)

/v-udx =0 (2.24)
Q

giving a coupled set of equations in three velocity components (u) and one pressure variable
(p)- This coupling of the pressure with all velocity components leads to a large (and therefore
computationally expensive) system to be solved. As a way of decoupling the pressure variable,
the penalty method (Chorin (1967)) is introduced, with the continuity equation approximated
as
1
V-ur 3P (2.25)

where A is a large constant. Clearly, as A — oo equation (2.25) approaches the continuity
equation (2.2). This modified continuity equation can then be used to provide an approx-
imation for pressure in the momentum equation to give the following modified momentum
equation

/Q ((u-V)u-w+)\(V-u)(V-w)+ éVu-Vw) dx =0. (2.26)

Although the modified equation is no longer dependant on the pressure, the equation is still
non-linear due to the presence of the advection term (u-V)u. To deal with this non-linearity,
the solution procedure employed is to start with an initial guess for u and apply a global
Newton-Raphson approximation to equation (2.26).

The pressure term A(V-u)(V-w) acts to couple the velocity components of the equations,
requiring the solution of (2.26) as a coupled system of velocity components. Another feature
of this term is the presence of the large constant A. The discretisation of the the (V-u)(V-w)
term results in the presence of off-diagonal terms that are of similar size to the diagonal matrix
terms. When this term is multiplied by the penalty parameter a very poor condition number
for the global system results. This poor condition will causes very slow convergence when
iterative techniques are used to solve the system. As a result of this poor conditioning, the
only viable way to solve the penalty system is by the use of direct solvers.

Equation (2.26) can be analytically linearized using the Newton-Raphson method. Start-
ing with an initial guess for velocity ug the linearized momentum equation

1
/Q ((uo -V)du-w+ (du-V)ug-w+ (AV-5u)(V-w) + EV(SU . Vw) dx = (2.27)

1

~ [ (w0 9w+ 07 w)(T w7

Vug - Vw) dx
(2.28)

is solved iteratively by incrementing ug by du at each iteration.

10
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The Newton-Raphson method theoretically exhibits second order convergence and in the
current work has been seen to converge within three or four iterations. It does, however, have
a relatively small radius of convergence which requires an accurate initial value ug; a poor
initial guess causes the iterative process to diverge. An appropriate initial guess is obtained
by using a lower Reynolds number result as the initial guess for the current Reynolds number
solution. Higher Reynolds number results are similarly attained by stepping up in Reynolds
number.

The major disadvantage of the direct solution technique is that the sparse matrix system
is filled in by factorisation. The sparse global matrix becomes a dense banded system, with
the bandwidth being determined by the geometry of the mesh. While the actual value of
the bandwidth is mesh-dependent it will typically be proportional to nn(=2) where nn is the
number of mesh nodes and nd is the mesh dimension. This produces a total matrix storage
requirement proportional to nn(1*+7a). For a 100 x 100 first order mesh in two dimensions,
this requires approximately 2 x 100? x (100 + 100) x 2 matrix values or 64 megabytes of
storage in double precision. While this is within the limits of current desktop machines, a
three-dimensional 100 x 100 x 100 mesh requires approximately 3 x 1003 x (1002 +100%) x 3 =
1.8 x 10! matrix values, or 1.44 Terabytes of storage. Clearly the penalty method is not

suitable for three-dimensional or high resolution simulations.

Finite Element Approximation

To employ the finite element technique to solve the the equations (2.27), the velocity u is

approximated in terms of the element shape functions éj,
u=u%Ye, ~ Z ﬂgo‘) ésea (2.29)
B

where e,, is the unit vector in the o coordinate direction. For Cartesian flows the coordinate
directions (a1, as,as) are identified with the directions (z, y, 2).

Similarly, the element test functions are element shape functions denoted as 1&,5 where the
index t indicates a given test function in the range 1 < ¢t < m, so that the family of test

functions is
w = {w,ga)ea} = {g[;,ga)ea} (2.30)

Each term in equation (2.26) can then be approximated using these expansions. These

element expansions are

oul® oyl ow® Hw®
(@)Y . (@) - .
/Q(VU ) (Vwi) dx /Q< or ’ 0z ) ( or ' 0z )dx

11
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ou® ow“
Z ox 2B 6(1;(»@)

~ 6¢s 8¢t
~ (@)
~ /Z 520 558 (2.31)
3 3 .9
/(u-V)u-wdxz/ Z <Zu§7)¢tm> ﬁgﬁ)ngﬁ) dx, (2.32)
Q Q5= \h=1 T

and

9 . 3 (a)
/Q (V- u)(V - w) dx ~ / Zajﬂ) ®) (Z ax@) (2.33)

The integration over the domain  is performed using Gaussian quadrature so that the
shape functions <;3 and 1& in the previous equations are evaluated at the Gaussian quadrature

points.

Axisymmetric Cylindrical Polar Coordinates

As written, equations (2.1) and (2.2), and consequently equation (2.27), are only valid in
Cartesian coordinates. Extra terms are needed to allow for the simulation of flow in axisym-
metric cylindrical-polar coordinates. To do this, it is useful to define the operator

0 0

V.= (5707 &

) (2.34)

where the coordinate directions are identified with the cylindrical polar coordinates (r, 6, z).
This allows the Navier-Stokes equations to be written as a group of terms resembling the
Cartesian expressions, with additional terms to allow for the change of coordinate system.

Using this notation, the axisymmetric form of equation (2.26) is

/ ((u -Veou-w+ AV, -u)(Ve-w) + ich : Vcw) dx
Q Re
a2
# [ (2 0) w ax
Q r r
Urug  Up [(Ow, Ow, w, [ Ou, Ou,
+)‘/Q< r2 +7<8r + 6r>+7<8r + 8r)) dx
! (—“T uo 0) wdx =0 (2.35)

+_ - —
Re r2’  p2’

With the change of coordinates the integral weighting dx becomes rdrdz, since the inte-
gral over 6 gives a constant 27 for all equations. This leaves two terms in equation (2.35) that
involve 1/r terms, even after being multiplied by the integral weighting. In the finite element

method the pole singularity is avoided by using the Gauss-Legendre quadrature weights,

12



Numerical Methods 2.4 Temporal Discretisation

which do not include the points on the edge of the element corresponding to r = 0. When
using the spectral element method, Gauss-Radau-Legendre quadrature is used on elements
containing the r = 0 axis. Since the nodal points are chosen to correspond with the quadra-
ture points in the spectral element method, nodal points on the axis are not required, which
resolves the problem of the coordinate singularity.

Applying the method of weighted residuals to the extra terms gives the following addi-

tional terms in the element matrices. For the diffusion contribution,

1 Up  Ug 1 Up Uy
ﬁé(_ﬁ’_ﬁ’o)-de = E‘/Q(—T—ﬂm—r—zwg) dx
. RO
~ E/ 3 ~—5ds (P) ax. (2.36)
Qg=1,2

For the convection terms,
/ U Ut -wdx~/ Z(—u“)c& o +u® @5(2)) ERAWS (2.37)
Q r’op 0 ~ Q — p ¥Yp¥it p ¥YpYt r .
and for the penalty pressure
urw ow, Ow, w, [(Ou, Ou,
— dx =
)‘/( r(6r+8r)+r(6r+6‘ *

50
A/ (¢s P+ Y ¢t —pyal) + Z 6‘7)5 A<a>¢<1)) dx. (2.38)

a=1,3

2.4.2 Time Dependant Flow - Projection Equations

While the steady approximation offers a simple implementation, a desire to simulate transient
phenomenon requires the use of a more sophisticated temporal discretisation. While it is
theoretically possible to solve the equations (2.1) and (2.2) as a large coupled non-linear
system in u and p at each timestep, it is more computationally efficient to break down this
task into smaller components.

In the projection technique of Chorin (1968), the Navier-Stokes equations are solved by
performing the following two-step process. Firstly, the momentum equation (2.1) is evolved
without considering the pressure term,

n n L oo on
AL +(u"-V)u" = EV u (2.39)

*

to obtain an intermediate velocity u*. The pressure is then re-introduced by solving the

expression
lln+1 —u*

A —Vp™th, (2.40)

13
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Co-efficient  1st Order 2nd Order 3rd Order
Yo 1 3/2 11/6

Qg 1 2 3

a 0 -1/2 -3/2

as 0 0 1/3

Bo 1 2 3

B1 0 -1 -3

B2 0 0 1

Table 2.1: Weights for stiffly stable integration scheme. Karniadakis et al. (1991)

Summing equation (2.39) and (2.39) gives an approximation to the full momentum equation,
although pressure is evaluated at the time-step n+1, whereas the diffusive terms are evaluated
at time-step n.

By taking the divergence of (2.40) and applying the constraint that (V - u"*1) = 0 the

equation
V- u*
At

is formed. This elliptic equation for p can be solved numerically giving the required pressure

vipntt = (2.41)

to enforce the incompressibility condition. Once the new pressure is found it is relatively

straightforward to evaluate equation (2.40) to find the new incompressible velocity u™*!.

High Order Splitting Scheme

The use of differing time values for u and p in equations (2.39) and (2.40) leads to a first
order error in the accuracy of the time-stepping scheme. To overcome these accuracy limi-
tations the multi-step scheme of Karniadakis et al. (1991) is used. In this technique mixed
implicit/explicit time-stepping weights are employed with the advective terms being approx-
imated explicitly and the pressure and diffusion terms being treated implicitly.

Using the differencing weights of table (2.1) the three step scheme involves solving the

equations
Ji—1 _ Je—1
u* — ) i agu e _
s = X Al v, (242)
q=0
% = —Vpnti, (2.43)
n41l _ kk
% = yV2umH, (2.44)

14
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where a, and 3, are integration weights, and g represents the order of accuracy of the time-
stepping scheme.

Solving equation (2.43) once again involves solution of the Poisson equation

2nt3 — . u_* 2.4
Vp \YJ (At) (2.45)
but here the higher order boundary condition
n+1
6% =-vn-(VxVxu)"™" on 80 (2.46)
n

is used to maintain accuracy at the boundaries. Since the value of u®*! is unknown an

explicit approximation is used;

6pn+1 Je—1
G~ Z —Bn-(VxVxu)"? on 00 (2.47)
q=0

The final step is to solve the diffusion equation

2_ Yo Yyt _ (0T
(V VAt) v (VAt> (248)

with the appropriate Dirichlet boundary conditions on u.

The first equation, (2.42), is trivial to solve using spectral elements since the spectral
element method gives a diagonal mass matrix. The simple approach to solving this system
used in the current work is to apply an iterative solver with Jacobi preconditioning. As
equation (2.42) has a diagonal matrix when using the spectral element method, the diagonal
Jacobi preconditioner turns out to be an exact solver, and the iterative solver will converge
in one iteration. While it is possible to implement specialized code to deal with this case,
the total time taken in this step is a negligible part of the total solution time and does not
justify the extra coding complexity.

The second step, the solution of equation (2.45), is the most time consuming. The itera-
tion count for the pressure Poisson equation is seen to be much higher than in the solution
of the other matrix systems. A GMRES solver is used as the iterative solver in all of the
current simulations.

The final step, (2.48), requires the solution of a series of Helmholtz equations; one equation
per dimension. In practice these systems are seen to converge more rapidly than the pressure

system at moderate and high Reynolds numbers.

2.5 Conclusion

The basic methods used in the course of this thesis have been outlined in chapter. Use of the

finite element method, along with it’s spectral element method variation, have been discussed
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in terms of simulating the Navier-Stokes equations. Use of the penalty solver is discussed,
including necessary modification to deal with simulations using cylindrical polar coordinates.
As an alternate method of time discretisation, a high order multi-step projection technique
is discussed as a way of solving the time-dependant Navier-Stokes equations.

In the next chapter some details of the implementation of these techniques are discussed,
including implementation of these techniques on a distributed memory parallel architecture.

An outline of the expected performance of the resulting code is also discussed.
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Chapter 3

Program Structure

One of the disadvantages of finite and spectral element methods is the complex coding re-
quirements; especially when compared to techniques such as the finite difference method. In
addition to the complexity of these techniques, the use of parallel programming adds further
complexity when compared with the more traditional serial programming model.

The approach taken in this thesis to overcome some of this complexity is to abstract the
details of the finite/spectral element method into a C++ based object-oriented library. This
library is also responsible for handling the bulk of the distributed programming.

3.1 Overview

Parallel programming offers substantial potential for increasing the available computing
power for complex fluid dynamics problems. Presently, parallel computing seems to offer
the only viable path for simulating large three-dimensional flows, even at moderate Reynolds
numbers. In particular, ‘Beowulf’ style clusters of networked PC-style hardware are becom-
ing increasing popular. This potential comes at a price, and that price is almost always
complexity of the code required to utilize such computers.

The Multiple Instruction Multiple Data (MIMD) model of programming, typical of cluster
programming, works at a relatively low level. In this thesis, the Messaging Passing Interface
(MPI) library (Snir and Gropp (1998)), which implements this programming model, is
used for all parallel communications. While MPI offers a powerful set of instructions, these
operations are at a relatively low level, typically dealing with arrays of native data types
which are explicitly passed between processors.

In this context, it is useful to first state a basic algorithm of the finite element method;
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Generate mesh

Set initial conditions for the fields u and P.

Build global matrix. For each element,

— Build element matrix ek.

— Assemble element matrix into global matrix K.

Apply forward elimination of global system (required for direct solution), or apply

preconditioning of global system (required for iterative solvers).

For each iteration of the steady-state solver, or time-step of the time-dependant solver,

— Build load vector by assembling element load vectors ef.

— Perform back substitution of the global matrix for the direct solver or invoke the

iterative solver.

While it possible to extend this description further to the level of structured programming
constructs (FORTRAN code being common in many text books), the approach taken here
is to operate on higher level objects referred to in the above description.

The following is a list of some of the key classes of objects operated on in the current

code,

o Mesh.

The Mesh class stores elements, and communicates global mesh information. Access to
the members of the Mesh, which includes the Elements and Boundarys of the mesh, is
allowed only by use of the appropriate iterators. Iterators allow access to the members
of the class via the helper classes, element_iterator and boundary_iterator. This allows
variations in the storage structure, especially between serial and parallel implementa-
tions, to be isolated. Code using this Mesh class need not know about the parallel

storage used by the class.

The current implementation requires that the parallel distribution of the mesh be fixed
before iterative solution or time evolution begins. The MeshTransporter class is used
to move elements between meshes. Along with an abstract MeshDistribution class this
allows for the details of mesh distribution to be isolated. While the mesh is a parallel
object, storing data on many processors, all heavy communication work is delegated
to the MeshTransporter class. This removes much of the complexity from the mesh

definition.
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As well as storing elements, the mesh stores a collection of mesh boundaries. The
structure of the mesh boundaries parallels that of the mesh itself, with boundaries con-
sisting of a set of boundary elements distributed across the processors. A corresponding

Boundary Transporter is used to distribute the ElementBoundary objects.

e GlobalFields.

The fields u and p are represented as GlobalF'ields, which are stored as continuous
sections of the global data. The storage of the field continuously across processors
simplifies many global operations, but also requires a different numbering system for

the field data to that of the global mesh.

e GlobalLayout.

The GlobalLayout stores the mapping between the mesh identifiers, the numbering used
by the elements to number the nodes, and the values stored by the global fields. The use
of different numbering systems for the mesh and global fields allows different processor
topologies to be used without the need for renumbering the mesh, while still allowing

global fields to have elements stored continuously over the processors.

As well as storing the solution identifier of local nodes, the GlobalLayout class stores the
solution identifier of nodes which are visible to the local processor (that is, are nodes

of local elements), but are stored in the global field on a remote processor.

e Global system.

The global matrix system Az = f is represented as high order objects.

— FElementMatriz and ElementVector.

These local quantities are defined on an element, and can be manipulated in
terms of the master element without requiring knowledge of the global structure.
To allow for sum factorisation (Karniadakis and Spencer, page 124), the three
dimensional structure of the elements is maintained, so that the element vector is
addressable as ef (i, j, k) and the element matrix as ek(i,j, k,r,s,t) where 4,7,k

and r, s,t represent x,y and z directional node counts respectively.

— GlobalMatriz and GlobalVector.

The global matrices and vectors are abstract classes that allows for the changing
of the matrix storage scheme to suit the problem and execution environment. In
particular, it is possible to change between serial and parallel implementations, or

between dense and sparse storages.
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The global matrix and vector provide an interface between the element level matrix
and vector respectively. Element matrices and vectors are added to the global
system during the assembly process, and the element matrix and vector can be
extracted from their global counterpart by providing a reference to the required
element.

The main operation that the global system provides is global multiplication, which
is used extensively during the iterative solution process. For global matrices that
provide direct solution, the global solver will operated on the global matrix data
directly.

For the finite element method, it is convenient to store the matrix as either a
banded storage matrix, or for the iterative solution, as a sparse matrix. This
ability is provided by the PETSc numerical library (Balay et al. (2000)).

For the spectral element method, where the storage is more dense, the global
matrix is implemented as a collection of element matrices stored on each processor.
A hash table is then used to look up the element matrix corresponding to a given

element.

o FEquationBuilder.

The equation builder is used to build the element level matrix and vector. Since a
significant amount of time is spent building the global system (the load vector in par-
ticular, since the linear matrix terms are stored), a FORTRAN implementation of the
build routines is used, as FORTRAN compilers were seen to be significantly better at

optimizing tight matrix loops than the more abstracted C++ equivalent.

e GlobalSolver.

The global solver works with the global matrix and global vector to solve the global
linear system. The implementation is based on the PETSc library (Balay et al. (2000)).

While the PETSc library provides a flexible array class of it’s own, the fully sparse
structure used by PETSc is relatively inefficient for the spectral element method, where
there is a significant amount of structure in the element system. PETSc does, however,
allow for the use of shell matrices, passing off the matrix multiplication work to user
code. In this work, a global shell matrix class is defined which uses BLAS (Dongarra
et al. (1988)) library routines to multiply the element matrices. The element matrix size
is typically of order 100 x 100 in two dimensions and 1000 x 1000 in three dimensions, so
that the speed advantage of the optimized BLAS routines over an unstructured sparse

matrix multiply are significant.
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3.2 Matrix Solution

The solution of the matrix system
Kez=f (3.1

for a matrix K and vectors z and f is typically the most time consuming step of the finite
and spectral element method solution process. Different numerical techniques are employed

to solve this system depending on the nature and size of the matrix K.

