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Abstract

The prevalence of abdominal aortic aneurysms is increasing with an ageing population.

Aneurysms present a major health risk; in the event of aneurysm rupture, patients ex-

hibit a mortality rate of 70-95% (Lindholt et al. 2005). Treatment of aneurysms involves

invasive surgery, which carries an inherent risk, therefore it is preferable to intervene

only when the aneurysm is close to rupture. Currently, the aneurysm initiation, growth

and rupture mechanisms are not fully understood and accurate predictions of aneurysm

growth-rate and rupture time cannot be made.

Research in this field has identified haemodynamic stimuli as the principal factor

in aneurysm growth. As such, in-depth fluid-dynamic investigations can contribute

greatly to developing appropriate models for patient prognosis and treatment. Previous

investigations into aneurysm haemodynamics have largely been focused on blood flows

with rigid-wall dynamics. To realistically model the flow, a moving boundary condition

must be applied to account for the elasticity of the aneurysm wall.

A fluid-structure interaction was studied in the context of abdominal aortic aneur-

ysms. The effects of an elastic wall were modelled using a numerical technique. To this

end, a new coupling scheme is proposed based around an Arbitrary Lagrangian–Eulerian

(ALE) algorithm. The monolithic ALE solver uses a modified iterative over unequal

time step coupling routine. The use of an ALE algorithm for modelling aneurysm flows

maximises the accuracy of flow field data in the near-wall region where the haemody-

namic environment is most pertinent.

The biological material that comprises the artery wall is highly complex in nature.

To accurately model the wall response, the wall is modelled as a multi-layered, hyper-

elastic and heterogeneous material. A novel time stepping algorithm was developed and

tested to model the wall response in the aneurysm. Spectral elements were used for the

spatial discretisation while a backward differencing time stepping scheme was proposed

for the temporal evolution. A two-step operator splitting scheme was proposed in order

to implicitly solve for the displacement at the next time step. This algorithm is capable

of modelling both the inertial and non-linear response of the wall, which is important

in the context of biological applications.

Once formulated, two fluid-structure interaction studies were conducted. The first

investigated the effects of heterogeneous wall properties, such as those formed around
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lesions and calcification, on the haemodynamics in arteries. It was found that previous

models based on a rigid-wall assumption misrepresent the flow conditions in aneurysms.

Furthermore, it was shown that local variations in wall elasticity can affect the

wall shear stress environment both locally and downstream of the lesion or calcifica-

tion. Weakening of the aneurysm wall was shown to increase the wall shear stress

downstream. This occurred as the greater wall motion led to higher variations in flow

rate.

In terms of the local effects, local variations in wall stiffness led to additional vari-

ations in aneurysm geometry and wall velocity. These changes led to a local change in

boundary layer thickness which in turn affected the local wall shear stress distribution.

In cases when the wall was weakened the wall shear stress decreased locally. Conversely

the stiffer wall case corresponded to an increase in local wall shear stress.

Finally an investigation into the effect of wall stiffness on established aneurysm

geometries was conducted. Using an elastic-wall model, the wall motion was shown to

cause significant flow reversal in the boundary layer. As a result, in addition to the

vortex ring shed from the proximal neck, a distal vortex ring formed. The proximity of

these vortices to the aneurysm wall affects the shear layer at the wall and consequently

the wall shear stresses.

In cases where there was large motion, the shear layer is drawn into a secondary

distal vortex ring. At intermediate levels of wall motion, the formation of this secondary

distal vortex ring is suppressed. The presence of the primary distal vortex ring protects

the wall from the impact of the strong proximal vortex ring.

Local variations in wall stiffness were investigated at three locations in the aneurysm

bulge. All weakened wall cases exhibited similar changes in wall dynamics compared to

the uniformly stiff case. However, it has been shown that a weakened region upstream of

the distal neck provided the greatest change in wall shear stress distribution. The case

of a weakened central region represents the least favourable haemodynamic conditions

for healthy endothelial wall function. In terms of the stiffened cases, the least protective

distribution was the stiffening at the distal neck.These results indicate that aneurysms

that feature a weakened wall region upstream of the distal neck present the greatest

risk of rupture.
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Nomenclature

A list of nomenclature used throughout the thesis is included here. Mathematical

symbols are presented, followed by Greek alphabet nomenclature and English alphabet

nomenclature.

Symbol Description

§ Thesis section∫
Integration

∇ Vector gradient operator (grad)

∇2 Del squared (or div-grad) operator, also known as the Laplacian

(·)T The transpose of a matrix

(:) Matrix inner product

(·)−1 The inverse of a matrix

tr (·) The trace of a tensor

◦ The tensor composition operator

I The identity matrix
D
Dt The total time derivative (material derivative)

i The imaginary number

τ Shear stress

µ Classical fluid viscosity

ν Kinematic fluid viscosity

χ Position vector in ALE referential coordinates

γT The shear rate tensor for a fluid

γs The shear rate scalar for a fluid

ν The kinematic viscosity

ρ Density

ω Angular frequency

Continued on the next page.
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Continued from previous page.

Symbol Description

α The Womersley number

Ω A generic domain of interest (not necessarily an entire body)

∂Ω Boundary of the domain Ω

Ωe Elemental sub-domain of the domain Ω

Ωst Standard element Ω

φ The deformation mapping from material to spatial coordinates

Φ The mapping from referential to spatial coordinates

Ψ The mapping from spatial to referential coordinates

ε The true strain also known as the infinitesimal strain in small strain
approximation

εG The Green strain

γij The shear strain in the i-j plane

εlog The logarithmic strain tensor

λ The stretch ratio

ε The infinitesimal strain tensor

σ Stress

λL A Lamé coefficient

µL A Lamé coefficient

υ Poisson’s ratio

Υ Is a generic extensive quantity of the Schottky system∏Υ Schottky system source term∑Υ Schottky system supply term

JΥ Schottky system flux term

Γ Path along which work is done

αi Finite differencing coefficient for n− i time step

κ Finite differencing coefficient for n+ 1 time step

βi Polynomial extrapolation coefficient for n− i time step

ω The vorticity vector

κs Solid solver finite differencing coefficient for n+ 1 time step

αs
i Solid solver finite differencing coefficient for n− i time step

Continued on the next page.
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Continued from previous page.

Symbol Description

Φi Set of trial functions in Rayleigh Ritz problem

φi Set of local element trial functions

χ Map from standard element coordinates to elemental coordinates

ξ Standard element coordinate

Λ The diagonal matrix

ε̇ The strain rate

ς Courant condition

δ Boundary layer thickness

h Characteristic length of elements in h-type finite element solvers

p Polynomial order of spectral solver

RX Lagrangian coordinate system

Rx Eulerian coordinate system

Rχ ALE referential coordinate system

x Position vector in spatial coordinates

X Position vector in material coordinates

u Displacement vector in spatial coordinates

U Displacement vector in material coordinates

v The velocity vector in spatial coordinates

V The velocity vector in material coordinates

a The acceleration vector in spatial coordinates

A The acceleration vector in material coordinates

xi The ith component of position x in spatial coordinates

Xi The ith component of position X in material coordinates

ui The ith component of displacement u in spatial coordinates

Ui The ith component of displacement U in material coordinates

vi The ith component of velocity v in spatial coordinates

Vi The ith component of velocity V in material coordinates

ai The ith component of acceleration a in spatial coordinates

Continued on the next page.
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Continued from previous page.