3.2.1 Direct Solvers

When using the penalty method of section 2.4.1, multiplication of the pressure term by the
penalty parameter A leads to a poorly conditioned system, making the use of iterative solvers
prohibitively slow. In this case the use of direct solvers (Gaussian elimination) is the only
viable solution strategy.

While the global system (3.1) is sparse, particularly when using a low order finite element
method, the effect of forward elimination is to fill-in a band of the matrix. The bandwidth of
this fill-in is determined by the maximum difference in node numbers between nodes which
share a common element.

The technique used for direct solution of the global system in this thesis is to use the
banded dense solver of the LAPACK linear algebra library (Anderson et al. (1999)). For large
problems this involves a large amount of memory. However, when the memory is available

the global system is solved quickly compared to iterative solvers.

3.2.2 Iterative solvers

For three-dimensional and high accuracy calculations, the use of direct solvers is prohibitively
expensive. In these situations, the use of iterative solvers is necessary.

In this work PETSc’s GMRES solver is used. When solving for a finite element system,
it is possible to use incomplete LU (ILU) decomposition for the preconditioner. When using
the spectral element method, to allow for the storage as structured element matrices, only
diagonal (Jacobi) preconditioning has been used.

Unfortunately, the use of diagonal preconditioning leads to relatively high iteration counts
when solving the pressure Poisson equation. In contrast, the Helmholtz equations of (2.42)
are seen to converge relatively quickly; usually an order of magnitude faster than the pressure
system.

While the use of the GMRES with Jacobi preconditioning has produced satisfactory re-

sults, more efficient preconditioning is clearly one area where the current work could improve
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in terms of efficiency.

3.2.3 Static Condensation

Static condensation involves the separation of the solution variables into those nodes that
are connected to multiple elements (the mortar nodes) and those that are on the interior of

the elements. Full details of this technique are given in Karniadakis and Sherwin (1999).

Figure 3.1: Mesh structure for static condensation. Open circle are interior nodes, closed

circles represent mortar nodes.

The approach is to initially factorize the element systems into internal and mortar nodes,
so that a global system consisting only of mortar nodes can be solved. Mortar nodes, the
closed nodes shown in Figure 3.1, are those that are in contact with more than one element
or boundary. Conversely, the interior nodes interact only with nodes of the same element.
In this example mesh (of rather low resolution) the mortar nodes are 45 of the 81 nodes. As
the order of the mesh is increased the relative number of interior nodes increases.

Factorisation by static condensation need only be done once when the matrix system is
constant, as is usually the case. Once the global system has been solved, back-substitution
can be performed to evaluate the internal values. This factorisation can be done at an element
matrix level, and is performed using optimized LAPACK routines.

The advantages of this technique are that the global system size is reduced, so that
the work per iteration is less. Smaller systems also typically take fewer iterations to solve.
Karniadakis and Sherwin also suggest that the condition number of the reduced system is
improved, and hence static condensation also acts as a form of preconditioning.

To test the effectiveness of the static condensation technique, the startup flow of flow

past a two dimensional cylinder is simulated for 100 time-steps using a 64 element seventh
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order mesh. The flow equations use the multi-step projection technique of section 2.4.2
with order 1 coefficients for the temporal discretisation. The effect of using Jacobi (diagonal)
preconditioning on the factored system is also compared. The wall time compares the physical
time elapsed while solving the time-stepping part of the simulations. The time involved in
the initial factorisation is not included as this one-off cost is relatively small for simulations

involving many time-steps.

Preconditioned Static Iterations time/iter. ~ Wall time
(diagonal) Condensation (s x1073) (s)

No No 88332 37.1 3280

Yes No 61330 374 2293

No Yes 27387 10.2 279

Yes Yes 13983 11.4 159

Table 3.1: Effect of static condensation and preconditioning on user time

Table (3.1) gives an indication of the effectiveness of using static condensation. For this
moderate sized two-dimensional problem, the elapsed wall time is reduced by more than a
factor of 10, with savings from reduced work per iterations and reduced iteration counts
contributing similar amounts. The number of degrees of freedom in the global system is
reduced from 3248 to 944 for this particular mesh. The differences seen in the norms of
velocity and pressure at the end of the run, as well as values at several points within the

flow, are within the tolerance specified in the iterative solver.

3.3 Parallel Partitioning

A determining factor in the efficiency of parallel programs is the total amount of commu-
nication required between processors. In the finite element and spectral element methods,
the main factor affecting the required communication is the parallel layout of the elements
across processors. Ideally, the distribution of elements gives an equal workload (or equal
number of elements) for each processor while minimizing the number nodes that are required
on multiple processors, which happens when a node is a nodal point of elements that reside
on different processors.

To attempt to minimize the amount of communication between processors, the multilevel
k-way graph partitioner algorithm of Karypis and Kumar (1997) has been used, via Karypis’
ParMetis partitioning library. While this method is particularly good at reducing the number

of inter-processor communications, it unfortunately does not produce a balanced work pattern
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for the low number of elements usually considered in spectral elements. Since the number of
elements per processor can reasonably be as low as 10 when using three-dimensional spectral
elements, it is common for ParMetis to return parallel layouts that are imbalanced by up to
40%.

An advantage of the spectral element method, however, is that solution for each element
requires a relatively large amount of work, and hence tends to be less sensitive to having many
inter-processor communications. Because of this it has proved feasible to use an extremely
simple partitioner, simply distributing the elements based on their element number. This
number is generated with the mesh, and tends to be continuous over blocks. The two opposing
factors of load-balancing and parallel communication mean that the parallel results from the

two partitioning methods are very similar and either can be used relatively successfully.

3.4 Parallel Performance

In this section the parallel performance of the numerical code is examined. To test this
performance a series of simulations are performed on varying numbers of processors.

The test machine, ‘avalon’, consists of 140 Linux machines with 533Mhz 21164 alpha
CPUs. The machines are connected with full-duplex 100Mbps fast-ethernet networking.
While the parallel code has been tested on a number of MPI implementations including
MPICH, LAM and a Compaq proprietary MPI implementation, the following results refer
only to the LAM implementation. Preliminary results with MPICH show very similar per-
formance to LAM for moderate to large problem sizes. The main reason for choosing LAM
over MPICH in the current work is a more convenient execution environment.

The test problem considered is startup flow of a driven cavity. An initially stationary
fluid in a unit box has a boundary condition of u = (1,0, 0) applied at ¢ = 0 to the upper lid.
The flow, with a Reynolds number of 100, is then integrated forward in time for 100 steps
with a time-step of 0.01. The second order multi-step scheme of section (2.4.2) is used and
a constant element order of nine is used for all simulations.

To measure the efficiency of the simulation the wall time per iteration is measured. The
initial set up time, covering such one-off operations as reading the mesh, building the global
matrix and performing static condensation are not included in this measure since this time
is amortized as the number of time-steps is increased. The data fields (u,p) are written out
at the beginning and end of the run, since the simulations of later chapters save data fields

at an interval similar to this.

24



Program Structure 3.4 Parallel Performance

3.4.1 Scaled Speedup

In the first experiment, the number of elements per processor is varied to use a regular
mesh of (N.nprocs) x N element, where N is constant and nprocs represents the number of
processors used. The wall time per iteration is then used for comparison. For a perfectly
efficient parallel program the total time taken per iterations should be constant. As the
number of degrees of freedom increases the number of iterations performed per time-step
increases and this increases the relative amount of time spent in the matrix multiplication
stage of the computation compared to other, typically less parallel steps such as writing out
results and synchronization between time-steps. This type of speedup gives a measure of the
performance results achieved when parallel computing is used to run bigger simulations in
similar amounts of time.

Figure 3.2 shows the performance of the parallel code measured on a scaled problem size.
The three cases considered are a two-dimensional box, with 100 ninth-order elements per
processor. In three-dimensions a box with 8 ninth-order elements per processor is used for
lower numbers of processors, which 4 elements per processors are used for the larger problems.

The first observations to be made is that for all of the tested problems the scaling is
close to the ideal linear speedup. This is more impressive given that the testing is done
on 100Mbps fast-ethernet, which exhibits high latency and low bandwidth, especially when
compared with other more expensive parallel communication technologies.

The three dimensional problems scales significantly better than the corresponding two
dimensional problem. In three dimensions the relative number of nodes occupying multiple
processors is actually higher than the two dimensional problem, but this is more than offset
by the increase in total computation time. For the high order elements used, the cost of
an individual element multiplication increases by an order of approximately 100, and this
increase in work per iterations reduces the relative effect of communication and other serial
operations.

The increasing problem size accounts for the greater than parallel speedup for low number
of processors. As the problem size is increased in proportion with the number of processors
the total workload is increased by a larger factor since the iteration count is also increased.
This extra work tends to reduce the relative time taken performing one-off serial operations,
such as storing results and serial book-keeping operations.

The larger three-dimensional problem, used with fewer processors, shows a relatively rapid
drop in speedup for eight processors, although the speedup is still more than eight times that
achieved on one processor. A possible reason for this is that as the problem size increases, the

amount of memory per processor increases slightly, and it’s likely that the core size becomes
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parallel speed on scaled problem size

10

2D driven cavity —+—

3D driven cavity (2x2x1) ---*---

ideal speedup

//+/
/////
1
1 10
nprocs

num procs rank N time/iter. (s~®) speed up
1 2 10 x 10 32.19 1.00
2 2 20 x 10 35.62 1.81
4 2 20 x 20 38.57 3.34
6 2 30 x 20 43.81 4.41
8 2 40 x 20 42.44 6.07
1 3 2x2x2 182.1 1.00
2 3 4x2x2 143.7 2.53
3 3 4x3x2 1412 3.87
4 3 4x4x2 1348 5.40
6 3 4x4x3 136.7 7.99
8 3 4x4x4 1789 8.14
8 3 4x4x2 7830 8.00
12 3 4x4x3 84.03 11.2
16 3 4x4x4 81.26 15.4
24 3 6x4x4 80.87 23.2
32 3 8x4x4 79.93 314
48 3 8x6x4 90.01 41.8

Figure 3.2: Parallel performance of shear flow problem. Scaled problem size
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slightly larger than the available memory.

In the smaller three-dimensional case, used with up to 48 processors, the speedup is
near linear up to 32 processors, and starts to drop off above this. Above 32 processors, the
workload of four elements per processors starts to become overwhelmed by the communication
time. In the high resolution cases considered in later chapters, the number of elements used
in 64 processor simulations was between 10 and 35 elements per processor, and based on the
above benchmarking, it is expected that the communication overhead of these simulations is

quite low.

3.4.2 Fixed Problem Size Speedup

In the second experiment, the number of elements is fixed as the number of processors is
increased. For an increasing number of processors this results in progressively less work to
be done by each processor. This type of measure gives an indication of the type of speed up
when using parallel computing to perform the same task in a shorter amount of time.

Figure 3.4.2 shows the results of testing the parallel code on two fixed problems; one
two-dimensional and the other three-dimensional. The two-dimensional simulation occurs
on a 20 x 20 ninth-order element box consisting of around 33,000 nodes, whereas the three
dimensional simulation on a 4 x 4 x 2 box mesh has just over 26,000 nodes. The three-
dimensional problem requires more total work per iterations however, since an order p element
multiplication is O(p?*) for (p + 1)% nodes in two dimensions and O(p®) for (p + 1)2 nodes in
three dimensions, giving an increase in complexity of O(p), or approximately 10 times more
work for the current meshes.

The results of the fixed problem size scaling is encouraging. For what is a moderate
problem size speedups of order six are given on eight processors. While some overhead is
incurred, the total speedup more than justifies the use of parallel simulation.

The two testing methods employed represent two extremes; the first technique of varying
the number of elements with increasing parallelization tends to provide an optimistic measure
of parallel performance while using a fixed number of elements tends to give an overly pes-
simistic view of the parallel performance. Both techniques can be useful if viewed as giving
an upper and lower bound on the speedups that are likely to be achieved in practice. Using
either measure it is clear that the parallel spectral element method is capable of significant

speedups with high-latency relatively low bandwidth parallel technology.
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parallel speed on fixed problem size
10

2D driven cavity (20x20) —+—

ideal speedup --------

speedup

1 10
nprocs

num procs rank N time/iter. (s72) speed up
1 2 20 x 20 121.9 1.00

2 2 20 x 20 63.5 1.92

3 2 20 x 20 42.9 2.84

4 2 20 x 20 33.7 3.61

6 2 20 x 20 24.5 4.98

8 2 20 x 20 20.5 5.95

1 3 4x4x2 5202 1.00

2 3 4x4x2 267.6 1.94

3 3 4x4x2 197.8 2.63

4 3 4x4x2 1399 3.72

6 3 4x4x2 1053 4.94

8 3 4x4x2 81.26 6.40

Figure 3.3: Parallel performance of shear flow problem. Fixed problem size
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3.5 Conclusion

This chapter outlines an object-oriented approach to implementing a parallel finite/spectral
element method in C++. Through a careful choice of key classes it has been possible to
abstract many of the more complicated details of the parallel implementation to provide a
powerful set of classes for solving PDE’s associated with these numerical methods.

Simple benchmarks show that for large scale problems, such as those to be tackled in
later chapters, the current implementation provides significant speedups, even on relatively
low end parallel hardware.

In the following chapters these methods are applied to two problems. The first problem
examined is vortex breakdown flow in a confined cylinder, where both the steady and unsteady
flows are examined. Secondly, shedding flow past a sphere is simulated, and interaction of

multiple sphere wakes is studied.
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Chapter 4

Vortex Breakdown

Vortex breakdown has been defined as the sudden transition of a flow from a concentrated
axial core to a relatively large region of retarded flow. A divergence of flow away from the
core is typically observed, and such events are often associated with a change from laminar
to turbulent flow.

Vortex breakdown was first observed in an aeronautical context by Peckham and Atkinson
(1957) who observed vortex breakdown over delta wings at high angles of attack. The strong
vortex cores produced by such wings were seen to suddenly form turbulent, asymmetric
regions.

Vortex breakdown is thought to be of importance in swirling flows through nozzles and
diffusers, in tornado models, and as a possible mechanism for describe transition to turbulence
(Escudier (1988)).

4.1 Flow Features

The first observed occurrence of vortex breakdown, breakdown over a delta wing, is an
unstable, three dimensional and possible turbulent phenomenon. A concentrated core of
high vorticity is seen to suddenly expand and become turbulent. A visualization of this delta
wing breakdown, by Werlé (1960), is shown in Figure 4.1.

As a way of addressing the complexity of the delta wing flow, several experiments with
better defined characteristics have been devised. The most common experimental apparatus
for considering breakdown has been the diverging duct apparatus of Figure 4.2. Here, a rotat-
ing flow field is pumped into a diverging tube apparatus. This apparatus was first examined
by Harvey (1962), and has since been considered by Kirkpatrick (1964), Sarpkaya (1971a),
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Vortex Breakdown

4.1 Flow Features

Figure 4.1: Vortex breakdown over a delta wing. Visualization by Werlé (1960), from Dyke
(1982)

r=R(2)

Figure 4.2:

Swirling pipe apparatus
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Faler and Leibovich (1977), Escudier and Zehnder (1982). In all of these experiments, slightly
differing pipe profiles, R(z), were considered.

The results of Sarpkaya (1971b) offer some of the most complete experimental results for
diverging pipe vortex breakdown. From these results, it is known that breakdown in a duct
progresses from an initially axisymmetric swirl to an eventual ‘bubble’ type breakdown. It is
seen that the initial core forms a so called spiral breakdown, with a turbulent region forming
behind the breakdown. With increasing input swirl, the spiral vortex is seen to gradually
become more symmetric in character, eventually forming the so-called bubble breakdown.
The rear of this region is not clearly defined and typically involves turbulent flow behind the
bubble.

Figure 4.3: Vortex breakdown in divergent pipe flow. Visualization by Sarpkaya (1971b),
from Dyke (1982)

Escudier (1984) considered flow in the confined cylinder apparatus of Figure 4.4. This
configuration has the advantage of offering a well defined problem, with only two free param-
eters; the Reynolds number and aspect ratio. Escudier examined the (Re, H/R) parameter
space to produce a so called stability diagram indicating the number of breakdown bubbles
present over a range of problem parameters. An indication was also given of the parameter
range for the problem to remain time independent. In contrast to the previously studied
flows, increases of input speed, in this case facilitated by an increase in driving speed, can
return the flow to a stable configuration in which no breakdown bubbles are present.

Bar-Yoseph et al. (1992) have demonstrated that vortex breakdown can occur between
two rotating spheres. This is perhaps expected, since with relatively large sphere diameters
compared to the inter-sphere gap, this apparatus produces a flow pattern that is locally
similar in structure to the swirling cavity system. It was seen that boundary layers formed
on the inner sphere meet and form a strong vortex core in a similar way to the cylinder
apparatus.

Mory and Yurchenko (1993) observed vortex breakdown in a rotating tank, with suction
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Figure 4.4: Confined cylinder apparatus, base rotation rate of (.
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applied through a tube on the bottom of the axis of rotation. The suggested form of the
boundary layers was similar to that of the confined cylinder experiment, although the rotation

rate and vortex axial velocity could be varied independently.

4.2 Numerical Studies

Several numerical studies have been made of vortex breakdown. Earlier work often suffered
from a lack of numerical resolution, and as more suitable computers have become available
it has become obvious that vortex breakdown simulations are generally quite sensitive to
numerical resolution.

Grabowski and Berger (1976) performed an early numerical investigation of vortex break-
down in a divergent tube. A lack of resolution means that the results gave at best a qualitative
picture of vortex breakdown.

Lopez (1990) performed an extensive numerical comparison with the confined cylinder
experiment of Escudier (1984). Good agreement was seen between the two sets of results;
in particular the so called stability diagram of Escudier was reproduced numerically. For
the two parameter space of Re and aspect ratio H/R, the number of observed breakdown
bubbles was seen to coincide.

Some doubt has been cast on the numerical accuracy of the Lopez & Brown’s work in Gra-
ham et al. (1995), especially in light of the use of unstretched grids near the bottom boundary
layer. Vortex breakdown in the confined apparatus is caused by the bottom boundary pro-
ducing a locally strong central core of vorticity, suggesting that a lack of boundary layer
resolution could be a significant problem. However, the interior flow is largely inviscid, sug-
gesting that the conclusions draw from this paper are not necessarily invalidated. The most
likely result of under-resolving the lower boundary layer would be a reduction in the effective
Reynolds number, causing vortex breakdown to require slightly higher numerical Reynolds
numbers.

Daube (1991) analyzed the flow in a confined cylinder of Figure 4.4 with both fixed and
stress free boundary conditions on the top surface. The fixed boundary flow showed good
agreement with the experimental work of Escudier. The stress free boundary flow was seen
to also undergo vortex breakdown, although no mechanism for vortex breakdown was put
forward.

Both Spall et al. (1987) and Breuer and Hénel (1993) examined the breakdown numerically
in three dimensions for flow through a rectangular duct. These flows exhibited both bubble
and axisymmetric type breakdowns.

Beran (1994) performed a series of axisymmetric, inviscid calculations on the swirling
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pipe apparatus of Figure 4.2, and demonstrated that the final state of breakdown is, in some
cases, dependent on the way the the vortex is initially applied. In particular, a comparison

between instantaneous application of the vortex with a ramping process was performed.

4.3 Breakdown Mechanisms

Hall (1972) gave the first comprehensive review of possible mechanisms for vortex breakdown,
providing three groupings of the theory for vortex breakdown. These classifications will be
considered, and expanded on in the light of recent literature.

The three groupings of Hall, as well as three additional proposals can be summarized as

1. Vortex Breakdown is analogous to boundary layer separation. These are usually exam-
ined by use of the Quasi-Cylindrical equations. Gartshore (1962), Hall (1967), Bossel
(1969), Bossel (1971).

2. Vortex breakdown is a consequence hydrodynamic instability. Ludweig (1962), Ludweig
(1970), Lessen et al. (1974).

3. Vortex Breakdown depends on transition from a supercritical to a sub-critical state.
Squire (1960), Benjamin (1962), Benjamin (1967), Bossel (1969).

4. A grouping, closely related to the previous criteria, is based on the idea of a trapped
wave model. Leibovich (1970), Leibovich and Randall (1973), Randall and Leibovich
(1973), Bilanin and Widnall (1973), Sarpkaya (1971b), Sarpkaya (1974), Tsai and Wid-
nall (1980), Darmofal and Murman (1994).

5. Spall et al. (1987) have suggested that existing criteria are equivalent to a local Rossby

number criteria.

6. Brown and Lopez (1990) have proposed that vortex breakdown can be explained in

terms of a feedback mechanism generating negative vorticity.
Clearly, many of these categories are related and several of the criteria could be said to fit
into more than one category. In particular it is likely that criteria 1, 3 and 4 are equivalent.

4.3.1 Flow Configuration

All of the existing theories have been applied to flow through a duct with swirling input, as
indicated in Figure 4.2.

This problem can be stated as follows.
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Consider a flow in cylindrical polar coordinates. The velocities can be written
as (u,v,w) for coordinates (r,0,z). Initially, the flow consists of a vortex, with
profile to be specified, with a typical velocity W in the z direction and a swirl
velocity 2. At some upstream point z = 2o, the axial velocity is specified as
w = W (r). The geometry of the pipe is specified by defining the outer boundary
asr = R(z).

4.3.2 Quasi-Cylindrical Approximation

Upstream of the breakdown point, the flow is seen to vary only gradually in the axial direction.
By assuming that the flow is laminar, incompressible, and axisymmetric, as well as neglecting

derivatives in the axial (z) direction, we have the so-called quasi-cylindrical equations of Hall

(1967).
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The boundary conditions come from symmetry at the axis; u =v = dw/dr =0atr =0, a
prescribed pressure at the outer boundary, say p = P(z) at r = R(z), and an inflow condition
giving v = vo(r) and w = wo(r) at z = 2p.

Since these equations are parabolic, the solution can be solved for increasing z values.
increasing z. Breakdown is then considered to occur when the solutions fail to converge.

The solution of these equations can predict a breakdown Reynolds’ number and posi-
tion which is qualitatively correct. Hall (1967) evaluated the quasi-cylindrical equations for
a configuration comparable to that of Kirkpatrick (1964), and attempted to make quanti-
tative comparisons. Due to the limited resolution, and variations in model parameters, it
was considered that the difference in position of one and a half bobble diameters was not
unreasonable.

The overall characteristics of the vortex breakdown that seem to be in reasonable agree-

ment are

e larger positive pressure gradients (facilitated by duct divergence in these experiments)

induce vortex breakdown more quickly.

e the vortex breakdown behavior is largely independent of Reynolds number.
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e increase in swirl parameter are seen to move the breakdown point upstream.

Unfortunately, the quasi-cylindrical equations offer no model of the flow once breakdown
has occurred. Neither does the model necessarily give a physical mechanism for the break-
down, but rather a means of predicting the occurrence.

It should be noted that Hall (1972) claimed that the criticality of the flow (as described
by Squire (1960) and Benjamin (1962)) drops from a supercritical to a sub-critical state.
This compares favorably with the critical state model (mechanism 3) to be examined later,
as well as remaining consistent with the analogy to boundary layer breakdown. This analogy
suggests that once information can travel back upstream the boundary layer equations will
break down.

This model has been extended by Berger and Eriebacher (1995) who modified the equa-
tions to allow for diffusion in the radial direction. The equations show similar behavior to
the quasi-cylindrical equations, and they have demonstrated that change in problem param-
eters cause the correct qualitative changes in breakdown behavior. In particular, it is once
again observed that increase in input swirl leads to the movement of the breakdown bubble

upstream. Again, no mechanisms behind the behavior are offered.

4.3.3 Spiral Instability

Ludweig (1962) proposed that vortex breakdown is a result of a spiral instability in the flow.

It is proposed that when the criteria
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is satisfied, it is possible for the flow to become unstable to asymmetric perturbations.

>0 (4.1)

Mager (1972) considered the quasi-cylindrical equation, showing that two branches of the
solution existed. It was suggested that breakdown was a result of asymmetric instabilities,
leading to a crossover between the two states.

Spall (1993) examined the linear stability of solutions to the quasi-cylindrical equa-
tions (4.1) with a modified model to allow for non-parallel terms in the flow equations. With
the addition of these non-parallel terms viscous and inviscid instabilities were observed, al-
though it was suggested that a fully non-parallel formulation is required to validate these
results.

Tsitverblit (1993) performed a number of numerical calculations on the confined cylinder
geometry. By the use of a continuation method, the process of bifurcation was ruled out as a
cause of axisymmetric breakdown, but that the transition to an unsteady flow was the result

of a Hopf bifurcation.
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4.3.4 Critical State Transition

Following Hall (1972), the equations for axisymmetric, inviscid flow, in stream function form

can be written as

10y
- _-ZF 4.2
r 0z (4.2)
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with the total circulation I" = rv and the total pressure H being functions of ¢ and position
only.

The assumption of inviscid flow seems reasonable, given the experimental observations
indicating the relatively minor role of Reynolds number in the breakdown behavior. The
assumption of axisymmetric flow is not as easily justified for cases where spiral breakdown
is first observed. For flows where bubble type breakdown is the first type of breakdown to
appear, such as the confined cylinder flow, the assumption seems more reasonable.

Following the notation of Benjamin (1962), the critical state theory can be summarized as
follows. Consider a stationary axisymmetric perturbation of a quasi-cylindrical flow ¥(r, 2)

such that the stream function v can be written as
W(r,z) = U (r,z) + eF(r,2)e"? (4.6)

where F(r, z) is a quasi-cylindrical function such that

OF _F
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Clearly, the following procedure can be generalized for a number of F’s, giving a general
perturbation solution for .

Substituting the expression (4.6) into equation (4.5) and eliminating terms of O(e2) and
smaller gives the following equation for the perturbation coefficient F'

O’F 10F , 10°W 1 0w 1 9K?
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where w = W and I = K from the basic flow ¥(r,z). Boundary conditions require F(r =
0)=F(r=R)=0.
This system is a Sturm-Liouville system for F', and it can therefore be shown that if

the smallest eigenvalue ¢ is negative then the basic flow is sub-critical, 73 > 0 implies
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supercritical flow, and vy = 0 is the critical case. The wavelength of this disturbance is
27/ (—~2) /2. From equation (4.6), sub-critical flow can be interpreted as a flow that allows
the transmission of information upstream, as the perturbation will be an oscillating one.
Supercritical flows only allow the passing of information downstream.

Setting v equal to zero in equation (4.9) gives a condition for critical flow. At a given
axial position z, the criticality of the flow can be tested by applying the boundary conditions
F. =0 and 0F./0r = constant at r = 0 and r = R(z) respectively. The criticality condition
then becomes

2 2 2
Squire (1960) considered the characteristics of a wave with infinite wavelength. The idea
behind this model is that if waves of finite wavelength could exist, they will move upstream
and cause vortex breakdown. Benjamin (1962) pointed out that the group velocity of infinite
wavelength waves is downstream, and hence could not influence the flow upstream.

Benjamin extended the idea of critical state by using an analogy with hydraulic jumps. He
suggested that vortex breakdown could be a jump between two solutions, one supercritical,
the other sub-critical.

One problem with this model, as pointed out by the author, is the fact that the sub-
critical flow has a greater momentum flow (or flow force), defined as 27 fOR(p + pw?)r dr.
It was postulated that the change in momentum flow could be justified by the existence of
infinitesimal standing waves. It is argued that these standing waves could be what we refer
to as vortex breakdown.

Benjamin’s explanation, however, relies on the fact that these waves will be small, which
is inconsistent with observed vortex breakdown. To maintain a large breakdown bubble,
Benjamin suggested that a turbulent transition may be present. This seems inconsistent
with the results in the confined cylinder experiment, where the transition is a laminar one.

Furthermore, the prediction of a jump, similar to a hydraulic jump, between conjugate
states also seems inconsistent with observations in the confined swirling flow, where a con-
tinuous transition from breakdown to non-breakdown region is observed.

Bossel (1969) took the approximation further, requiring that upstream from the vortex

breakdown, the flow be in a state of solid rotation. The equations thus simplify to

62’¢ 10y 62¢_ 5 br?
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for constants a and b. A downfall of this model is the need to specify the outflow stream-

function distributions v(r). Furthermore, while simulations could be shown to form bubble
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shaped regions, this was only possible by specifying a bubble type form for the outflow
boundary.

Since the equation is clearly elliptic, it is hardly surprising that a bubble shaped outflow
boundary condition would form some sort of bubble within the flow region. Because of the
number approximations in the model it is not clear that enough useful information remains

in the model to draw firm conclusions.

4.3.5 Trapped Wave Model

The wave model of vortex breakdown builds on the idea of the existence of supercritical
and sub-critical states. This theory aims to demonstrate the ability of slightly sub-critical
flows to maintain standing waves, that these waves will be trapped at a point, and that this
mechanism is equivalent to the vortex breakdown phenomenon.

Leibovich (1970) considered perturbations of a base flow of the form 1 = ep(r)A(z, 1),
where € is again a small constant. For motion confined to a tube, the perturbation equation

for A satisfies the Korteweg-de Vries (KdV) equation
At + COAZ = 601AAZ + kZCQAZZZ (412)

for a small €, a wavenumber k and constants ¢;. These equations (Korteweg & de Vries, 1895)

allow a wave solution of the form

1
1 2 1
A = asech? |§ (%) (X + 5acu5t)| (4.13)

for a constant a and X represents a scaled distance downstream.

By applying this solution to a flow with constant upstream velocity, and a Burger’s
vortex distribution of azimuthal velocity, it was demonstrated that standing waves can exist
in slightly sub-critical flows. By solving for the dominant eigenvalue for a given upstream
swirl angle, the corresponding eigenfunction was evaluated.

It was shown that the form of the solutions were in good qualitative agreement with
observations of breakdown in pipes, which is known to have a comparable upstream velocity
distribution.

The acknowledged weakness in this argument is the requirement that the waves be of
‘small’ amplitude, whereas the calculated waves exhibit differences of O(1). It is also known
that the solution of the KdV equations are seen to change drastically with the addition of
diffusive effects, which are neglected in this study.

Benjamin (1967) also showed that the KdV approximation fails as the diameter of the
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tube is increased to infinity. Leibovich proposed the alternative set of equations

kcs 8_3/°° A(&, ) d€
2log(1/k) 82% | _oo ((z — €)% + k2)2

which in the limit of ¥ — 0, this is equivalent to the KdV equations.

A+ oA, = e1AZ, + (414)

Leibovich and Randall (1973) considered flow through a generalized tube, allowing for
slow variations in tube diameter along the tube. Wavelengths were assumed to be much
greater than the radius of the tube, and the variations in the tube diameter are assumed to
occur on a much longer length scale than the wavelength. The modified set of equations,

compared with equation (4.12), for sub-critical flows can be written as
A+ coA, = €[c1AA, + A, ]+ deshA, + adey A, (4.15)

where a represents the variation in tube area with axial distance, § represents the total
variation of tube area which is assumed to be small. Y (az) = 1+ dh(ax) represents the tube
area and € again represents the amplitude of the waves.

By considering the limit of critical flow, as well as considering the effects of viscosity, the

flow may be modeled by a modified set of Korteweg de Vries equations.
Ay = e[c1AA, + c2A...) + 6%y (FA), + csiA (4.16)

where ¥ represents a viscosity term, ff, = wih for a constant w;, and the three constants
¢1, ¢z and ¢y are also to be determined.

Randall and Leibovich (1973) uses these equation to demonstrate that standing waves
of finite magnitude may be trapped in a critical flow. By applying the experimental inlet
profile of Sarpkaya (1971b), as well as an analytic approximation to the tube profile, it was
demonstrated that the equations will allow the existence of finite amplitude standing waves
for diverging tubes.

The mechanism behind the breakdown is thus suggested to be a balance between the
linear amplification of a disturbance wave and diffusive effects. A soliton profile is again
expected for these waves.

The reliance on small disturbance theory does, however, mean that any results for large
breakdown regions must be viewed with caution. This in no way detracts from the ability
of the model to suggest the mechanisms of the breakdown; merely that once breakdown has
occurred, large breakdown bubbles will not be modeled.

Leibovich (1978) pointed out that the reliance of the trapped wave model on viscous
diffusion could be seen as a shortcoming, when compared to experimental evidence that

suggest vortex breakdown is an inviscid process.
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Darmofal and Murman (1994) modified the model of Leibovich to concentrate on an
analogy with shock wave formation. The analogy is based on the idea that as waves, initially
in a supercritical flow, reach a critical point in the flow their amplitude will increase. In the
linear case, this leads to infinite amplitude waves without velocity; the non-linear case giving
a shock waves which propagates upstream to a steady position. Thus, it is suggested that if a
vortex decreases from supercritical to sub-critical flow, wave trapping can occur, and vortex
breakdown will result.

To verify the trapped vortex model, a series of calculations were performed on the axisym-
metric Navier-Stokes equations in a swirling pipe configuration. The critical flow condition
of Hall (equation (4.9)) is evaluated numerically, with eigenvalues calculated for the resul-
tant flows. It is demonstrated that as vortex breakdown occurs, the minimum eigenvalue
decreases to a negative value. This is consistent with the view that vortex breakdown will
occur as the flow changes from supercritical to sub-critical flow.

Darmofal also analyses this model numerically by considering the perturbation of the
flow from a near critical state. It is demonstrated that perturbation waves are initially swept
downstream as the swirl ratio is increased, and then move back upstream to the final steady

state position.

4.3.6 Critical Rossby Number

Spall et al. (1987) re-examined a number of existing results for vortex breakdown, in terms

of a local Rossby number, defined as

w
r*Q)

Ro = (4.17)

where W is the characteristic inlet velocity, (2 is the inlet rotation rate, and r* is the char-
acteristic length scale. This scale is chosen as the radius at which the swirl velocity is a
maximum. The Reynolds number is also defined in terms of r* and W.

It is demonstrated that for Re > 100, a Rossby number criteria of Ro < 0.65 can be
applied to wing-tip vortices. While this seems a reasonable fit to the available data, little
insight is gained into the mechanisms behind such a breakdown. More importantly, this
criteria does not seem to apply to leading-edge vortices, and hence seems less useful as a

general criteria for vortex breakdown.

4.3.7 Vorticity Feedback

Brown and Lopez (1990) expanded on the numerical results of Lopez (1990) by suggesting

vorticity feedback as a mechanism for vortex breakdown. This mechanism relates the angle
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of the vorticity vector with the angle of the velocity vector. By assuming an inviscid flow in
the central region of the flow, the equation of state was given by
_I'dl rdH
T=vap  Tay

By considering a curve C in the (r,z)-plane with radius r given by r = o(z) such that the

(4.18)

stream function 9(r, z) = 1 is a constant. On the stream surface C' equation (4.18) can be

written as
A
n(z) = ;—BO’
dy = —(% +B) do
A = T(1)I'(¢)
B = H'(¢)

where A and B are now constants on this stream surface.
By choosing a point upstream at z = zg, and denoting the velocity, radius and vorticity

there as (v, wo), oo and (1o, (o) respectively, these constants can be evaluated as

4 = 2%,
Wo

B o= 288 _4) wro
go wono

B =— U()CO7 no = 0.
ooWo

For ny # 0, the equation for 7 can be written as

N _% () _ 0o (%
7o 0(%) oo (50 1) (4.19)

where ag = vg/wg and 8 = 19 /(o are the tangents for the helix angle for velocity and vorticity
respectively.

Brown & Lopez argue that a necessary condition for breakdown is the generation of
negative azimuthal vorticity (n), and that from equation (4.19), if 7y is positive, this will
only occur if ag > By, or equivalently vo/wo > n9/Co. They suggest a positive feedback
mechanism, where a negative vorticity induces a divergence of stream surfaces, which again

increases negative vorticity.