Symbol Description

Ai The ith component of acceleration A in material coordinates

V Volume

dV Infinitesimal volume

Re The Reynolds number

Vm The mean velocity of a fluid

D Characteristic length scale,
Maximum diameter of aneurysm bulge

Q The volumetric efflux rate of distilled water from a tube

∆P Pressure differential

L Length

d Pipe diameter

K ′ Poiseuille’s constant

R The maximum radius of a pipe
Residual of finite approximation

r Radial position

A Amplitude
Area

f Frequency

J0 A Bessel function

t Time

P Pressure,
A generic material particle

WSSmean Mean wall shear stress

WSSG Wall shear stress gradient

OSI Oscillating shear index

B An arbitrary continuous body

S The surface of the body B

R The set of Real numbers

F The deformation gradient

J The Jacobian

Continued on the next page.
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Symbol Description

ē The engineering strain

` The new length of the fibre

C The right Cauchy-Green strain tensor

b The left Cauchy-Green strain tensor

E The Green-Lagrange strain tensor

H Hencky strain tensor

F̄ Total force

F̄n The normal component of force

F̄t The tangential component of force

B̄ The body forces in a material reference frame

b̄ The body forces in a spatial reference frame

σ The Cauchy stress tensor

P The First Piola-Kirchhoff stress tensor

S The Second Piola-Kirchhoff stress tensor

Ē The total energy

E The Youngs modulus

Em The Youngs modulus of the medial layer

Ei The Youngs modulus of the intimal layer

Ea The Youngs modulus of the adventitia layer

Emean The average Youngs modulus of the arterial wall

ttotal The total wall thickness

tm The thickness of the medial layer

ti The thickness of the intimal layer

ta The thickness of the adventitia layer

G Shear modulus

m Mass

p̄ The linear momentum

W Strain energy density

IC An invariant of the tensor C

Continued on the next page.
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Symbol Description

v̂ Mesh velocity

L̂ A Linear operator

w Particle velocity in the referential domain

c Convective velocity

L̂ A linear operator

L̂m The mth linear component of a Linear operator

(·)n Time step identifier

Je The order of integration (explicit)

Ji The order of integration (implicit)

Jp The order of integration (pressure boundary condition)

Js The order of integration (solid solver)

N̂ A nonlinear advection operator

v̂ An intermediate velocity field

Û An intermediate displacement field

ˆ̂v An intermediate velocity field

ˆ̂
U An intermediate displacement field

n The unit normal vector

t The unit tangent vector

F Quadratic functional

ûi Set of trial functions coefficients in Rayleigh Ritz problem

w The test (or weight) function

Ndof The degrees of freedom in system

N el Number of elements in solution domain Ω

uδ The approximate solution

gD Constants for Dirichlet boundary conditions

gN Constants for Neumann boundary conditions

uH The homogeneous boundary contributions

uD The Dirichlet boundary contributions

A Local to global assembly matrix

Continued on the next page.
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Symbol Description

hp Lagrange polynomial

M The mass matrix

I Interpolant of an integration

LP Is the Legendre polynomials or order P

L′
P Derivative of the Legendre polynomials of order P

P̂ The Jacobi polynomials

Q The number of quadrature points

W The weight matrix

D The differentiation matrix

L2 The L2 norm of a vector field

R The set of real numbers
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Introduction

In the context of an ageing population the incidence of aneurysm has risen greatly, with

the prevalence of Abdominal Aortic Aneurysms (AAAs) alone reaching 8.8% in people

above 65 (Newman et al. 2001). In 44% of cases, the rupture of a cerebral aneurysm

will cause death within 30 days, with many more leading to permanent injury (Olafsson

et al. 1997). Due to the risks associated with invasive surgery, it is important to target

treatment by identifying aneurysms that are most likely to rupture. However, this

is made difficult by an inability to predict the growth rate and rupture time of an

aneurysm.

Aneurysms may be categorised as one of two types, dependent on their geometry

and location. Aneurysms may be fusiform or saccular, as depicted in figure I. Fusiform

aneurysms are characterised by a uniform dilation of the vessel wall along a longitudinal

section. Saccular aneurysms are spherical in shape and involve the localised ballooning

of just a small section of the artery wall. The fusiform type is predominantly found in

the abdominal aorta just above the iliac junction, but is also often located in the knee

joint and with a lower prevalence, in the circle of Willis (Lasheras 2007; Sforza et al.

2009). Saccular aneurysms are principally found in the circle of Willis, such aneurysms

are often termed cerebral aneurysms owing to their location.

The development of arterial aneurysms results from a variety of factors: haemody-

namics1, wall biomechanics, mechanobiology2, and the perianeurysmal environment3

(Sforza et al. 2009). Once formed, an aneurysm will undergo gradual expansion under

the influence of repetitive pressure and shear stresses: these are exerted by the blood

on the weakened arterial wall. Wall geometry, composition and strength continue to

change throughout the expansion process, culminating in rupture when the wall is no

1The study of the fluid motion of blood.
2The interaction between physical forces and changes in cell or tissue mechanics throughout the

development of physiology, and disease.
3The surrounding tissue and supportive structures which support the exterior vessel wall of an

aneurysm.
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Figure I: Aneurysm classification based on geometry.

longer able to support the haemodynamic stresses exerted by the blood (Sforza et al.

2009).

Complete computer modelling of wall dynamics may increase our ability to predict

this end-point. However, previous research in the area has not been able to show a

sufficient peak pressure to cause rupture on a mechanical basis (Sforza et al. 2009).

As such many researchers draw a comparison to the structural engineering problem of

flow in a bulging pipe, where fatigue may be a factor (Lasheras 2007). Haemodynamic

studies to date have focused on in vitro idealised models, and some Computational Fluid

Dynamics modelling (CFD) of both idealised cases and patient-specific models. Due

to the complexity of the artery-flow interaction and a lack of specific knowledge about

changing wall properties, the majority of models employ a rigid boundary condition,

Sforza et al. (2009) highlight this lack of knowledge about wall behaviour as a major

restriction in this field of research.

Arbitrary Lagrangian–Eulerian (ALE) modeling

The numerical simulation of multi-dimensional problems in fluid and solid mechanics

often results in large distortions of the continuum under consideration. Large or rapid

distortions may introduce numerical errors into the computed solution.

In solid mechanics, Lagrangian algorithms are typically employed. Lagrangian al-
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Figure II: A hyperelastic material impacting on a rigid wall (bottom of the mesh) with

deformed Lagrangian mesh shown.

gorithms associate each individual computational mesh node with a single material

particle throughout the motion. The Lagrangian description allows interfaces, such as

the the artery wall-blood interface, to be easily and accurately tracked. However, its

weakness lies in its inability to follow large distortions. See for example figure II in

which a hyperelastic material impacts on a wall at high speed. The Lagrangian ap-

proach begins to break down along the impact surface between the material and the

rigid-wall. The mesh in this region becomes highly distorted and will not yield accurate

results.