4.3.8 Shock Jump Analogy

Darmofal (1996) has proposed a simple model for vortex breakdown based on an analogy
with one dimensional shocks in compressible flows. This model was found to show good

agreement in predicting whether or not the flow will undergo breakdown.
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for

The model begins by assuming a Rankine distribution

T r

t) = —= <d

U(r7z7) 27"'667 T_
I's

o(r,z,t) = ——, r>4§
wmr

a constant far-field circulation T'w,. A far-field pressure of pwo(2,t) is applied, and the

radial velocity is assumed negligible, reducing the radial momentum equation to

0 v?
6—f = p—. (4.20)

The approximation is expected to be inappropriate once the breakdown region is large.

By considering conservation of mass across a control volume, the equation, in terms of

the core area A can be written as

where

for

oUu OF
b Tt 4.21
ot + 0z S ( )
A
U =
Aw
Aw
F = , . I?
I Aw® + 5= log A
0
§ = _ A9
p Oz

The homogeneous form of equation (4.21) can be written as

oU oU

— — = 4.22
ot T, 0 (4.22)

Ay = (4.23)

where the ‘acoustic’ speed c is defined by

. I? v2
2 00 mazx

. 4.24
¢ 8TA 2 ( )

A change of variable using dV = R~'dU gives

oV, OV _

7 TA5- =0 (4.25)
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where A = R™'AR = diag()\1, \2) with the characteristic speeds given by

)\1 = w+c

Ay = w-—c

This leads again to the idea of supercritical and subcritical flows presented in section 4.3.4.
When |w| — ¢ > 0 the flow will be supercritical, whereas when |w| — ¢ < 0 the flow will be
subcritical.

The introduction of a non-dimensional parameter B defined as

B =

w
d 4.26

- (4.26)
suggests a criteria for breakdown, i.e. for |B| < 1 the flow is subcritical, and as suggested in
section 4.3.4, breakdown will be possible. Relating this with Rossby number gives a criteria

for breakdown as

Umaz /5 (4.27)
]

4.4 Conclusion

This chapter has given an overview of existing models for vortex breakdown, all having
previously been applied to breakdown of swirling flow in a tube. The large number of
previous works have been roughly grouped into six categories with each of the categories
compared.

The aim of the next chapter is to look at applying one of the more successful swirling

pipe models, the wave trapping model, to breakdown of flow in a confined swirling cylinder.
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Chapter 5

A Confined Vortex Breakdown
Model

5.1 Physical Model

The torsionally driven cavity apparatus of Figure 4.4 was first studied experimentally by Vogel
(1968) and by Ronnenberg (1977), with a further detail study carried out by Escudier (1984).
This apparatus, with fixed walls and a rotating bottom, has the advantage over previously
studied flows that the flow can be specified with only two parameters, the Reynolds number,
based on the velocity of the spinning base, and the aspect ratio of the cylinder. This compares
well with pipe breakdown flow, which has been studied for a number of inflow profiles and

pipe profiles.

Z
HIR Top
Centre Outer
o Bottom 1 r

Figure 5.1: Swirling cylinder flow boundaries
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Under the assumption of axisymmetry the confined swirling flow problem domain can be
simplified to that shown in Figure 5.1). On this domain, the following boundary conditions

are imposed

e On the boundary bottom:

ur =0, ug =, u, =0 (5.1)

e On the boundaries top and outer:

Up = Ug = uy; =0 (5.2)
e On the boundary center:
ou
Up = Up = 8: =0 (5.3)

5.2 Steady Breakdown

To study the steady state axisymmetric swirling flow a finite element method is employed.
Quadrilateral velocity elements are used, with the penalty formulation of section 2.4.1 used to
eliminate the pressure p. The penalty parameter, A, is set to 107, and to maintain accuracy
double precision used in all calculations. Newton-Raphson iteration is performed on the
resulting non-linear equations, with the solution considered converged when the maximum
change in nodal velocity values between iterations is smaller than 10~7. The problem is
initially solved at low Reynolds numbers, with these solutions used as initial guesses for

higher Reynolds number problems. The Reynolds number is stepped up in intervals of 100.

5.3 Finite Element Resolution

As discussed in Graham et al. (1995), it is extremely important when simulating the swirling
cavity flow to resolve the boundary layer on the base of the apparatus. Their results show that
the flow features in the interior of the flow can be significantly affected by lack of resolution.

The approach taken in this work to ensure adequate resolution is to examine the boundary
layers directly, as shown in Figure 5.2. By viewing the velocity and vorticity fields it is possible
to determine the approximate size of the boundary layers on the bottom and the side wall of
the apparatus. Comparison with the velocity arrows placed on each nodal point shows that
there are more than 10 nodal points through the boundary layer at all times. This is enough

resolution to resolve these boundary layer with quadrilateral finite elements.
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5.3 Finite Element Resolution
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Figure 5.2: Close up of bottom right corner of swirling flow, Re = 1995, H/R = 2.5



A Confined Vortex Breakdown Model 5.4 Breakdown Features

Another point of interest in Figure 5.2 is that a significant boundary layer exists on the
outer wall of the apparatus. While the work of Graham et al. (1995) concentrates the mesh
on the bottom boundary layer, it is clear that resolution in the radial direction in the lower

part of the flow will also influence the internal flow features.

5.4 Breakdown Features
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Figure 5.3: Existence of breakdown bubbles.
x 0 bubbles, O 1 bubble, A 2 bubbles, @& 3 bubbles

Escudier (1984) presents an experimental study of vortex breakdown which included the
so-called stability diagram, where the number of breakdown bubbles was presented as a
function of the Reynolds number and the cylinder aspect ratio. Figure 5.3 shows the cor-
responding stability diagram produced using the current steady model. The agreement is
very good, once allowance is made for the slightly different notation. In the current results,

areas such as those around H/R = 2.75, Re = 3000 are indicated as a single bubble. In this
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case, the two bubble have merged into one larger recirculation zone; an example of this flow

configuration is given in Figure 5.4.

newt.3.00/swirling.3.00.03500 newt.3.00/swirling.3.00.03500

Stream Function Vorticity

. )0(
—0.003196
—0.025570
—0.086300

0.000000

0.000000
—0.000001
—0.000002
—0.000003

—0.204563
—0.399537
—0.690401
—1.096331

0 419
—0.000105 —25.570397

Figure 5.4: Single merged breakdown at Re = 3500, H/R = 3.0.
(a) Stream Function % (b) Vorticity ¢

In viewing the streamlines such as those in Figure 5.4, the method of choosing contour
levels of Lopez (1990) is followed, where the contour values are cubicly stretched towards
zero. This leads to clearer visualization of recirculation zone, where the flow velocities are
typically much smaller.

Two typical examples of the onset of breakdown in the confined flow as the Reynolds
number is increased are shown in Figures 5.4 and 5.4. These figures show the onset of vortex
breakdown for two different aspect ratios, H/R = 2.5 and H/R = 4.0, as the Reynolds
number is increased. Contour levels of the stream-function v are displayed with 20 positive
and 20 negative values with the intervals again being cubicly stretched towards zero.

Both of these examples show the progress with Reynolds number of the confined flow as it

moves from a uni-directional recirculation zone into a flow pattern with waves on the center
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vortex core, and finally to a flow with at least one recirculation zone.

Figure 5.5: Stream function for breakdown in torsionally driven cavity H/R = 2.5// (a) Re
= 1740, (b) Re = 1840, (c) Re = 1900

5.5 One Dimensional Wave Model

The aim of the current section is to test the breakdown model of Darmofal and Murman
(1994), which suggests that wave-trapping and focusing can be used as a mechanism to
describe vortex breakdown. While this model was successfully applied to flow in a divergent
pipe, the extension of this model to the confined cylinder flow is less clear. In particular,
attempts by Jones et al. (1998) to directly visualize wave trapping in the confined cylinder
proved to be less than conclusive.

To examine the wave trapping model, firstly consider a steady mean flow without break-
down with a velocity field u = (U(r,2),V(r,2),W(r,z)). The flow is assumed to be quasi-
cylindrical, that is 2% <« 2Z. By considering an axial length scale L and a length scale for
radial perturbations of A, such that A/L < 1, to first order the flow can be considered as a

function of the stream-function perturbation

W = F(r) exp(yz) (5.4)

where v is an axial wavenumber. The governing equation for the perturbation field, from
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Hall (1967), is then

2
ACE) bR ()]0
where I' = rV (r, 2) is the mean flow circulation. This equation is an eigenvalue problem for
7o dependant only on r for each value of z.

Darmofal used this model for pipe problem to show that the eigenvalues 73 of the system
become negative just before breakdown occurs, and argued that this represented a change in
nature of the flow from a super-critical flow, with information traveling downstream only, to
a sub-critical flow in which information (and in particular small perturbations) could move
back up stream and be trapped. The point of this trapping is said to correspond with the
breakdown point.

To extend this idea to the confined cylinder it is necessary to choose a region of the
flow that is similar to a pipe, and hence meets the necessary requirements for the use of
equation (5.5). The region 0 < r < % and .1 < z < H — .1 is used to define the base flow. At
any given Reynolds number, a finite element approximation to equation (5.5) is solved using
the LAPACK routine DGEEVX at each axial position z.

5.5.1 Wave Model Results

Figures 5.7 and 5.8 indicate the axial velocities and eigenvalues 72 of the flow for two different
aspect ratios. It can be seen that the flow becomes sub-critical before the flow has broken
down, but that the physical location of the breakdown points correspond well with the
location of vortex breakdown bubbles, appearing for —w(0, z) < 0.

Figure 5.9 shows the minimum axial velocities and eigenvalues as the Reynolds number
is increased. It is apparent that the flow becomes sub-critical at a Reynolds lower than that
required for flow reversal to occur. This is consistent with the results of Darmofal in the
pipe apparatus. Note that when 7 = 0, upstream perturbations of infinite wavelength can
be trapped. The length of wave perturbation possible is given by Hall as L = 2x/ \/——'yg .
Adjusting the required minimum eigenvalue to allow for a shorter wavelength moves the
two events, negative eigenvalues and reverse flow, closer together without removing the gap
completely.

Another possible reason for this discrepancy between negative eigenvalues and reversal of
flow is the effect of feedback on vortex breakdown on the global flow properties. In particular,
the appearance of vortex breakdown bubbles has a direct effect on the upward motion near
the outside of the cylinder. To examine this idea further, the next section outlines details of

a time-dependant study of vortex breakdown.
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A Confined Vortex Breakdown Model
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Figure 5.8: (a) Axial velocities —w(0, z) and (b) Minimum eigenvalues v3(z) for H/R
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Figure 5.9: Minimum velocity —w(0, z) and eigenvalues ¢ for (a) H/R = 2.5 (b) H/R = 4.0

5.6 Unsteady Breakdown

In the previous section it was shown that the wave model of vortex breakdown is reasonably
consistent with breakdown results in the confined apparatus. It seems that the flow pattern
is capable of supporting infinitesimal perturbations in the upstream direction. The aim of
this section is to compare the behavior of the wave model in the time dependant confined

flow in the context of this wave model.

5.6.1 Axisymmetric Spectral Element Method

In solving for the time-dependent swirling cavity problem, the spectral element method has
been utilized in conjunction with the stiffly-stable multi-step splitting scheme outlined in
section 2.4.2.

Unlike the finite element method, the use of the axisymmetric form of the equations, with
it’s corresponding 1/r terms, provides some difficulties in the spectral element method. Since
the spectral element method uses integration points on the nodal points, the points on the
axis r = 0 require special treatment. For these elements, Gauss-Radau-Legendre elements
are employed. These element do not have an element on the left edge (at least in the direction
employed here; it’s possible to remove either edge) and the corresponding weight functions
are based on the Jacobi polynomials P(:%). This procedures seems to be similar to that
mentioned in Tomboulides and Orszag (2000).

In practice there are only a few alterations to be made to the Cartesian equations to allow
for axisymmetric flow. The extra terms of Section 2.4.1 are once again included, and the

Jacobian of integration becomes rdrdz, rather than the more familiar dzdydz.
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The only other significant modification that is necessary involves the divergence of the
pressure equation (2.43). As the flow domain is effectively a bounded, the pressure can only
determined to within an arbitrary constant (a fact that is verified by substituting p! = p+C
for a constant C' into equation (2.1) with the appropriate boundary conditions). Because the
method used is an inexact projection method, with an approximate Poisson equation being
solved, it was found that during integration the sum of the divergence used on the right
side of this equation would drift slightly from zero (usually less than 10~% per time-step).
This in turn leads to convergence difficulties in the iterative solver. To overcome this, a
technique similar to that of Strikwerda (1984) is used, where the sum of the right-hand-side

of equation (2.45) is set to zero.

5.6.2 Numerical Convergence

While spectral element methods offer high order accuracy for smooth problems, the swirling
cavity problem has an inherent singularity in the specification of the boundary conditions:
at the outer edge of the rotating lid there is a jump in velocity. In experiments this jump
is, of course, not infinite. In practice, the gap width is order of 1% of the cylinder radius.
Because of this large jump in gradient near the edge of the spinning lid, it is important to
confirm that the numerical solutions are converging.

The approach used to confirm convergence is to study the swirling cavity problem at a
Reynolds numbers of Re = 100 with an aspect ratio of H/R = 1.5 . A start-up simulation
is then performed up to a time of ¢ = 10, at which point the r velocity in the center of the
mesh, point (0.5,0.75), is the evaluated. Since this point will often not correspond to a nodal
point, the natural spectral element interpolation (using Lagrangian polynomials) is used to
evaluate the flow values. The ‘exact’ value of the velocity is determined from a very high
resolution simulation with n = 20 and p = 16.

The mesh used to study convergence consists of n x nH/R elements where H/R is the
aspect ratio of the rig, here 1.5, and n is resolution parameter. Each element is of order
p. An example of the macro-mesh for n = 6 is shown in Figure 5.10. Both h and p type
convergence are studied; that is, varying the number of element n and the element order p
respectively.

Figure 5.11 shows the result of maintaining a constant element order and varying the
number of elements in the mesh. The value of h used in the diagram is simply the inverse of
the number of elements, which is also equal to the average side length of the elements. While
the p = 9 solution showed slightly lower error values, the convergence rate is slightly worse
(order of 4.98) than that of the p = 7 solution (with order 5.43).
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Figure 5.10: Macro-mesh for time-dependant swirling convergence study, n = 6, H/R = 1.5.
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Figure 5.12: p convergence of swirling cavity spectral element solution

Figure 5.12 shows the results of keeping a fixed element size and varying the order of
the element. As the order of the element is increased, the error in the solution is reduced
exponentially, especially when looking at the n = 8 results. The n = 6 show some loss of
exponential convergence for larger values of p. This can be attributed to the relatively large
element size compared with the steepest gradients in the bottom right corner, and to the
lack of smoothness in the boundary conditions.

While this technique shows that is possible to achieve good convergence on the swirling
cavity apparatus using spectral elements, it is known that as the Reynolds number is in-
creased the boundary layers will become thinner. To make sure these boundary layers are
properly resolved, the higher Reynolds results are simulated on a modified form of the mesh
of Figure 5.10. A three element wide layer of elements is placed along the bottom and outer
boundaries with a width of 3/v/Re. Theses elements, which are unstretched, provide the

necessary resolution in the boundary layer to maintain exponential convergence.

5.6.3 Transition to Breakdown

Figure 5.13 shows the onset of the confined vortex breakdown with an aspect ratio of H/R =
2.5 at a Reynolds number of 1900. As seen in Figure 5.3, this parameter set is just inside
the region of breakdown, and in the previous section was seen to show negative minimum
eigenvalues, and hence be capable of sustaining upstream standing waves.

The first observation from figure 5.13 is that the breakdown in the confined apparatus
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Figure 5.13: Onset of Vortex Breakdown. Re = 1900, H/R = 2.5. 1075 < 1 < 0.008, cubicly

stretched. Blue is positive.
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occurs more slowly that the rapid onset of breakdown in the pipe apparatus. While break-
down in the pipe is usually described as a jump in states, the current change occurs more
slowly. The second observation is that between ¢ = 130, where the flow is yet to show signs of
breakdown, and ¢t = 180, where the flow is showing significant waviness, there is a reduction
in size of the blue area near the outer wall, corresponding to the most positive stream-values.
This indicates that the upward jet, and therefore the recirculating flow near the top of the
cylinder apparatus, have slowed due to the start of the waviness in the flow. The reason for
this is relatively straightforward; the increase in width of the central core region reduces the
amount of room for fluid to flow back up the apparatus.

Figure 5.14 shows the onset of reverse flow, the so-called breakdown bubble. After the
initial appearance of the breakdown bubble at ¢ = 185, the bubble grows and moves upstream.
This behavior is consistent with vortex breakdown in the pipe apparatus, and is also a features
of Darmofal’s wave propagation model for breakdown. However, beyond ¢ = 200 the vortex
breakdown bubble begins to reduce in size. A likely mechanism for this reduction in size
is the effect of breakdown on the upward fluid motion, which is slowed due to the increase
in core size. This pattern of appearing and disappearing breakdown bubbles is repeated for
several cycles, and suggests a mechanism where the breakdown bubble size is eventually in
balance with the pressure exerted by the upward moving fluid stream near the outer part of
the cylinder.

While the wave model of vortex breakdown has a role to play in predicting vortex break-
down in the confined cylinder, it is only a necessary condition for the appearance of vortex
breakdown in the steady state. Once the vortex breakdown bubble has formed, the flow
must have sufficient strength to overcome the loss in circular motion due the existence of the
breakdown bubble. This feedback cycle tends to dampen the appearance of the breakdown
bubble in the cylinder apparatus, giving a more steady onset of breakdown compared with
the dramatic transition seen in pipe and free flow breakdown.

This feedback mechanism gives a possible explanation for one key difference between
breakdown in the pipe apparatus and confined apparatus. Wang and Rusak (1997) have
suggested that vortex breakdown can be seen as a transition between two possible vortex
states. This idea seems inconsistent with the results of the confined apparatus, where the
breakdown onset occurs as a gradual transition. Tsitverblit (1993) showed that steady ax-
isymmetric breakdown is a gradual process, and that bifurcation plays no role in the onset
of confined vortex breakdown. By allowing for feedback between the upward motion and the
downward, vortex core motion in the cylinder, these two process for vortex breakdown can
be reconciled. By moving to a closed system, the swirling cavity, the jump in state apparent

in previous breakdown models becomes a steady transition with Reynolds number of flow
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Figure 5.14: Transient vortex breakdown bubble. Re = 1900, H/R = 2.5. 1075 < < 0.008,

cubicly stretched. Blue is positive.
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features, at least when viewing the steady solution at infinite time.

The incorporation of feedback into the breakdown model may also explain the failure to
find a simple wave growth by Jones et al. (1998). By considering only changes between steady
state solutions, it is difficult to observe wave propagation as a breakdown mechanism, since
the balance between upstream and downstream forces will already play a part at Reynolds

numbers where vortex breakdown is not apparent.

5.7 Conclusion

The wave trapping models originally put suggested by Squire, and further enhanced by Hall,
Leibovich and Darmofal has successfully been applied to a torsionally driven cavity. By
considering a case where there is a discrepancy between the breakdown state suggested by
the wave-propagation criteria and that seen in the actual flow, it was seen that feedback
in the closed system has a substantial effect on the overall flow pattern, acting to reduce
or remove the breakdown bubbles. After making allowances for the fundamentally different
stability properties of closed systems, these results suggest that the wave trapping model
provides a robust explanation for vortex breakdown.

In the next chapter a different physical problem is tackled. As a means of validating the
current numerical model for time-dependant wake flows, a series of simulations are performed
on two-dimensional cylinder wakes, as well as simulation of sphere flow at low Reynolds

numbers.
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Chapter 6

Two Dimensional Wake Flow

6.1 Background

This chapter outlines a series of simulations of two-dimensional flow past a cylinder and
axisymmetric flow past a single sphere. As both of these flow configurations have been
studied in great detail they are useful test problems to establish the validity of the current
numerical model.

The study of flow past a cylinder, dating back more than 100 years, covers a wide range
of numerical and experimental work over a complete range of Reynolds numbers. This body
of work is reviewed in detail by Williamson (1996). The focus of the current study is to
evaluate the time-dependant cylinder wake flow in the Reynolds number range of 100 to 300
under the assumption of two-dimensional flow. At a range of Reynolds numbers the wake is
known to exhibit a single frequency shedding, and is hence suitable for validating that the
code is correctly simulating shedding wake flows.

The second test problem considered in this chapter is flow around a single sphere at
Reynolds numbers up to an including 200, where the flow is known to be axisymmetric. As
well as providing a starting condition for the higher Reynolds number flows, these solutions
are also compared against previous results to validate the numerical scheme and choice of

numerical mesh.

6.2 Mesh

Figure 6.1 shows the mesh C1 used to simulate two-dimensional cylinder flow. The width of

the simulation domain is known to have a significant effect on the frequency response, and
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Figure 6.1: Spectral element mesh for two dimensional flow past a cylinder

the current mesh has a height of 24d and upstream distance of 12d where d is the diameter
of the cylinder. The mesh contains 265 seventh order elements (each element consisting of
an 8 x 8 grid of nodes).

To increase resolution around in the boundary layer around the cylinder, the elements
near the surface are stretched towards the surface. Only the exterior points of the elements
are stretched; the internal elements are located on the Gauss-Lobatto-Legendre points to
maintain spectral accuracy.

To allow for a reduction in the number of matrix systems stored, the wake elements of
the mesh are set to two constant lengths in the stream-wise direction rather than gradually
increasing the element size downstream. For elements with the same spatial structure the
element matrices of the flow equations have the same values, and this fact is used to reduce
memory requirements in the code. After being built, each element matrix is compared to
the existing matrices, firstly via a hash function and secondly via a more accurate test. If
the element matrices are the same, one of the matrices is deleted and the common matrix is
shared through a pointer. This leads to a significant amount of reduction in total storage for

the simulation, a factor which becomes important for three-dimensional simulations.
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Two Dimensional Wake Flow 6.3 Evaluating Strouhal number

6.3 Evaluating Strouhal number

The Strouhal number is a non-dimensionalised frequency, defined as
St =2fR/U (6.1)

where f is the dimensional frequency in the flow, R is the radius of the cylinder, and U is
the inlet velocity.

To calculate the Strouhal frequency of the wake several points inside the flow are ex-
amined. A discrete Fourier transformation (Press et al. (1992)) is performed on N data

points
N .
F, = Z f(k)ef27rznk/N (62)
k=0

where f(k) is the data value at time ¢, and n represents the discrete frequency. This is a one
sided power spectrum, and is normalized by total power so that the area on the spectrums
in the following graphs add to one.

To examine the Strouhal number of the flow, several points within the flow field are
examined. The start up flow is not expected to be periodic, and examination of the point
values is used to determine when the flow has become periodic. Values after this time are

used to determine the flow spectrum.

6.4 Strouhal Number of Cylinder Flow

To verify the accuracy of the wake flow, a comparison of the wake frequencies at a number of
Reynolds numbers is made. Before this comparison can be meaningfully made, it is important
to verify that the wake is shedding in a periodic way.

To check the Strouhal number, flow past a cylinder is simulated on the mesh C1 of
Figure 6.1. A timestep of At = 0.005 is used, and the flow field is initialized with a 1%
random noise in the velocity field to encourage the onset of shedding.

Figure 6.2 shows the velocity and pressure profiles of the flow at x = 10, y = 0. Exam-
ination of the flow profile in Figure 6.2(a) shows that the onset of shedding flow beings at
around t = 30, and that by ¢t = 75 the flow has settled down to a periodic flow pattern. Part
(b) of the same figure, show the flow values for 100 < ¢ < 150 shows that the structure of the
flow is largely periodic. To measure the Strouhal number, the flow features for 100 < ¢ < 300
have been used.

The two strong peaks correspond to the Strouhal frequency and twice the Strouhal fre-
quency. As expected, the frequency of the horizontal velocity and pressure in the wake is

twice that corresponding to the Strouhal frequency.
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Figure 6.3: Spectrum for two dimensional shedding wake flow, Re = 200
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6.4 Strouhal Number of Cylinder Flow

In Figure 6.3 the spectrums of the flow quantities at several points in the flow are shown,

as well as the spectrum of the force on the cylinder at Re = 200. These diagrams show the

presence of one fundamental frequency at St = 0.20, with several quantities showing peaks

at multiples of this amount, as expected. Clearly this fundamental frequency dominates, and

the wake undergoes a simple, single frequency shedding as expected.
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Figure 6.4: Strouhal Number vs. Reynolds Number for two dimensional cylinder wake

Figure 6.4 shows the Strouhal number against Reynolds number compared to the universal

Strouhal number curve of Williamson (1988);

St=—+ B+ CRe

A
Re

69
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Two Dimensional Wake Flow 6.5 Effect of Time-Step on Strouhal Number

where the constants are A = —3.3265, B = 0.1816 and C' = 0.00016. To calculate the
frequencies, the vertical force on the cylinder is measured between ¢t = 100 and ¢t = 300,
giving a resolution for the Fourier transformation of At = £0.05. The trend of these Strouhal
results show that the calculated Strouhal number is slightly high. The current flow domain
is restricted in width to 24D and this is known to have an effect on the Strouhal number.
In Thompson et al. (1996) the numerically calculated Strouhal number of similar spectral
element mesh is compared to the Williamson’s curve and found to give good agreement for
a domain width of 50D. However, for a domain width of 7D the Strouhal number was seen
to be over-estimated by around 0.20. The current error of around 0.05 for a domain size of
24D seems to agree with this general trend. Also encouraging is that the error in Strouhal
number decreases as the Reynolds number is increased, as would be expected if blockage is

the cause.

6.5 Effect of Time-Step on Strouhal Number
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Figure 6.5: Effect on timestep on cylinder force

To test the effect of the time-step on the flow properties, a simulation of the two-
dimensional cylinder flow at Re = 200 with a timestep of 0.005 is restarted at ¢ = 100
with a reduced timestep of 0.0025. Both simulations are then evolved to ¢ = 300, where the
forces on the cylinder cylinder are compared. Figure 6.5 shows the vertical viscous forces on

the cylinder near then end of this simulation. Clearly the two results are very close. Since any
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error in the frequency of the flow are likely to accumulate over the evolution, this suggests

that the effect of time-stepping has a negligible effect on the resolved wake frequency.

6.6 Two Dimensional Sphere Wakes

The aim of this section is to compare results for low Reynolds number, two-dimensional
sphere flow with previous results. It is known from the literature that the sphere flow is
steady and axisymmetric for Re < 212. Rather than using an axisymmetric code, fully
three-dimensional simulations are performed using the mesh M1 of the next chapter. The
main comparison between these results and those of previous works is made by comparing

streamlines and wake length of the steady flow.

Streamline Calculation

Two main method are available to calculate the streamlines of a two-dimensional flow. The
first approach is to solve a global stream-vorticity equation for the stream function v, as
used in the previous chapters. Unfortunately, this technique does not scale easily to three-
dimensional flows. This method is also more problematic for flow domains that are not simply
connected, since cuts need to be made in the domain.

The second method, as used here, involves integrating tracer ‘particles’ through the flow
to form streak-lines. For steady flow these streak-lines are equivalent to streamlines since
they are always directed in the flow direction.

The technique used to evaluate the streak-lines is to seed the flow with a number of
particles, which are then integrated through the flow domain using a fifth-sixth order Cash-
Karp Runge-Kutta (Press et al. (1992)). To evaluate the velocity of each particle at position
(x) it is necessary to find the element containing the particle, as well as it’s master element
position £ on that element. Using the bounding box of each element, it is possible to exclude
most elements from this search. For each element that may possibly contain the particle, the

element expansion
x =Y xFp(&)ijk (6.4)
is then inverted to find the master element co-ordinate £. To invert this relationship, Newton-

Raphson iteration is used, -
x — Y x7*y(€)

f — é-last + :
sz]k 81(/;2&)

(6.5)

If the point x is not in this element, the value of £ is seen to quickly escape the master

element.
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Figure 6.6: Streamlines of axisymmetric sphere flow.

6.6.1 Sphere Flow features

To view the streamlines of the sphere, a line of 31 seed particles are placed on a line between
(—0.65,—1,0) and (-0.6,1,0), and integrated both forwards and backwards along the flow
lines. Placing the seed particles behind the wake of the sphere allows the wake to be visu-
alized, although it means that speeds cannot be directly computed by viewing the distance
between the lines, as is common when viewing contours of the stream-function.

Figure 6.6 shows the streamlines for the two-dimensional flow past a sphere at Reynolds
numbers of 50, 100 and 150. The form of the streamlines compares well with those of Johnson
and Patel (1999), although without knowing the exact initial positions of the streamlines used
in the previous work it is difficult to perform a more direct comparison.

Table 6.6.1 shows the calculated wake length of the current work, compared with that of
the previous works of Shirayama (1992) and Tomboulides and Orszag (2000). At a Reynolds
number of 50 the wake length is slightly longer than previous results, although still within
5% of the previous results. For the Reynolds number 100 and 150 flows the wake length has
a value between the two previous results. In all three of these cases the wake length shows

acceptable agreement with the previously calculated results.

72



Two Dimensional Wake Flow 6.6 Two Dimensional Sphere Wakes

Reynolds number  Shirayama (1992) Tomboulides et al. (2000) Current

050 0.40569 0.40 0.418
100 0.8103 0.86 0.852
150 1.0803 1.2 1.19

Table 6.1: Wake length for single sphere.

Table 6.2 compares the pressure values for Re = 50 and Re = 100 with those of Kim
and Moin (1984). Since the pressure is only specified at the outer domain, and the domain
has been restricted to a square tube in the current work, the final column evaluates the
difference between the front and rear pressure on the sphere, as this value is expected to
be more independent of the flow domain. Comparing the values of pressure difference with
those of Kim shows that the agreement of this figure is to within 0.6% at a Reynolds number
of 50 and 1.1% at a Reynolds number of 100. These variations in magnitude are similar to
those of Kim’s results at differing resolutions, and suggest that the current code generates

acceptable values for pressure on the sphere.

Source Re  Mesh Piront  Prear AP

Kimetal. 50 N =30 0.606 -0.0982 0.7042
Kimetal. 50 N =40 0.604 -0.0954 0.6994
Current 50 C1 0.611  -0.0848 0.6955
Kimet al. 100 N =30 0.555 -0.0819 0.6369
Kim et al. 100 N =40 0.554 -0.0789 0.6339
Current 100 C1 0.567  -0.0737 0.6407

Table 6.2: Axisymmetric sphere flow features.

Figure 6.7 shows flow quantities in the & — y plane for the single sphere flow at Re = 200.
The top figure, contouring stream-wise velocity, show a substantial area of flow retardation
downstream of the sphere. The results is almost perfectly symmetric, other than a slight
wobble near the outflow. This anomaly is the result of a drastic and sudden test of the ro-
bustness of the numerical technique. The simulation was accidently restarted with corrupted
data, resulting in a large region of random pressure in the back part of the wake. While it
pleasing to know that the noise was advected downstream without affecting the stability of
the scheme, there are still signs of this ‘perturbation’ near the outflow.

Part (b) of the same figure shows the y velocities on the same plane. Because of the
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(d)

Figure 6.7: Sphere flow features in  — y plane at Re = 200, t = 36.5.
(a) 10 contours for —0.35 < u, < 1.1.

(b) 10 contours for —0.5 < u, < 0.5.

(c) 17 contours for —0.32 < p < 0.32.

(d) 10 contours for —5 < (V x u), < 5.
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axisymmetry of the flow, the z velocities are zero on this plane. Since no large variations
in the cross-stream velocities exist downstream, the view shown is zoomed in on the sphere.
The bounding box of the region is approximately —2 < z < —2.5 and —1.5 < y < 1.5, and
again the blue axis extend to x = —2 to provide a scale.

Figure 6.7(c) shows the pressure around the sphere. The contour levels used are chosen
to allow direct comparison with the pressure results of Johnston and Patel. The shape of
the pressure region is well represented, with a loop of low pressure present in the wake.
Some jagged contours are evident in these contour plots, and it is worth noting that the
plotting, using the VTK library, only uses first order interpolation between nodes, whereas
the underlying solution is solved using a much higher order approximation. In particular,
many of the asymmetries in the contour lines seem to be from the use of an asymmetric
contouring algorithm rather than any underlying asymmetry in the data.

Figure 6.7(d) shows the vorticity in the wake of the sphere at Re = 200. Again, a slight
asymmetry is present in the results, due to the novel initial condition mentioned previously.
Since the flow is axisymmetric, the x component of vorticity is zero, and the choice of coor-

dinates gives the y component a value of zero on the x — y plane.

6.7 Conclusion

This chapter has outlined a series of simulations performed to verify the accuracy of the
current numerical implementation. Simulations of shedding cylinder flow were compared
with known results to verify that the numerical scheme properly resolves the shedding wake.
When allowance is made for blockage around the cylinder, the current results are in good
agreement with previous numerical and experimental results. The effects of time step on
the wake response were also tested, with use of smaller timestep producing consistent wake
frequencies.

Simulations were also performed on flow around a sphere at moderate Reynolds numbers,
where the flow was seen to be axisymmetric as expected. Comparisons on streamlines and
wake lengths were in agreement with previous results, and closer examination of pressure
and other flow variables suggest that the flow features of the axisymmetric wake are being
correctly resolved by the current fully three-dimensional simulations.

In the next chapter the Reynolds number of the single sphere flow is increased to simluate
sheddding flow around a aingle sphere. As well as providing validation of the current model,
this single sphere flow will be used as an initial condition for the interacting sphere flow

study.
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Chapter 7

Single Sphere Flow

Flow past a single sphere is a good example of a generic compact bluff body flow. Single
sphere flow can be very simply specified and yet offers a rich structure of solutions. The flow
progresses from, at very low Reynolds numbers, a spherically symmetric flow, to a flow with
an axisymmetric wake at increased Reynolds number. As the Reynolds number is increased
further, the axisymmetry of the wake is broken, and the a steady three-dimensional flow with
a single plane of symmetry develops. As the Reynolds number is further increased, the wake
begins to shed, initially with a single frequency and with increasing Reynolds number the
flow progresses to a fully turbulent wake.

The aim of this chapter is to simulate the transition of the wake as it moves from an ax-
isymmetric wake to a shedding three-dimensional flow using a fully three-dimensional spectral
element technique. These results are compared with existing work on sphere shedding flows.
As well as providing a comparison with these works, the current results are used as to form

an initial condition for simulation of flow past two spheres.

7.1 Problem Geometry

The model problem of flow past a single sphere is shown in Figure 7.1. The flow is governed
by the dimensionless Reynolds number, defined as Re = Ud/v for an inlet velocity of U, a
sphere diameter of d and fluid kinematic viscosity of v.

To fix the problem to a finite domain, an outer ‘pipe’ is added to the flow. In experiments
a physical pipe is typically used to enclose the sphere and fluid. In the current work a square
pipe is used to enclose the flow. As the goal of the next chapter is to simulate the interaction

of multiple sphere wakes, the square pipe is used as an outer boundary condition. This outer
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Figure 7.1: Single sphere problem

domain allows for a more convenient fitting together of two single sphere solutions. The
width of the outer pipe, denoted here as H, is set to 8d in the following simulations. The
sphere, being a compact body, is affected significantly less by blockage than the equivalent
cylinder wake flow. A value of H = 8d in a square pipe represents a blockage ratio of 1.2%.
Using the potential theory argument put forward by Tomboulides and Orszag (2000), this
represents a change in the potential flow velocity at the the pipe of less than 0.2%.

As the sphere is axisymmetric, the orientation of the vortex is not predefined. The vortex
in Figure 7.1 is shown to indicate the direction used for diagnostics, with the y = 0 plane
being used as the plane of symmetry. Rotating back onto a symmetry plane gives a convenient

reference for quantities such as the planar velocities and vorticity.