In fluid mechanics, Eulerian algorithms are typically employed. Here the computa-

tional mesh is fixed in space and the continuum moves with respect to the grid. In the

Eulerian description large deformations of the continuum can be handled with relative

ease. This advantage is derived at the expense of accurate knowledge of the continuum

interface locations. For example, if an artery wall moves to decrease the aneurysm

volume, information about the location of the wall is compromised. Figure III demon-

strates how such a movement introduces an uncertainty.

To overcome the shortcomings of the purely Lagrangian or Eulerian approaches a

technique has been developed to combine the best features of both the Lagrangian

3



Figure III: An Eulerian mesh in undeformed state with interface defined by nodal positions

and deformed state in which interface lies between nodal locations.

and Eulerian methods. This technique is known as the Arbitrary Lagrangian–Eulerian

(ALE) description. In this formulation the nodes of the mesh may move with the

continuum in a Lagrangian fashion or be held fixed in an Eulerian manner, or, they

may behave in an arbitrary intermediate way to give a continuous rezoning capability.

The advantages of this become clearer when considering the aforementioned block-

impact example. Figure IV shows the result produced using an ALE mesh, the result is

a much more regular element shape than was achieved with the Lagrangian description

in figure II. Moving the interface or boundary nodes in a purely Lagrangian fashion

allows the extents of the domain to be well defined. Meanwhile, the continuous rezoning

capability of the ALE formulation maintains a regular grid for accurate computation.

Further details of this can be found in chapter 3.

Spectral-hp element methods

The ALE method was initially developed by Noh (1963), Franck & Lazarus (1964),

Trulio (1966), and Hirt et al. (1974) for finite element algorithms. Since then, a class

of solvers known as spectral-hp element methods have been developed and successfully

applied to fluid dynamic problems. First developed by Gottlieb & Orszag (1981) and

Patera (1984), spectral-hp solvers combine the high geometric flexibility of finite el-

ement solvers with the high numerical efficiency and exponential spatial convergence

characteristics of spectral solvers. Finite element solvers, of which spectral element

solvers are a subset, may be categorized by their expansion bases as either h-type or

p-type.
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Figure IV: A hyperelastic material impacting on a rigid wall with deformed ALE mesh

shown.

h-type solvers split the domain into a set of subdomains known as elements. The

sum of the set of elements forms the entire solution domain. h-type finite element

solvers use a fixed order polynomial in every element with convergence to the exact

solution attained by reducing the element size. This type of extension allows high

geometric flexibility.

p-type solvers use a fixed mesh which encompasses the entire solution domain. A

polynomial of variable order, p, is used to approximate the solution across the entire do-

main, fitting through fixed mesh points. Convergence to the exact solution is achieved

by increasing the polynomial order used to interpolate across the domain. This type

of expansion allows rapid convergence for smooth problems, but is complicated in ge-

ometrically difficult domains. For the special case where the entire solution domain is

modelled with only one element, then this kind of solver is a spectral method.

The spectral-hp element method, of which the algorithm developed in this thesis

is a type, combines attributes of both extensions. While widely used in fluid dynam-

ics, spectral-hp element methods have found limited use in solid mechanic problems.

Furthermore, spectral-hp methods are rarely combined with ALE in order to solve

fluid-structure interactions.
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Thesis structure

While a statement of the hypotheses tested in this thesis and the justification for them is

given in the literature review of chapter 1, an outline of the structure of this document

is given here. First, the aforementioned literature review is presented. This review

attempts to present the state of knowledge in the field of fluid-structure interactions

in aneurysms, and to identify some of the key areas where knowledge is lacking. From

these areas, hypotheses have been formed to guide the present study.

Chapter 2 outlines the physics behind continuum mechanics and derives the system

of equations required to solve the fluid-structure interactions in aneurysms.

Having established the equations, chapter 3 goes on to describe the ALE method,

how it is implemented in this body of work, and what information is communicated

between each of the solver segments.

Building on the description of the respective continuum equations and the ALE

algorithm, chapter 4 and 5, describe in detail the temporal discretisation scheme for

the solid and fluid dynamics solvers and the spatial discretisation scheme associated

with the spectral element method. This forms a numerical framework for the fluid-

structure interaction algorithm.

Having described the new spectral element arbitrary Lagrangian–Eulerian algo-

rithm in detail, chapter 6 presents a validation of each aspect of the solver, testing the

consistency of each component of the solver as well as the sum of its parts.

Chapter 7 departs from the discussion of the numerical method developed in this

thesis. It describes in detail the justification of the parameter space to be studied in

the aneurysm investigations presented in chapters 8 and 9.

Chapter 8 presents the investigation into the effect of changing wall stiffness in a

straight pipe. The motivation for this investigation is to determine if changes in wall

stiffness may indicate the initiation of aneurysms.

In chapter 9 the fluid dynamics of established aneurysms is studied. The effects of

heterogeneous wall stiffness is discussed in a fluid-structure interaction context. These

results show the impact of the stiffened regions on aneurysm growth-rate.

Finally, the overall conclusions of the thesis are presented in chapter 10. These focus

on the most important findings, and how the results obtained relate to the hypotheses

posed in chapter 1.
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Chapter 1

A review of the literature

The study of fluid-structure interactions in engineering systems is complicated, in and

of itself, by the interaction of two continua each with their own distinct fundamental

dynamics. The study of fluid-structure interactions in a biological system, such as an

aneurysm, adds another level of complexity to the model. Throughout the sections

to follow, the relevant biological and anatomical intricacies will be addressed and pre-

vious studies of flow through aneurysms with fixed walls and compliant walls will be

reviewed in turn. Despite the limitations of the scope of the present study to idealistic

fusiform geometries; a more complete overview of the haemodynamics for all geometries

is considered.

1.1 Vascular structure of healthy aorta

Blood is periodically pumped by the heart into a complex network of elastic arteries that

carry the oxygen and nutrient rich blood around the body to capillaries which irrigate

muscle tissue. A complex arrangement of veins then return the blood to the heart.

During each cardiac cycle the heart ejects 70 ml of blood at a pressure of 120 mmHg

into the aorta where the mean pressure is 80 mmHg (in a resting patient) (Nichols &

O’Rourke 1990).

The walls of the large arteries are comprised of three layers, the tunica intima,

tunica media and tunica adventitia (see figure 1.1). The thickness and composition of

each layer depends on multiple factors, including distance from the heart, geometry,

age, and function of the particular artery. The intima layer is made up of a single

layer of vascular endothelial cells1 (VECs) that adhere to a basal laminar which covers

1Vascular endothelial cells line the entire circulatory system. These cells have very distinct and
unique functions that are paramount to vascular biology. These functions include fluid filtration, blood
vessel tone, haemostasis (blood cell coagulation), nutrient recruitment, and hormone trafficking.
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Figure 1.1: Structure of a medium sized muscular artery. Reproduced with the permission

of Wiley and sons from Lorkowski & Cullen (2001).

a sub-endothelial layer composed of connective tissue, elastic fibrils, and collagenous

bundles2.