7.2 Background

There is a significant body of work on both steady and shedding flow past spheres. The
present work considers flow past a sphere over a range of Reynolds numbers as the flow
moves from a steady axisymmetric flow toward a fully three-dimensional shedding wake flow.
This transition falls in the Reynolds number range between Re = 200 and Re = 300. Above
Re = 300 the flow moves towards a turbulent wake flow, and flows with a Reynolds number

of greater than 300 are not considered in the current work.
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7.2.1 Experimental Results

The initial reported experimental results on flow past a sphere were by Taneda (1956), who
reported that a closed recirculation region first forms behind the sphere between Re = 20
and Re = 25, and that the flow remains axisymmetric up to Re = 130. Further experimental
investigations by Magarvey and Bishop (1961) and Wu and Faeth (1993) confirm the behavior
at the lower Reynolds number, but found that the flow remains axisymmetric until a Reynolds
number of at least 210. The results of Nakamura (1976) suggest that the transition from
axisymmetric flow occurs at approximately Re = 200.

Above a Reynolds number of approximately 210, a so-called double threaded wake is
observed. The flow remains steady but no longer axisymmetric. Instead, streak-lines formed
by injected dye are seen to form two threads from the back of the sphere that are offset from
the centerline.

Provansal and Ormieres (1998) performed a series of experiments to determine the critical
Reynolds number of the change from a steady non-axisymmetric flow to a shedding flow. This
transition was found to occur at Re. = 280. Their investigation also provided a fit of the
measured wake frequencies above this Reynolds number. In Ormiéres and Provansal (1999)
the energies of the shedding wake are evaluated, and this is shown to be in good agreement
with a Landau-Hopf bifurcation model of transition from steady to shedding flow. This model
predicts that above the critical Reynolds number the energy of the wake will grow linearly
with respect to the changing Reynolds number; a hypothesis confirmed by the results of
Ormieres and Provansal.

Another result from the work of Provansal & Ormieres is that the direction of the double
threaded wake is sensitive to slight changes in upstream geometry; a result seen previously
by Sakamoto and Haniu (1995). This sensitivity to geometry is also a factor in numerical
simulations. In their experiments four wires were used to hold the sphere in place within the

apparatus and these guide wires were observed to ’freeze the spatial mode’.

7.2.2 Axisymmetric Numerical Results

Due to the computational demands of fully three-dimensional simulations, the flow simu-
lations of Fornberg (1988) modeled flow past a sphere by assuming an axisymmetric flow.
It was found that the wake length and separation angle vary approximately as log(Re) for
Re > 75. While steady results are given at higher Reynolds numbers, the restriction to
axisymmetric flows means that the results for Re > 200 differ substantially from available

experimental results.
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Kim and Pearlstein (1990) used a steady axisymmetric base solution to perform a linear
stability analysis. This work predicted a Hopf bifurcation at approximately Re = 175. This
figure is significantly lower than that found in previous work (as well as the current results). It
is likely that the axisymmetric linear stability analysis does not model the physical transition
well, since the wake is know to change from axisymmetric to steady non-axisymmetric before
beginning to shed.

Natarajan and Acrivos (2001) also used a axisymmetric base solution to find the transition
Reynolds number for the sphere flow. They found that the first transition occurs at Re = 210,
and is a change of stability from axisymmetric to double threaded. This mode is symmetric
about one plane. They found, based on steady axisymmetric flow, a second transition at
Re = 277.5, a number that compares well with current experimental and three-dimensional

flow simulations.

7.2.3 Three Dimensional Numerical Results

Shirayama (1992) examined the transition from axisymmetric wake flow to planar symmetric
wake. The study involved the use of a finite difference technique with a maximum grid size
of 50 x 100 x 50. This worked considered the sphere flow at a Reynolds number of Re = 500,
and looked in detail at the startup flow.

Johnson and Patel (1999) compared numerical simulations with experimental results for
flow past a sphere. Good agreement was shown between the numerical and experimental
results, as well as existing results for the sphere transition flows.

The numerical simulations consisted of a finite difference discretisation with a maximum
grid resolution of approximately 100 x 40 x 100 in three dimensions. The vortex visualization
method of Jeong and Hussain (1995) was used to examine the vortex behind the sphere at
Re = 250 and Re = 300. Their numerical and experimental results clearly show a hairpin
vortex structure in the wake at Re = 300.

Tomboulides and Orszag (2000) report a series of comprehensive simulations on flow past
a sphere up to a Reynolds number of Re = 1000. The numerical technique employed in
this work was a mixed spectral element/spectral method scheme. Spectral elements where
used in the (r, z) planes, with a spectral method employed in the 6 direction. The fractional
step method with high order boundary conditions of Karniadakis et al. (1991) was used for
temporal discretisation. The geometry used was a circular pipe with a radius of 9d, giving a
blockage of about 1%.

To resolve the flow, 246 spectral elements per plane were used with between sixth and

tenth order polynomial approximation being used on each of the spectral elements. For flows
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up to Re = 300, sixteen planes are used in the 6 direction, with this number being doubled
for higher Reynolds number flows. In all simulations a timestep of 0.005 was used.

Their work concluded that the flow undergoes a transition from axisymmetric to steady
non-axisymmetric at Re = 212, and from this state to a single frequency shedding flow at
Re = 270. By Re = 500 the wake exhibited an number of frequencies suggesting that the
flow was becoming chaotic.

The aim of this chapter is to resolve the fully three-dimensional wake of flow past a sphere
at Reynolds numbers up to 300 using a three-dimensional spectral element technique. These
solutions are used as both a validation of the current model, as well as providing a useful

initial condition for the more involved interacting sphere problem.

7.3 Mesh
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Figure 7.2: Single sphere mesh (M1) with order 4 elements

Figure 7.2 shows the layout of elements used for the initial mesh (M1), used to simulate
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the single sphere flow. To increase the clarity of the plot, the figure shows the mesh M1 with
forth order elements, although seventh order elements are used in the simulations. This mesh
has an outer width and height of 8@ and an upstream length of 4d, with the wake flow being
simulated for a distance of 20d downstream. The mesh contains a total of 748 seventh order

spectral elements, giving approximately 267,000 nodal points.
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Figure 7.3: Single sphere mesh (M2) with order 4 elements

Some of the higher Reynolds number simulations using M1 showed signs of under-resolution
in the vorticity field, and a slightly modified mesh is used to overcome this. Mesh M2, as
shown in Figure 7.3 has a slightly modified element layout, as well as using eighth order
elements. The mesh consists of 676 eighth order elements with about 360, 000 nodal points.
Compared with results from the mesh M1, additional elements were added to the front region
of the sphere M2, as well as the concentration of elements in the near wake (up to z = 5)
being reduced to provide more resolution in the far wake. The far wake showed the most
signs of under-resolution when using the mesh M1.

In both meshes, the size of the elements in the wake are kept constant over a range of
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x values. This once again allows for the use of memory consolidation by producing many
element matrices with the same values. By maintaining only a few different element geome-
tries in the wake it is possible to reduce the total memory requirement of the simulation
significantly.

One criteria used to evaluate if the mesh resolution is sufficient is to examine the resultant
contours of derivative quantities. In particular, under-resolved spectral element results are
known to exhibit jumps in derivative quantities such as the vorticity.

Using the method of Tomboulides and Orszag (2000), the boundary layer resolution of
the meshes can be compared to the expect boundary layer thickness. With both meshes,
the size of the inner element is L = 0.21. Table (7.1) shows the required boundary layer
thickness at varying Reynolds numbers, and indicates that the boundary layer resolution of

both meshes is expected to be sufficient at the Reynolds numbers under consideration.

Re 1) Lyeg  Lypeg

p=T7 p=38
100 0.113 0.57 0.80
300 0.065 0.32 0.46
500 0.050 0.25 0.35

Table 7.1: Boundary layer and element thickness. Tomboulides and Orszag (2000)

7.4 Simulation Details

The numerical technique used to simulate the single sphere flow is the spectral element
method outlined in Chapter 2. The second order stiffly-stable time stepping scheme of
Section 2.4.2 is used along with the corresponding second order pressure boundary conditions
of the same section.

The inlet velocity is specified as u = (1,0,0) upstream. This specified velocity is also
enforced on the outer pipe. This configuration is equivalent to having the sphere move
through a stationary pipe. To reduce the total computation time, the simulation is carried
out at increasing Reynolds numbers, with lower Reynolds number simulations used as an
initial condition for higher Reynolds number flow.

It is known from experiments and previous numerical work that for Reynolds numbers
greater than approximately Re = 210, the sphere wake loses axisymmetry, but that the flow

maintains a plane of symmetry. This plane of symmetry is somewhat arbitrary; Ormieres and
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Provansal observed that the orientation could be changed by small changes in the upstream
velocity. Since the mesh used in the current work is not axisymmetric, it is expected that this
will have some influence on the vortex orientation. To allow for consistent plotting of results,
the approach taken here is to evaluate the direction of the forces on the sphere. These are
seen to fall on a plane, and this plane is assigned the y axis. This results in the z = 0 plane
forming an axis of symmetry.

The simulate the flow, the Reynolds number is stepped up by 50, with the lower Reynolds
number result being used as an initial condition. At each timestep the steps of the projection
method are solved using a GMRES iterative solver with Jacobi preconditioning. The pressure
equation (2.45) is solved to a relative tolerance of 1079 with the diffusion equation (2.48)
being solved to a tolerance of 10~7. Double precision has been used for all calculations.

The simulations were performed on between 32 and 64 processors of the avalon cluster.
The pressure equation solver is the most time consuming part of the simulation with the
iteration count taking between 300 and 600 iterations. Clearly an improved preconditioner

for the pressure equation is required, and this is an area worthy of further investigation.

7.5 Axi-symmetric flow; Re = 200

o [ . | . | . | . | . | .
-2 0 2 4 6 8 10

X

Figure 7.4: Streamlines around sphere at Re = 200 z — y plane

After stepping up to a Reynolds number of 200 and allowing the flow to settle down to a
steady state, the flow forms a steady, axisymmetric flow with a recirculation are behind the
sphere. To visualize the flow around the sphere a streamline trace is shown in Figure 7.4.
The streamline trace is generated by seeding the flow with 21 marker particles in a ring of
radius 0.025 on the y—z plane at £ = —2. The particles are then tracked through the velocity

field using the particle tracking procedure outlined in Section 6.6.
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Single Sphere Flow 7.5 Axi-symmetric flow; Re = 200

Figure 7.5: Vorticity of a single sphere flow at Re = 200.

(a) wy in  — 2z plane, (b) w, in z —y plane

The y and z components of vorticity are shown in Figure 7.5. Due to the axisymmetric
of the flow the x component of vorticity is zero at this Reynolds number. As expected in
axisymmetric flow, the vorticity fields are largely axisymmetric. The slight asymmetry in the

fields is the result of the use of a corrupted restart file mentioned in the previous chapter.

Figure 7.6: Vortex around a single sphere at Re = 200. Top view, x — z plane.

Figure 7.6 shows the result of applying the method of Jeong and Hussain (1995) for vortex
visualization. The three-dimensional iso-surface is visualized using the VTK graphics library

(Schroeder et al. (1998)), and the axes are coloured as green, blue and red for the z, y and 2z
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Single Sphere Flow 7.6 Non-symmetric steady flow; Re = 250

axis respectively. The positive x axis extends to z = 10, all the other axis have a length of 2.

The vortex measure defines the vortex region as those containing negative eigenvalues of
the tensor S% + Q2, where S and 2 are the strain and rotation tensors respectively. This
measure is based on evaluating derivative quantities with these derivatives being evaluated
using the underlying spectral element approximation. Because it is a derivative quantity
the vortex measure tends to not be a smooth as the primitive quantities, u and p, and this
is evident in Figure 7.6. This lack of smoothness is not helped by the relatively low order
contouring technique being used.

Figure 7.6 shows that at Re = 200 the closed recirculation zone gives a small area which
can be considered a vortex, and that the rest of the wake is free of anything that could be

considered a vortical structure.

7.6 Non-symmetric steady flow; Re = 250

To solve for an increased Reynolds number of Re = 250, the final solution of the Re = 200 is
used as an initial condition. This solution is integrated forward in time until a steady state
is once again reached. Over the course of this integration the wake changes in character from
an axisymmetric flow to a steady flow with planar symmetry.

To give a well defined frame of reference for the wake, the results are rotated back onto
the plane of symmetry. To find this plane of symmetry the force on the sphere is found by

integrating the viscous and pressure terms over the surface of the sphere, using

F

/ UVQu-nds—}—/ —Vp-nds (7.1)
sphere

sphere

F, +F, (7.2)

Il

As seen in Figure 7.7, the angle of the force in the steady flow is 39.7°. This figure is used
to rotate the solution back for diagnostics. Results presented have been rotated so that the
y axis is on the symmetry plane.

By taking the average of the forces on the sphere between ¢ = 80 and ¢t = 100, the drag
coeflicient can be calculated. The drag coefficient is defined as
Fy

Cp=1——"
b ipuZ D2 /4

(7.3)

which gives, in terms of the non-dimensionalised force f, and using the current non-dimensional
scalings, Cp = 8f,/m, and by a similar argument the lift force is C;, = 8f,/n. For the
Re = 250 flow, the drag is Cp = 0.7076. Evaluating the y — z plane forces on the sphere

gives a lift coefficient of C', = 0.06266, which seems consistent with graphical results pre-
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Figure 7.7: Forces on a single sphere at Re = 250
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sented by Johnson and Patel; analysis of their graph of lateral force coefficient gives a value

for Cf, in the range 0.061 £ 0.001.

()

Figure 7.8: Vortex behind a single sphere at Re = 250. (a) top view (x — z plane) (b) right

view (z — y plane) (c) bottom view

Figure 7.8 shows plots of the vortex core region, as defined by Jeong and Hussain (1995).
The results presented here compare well with that of Johnson and Patel (1999) at the cor-
responding Reynolds number. The results correspond to a time of ¢ = 100, where the flow
is steady, as seen in Figure 7.7. The angled view of the vortex region in Figure 7.9 clearly
shows the ‘double threaded’ wake of previous results.

Figure 7.10 shows instantaneous streamlines at ¢ = 100 for the Re = 250 flow, seeded
in the same way as the previous section. Since this flow is steady, this is also equivalent to

the streaklines or particle paths of the fluid. The particles are seeded in the same manner as
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Figure 7.9: Perspective view of vortex behind a single sphere at Re = 250
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Figure 7.10: Streamlines around a single sphere at Re = 250. (a) z —y plane (b) z — 2z plane
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Single Sphere Flow 7.7 Shedding flow; Re = 300

the previous section. The double-threaded wake seen by Ormieres and Provansal (1999) and
early work is clearly evident in the streamlines of figure 7.10(b).

The vortex structure behind the sphere is in good agreement with Johnson and Patel
(1999), where a larger recirculation zone at the top’ of the sphere feeds into a smaller
recirculation zone at the bottom which then leaks out into the main flow. This causes the
wake of the sphere to be off-center of the y = 0 plane. The top view indicates that the fluid
leaves the rear recirculation at a location below the z = 0 plane, and that this takes place at
points symmetric about the y = 0 axis. This leads to the double wake formation observed in
experiments. [note: in Johnson and Patel’s work, their largest vortex appears at the bottom
of the sphere, due to a different choice of co-ordinate systems. Since this choice is arbitrary,
the results are equivalent.]

Figure 7.11 shows vorticity cross-sections of the steady non-symmetric flow. In (a), the
vorticity contours are between w, = —0.5 and w, = +0.5 at intervals of 0.1. Figures (b) and
(c) have a range of —2.5 < wy,w, < 2.5 with an interval of 0.5. In all cases blue represents
positive values and red represents the most negative. The current vorticity results compare
well with those of Johnson and Patel. The contours of w, show some mesh related noise

upstream of the sphere; a refined mesh has been used at Re = 300.

7.7 Shedding flow; Re = 300

As the Reynolds number is increased from 250 to 300, the flow changes from a non-axisymmetric
steady flow to a shedding flow with one dominant frequency.

To speed up the onset of shedding, the initial condition used for the Re = 300 flow is the
Re = 250 solution with a 1% random noise applied to the velocity field. Figure 7.13 shows
flow quantities over the time period ¢ = 5 to ¢t = 100 at two points in the flow.

By evaluating the average of the forces on the sphere over the time period 40 < ¢t < 157,
the average lift and drag are determined. The average lift coefficient of C, = 0.0687 is
within the accuracy of the figure given by Johnson and Patel. The average drag coefficient
of Cp = 0.662 falls between the values given by Johnson and Patel, with Cp = 0.656, and
the result of Tomboulides and Orzag of Cp = 0.6714.

The principal frequency of the wake (which is the Strouhal number of equation (6.1)) for
t > 40 is 0.136 £+ 0.0085. Selection of this time range is based on examination of Figure 7.14,
since for ¢t > 40 the flow seems to have reached periodicity. This Strouhal frequency gives a
wake period of 7.35. The error estimate for the Strouhal number is a results of the Fourier
transformation, and is determined by the length of the integration time, as outline in the

previous chapter. The Roshko number, Ro = St x Re, of the current result for Re = 300
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Figure 7.11: Vorticity cross-sections for single sphere flow at Re = 250. (a) w, in z — z plane,

(b) wy in & — 2 plane, (¢) w, in £ — y plane
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(b)

Figure 7.12: Axial vorticity volumes for single sphere flow at Re = 250. (a) w,, view of z —y

plane, (b) w,, view of z — z plane

gives Ro = 40.8 £ 2.6. This results is slightly larger than the value predicted by Ormieres
and Provansal (1999) where the curve fit gives a value of Re = 36.7.

In Figure 7.14(c), the angle of the maximum force is plotted. For later integration times,
the angle of the force is very close to constant. The jump in the angle of the force that is
apparent near ¢ = 35 corresponds to the change in character of the wake from essentially
steady and axisymmetric to a time dependant shedding wake. In plotting field results, and

angle of 41.5° is used to move the y axis back to the axis of symmetry.