The median layer accounts for most of the mechanical properties of the wall and

consists primarily of layers of smooth muscle cells3 (SMCs), a number of elastic sheets,

a complex network of elastic fibrils, and bundles of collagenous fibres embedded in

an extracellular matrix (ECM) (Lasheras 2007). The smooth muscle cells produces

enzymes and proteins that control cellular migration and cell death in the arterial wall,

which in turn control the walls elasticity (Lasheras 2007).

The tunica adventitia contributes little to the mechanical properties of the arterial

wall. It is composed of collagen and its function is to anchor the blood vessel to nearby

organs, lending stability.

Elastin fibres have a modulus of elasticity of 0.6 MPa
(
6× 106 dynes/cm2

)
and can

stretch in excess of 250% of their original length. Collagen fibres are much stiffer with a

modulus of elasticity of 500 MPa
(
5× 109 dynes/cm2

)
, almost 1000 times larger than

elastin (Dorbin 1978).

Vascular endothelial cells of the tunica media as well as blood cells (platelets and

erythrocytes) are shear-sensitive (Lasheras 2007) . In particular, fluid shear forces from

blood flows regulate many VEC activities through “mechanotransduction”4 (Davies

et al. 1984; Traub & Berk 1998; Blackman et al. 2002). Flow shear effects endothelial

2Bundles of protein which make up part of the inter-cellular connective tissue.
3Smooth muscle is an involuntary non-striated muscle.
4Mechanotransduction refers to the mechanisms by which cells convert mechanical stimulus into

chemical activity.
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secretion of prostacyclin and nitric oxide, these act to inhibit platelet and leukocyte

adhesion and aggregation and change the contractile tone (and hence elasticity) of

SMCs (Ben Driss et al. 1997; Chiu et al. 2003, 2004). As such, the elasticity of the

wall constantly changes through a remodelling process. It is believed biological factors

coupled with a change in haemodynamic stimuli may destabilize the remodelling process

(Lasheras 2007). Unfortunately, due to the short time scales over which the wall may

adapt its material properties in response to haemodynamic stimuli (such as those found

when exercising) a comprehensive model for the wall has not yet been developed. The

longer-term remodelling that leads to the development of an aneurysm is also not

fully understood. This forms a key stumbling block precluding the prediction of both

expansion rate and risk of rupture of aneurysms (Lasheras 2007).

1.2 Haemodynamics of blood flow

It is clear that the haemodynamic conditions in the aorta are integral to healthy arterial

function. Lasheras (2007) describes how the haemodynamic conditions can destabilize

the wall remodelling process. This process, which ensures the health of the artery wall,

involves an interaction between the biological particles that make up blood and the

endothelial cells of the artery wall. Blood has a complex composition, it is comprised of

large cells suspended in plasma rather than the small molecules that other fluids such

as air or water consist of. This gives it some unique properties that are worth detailing

here.

Blood is composed of approximately 55% plasma and 45% blood cells. Plasma

consists of 90% water, 8% proteins, 1.1% organic substances and 0.9% inorganic salts.

Immersed in the plasma are the blood cells; red blood cells (Erythrocytes) make up

93.4% of the blood cells, platelets (Thrombocytes) make up 6.2%, with the remaining

0.4% consisting of a variety of white blood cells (Leukocytes). Red blood cells deliver

oxygen to the body while the white blood cells and platelets fight disease and deliver

vital nutrients to the cells to ensure arterial health.

The composition of blood affects its fluid properties. In a Newtonian fluid, the local

strain rate is proportional to the applied viscous stresses, the constant of proportionality

is the dynamic viscosity of the fluid, µ. Physically this describes the resistance of the

fluid to flow. An example of a fluid with a high viscosity is honey, which reacts quite

slowly to pouring when compared to fluids with a low viscosity such as alcohol or

9



water. As the blood cells exist within the plasma, the viscosity of blood depends on

the viscosity of the plasma. While plasma may be considered a Newtonian fluid, i.e.

a fluid with a linear stress-strain relationship, blood in general cannot be due to the

cellular interactions of the large scale blood cells. A Newtonian fluid is described by

the stress strain relationship,

τ = −µ
dvi
dxi

, (1.1)

where τ is the shear stress, µ is the viscosity and dvi
dxi

is the velocity gradient perpendic-

ular to the direction of shear. A non-Newtonian fluid does not have a constant viscosity

and so a viscosity for blood cannot be specified. Rodkiewicz et al. (1990) showed that

if blood reaches a shear rate of approximately 100 s−1 the shear rate reaches a linear or

Newtonian limit and a viscosity can be specified. At shear rates greater than 100 s−1

the viscosity of blood is approximately 5 times that of water at (3− 4)×10−3 Pa ·s. In

the context of the present study Wootton & Ku (1999) found blood to behave largely

as a Newtonian fluid in larger vessels. Furthermore, in Rodkiewicz et al. (1990) the

non-Newtonian properties of arterial blood flow were considered, with variation from

Newtonian flow being isolated to the centreline of arteries, away from the walls where

the shear rate is high. The near-wall region where blood can be considered a Newtonian

fluid is of principal interest to the present study.

The density of blood is 1060 kg/m3 which is very close to that of water at 1000 kg/m3

the extra density coming from the small amounts of protein and inorganic salts in the

plasma and blood cells.

Subsequent sections (§ 1.6.3) discuss the importance of the Wall Shear Stress (WSS)

parameter in maintaining healthy arterial wall function. Wall shear stress is commonly

referef to as the shear stress normal to the artery wall. Shear stress is mathematically

described in equation 1.1. Physically, at a boundary the no-slip condition requires that

the fluid have zero velocity relative to the boundary. The fluid near the boundary can

have a non-zero velocity, creating a velocity gradient at the wall. The shear stress is

imparted onto the boundary as a result of the velocity gradient.

Given the difficulty in determining a fluid viscosity for blood due to its non-Newtonian

nature, some studies (Tolouei et al. 2011; Butler et al. 2012) use shear rate rather than

shear stress to measure the effect of shearing forces. These studies have typically focused

on thrombotic geometries. The shear rate tensor is

γT = ∇v + (∇v)T , (1.2)
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where the shear rate tensor describes the shear rate in each plane, v is the velocity

vector and ∇ is the gradient operator. The gradient field (∇v) describes the rate at

which the velocity changes at each point in any plane.

Most previous investigations using the shear rate have considered Poiseuille flow

in which the maximum shear rate occurs at the wall. However, Nesbitt et al. (2009)

and Tolouei et al. (2011) revealed flaws in this methodology; identifying that local

variations in shear are significant within realistic geometries. Their studies indicate

that in realistic flows, components of the velocity gradient in directions non-normal to

the boundary may be of sufficient size as to have a significant effect. As such a better

measure would be the shear rate scalar which accounts for the shear rate contributions

in all planes at each position. In this way it acts as a measure of the total rather than

maximum shear rate at a point. The shear rate scalar may be described by

γs =
√

0.5× γT : γT (1.3)

where γT is the shear rate defined as a tensor and the (:) operator denotes a matrix

inner product.