7.7.1 Flow Quantities

While the Strouhal number and general flow features using the mesh M1 correspond well with
previous work, some noise was present in the iso-surfaces of vorticity and vortex measure. To
improve the quality of these results, the higher order mesh, Mesh M2, was used to simulate
the Re = 300 flow. To avoid having to restart the flow, the solution from the M1 mesh
is interpolated onto the M2 mesh using the natural spectral element (GLL) interpolating
functions. While producing slightly more acceptable derivative quantities (vortex measure
and vorticity) in the far wake and upstream of the sphere, the main flow features, including

the Strouhal number, drag coefficient, and lift coefficient are effectively unchanged. The
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7.7 Shedding flow; Re = 300

000000

()
Figure 7.13: Point values in wake of single sphere flow at Re = 300. Point 1 =
(4,-0.052,—0.052), Point 2 = (10,—0.052,—0.052). (a) Pressure values. (b) Axial veloc-

ity values. (c) Magnitude of planar velocities
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Figure 7.14: Forces on single sphere at Re = 300
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simulation time is reset, so results for the M2 mesh refer to the time ¢ from interpolating the
M1 result onto the new mesh.

Figure 7.15 shows the axial velocity over approximately one periodic cycle of the flow.
The difference in ¢ of 7.5 between the first and last frame is slightly longer than calculated
period of 7.35, but the matching between the first and final frame is reasonably close. The
light blue tube in Figure 7.15 shows the area of wake retardation in the flow, and shows the
hairpin structure present in the wake. As the wake is carried in the flow, the wake diffuses,
leading to the apparent ‘breaking off’ of the wake. The actual location of this phenomenon
is dependant on the choice of contour level, and in practice the speeding up of the wake is

gradual.

7.7.2 Flow Vortex and Vorticity

Figures 7.16, 7.17 and 7.17 show calculations of Jeong and Hussain’s vortex measure from
the top, side and from a perspective view. When compared with Figure 7.8 they show clearly
the change in structure from the double wake to a shedding hairpin wake. There is some
noise present in the shedding vortex results; a resolution effect which is exaggerated by the
use of derivatives in the vortex measure. Contouring through zero also increases the noise
present in the vortex contours.

Figures 7.19 and 7.20 show the stream-wise (w,) vorticity. As the vorticity convects down
stream, the bottom vortex folds in on itself.

Figure 7.21 shows the w, vorticity. The asymmetry in this vorticity, with the positive
vorticity on the bottom being stronger, causes the stream-wise vorticity to continue to fold

up as is convects downstream.

7.7.3 Instantaneous Streamlines

To obtain a picture of the flow, instantaneous streamlines are calculated by integrating seed
particles through the flow at given times. The seed particles are coloured by their initial
position, with circles of 8 particles placed at x = —2 on the axis, and at the four points
= —2,y = £0.25, 2 = +£0.25. The results of this tracing technique do not generate streak-
lines, as would be seen if dye were injected into the flow and integrated with the fluid velocity
over time, rather they produce lines in the direction of the instantaneous flow field.

Figures 7.22 And 7.23 show the instantaneous streamlines from the side and top respec-
tively over one cycle of the shedding. Notice that the hairpin vortices seen in Figure 7.18,
and also suggested by Figure 7.15, are not apparent in the instantaneous streamlines. The 2

component of vorticity in Figure 7.21, which measures vortex rolling motion in the direction
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=~

w-

Figure 7.15: Axial velocity, u,, in wake of sphere, Re = 300. Side view. Mesh M2. Times
are, from top to bottom, ¢t = 12.5, 14, 15.5, 17, 18.5 and 20. Darkest blue contour is u, = 1.1,

light blue contour is u, = 0.9.
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Figure 7.16: Vortex wake of sphere, Re = 300. Top view. Mesh M2. Times are, from top to
bottom, ¢t = 12.5, 14, 15.5, 17, 18.5 and 20.
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Figure 7.17: Vortex wake of sphere, Re = 300. Side view. Mesh M2. Times are, from top to
bottom, ¢t = 12.5, 14, 15.5, 17, 18.5 and 20.
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Figure 7.18: Perspective view of vortex behind Sphere at Re = 300
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Figure 7.19: Axial vorticity in wake of sphere, Re = 300. Top view. Mesh M2. Blue contour
is (V xu), = 0.1, Red contour is (V x u), = —0.1, Times are, from top to bottom, ¢t = 12.5,
14, 15.5, 17, 18.5 and 20.
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Figure 7.20: Axial vorticity in wake of sphere, Re = 300. Side view. Mesh M2. Blue contour
is (V xu), = 0.1, Red contour is (V x u), = —0.1, Times are, from top to bottom, ¢t = 12.5,
14, 15.5, 17, 18.5 and 20.
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Figure 7.21: w, vorticity in wake of sphere, Re = 300. Side view. Mesh M2. Times are, from
top to bottom, t = 12.5, 14, 15.5, 17, 18.5 and 20.
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Figure 7.22: Streamlines in wake of sphere, Re = 300 side view. Mesh M2. Times are, from
top to bottom, ¢t = 12.5, 14, 15.5, 17, 18.5 and 20.
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Figure 7.23: Streamlines in wake of sphere, Re = 300. Top view. Mesh M2. Times are, from
top to bottom, ¢t = 12.5, 14, 15.5, 17, 18.5 and 20.
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Single Sphere Flow 7.8 Conclusion

of the flow, shows that more that about five diameter lengths downstream of the sphere a
significant amount of the negative (on top) vorticity has defused. This indicates that the
top part of the vortex structure is formed largely at the sphere and convects downstream
with the flow. On the other hand, the lower vorticity, rotating in a counter-clockwise sense,
is still relatively large downstream, and accounts for the increasing kink in the streamlines

downstream of the object.

7.8 Conclusion

The current chapter outlines a series of simulations of flow past a single sphere as it transitions
from an axisymmetric wake flow to a shedding wake flow. The fully three-dimensional spectral
element code does a good job of resolving the wake, and provides good agreement with
previous experimental and numerical work. In particular, the shedding wake flow at Re = 300
shows good agreement, showing a wake shedding at a single frequency and shedding in a
symmetrical pattern around one plane only.

The aim of the next chapter is to use the single sphere simulation as an initial condition

to study the interaction of the wakes behind two spheres.
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Chapter 8

Double Sphere Flow

Interaction of the wake flow behind two spheres can be seen as a prototype for interaction of
more general compact bluff-body flows, as well as an intermediate step to understanding the
interaction of many body systems. The interaction of particles in fluid area of relevance to
many areas of industrial and geo-physical fluid dynamics. Studies of air pollution, combustion
and chemical mixing processes all depend on interaction of particles. Physical processes such
as sedimentation also depend on the interaction of solid particles within fluids.

While the multiple sphere configurations offers many possible areas of investigation, the
resources required to study all sphere combinations is prohibitive. The flow currently con-
sideration consists of two spheres separated by a distance S placed perpendicular to the flow
direction. The Reynolds number considered is Re = 300, a value which has been seen cause
a relative simple shedding mode in flow around a single sphere.

Figure 8.1 gives a schematic of the flow domain to be studied, with an indication of the
general direction of the flow wake. The free parameters of this problem are the dimensionless
Reynolds number, again defined as Re = Ud/v, and the dimensionless sphere separation S/d.
The domain height H (in the y direction) is kept constant at H = 8d. The domain width
is increased in the z direction as the separation is increased, keeping the spheres a constant

distance from the outer walls. The total domain width in the 2 direction is therefore (H +.5)d.

8.1 Background

8.1.1 Nwumerical work

Previous numerical work in sphere interaction has been limited to lower Reynolds number

flows, where the wake has been seen to be steady. (Thau) et al. (1983) studied the hydrody-
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8.1 Background

incompressible fluid

viscosity = v et

Figure 8.1: Two sphere problem
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Double Sphere Flow 8.2 Computational Mesh

S/d order number of elements number of nodes (approx)
1.5 7 1240 442,000
2.5 7 1764 626,000
3.5 7 1764 626,000

namics and heat transfer of assemblages of solid sphere in a steady flow at Re = 100. This
flow was examined by using the periodicity of the problem geometry. It was found that the
interaction of the spheres acted to reduce the stream-wise drag on the spheres.

In (Thau) et al. (1984) the hydrodynamics and heat transfer of pairs of solid spheres
paired downstream in steady flow at Re = 40 are examined. Again, the multiple spheres in
this orientation was seen to cause a reduction in drag compared with the single sphere case.

The fully three-dimensional simulations of Kim et al. (1993) studied the interaction of
two solid or liquid spheres at Re = 50,100, 150. Some of the key findings of this work include
the observation that the recirculation near the axis of symmetry are reduced, and then finally
stopped as two spheres are moved closer together. For intermediate values of separations,
the S/d < 4 cases that are currently being considered, the spheres repulse each other as
the pressure between the two spheres in increased. It was also observed that the separation
required to give zero repulsive force reduces with increasing Reynolds number.

The central eddies of the sphere flow are seen to detach from the sphere and entrain fluid
from the outer eddies. At S/d = 1.5, the inner circulation zones are not present although a
(non-recirculating) reverse flow region is present. Due to the use of a symmetry boundary
condition, the simulations of Kim et al. are not capable of simulating the shedding wakes
considered in the current work, although for the Reynolds numbers used in their work the
symmetry condition is appropriate.

The aim of the current work is extend these previous results into the range of Reynolds

numbers which is known to shed in the case of single sphere flow.

8.2 Computational Mesh

The meshes used to simulate interacting spheres are an extension of those used for the single
sphere flow. For sphere with a separation of S/d, the flow domain has a height of 8d, and a
width of 8d+S. The flow domain extends 4d upstream, and a flow domain of 20d downstream
is simulated. The outer area of the flow is modeled with zero normal velocity gradients and
zero pressure. The outflow boundary condition enforces zero stress.

The meshes sizes used are shown in Table 8.2. The structure of the mesh is similar to that
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used in the previous section, with the two mesh structures being joined along the centerline
z = 0. As the separation of the spheres is increased, extra elements are added between the

spheres to allow for the increased domain size.

8.3 Simulation Details

In the following simulations the Reynolds number has been fixed at Re = 300, which cor-
responds to the simple shedding flow in the one sphere flow of the previous chapter. The
flow is then examined at a several sphere separations, S. The flows considered here are
S/d =1.5,2.5 and 3.5. Another flow of interest is flow around touching spheres, correspond-
ing to S/d = 1. Unfortunately, the current method of mesh generation, involving manual
specification of blocks in the domain, does not deal well with the geometrical singularity of
such a flow.

Solving the spectral element method in three dimensions is a formidable numerical task,
even with the use of parallel computing. The desire to simulate the sphere flow at a number
of separations compounds this problem. To partially overcome this limitation the initial
condition for the two sphere flow is interpolated from the single sphere flow at a Reynolds
number of 300. This flow is shedding with a somewhat arbitrary orientation to the axis. As
well as introducing a velocity jump at the symmetry line, this initial condition introduces an
asymmetry in the y direction into the flow. In spite of these problems, it does offer significant
saving in computation time.

The other technique used to reduce the total execution time was to allow the flow to ‘settle
down’ using a mesh of reduced order, in this case order 5 versions of the meshes indicated in
Table 8.2. While this reduction in resolution is far from ideal, it does significantly reduce the
total execution time of the simulations. These low order solutions are then used to restart
the simulations at a higher resolutions.

All other details of the simulation are essentially unaltered from the techniques of the
previous chapter. Since the placing of the spheres side-by-side gives orientation to the flow,

there is no longer a need to rotate results onto a plane of symmetry.

8.4 Forces on Spheres

In this section the forces on the two spheres as they are accelerated from their interpolated
initial condition are investigated. The results are based on the fifth order simulations, and
hence are likely to be less accurate than desirable. However, it is encouraging to see that

once the flows are restarted at a higher resolution, the wake shedding pattern in maintained.
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8.4 Forces on Spheres
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Figure 8.2: Forces on two spheres, S/d = 3.5.
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(a) axial forces, x direction. (b) sideways forces, y direction. (c¢) up/down forces, z direction.

(d) angle of force in y — z plane.
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Double Sphere Flow 8.4 Forces on Spheres

Figure 8.2 shows forces on the two spheres over time as the wake develops. As well as
the drag force and lift forces, the angle of the ‘lift’ force from the z = 0 plane is also plotted.
These results indicated that, even after evolving up to ¢ = 100, the direction of the flow force
has yet reach a constant. The wake direction seems to be slowly progressing towards the
plane, although it’s final orientation is far from certain. From this it can be gathered that at
a separation of 3.5d, the two sphere wakes act largely independently. While the presence of
the adjoining sphere may be causing some change in the orientation of the wake, it is at most
only similar in magnitude to the forces exerted by the square geometry of the outer walls.

It is worth noting that, as with the single sphere flow, the total lift force is significantly
smaller than the drag force on the sphere, in this case of order 100 times smaller. The
alignment of the wakes is different on each sphere, although this is perhaps not surprising
since the initial condition was not symmetric. Of more interest is the offset in time of force
graphs, with the right sphere (when viewed from the front, that is, z > 0) reaching a peak
in force approximately a third of a cycle before the left sphere. The flow has a period of 7.6,
corresponding to a Strouhal frequency of 0.13. This period is longer than that seen in the
single sphere flow.

In Figure 8.3 the forces on the two spheres at a separation of S = 2.5d are shown. At
this separation the flow has settled down into a basically planar flow pattern by ¢ = 100.
The forces in the y direction are an order of magnitude smaller than those in the z direction,
with the drag force (the z direction) being an order of magnitude larger again. The forces
on each sphere are different, although the difference is less than 1%, and is quite likely due
to resolution effects. Again the forces on the spheres are slightly out of phase, although the
occurrence of maximum force is closer than at the greater separation.

With a separation of S = 2.5, the period of the flow is approximately 7.0, corresponding
to a Strouhal frequency of 0.14. This frequency is larger than that observed in the single
sphere flow. It is known that as the Reynolds number increases in the single sphere flow, the
Strouhal frequency increases. A likely explanation for the increase in this case is that the
two spheres begin to act more like a single larger object, increasing the effective Reynolds
number of the flow by increasing the length scale.

For the forces on spheres with a separation of 1.5d, Figure 8.4 gives a different picture.
Again, the forces in the z direction are significantly smaller, and it is seen that the flow moves
to a nearly planar flow much more quickly than the previous flow. Again, the forces on the
spheres are out of phase, but in this case the two spheres experience maximum force half
a cycle apart. While the period of the flow is longer, around 8.9, this cycle consists of two
peaks per cycle. Unlike previous cases, the spheres experience equal drag forces, although

offset by one half cycle. The repulsive force between the spheres follows a similar pattern.
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Figure 8.3: Forces on two spheres, S/d = 2.5.
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(a) axial forces, z direction. (b) sideways forces, y direction. (c) up/down forces, z direction.

(d) angle of force in y — z plane.

S/d

Cq

Cr

1.5
2.5
3.5

o0

0.75
0.69
0.67
0.66

0.099
0.073
0.071
0.069

Table 8.1: Drag and lift coeflicients of two sphere flows

sphere flow from previous chapter.
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Figure 8.4: Forces on two spheres, S/d = 1.5.
(a) axial forces, x direction. (b) sideways forces, y direction. (c¢) up/down forces, z direction.

(d) angle of force in y — z plane.
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Double Sphere Flow 8.5 Flow Quantities

Table 8.1 gives an overview of the average drag and lift experienced by the sphere at
different separations. At infinite separations it seems reasonable to assume the single sphere
solution, and the coefficients of the previous chapter are given for comparison in this case.
The lift coefficients given would perhaps better be called repulsion coefficients, since for
S < 2.5 the forces in the y — z plane act along the y = 0 line to force the spheres apart. The
pattern from this data seems to be that both drag on ‘lift’ are increased as the spheres are
brought together. As these are lift co-efficents, the numbers are normalized by area, so that

the total force on the two spheres is more than double that of the single sphere flow.

8.5 Flow Quantities

In this section the downstream velocity of the flow is examined directly. While looking at
the u, velocity directly is not especially intuitive, it does allow visualization of regions of
retarded flow within the wake.

Figure 8.5 shows the top view of evolution of the wake of the S = 3.5d flow over approxi-
mately one cycle. As in the single sphere case, sharp kinks develop in the wake as it convects
downstream. As suggested by the force on the spheres, the wakes are not aligned along a
plane, and the wakes of each sphere are offset by around a third of a time cycle. Again the
apparent breaking-off of the wake is merely an artifact of the contouring, diffusion causes the
retardation zone to shrink as it moves downstream.

Figure 8.6 shows the evolution of the wake retardation area when the two spheres are
separated by 2.5d. At this separation it is clear that the wake retardation regions are joining
as they move downstream. The sharp downward part of the single sphere wakes line up to
form a single structure, and this determines the offset in phase between the two wakes.

With a separation of 1.5d, Figure 8.7 indicates a rather different flow field for this two
sphere flow. The region of flow acceleration around the sphere (in dark blue) is joined into
one large loop around the two spheres. In a relatively short distance downstream, the two
retarded flow regions merge. As the flow progresses downstream, an asymmetric wedge-
shaped region is formed, joined alternately at the top and bottom of this region to the next
wake downstream. The region joining the cross-stream structures is moved up and down in
the y direction, perpendicular to the spheres, as the flow progresses downstream. Figure 8.8
shows the same region as viewed from the right side, on the positive z axis. This view shows
that although the net forces on the in the y direction are small, as the wake moves down
stream, the size of the wake grows significantly in this direction. The wedge shaped region
of retardation from the previous image join these regions.

In Figure 8.9, a cross-section of the downstream velocity over one cycle through the y =0
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Figure 8.5: Stream-wise velocity, u,, in wake of sphere, Re = 300. S/d = 3.5. Top view.
Times are, from top to bottom, ¢ = 102.5, 104, 105.5, 107, 108.5. Dark blue contour is

u, = 1.1, red contour is u, = 0.9.
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Double Sphere Flow 8.5 Flow Quantities

Figure 8.6: Stream-wise velocity, u,, in wake of sphere, Re = 300. S/d = 2.5. Top view.
Times are, from top to bottom, ¢ = 102, 103.4, 104.8, 106.2, 107.6. Dark blue contour is

u, = 1.1, red contour is u, = 0.9.
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Double Sphere Flow 8.5 Flow Quantities

Figure 8.7: Stream-wise velocity, u;, in wake of sphere, Re = 300. S/d = 1.5. Top view.
Times are, from top to bottom, ¢t = 86, 87.75, 89.5, 91.25, 93. Dark blue contour is u, = 1.1,

red contour is u, = 0.9.