Despite the advantages of shear rate and shear rate scalar in describing the shear

at the wall, most studies use wall shear stress alone to describe the shear environment

felt by the endothelial cells. In order to facilitate comparison of results with those

published in previous investigations, wall shear stress will be used in this thesis. For

simple flows such as those in a rigid walled pipe, equation 1.1 is sufficient to describe

the shear stress at the wall. However, with a non-zero wall-normal velocity this is no

longer the case. Instead a generalisation of the wall shear stress is required in order to

fully describe the shear stress exerted at the wall. With a non-zero wall velocity the

wall shear stress can be described by

τWSS = 2µ



(τ11 − τ22)n122 + (τ11 − τ33)n133+

τ12 (n2 − 2n211) + τ13 (n3 − 2n311)− 2τ23n123

(τ22 − τ11)n211 + (τ22 − τ33)n233+

τ12 (n1 − 2n122) + τ23 (n3 − 2n322)− 2τ13n123

(τ33 − τ11)n311 + (τ33 − τ22)n322+

τ13 (n1 − 2n133) + τ23 (n2 − 2n233)− 2τ12n123



, (1.4)
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where

nijk = ninjnk. (1.5)

and τij are the ith and jth component of the strain rate tensor.

Investigations that do not include these extra terms when calculating the wall shear

stress may well underestimate the wall shear stress in the wall plane. Many investiga-

tions into elastic-walled aneurysms have reported a reduction in the peak wall shear

stress achieved (Perktold & Rappitsch 1995; Dempere-Marco et al. 2006; Oubel et al.

2007). None of these papers indicate how they define the wall shear stress; failure to

use the full three-dimensional form of the wall shear stress may partially explain the

reduced wall shear stress observed in their investigations.

Equation 1.4 describes the wall shear stress in the plane normal to the wall. How-

ever, just as with shear rate and shear rate scalar this may not be the maximum shear

stress at the wall. The tensor nature of shear stress implies there may exist a different

plane in which the maximum wall shear stress could occur. This is certainly the case

when a non-zero wall velocity exists. To calculate the maximum wall shear stress in any

plane an eigenvalue problem can be solved. For a detailed discussion and derivation of

the eigenvalue approach and the generalised wall shear stress equations the reader is

referred to appendix A.

It is not clear from the literature whether it is the maximum shear stress (regardless

of the shearing direction) that is physiologically relevant or whether it is simply the wall

shear stress in the wall normal plane. Physiological studies of endothelial cell response

do not indicate which definition of shear stress is critical. As such, the physiological

merit of each shear stress definition cannot be determined. In order to facilitate an

accurate comparison of the current work with previous investigations the generalised

definition of wall shear stress (equation 1.4) is used herein.

1.3 Aneurysm sites

As discussed earlier aneurysms are primarily found in the abdominal aorta as fusiform

AAAs or in the circle of Willis as saccular cerebral aneurysms. Anatomically these lo-

cations are quite distinct, though they do present some similarities in terms of localised

flow conditions that may cause aneurysm formation. A non-uniform distribution of

WSS at bifurcations and sharp curves corresponds to regions where aneurysms nor-

mally form (Sheard et al. 2007; Sforza et al. 2009). Fusiform aneurysms are mostly
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found just upstream of bifurcations, most common in AAAs. Saccular aneurysms form

at the apex of the bifurcation where there is a thin or absent elastic lamina and the

median layer is absent leaving the wall weakened (figure I). Saccular aneurysms may

also occur on side walls at large curvatures (Foutrakis et al. 1999). At these locations

deviation from normal anatomy results in a redistribution of wall pressure and wall

shear stress at branch points (Sforza et al. 2009).

A further confounding factor may be the pressure pulse which travels with the blood

flow through the arterial wall. The pressure pulse is reflected at each branching point

which then constructively interferes with the incoming pressure waves (Lasheras 2007).

1.4 Aneurysm evolution

1.4.1 Initiation

The precise initiation process of aneurysms is currently unknown. However, many

physiological studies have identified a series of factors which contribute to aneurysm

formation as well as a set of risk factors that enhance the risk of aneurysm formation.

Risk factors include smoking, sex, alcohol, hypertension, atherosclerosis, disease or

infection (e.g. syphilis) (Lasheras 2007; Sforza et al. 2009).

Atherosclerosis is no longer considered as important as sites of concentrated plaque

rarely correlate with aneurysms location (Lasheras 2007). However, age is considered

to be the greatest risk factor, with aneurysms being most prevalent in the elderly.

Age makes arteries thicker and stiffer. The median layer thins and loses its orderly

arrangement of elastin changing to a disordered “patchwork” of elastin grain. The

elastin to collagen ratio becomes more collagenous which leads to a stiffening of the

arterial wall (Lasheras 2007). A stiffer wall means an increase in speed of the pulse wave

from 6.5 m/s in young patients to 11 m/s in patients over 66 yrs (Nichols & O’Rourke

1990). This may be connected to the location of aneurysms and their progression.

Histological studies have shown that in the early stages of aneurysm formation

there is a degeneration of endothelial cells and internal elastic lamina. A thinning of

the medial layer through apoptosis (programmed cell death) of smooth muscle cells

is also evident (Stehbens 1963, 1989). Furthermore, disruptions in the remodelling

process have been identified with increased levels of elastase (Chaytte & Lewis 1997)

and matrix metalloproteinase (Bruno et al. 1998). This could lead to a weakening of

the wall.
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Nichols & O’Rourke (1990) suggest that fatigue through cyclic stresses causes the

fracture of the load-bearing elastic sheets. Under the pulsatile haemodynamic forces,

the polymerised structure of elastin sheets and fibres reorganises, causing them to fail

at lower tensional stresses. The tearing of these sheets is associated with a loss in elastic

recoil which may cause a permanent dilation of the vessel. The permanent stretching of

the smooth muscle tissue is accompanied by a permanent remodelling process whereby

collagen content in the muscular layer increases. The end result of this irreversible

process is the creation of an aneurysm.

A genetic predisposition to endothelial degradation may also be a contributing factor

in the onset of aneurysm formation. A Japanese study by Onda et al. (2001) found a

genetic locus for cerebral aneurysms localised within or close to the elastin gene locus

on chromosome 7. Furthermore, endothelial gene expression is related to wall shear

stress. Therefore triggering of any genetic traits may be attributed to haemodynamic

conditions.

Haemodynamic factors play a key role due to the capacity of endothelial cells to

sense and react to wall shear stresses. Studies have shown that low wall shear stress

and high oscillatory patterns of wall shear stress correlate with intimal wall thickening

(Friedman et al. 1981; Ku et al. 1985; Dardik et al. 2005). A uniform shear stress field

tends to stretch and align endothelial cells. Furthermore, studies on animals show an

increase in WSS can fragment the internal elastic lamina or damage the endothelium

(Sforza et al. 2009).

The current medical standard for predicting risk of aneurysm rupture is based on

aneurysm diameter alone. A patient-specific study has previously demonstrated that

maximum wall stress was 12% more specific and 13% more sensitive in predicting

AAA rupture than maximum diameter (Fillinger et al. 2003). Sonesson et al. (1999)

conducted an epidemiological study assessing the efficacy of using wall stiffness as a

predictor of aneurysm rupture. Their study involved following 285 patients. They used

an echo tracking instrument interfaced with a real-time ultrasound scanner to mea-

sure the peak systolic and diastolic deflections of the aneurysm wall. The deflections,

combined with blood pressure measurements were used to give an indicator of wall stiff-

ness. Sonesson et al. (1999) found that there was no statistically significant correlation

between wall stiffness and incidence of rupture, nor could they find any statistically

significant correlation with aneurysm diameter and incidence of rupture. These results
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call into question the current practice for assessing aneurysm risk of rupture. While

the results of Sonesson et al. (1999) do not indicate wall stiffness should provide a

better risk indicator, they did not measure wall stiffness accurately and they did not

correlate the effects of wall stiffness in a heterogeneous manner, such effects may alter

the haemodynamics of the blood flow and affect the aneurysm growth-rate.

In summary, the primary cause is a coupling between changes in vessel structure

and the induced change in haemodynamics (Lasheras 2007).

1.4.2 Aneurysm growth

After the formation of an aneurysm the haemodynamics within the bulbous structure

are significantly different from that of a healthy artery. The new complex haemo-

dynamic environment drives the continued growth of the aneurysm. Haemodynamic

studies have not been able to show a sufficient peak pressure to cause rupture on a

mechanical basis (Steiger et al. 1988). The yield stress of aneurysms is found to be

slightly higher than the systolic peak stress. Aneurysm growth could be understood by

a passive fatigue based yielding to blood pressure and reactive healing and thickening

of the wall (Sforza et al. 2009).

Animal models suggest that increased wall shear stress can degenerate the vascular

endothelium and smooth muscle cells (Kondo et al. 1997). Low wall stress and high

oscillatory patterns of WSS cause intimal wall thickening in a disorganised way. If WSS

is increased locally then it may cause local enlargement and consequently damage to

the arterial wall (Sforza et al. 2009).

Sforza et al. (2009) summarise two theories on the continued growth of aneurysms

based on an interaction between haemodynamics and wall mechanotransduction. In

high flow theory, WSS elevation causes endothelial injury (Sheard et al. 2007), which

initiates wall remodelling and possible degradation. A high WSS can cause over pro-

duction of nitric oxide (NO) upon which the endothelium is dependent. This leads to

a lower non-physiological arterial tone, which disturbs the equilibrium between blood

pressure forces and internal wall forces and subsequently dilates the wall. The dis-

tension of the artery stretches collagen and ellastin leading to a stiffening of the wall

(Sforza et al. 2009). In low flow theory, localised blood flow stagnation causes a dys-

function of flow induced nitric oxide. This leads to a build up of red blood cells and

an accumulation of leukocytes and platelets. The build up may cause intimal damage
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which lets white blood cells and fibrin into the arterial wall and locally degrades the

wall. A lower pressure threshold is then present, increasing the susceptibility to rupture

of the aneurysm (Sforza et al. 2009).

For the case of fusiform aneurysms, regions of stagnant flow form. Stagnation of

blood flow leads to the aggregation of red blood cells and the adhesion of platelets

and leukocytes. The process is exacerbated by evolving endothelial injury which at-

tracts these substances. This can lead to thromboses (Salsac 2005; Sheard et al. 2007;

Lasheras 2007). Thrombus formation causes the destruction of the endothelial layer

by hypoxia. After thrombus formation the blood is no longer in contact with the ves-

sel wall (see figure 1.2), instead it is flowing through an internal lumen (Salsac 2005).

This renders the shear-VEC layer interaction redundant in the growth of the aneurysm.

Thus permanent remodelling may play a role, as the arterial wall distends and stiffens.

The permanently stretched SMCs are progressively deprived of the cyclic stimulation

required for synthesis of connective tissue and healthy proliferation (Lasheras 2007).

Alternately inside the thrombus chemical and enzyme interactions may further dam-

age the wall (Lasheras 2007). Di Martino et al. (1998) suggest that the presence of a

thrombus may act as a cushioning or protective layer against extreme haemodynamic

forces as wall thickness is uniform. In saccular cases the flow enters and forms one

or two 3D vortices and this flow pattern persists into the diastolic phase. There is a

constant flushing of blood and therefore no thrombus forms (Lasheras 2007).

Fluid dynamics may contribute to this field of study through a complete under-

standing of the haemodynamic stimuli. The capacity of endothelial cells to regulate

wall activity based on wall shear stress makes it the most important haemodynamic

parameter. WSS affects:

• Base set point of many genes via transcription regulation (Chien et al. 1998).

• Endothelial secretion of prostacylcin (a vasodilator which inhibits platelet adhe-

sion), and Nitric Oxide which reduces leukocyte adhesion (Qiu & Tarbell 2000a).

• Endothelial cell permeability; high WSS damages endothelial cells (Fry 1968).

• Endothelial cell shape. In the presence of low WSS or oscillating WSS stimuli,

endothelial cells become more round (Ku et al. 1985).

• Cell division rate. High Wall Shear Stress Gradient (WSSG) induces an increased
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Figure 1.2: Fusiform aneurysm with intraluminal thrombus. The thrombus sits between the

arterial wall and the blood preventing delivery of nutrients to endothelial cells. The purple

region represents the arterial wall, the olive green section represents the thrombus, and the

red region represents the blood flowing through the artery. Reproduced with the permission

of Elsevier from Li et al. (2008).

net cell division rate (Davies et al. 1995; Nagel et al. 1999) and leads to a migration

of cells away from these areas.

Other factors that may contribute to aneurysm growth include non-uniform haemo-

dynamics and the perianeurysmal environment. Non-uniform haemodynamics trigger

an increase in local wall permeability allowing cross wall mass transfer of low density

lipoproteins (Buchanan et al. 1998), such proteins may be detrimental to the wall me-

chanics. The perianeurysmal environment is the structure surrounding the aneurysm.

The perianeurysmal environment supports sections of the aneurysm. However, this is

seldom uniform and therefore may lead to more complicated flow (Sforza et al. 2009).

Such effects are seen in studies of asymmetric and patient specific models of aneurysms

such as Shojima et al. (2004), Scotti et al. (2005), and Finol et al. (2003b).

1.5 Methods of investigation

1.5.1 Experimental

A variety of approaches have been employed to investigate haemodynamics in aneurysms.

Experimental techniques may be categorised as either in vitro or in surgically created

aneurysms (Sforza et al. 2009). These techniques take measurements using Doppler
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Ultrasound or tagged image velocimetry and DPIV (Sheard et al. 2007).