117



Double Sphere Flow 8.5 Flow Quantities

Figure 8.8: Stream-wise velocity, u,, in wake of sphere, Re = 300. S/d = 1.5. Side View.
Times are, from top to bottom, ¢t = 86, 87.75, 89.5, 91.25, 93. Dark blue contour is u, = 1.1,

red contour is u, = 0.9.
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Double Sphere Flow 8.5 Flow Quantities

Figure 8.9: Stream-wise velocity cross-sections. z — z plane. u, in wake of sphere. Re = 300.
S/d = 1.5. Times are, from top to bottom, ¢t = 86, 87.75, 89.5, 91.25, 93. 17 contours,

—0.5 < u, < 1.1, blue contours positive.
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Double Sphere Flow 8.6 Flow Vortex and Vorticity

plane is given. The dark red region, representing the region of greatest flow retardation, is
moved significantly towards the centerline compared with the single sphere flow, where this
area is centered on the rear of the sphere. The region of dark blue, representing relatively fast
downstream motion, between the two spheres indicates that the blockage between the two
spheres is still far from complete in spite of the relatively small gap size of half a diameter.

In the wake, the previously seen asymmetric wedge region is again visible.

8.6 Flow Vortex and Vorticity

In the current section several derivative quantities are examined for the interacting sphere
problem. As the order of the mesh used in this section is seventh, rather than eighth order
mesh used in the previous chapter, the contours are less smooth. However, these derivative
quantities compare well in structure with those seen in the previous chapter, suggesting useful
information is still present in these flow fields.

At a separation of 3.5d, the vorticity (V x u), of Figure 8.11 shows two wakes which are
largely unaffected by each other. Each vortex pattern is similar in structure to the vorticity
of the single sphere case, shown in Figure 7.19 of the previous chapter. Each of these vortex
patterns is rotated from the axis, although as mentioned previously, at this separation the
wakes are rotating slowly over time.

In contrast, Figure 8.11 shows that at a separation of 2.5d, the vorticity in the wake
begins to interact as the wakes move downstream. This interaction is also asymmetric, with
the larger vorticity loop (the larger hairpin from the single sphere flow) being draw up into
the top wake, while larger loop of the left sphere (shown on top) is largely unaffected.

For flow with a separation of 1.5 diameters, a significantly more complicated picture
emerges from the vorticity, as seen in Figures 8.12 and 8.13. The two distinct wakes apparent
at larger separation are no longer evident. Rather, a combined wake of somewhat more
complicated structure emerges.

Each structure in the downstream wake consists of three large components. These struc-
tures occur in pairs, with one being orientated towards the left and and the other to the
right. To aid in description, the structure with the bulk it’s vorticity towards to top of the
page in Figure 8.12 will be called an ‘left’ vortex. The orientation is, of course, arbitrary
since they structures come in pairs.

The first notable component of this larger ‘left’ structure is a vortex pair in the center.
In the side view of Figure 8.13, it is clear that this pair of vortices extends out away from
the vortex core, and grows as the wake moves downstream. This vortex pair corresponds

to the diamond-shaped vertical retardation zone observed in the downstream flow velocity.
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Double Sphere Flow 8.6 Flow Vortex and Vorticity

Figure 8.10: Axial vorticity, (V X u);, in wake of sphere, Re = 300. S/d = 3.5. Top view.
Blue contour is (V x u), = 0.1, Red contour is (V x u), = —0.1, Times are, from top to
bottom, ¢ = 102.5, 104, 105.5, 107, 108.5.
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Double Sphere Flow 8.6 Flow Vortex and Vorticity

Figure 8.11: Axial vorticity, (V X u);, in wake of sphere, Re = 300. S/d = 2.5. Top view.
Blue contour is (V x u), = 0.1, Red contour is (V x u), = —0.1, Times are, from top to
bottom, ¢ = 102, 103.4, 104.8, 106.2, 107.6.
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Double Sphere Flow 8.6 Flow Vortex and Vorticity

Figure 8.12: Axial vorticity, (V X u);, in wake of sphere, Re = 300. S/d = 1.5. Top view.
Blue contour is (V x u), = 0.1, Red contour is (V x u), = —0.1, Times are, from top to
bottom, t = 86, 87.75, 89.5, 91.25, 93
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Double Sphere Flow 8.6 Flow Vortex and Vorticity

Figure 8.13: Axial vorticity, (V X u),, in wake of sphere, Re = 300. S/d = 1.5. Side view
from positive z axis. Blue contour is (V x u), = 0.1, Red contour is (V x u), = —0.1, Times
are, from top to bottom, ¢ = 86, 87.75, 89.5, 91.25, 93
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Double Sphere Flow 8.6 Flow Vortex and Vorticity

This vortex pair is also turning with respect to the wake as it moves downstream, so that by
outflow it seems to be near to perpendicular with the flow. Also of note is that the vortex
pair is not aligned along the z plane when viewed from above, but rather has a direction
towards the left of the flow. As expected from symmetry, the w, vorticity is zero on the y =0
plane, and clearly this symmetry is very well developed by this stage in the simulation.

The second visible component of this larger structure, when viewing the ‘left’ structure
from the top, is a C-shaped vortex region surrounding the previously mentioned vortex
core. An arch of positive (blue) vorticity moves to the left of the wake (which is the top of
Figure 8.12), while negative vorticity moves to the right. Since the wake is symmetric along
the £ — z plane, a view from the bottom gives the opposite values. These structures are
responsible for the asymmetric wedge-shaped retardation region observed in the downstream
velocity.

The final component of each larger wake structure is a relatively small vortex pair joining
the previously two components together. This vortex pair, which has opposite sign to the
first component, seems to be reducing in strength as it is convected downstream.

The final method used for visualizing the two sphere wake is to once again evaluate the
vortex measure of Jeong and Hussain (1995). As mentioned in the previous chapter, the use
of derivatives in this quantity tends to lead to non-smooth contours, and the results presented
here show obvious signs of this. However, does provide a simple interpretation of the flow
vortex within the wake.

Figure 8.14 shows the flow vortex when the spheres are separated by 3.5d. As seen in
previous visualizations, at this separation, the wake acts largely as two independent sphere
wakes. The hairpin structures of the previous chapter are again visible, although unfor-
tunately not as well resolved. It is also clear these vortices are not yet aligned with the
axis.

Figure 8.15 again shows the hairpin structure seen in the single sphere flow, although with
a separation of 2.5d the lining up of the vortex structures is clear. The individual hair-pins
are still present, although slightly changed in form due to the interaction between the wakes.

At a separation of 1.5d the drastic change in flow pattern is apparent. The familiar hair-
pin structure of the single sphere flow is no longer present, replaced with a three-component
structure which was seen when viewing the axial vorticity. These three components can still
be identified, with the large central vortex core still being seen. The C-shaped surround-
ing vortex is also seen clearly seen using this visualization. The final component of this
large-scaled structure is the twin vortices joining the components. Again, these large scale
structures occur in pairs, being aligned alternately in the left and right orientation previously

mentioned.
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Double Sphere Flow 8.6 Flow Vortex and Vorticity

Figure 8.14: Vortex measure in wake of sphere, Re = 300. S/d = 3.5. Top view. Times are,
from top to bottom, ¢ = 102.5, 104, 105.5, 107, 108.5.
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Figure 8.15: Vortex measure in wake of sphere, Re = 300. S/d = 2.5. Top view. Times are,
from top to bottom, t = 102, 103.4, 104.8, 106.2, 107.6.
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Figure 8.16: Vortex measure in wake of sphere, Re = 300. S/d = 1.5. Top view. Times are,
from top to bottom, t = 86, 87.75, 89.5, 91.25, 93
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Double Sphere Flow 8.7 Conclusion

8.7 Conclusion

By implementing a fully three-dimensional spectral element technique, interaction of flow
past two spheres has been successfully simulated at several sphere separations. At a Reynolds
number of 300, where the single sphere flow is seen to undergo simple shedding, it was shown
that the character of the wake changes dramatically as the separation is reduced.

At a separation of 3.5 diameters, the wakes are seen to act largely independently. While
it was not possible with the current resources to allow this flow to fully settle down, it is
apparent that at this separation the two wakes exert only a very week influence on each
other. Weak influences such as the outer container shape seem to have a similar order effect
on the wake pattern to the wake interaction.

When the inter-sphere separation is 2.5 diameters, the wake interaction has a greater
effect. While the basic wake structure of the two sphere wakes is essentially unchanged, the
two wakes are seen to line up. This lining up causes the lifting forces seen in the single sphere
flow to act along the line joining the spheres, causing spheres placed side-by-side to be forced
in a sidewards direction. In a way similar to the single sphere flow, the wake forces where
not symmetric along the plane of symmetry between the two spheres.

At a separation of 1.5 diameters, the changes in the wake structure were more dramatic.
The hairpin structure apparent in previous sphere flows was no longer apparent, replaced by
a more complicated wake structure. An alternating pair of vortex structures is produced by
the two spheres, with each flow structure consisting of three main vortex pairs.

While the full three-dimensional simulation of the two sphere flow has proved to be a
substantial computation task, these results demonstrate the interaction of compact bluff-
body wakes is a rich in structure. While the current simulations give an insight into the
structure of these wakes, further simulations offer a number of possibilities. As well as
increasing the resolution of the current simulations, a number of intermediate separations
are worth of investigation. It is also not clear from the current work whether hysteresis has
a role to play in the wake structure; whether the initial state of the wake has any influence
on it’s final structure. As well investigating the effect of varying Reynolds number, the two
sphere problem also offers several geometric configurations, including one sphere behind the

other or offset at different angles.
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Chapter 9

Conclusion

This dissertation has outlined the development of an object-oriented finite element and spec-
tral element implementation. This code has been applied to the study of two physical prob-
lems; vortex breakdown in a confined swirling cylinder and interaction of compact bluff body
flows.

Chapter 2 outlines the basic methods used in the course of the current work. The gov-
erning equation, the Navier-Stokes equations, are introduced, and basics of the finite element
method are introduced as a means of discretisation for these equations. Differences in imple-
mentation between the finite element and spectral element method are discussed.

To approximate the Navier-Stokes equations in time, two approaches are introduced.
The first, and seemingly most straightforward, is to assume that the flow is constant in
time. To decouple the pressure and velocity in the steady system, a penalty method is used.
Some relative advantages and disadvantages of such a scheme are examined. An alternate
approach taken to approximate time in the Navier-Stokes, a high order projection method,
is reviewed, with modification necessary to deal with axisymmetric coordinate systems also
being discussed.

In Chapter 3, an overview of the program structure is given. It is seen that by using a
object-oriented structure, much of the complexity inherent in the spectral element method
can be abstracted. This abstraction is particularly useful when application of distributed
memory programming models are considered. The second part of this chapter examines the
parallel performance of several test problems. It has been shown that, even using relatively
low-throughput, high-latency networking technology, significant speedups are achieved using
up to 48 processors. Not surprisingly, the large three-dimensional simulations were seen

to scale best. For the large, three-dimensional problems tackled in later chapters, parallel
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spectral element methods provide a good match with the distributed workstation clustes used
in this work.

The first problem examined using the current numerical implementation is vortex break-
down flow in a confined swirling cavity. A number of the principal mechanism to describe
vortex breakdown are reviewed and compared. Of these theories, the vortex trapping mecha-
nism of Darmofal and Murman (1994) is studied within the context of the confined apparatus.
While this breakdown model has proved successful at predicting vortex breakdown in pipe
apparatus, it’s application to the confined flow is less straight-forward. In particular, onset
of vortex breakdown in the cylinder apparatus appears gradually, rather than the sudden
change in state observed in the pipe apparatus.

The first test of the wave trapping model for breakdown conducted was to evaluate a wave
perturbation equation, using the steady swirling cavity solution as a base flow. By solving
for the eigenvalues of possible perturbations, a criteria for the possibility of breakdown is
established. When negative eigenvalues are achieved, it is possible for waves to travel back
upstream, where it is suggested that the are trapped and amplified. Using this criteria,
reasonable correlation was seen between the occurrence of negative eigenvalues and the onset
of reverse flow. As with previous studies, negative eigenvalues occur at a Reynolds number
somewhat lower than that required for breakdown.

To further test the idea of wave trapping in the confined cylinder, a time-dependant
spectral element simulation is used to examine the onset of breakdown for a particular cylinder
geometry and Reynolds number. By examining the stream-function at the appearance of the
breakdown bubble, it is clear that the onset of breakdown has a feedback effect on the rest of
the flow. The increase in bubble size, and more generally the widening of the central vortex
core, causes a reduction in the overall circulation of the flow. This in turn reduces the core
speed of the central vortex which acts to inhibit vortex breakdown. This feedback provides an
explanation to the different nature of vortex breakdown in the confined mechanism, where
the size of the breakdown bubble in steady flow is seen to grow gradually with increased
Reynolds number.

The second physical problem examined in this thesis is the interaction of compact bluff
body flows. To validate the ability of the current code to simulate wake flows, a series of
simulations are performed on two dimensional cylinder wakes, were good agreement with
previous results is seen in the frequency response of the wake, the drag observed on the
cylinder and the pressure at the base of the cylinder. Further simulations are performed on
sphere flow up to a Reynolds number of 200, where the wake of the sphere is axisymmetric.

Chapter 7 outlines a series of simulations of flow past a single sphere. With increasing

Reynolds number, the flow is seen to change from a axisymmetric wake flow at a Reynolds
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number of 200 to a planar symmetric ‘double-threaded’ flow at a Reynolds number of 250.
Simulations are performed at a Reynolds number of 300, where the flow reproduces the
previously observed double hairpin vortex. This shedding flow is used to form an initial
condition for the interacting two sphere problem of Chapter 8.

Chapter 8 extends the single sphere simulations to deal with flow around two interacting
spheres placed side by side. By varying the separation between the two spheres, several
different wake structures where produced. At a relatively wide separation of 3.5 sphere
diameters, the wakes of the individual spheres were seen to act largely independently. While
it was not possible to fully simulate the time evolution of this flow, it was clear that any
interaction between the two wakes was generally weak.

With two spheres separated by 2.5 sphere diameters, the two sphere wakes were seen to
interact much more strongly. The two wakes were seen to line up on the vertical plane of
the two spheres, with the lift forces of the individual spheres acting largely in the left-right
direction along the line joining the spheres. The structure of the individual wakes are largely
unchanged from that of the single sphere wake, although the drag on lift coefficients on the
spheres are increased.

When the spheres are separated by 1.5 diameters, the flow undergoes a more dramatic
change. The familiar double-hairpin structure of the single sphere flow, also seen at relatively
large separations, is replace with a more complicated, three component vortex structure.
This structure, with alternating left and right orientations, leads to an overall symmetric
flow pattern, a notable difference from the previous observed sphere wake structures.

While the current implementation has proved successful in simulation a range of physical
phenomenon, there is clearly room for improvement. The biggest contribution to the total
execution time for large three-dimensional problems is solution of the pressure Poisson equa-
tion. While the current preconditioner, Jacobi preconditioning, is simple to implement, it
is not particularly effective. Use of a multi-grid preconditioner seems to hold promise as an
effective pressure preconditioner.

A second way to increase the speed of the spectral element technique is to use fewer
elements. While this will, of course, usually produce less accurate solutions, the use of adap-
tive mesh refinement provides a mechanism for reducing the number of elements used while
maintaining accuracy. The use of adaptive elements increases the complexity implementation,
and the current object-oriented framework provides a good framework for implementation of
adaptive mesh refinement.

Use of these improved techniques may be necessary for fully study of the interacting sphere
problem. First and foremost, improved resolution is necessary to fully confirm the behavior

of the interacting wake problem. There are also physical questions yet to be answered about
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the interacting sphere flow. It is not clear if hysteresis has a role to play in the wake shape; it
would be interesting to start a flow at an intermediate separation based on the flow patterns
of close and distant sphere solutions. The effect of the outer container shape on the wake
pattern is also worthy of further consideration. Different flow Reynolds numbers and problems
geometries are also likely to dramatically influence the flow structure. All of these simulations
are likely to take significant computational resources, and improved techniques combined with

faster computers will almost certainly be required.
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Appendix A

Nomenclature

The following quantities are also used throughout this thesis

o0
r

& (&m,9)

vector position.

position.

axisymmetric position.

vector velocity.

Cartesian velocity components.
axisymmetric velocity components.
pressure.

complete domain of solution including boundaries.
domain of solution excluding boundaries.
essential boundary.

natural boundary.

position on master element.

To avoid confusion between z velocity and weight function w, u, will always be used to

denote the z component of velocity.

Since a variety of notations are in common usage, it is useful to define the following

conventions (mainly coinciding with Gresho and Sani (1998)).
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Nomenclature

1) scalar variable.

u vector (lower case).

A tensor (upper case).

€(a) basis vector in direction a.

u approximate vector quantity (nodal value).

a approximate scalar quantity (nodal value).

¢i(z,y,2) global shape function j.

¥;i(x,y,z) global trial function i.

éj (&,m,¢) element shape function j, a function of the master element position.
¥i(€,m,¢)  element trial function i, a function of the master element position.
Jor [ integration on interior of domain.

S50 natural boundary integral.

The following summation convection is used: Indices without brackets are summed over,
whereas bracket indices are never summed over. Greek indices are used to represent vector

components and Latin indices represent indices of shape functions.
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Appendix B

Cylindrical-Polar Stream

Function

To evaluate the stream function in axisymmetric coordinates, we define the stream function

1 so that
u=V x (%eg> (B.1)
which for axisymmetric coordinate implies
10y
ro= ——— B.2
“ r 0z (B.2)
10y
: it B.3
“ r or (B-3)

The 1/r scaling is required to make 1 constant on streamlines (Acheson (1990), page 173.).

Substituting equation (B.1) for the 6 component of vorticity gives

_Ou, Ou,  10%  10% 109
(Vxw =5 =5, = o Tra o (B-5)

When u is know, the stream-function can be evaluated by solving the elliptic equation

2, 20¢ _
V- S5 =Vxu (B.6)

with appropriate boundary conditions on .
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