Research using these techniques can be limited in their ability to resolve fluid forces

such as shear near the walls. In vitro modelling is also restricted in that it enforces a

rigid boundary condition on the aneurysm wall which is non-physical.

1.5.2 Computational

Computational modelling has also been performed (Di Martino et al. 2001; Shojima

et al. 2004; Sforza et al. 2009; Sheard 2009). Computational fluid dynamic techniques

have provided better resolution of wall shear stresses as well as better temporal res-

olution. Finite element methods have proven more popular (Di Martino et al. 2001;

Shojima et al. 2004; Sforza et al. 2009) with spectral element codes (Sheard et al. 2007)

and finite volume codes (Buchanan et al. 1998) yielding equivalent results.

CFD models may be categorized as either idealised or patient specific. Idealised

models simplify the aneurysm geometry in order to systematically evaluate the effects

of different parameters on the flow. Patient specific models (Di Martino et al. 2001;

Shojima et al. 2004; Dempere-Marco et al. 2006; Sforza et al. 2009) are preferred by

clinicians who may use the flows to make a judgement on the risk to patients.

Patient specific models use angiogram or CT scanned (Shojima et al. 2004) two-

dimensional medical imagery and construct a three-dimensional model of the aneurysm.

Dempere-Marco et al. (2006) describes a typical method used to extract the data to

form a three-dimensional model that they used to measure the temporal distortion to

the vessel wall. Image registration is employed across the 2D slices which establish

correspondences between points in two different images. A 2D version of the non-rigid

registration algorithm, based on free form deformations proposed by Rueckert et al.

(1999) was applied by Dempere-Marco et al. (2006). By moving a set of control points

originally distributed into a regular lattice, a smooth and continuous transformation is

obtained that is subsequently used for deforming one image into the other. The control

points are moved in order to maximize the similarity between the two images. For

each series of sequential X-ray projection images, a set of landmarks can be manually

delineated in the first frame, and subsequently propagated by using the transformations

derived from the image registration procedure. The complete series was registered to the

initial reference frame. A combination of blurring and sharpening operations, followed

by a region growing segmentation and iso-surface extraction is finally used to create

18



the 3D model. Such methods for extracting wall motions and geometry are limited

by the resolution of the medical imagery; experts must be employed to determine the

landmarks in each 2D slice. Furthermore often wall heterogeneity cannot be accurately

determined due to the presence of a thrombus (Di Martino et al. 2001)

1.5.3 Compliant models

A seemingly large downfall in the majority of CFD work is the assumption of rigid-

walls. This assumption is made due to a lack of information on mechanical properties

of the arterial layers (Dempere-Marco et al. 2006; Sforza et al. 2009). Furthermore

the complex wall remodelling processes in response to haemodynamic stimuli form a

non-isotropic material which is difficult to model. Lasheras (2007) and Sforza et al.

(2009) highlight a lack of knowledge of the wall mechanical properties and changing

environment as the limiting factor in forming a wall-fluid model.

The early works of Witzing (1914) and Womersley (1957a) pioneered research into

fluid-structure interactions in pipes. Witzing (1914) solved the equations of motion

for an inviscid fluid-filled elastic thin walled tube. Womersley (1957a), in solving the

linearised Navier–Stokes equations for a thin walled isotropic elastic cylinder containing

a Newtonian fluid, derived the analytic solution for the coupling of a viscous fluid and

wall motion in a deformable vessel.

Cox (1969) extended the work of Womersley to include the study of thick walled

tubes which included models for viscoelastic and anisotropic material behaviour despite

using a model which included only linear-wall motion. His study also incorporated the

non-linear terms in the Navier–Stokes equations.

Much of the work of Witzing (1914); Womersley (1957a) and Cox (1969) was sub-

sequently supported by experimental studies of flow in flexible vessels (see § 1.6.2). In

terms of computationally investigating these flows, development of methods for han-

dling moving boundaries was the first step. Reuderink (1991) and Pietrabissa & Inzoli

(1994) present the simplest examples of boundary motion handling in an aneurysmal en-

vironment. Their studies used a method which decoupled the fluid and solid solutions.

For a given flow, the pressure wave was computed using a linear wave propagation the-

ory. Then the predicted time evolution of the pressure field was applied independently

as a boundary condition of the solid domain and used to solve the solid equilibrium

equations. The mesh for the fluid domain was then deformed accordingly. Reuderink

19



(1991) deformed the outermost elements only of their 3D carotid artery mesh, whereas

in their later publication on a 2D tube model, all elements were deformed (Reuderink

et al. 1993). The works of Reuderink et al. (1993) and Pietrabissa & Inzoli (1994)

neglect the velocity of interior nodal points relative to the stationary frame as a re-

sult of the mesh boundary movement. Their work also neglected the effects that the

instantaneous feedback of a changed geometry, velocity and pressure field will have on

the flow and the parameters being passed between the two solvers. In this way their

algorithm is described as very weakly coupled.

Perhaps the biggest obstacle impeding Reuderink et al. (1993) and Pietrabissa &

Inzoli (1994) was the lack of a suitable wave propagation model due to the complex

nature of the material and geometry. Hilbert (1986); Steinman & Ethier (1994) and

Perktold & Rappitsch (1995) partially negated the issue by solving the equations of

motion with a weakly coupled method. In each case the flow was prescribed at the inlet;

the experimentally tabulated pressures from Perktold & Rappitsch (1995) were used as

the outlet boundary condition while Hilbert (1986); Steinman & Ethier (1994) solved

for the outlet pressure dynamically using linear wave theory and a penalty method for

the fluid solver.

Qiu & Tarbell (2000b) used the free surface function of FIDAP[R]7.62 to simulate

the moving walls of coronary artery based on experimental measurements in dogs. Lee

& Xu (2002) coupled ABAQUS and CFX4.2 to simulate blood flow in elastic arteries.

De Hart et al. (2003a) used a fictitious domain technique and loose coupling method to

simulate 2D aortic valve motion in systolic phase, however their model neglected the

elasticity of the vessel wall and used a quasi-static model for the heart valve. They also

used implicit coupling methods to simulate 3D aortic valve motion to increase accuracy

and stability of the algorithm (De Hart et al. 2003b).

Rather than using the loose coupling method of De Hart et al. (2003a), Figueroa

et al. (2006) developed a strongly coupled method for simulating three-dimensional

blood flow in arteries. The method is proposed as a simpler solution to using arbitrary

Lagrangian–Eulerian methods for coupling the fluid and solid solution. The method

couples the equations for the deformation of the vessel wall at the variational level as a

boundary condition for the fluid domain. This is contrary to ALE methods which solve

the wall deformation equations separately and pass the results to the fluid domain as

a boundary condition. A linear membrane model is used for the vessel wall. While a
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robust and efficient scheme is presented using this momentum coupling method, it does

not account for the full effect that thick walls will have on the mechanics. As such,

schemes such as the ALE may be more accurate.

Many investigations into aneurysms have favoured the ALE technique for coupling

the fluid and solid solutions (Bazilevs et al. 2006). Applications of ALE to haemody-

namics are discussed in Di Martino et al. (2001); Formaggia et al. (2001) and Gerbeau

et al. (2005). This technique is widely used in haemodynamic simulations due to the

high degree of accuracy afforded by the technique, especially in regards to the level of

coupling and the position of fluid-structure interfaces. For further discussions of the

ALE technique the reader is referred to chapter 3.

1.5.4 Fluid-Solid-Growth (FSG)

In their review, Humphrey & Taylor (2008) highlight the need for a new class of mod-

els that can describe the evolving geometry, non-linear-wall properties, and haemody-

namics, which in turn dictate the evolving cell mechanobiology that is responsible for

matrix turnover and the possible rupture of aneurysms. They believe it is important to

go beyond the coupling of fluid and structural mechanics in FSI models to incorporate

long-term growth and remodelling models of the evolving arterial wall. This class of

coupled computational tools is referred to as Fluid-Solid-Growth (FSG) models.

Figueroa et al. (2009) present a computational framework for fluid-solid-growth

modelling in cardiovascular simulations. The framework is built primarily on four

separate advances in: Biomechanics of growth and remodelling (Baek et al. 2006),

momentum methods for fluid-solid interactions during a cardiac cycle (Figueroa et al.

2006), a theory for coupling biosolid and biofluid mechanical models (Baek et al. 2007),

and improved approaches for modeling fluid boundary conditions in complex vascular

systems (Vignon-Clementel et al. 2006). Figueroa et al. (2009) were able to show that

the inclusion of a growth and remodelling model allowed them to accurately model the

arterial remodelling and mechanical response to a lesion in an artery wall. Humphrey

& Taylor (2008) along with Figueroa et al. (2009) cite a need for more complicated

models of the remodelling process, more efficient and accurate FSI coupling methods

as well as improved computing facilities in order to advance studies in this field. The

work presented in this thesis seeks to advance the FSI coupling methods

and provide information about wall stiffening in aneurysm which may be
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useful in developing models of growth and remodelling.

1.6 Arterial flow investigations

Investigations into haemodynamic stimuli in aneurysmal environments have been con-

ducted using many different methods. Physiological studies have included imaging of

aneurysm geometries (e.g. Wilman et al. 1998; Potkin et al. 1990), biopsies of burst

arteries (e.g. Raghavan & Vorp 2000; Carmo et al. 2002), induced aneurysms in rabbit

and canine aorta (e.g. Jiang et al. 2009; Reinald et al. 2010; Mardal et al. 2010) and

epidemiological studies (Sonesson et al. 1999; Wanhainen 2008). Engineering investiga-

tions have focused more closely on the underlying physics of the flow moving through an

aneurysm, for reviews on this topic the reader is directed to Lasheras (2007), Humphrey

& Taylor (2008) and Sforza et al. (2009). The fluid flow studies may be categorised by

the choice of geometry, i.e. idealised or patient specific, the investigative technique, i.e.

CFD or experimental, the boundary and initial conditions applied, i.e. physiological,

idealised, steady state or oscillatory, and finally using either a rigid-wall assumption or

a compliant-wall.

Using a rigid-wall assumption simplifies the arterial model to that of a straight pipe:

as such, investigations into flows through straight pipes with steady and oscillatory flows

marks the starting point of fundamental study in this field.

1.6.1 Flow in a straight pipe

The earliest experiments investigating flow in a straight pipe were conducted by Reynolds

(1883). Reynolds (1883) described the motion of water through a section of straight

pipe as he changed three key parameters, namely the input velocity, the fluid viscosity

and the pipe diameter. He observed that “the general character of the motion of fluids

in contact with solid surfaces depends on the relation (1) between the dimensions of

the space occupied by the fluid and a linear physical constant of the fluid; (2) between

the velocity and a physical constant of the fluid”, namely its viscosity. Sommerfeld

(1908) coined the term Reynolds number to describe the relationship that Reynolds

had discovered,

Re =
Vm ×D

ν
, (1.6)

where Re is the Reynolds number, ν is the kinematic viscosity, Vm is the mean velocity

and D is the diameter of the pipe. While demonstrating the relationship Reynolds
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found two critical values of the ratio. The critical ratios found by Reynolds correspond

to a lower critical Re of 2260 and an upper critical Re of 12000. Below 2260 the

flow was steady and laminar, above 2260 the flow was susceptible to different levels of

perturbation leading to a transition to turbulent flow, finally above 12000 the flow was

fully turbulent regardless of the level of perturbation. This series of experiments have

raised the maximum upper critical Re observed to a value in excess of 105 (Pfenninger

1961). However, the minimum lower critical value for transition to occur has remained

close to the value obtained by Reynolds. Studies by Binnie & Fowler (1947); Lindgren

(1958); Leite (1959) and Wygnanski et al. (1975) have placed it in the range 1800 <

Re < 2300.

Also of early significance is the work of Poiseuille. Poiseuille (1847) set out to find

a functional relationship among four variables: the volumetric efflux rate of distilled

water from a tube Q, the driving pressure differential ∆P , the tube length L, and

the tube diameter d. His investigation was extended to study the relationship of these

parameters to changes in temperature and fluid. The result of this work was Poiseuille’s

equation for pipe flow, first written as

Q = K ′∆Pd4

L
, (1.7)

where Q is the volumetric efflux rate, K ′ is a function of the fluid and temperature, P

is the pressure drop, d is the pipe diameter, and L is the pipe length. Later Hagenbach

(1860) derived Poiseuille’s equation from the Navier–Stokes equation recognising the

relationship between viscosity and Poiseuille’s constant K ′, and rewriting the relation

to the common form,

Q =
π

128µ

∆Pd4

L
, (1.8)

where µ is the viscosity of the fluid. The Hagen–Poiseuille law gives the pressure drop in

a fluid flowing through a long cylindrical pipe, assuming the flow is laminar, viscous and

incompressible. In 1960, Hagenbach (1860) and (although not published at the time)

Stokes (1967) derived the the Poiseuille equation from the Navier–Stokes equations.

One corollary of this derivation was the velocity profile for a circular pipe is parabolic

with the form,

vz = − 1

4µ

∂P

∂z

(
R2 − r2

)
, (1.9)

where vz is the velocity in the axial direction, µ is the viscosity, ∂P
∂z is the pressure

gradient along the pipe, R is the maximum radius of the pipe and r is the radial
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position.

While the works of Hagan, Poiseuille and others provides a comprehensive knowl-

edge of steady laminar flow along a straight pipe, the underlying physics is irrevocably

changed when the motion is oscillatory. Such knowledge is essential if correct hydro-

dynamic principals are to be applied to the circulatory system as blood flow in arteries

and the large veins is pulsatile in nature (Helps & McDonald 1954; Womersley 1955).

Womersley and collaborators were instrumental in developing an understanding of os-

cillatory flows in straight pipes.

In a landmark paper, Womersley (1955) derived an exact solution of the equations

of viscous flow in a circular tube under a pressure gradient that is a periodic function

of time. This work is analogous to the work completed by Poiseuille (1847) on steady

flows. Womersley showed the velocity profile for flow in a straight pipe is given by

vz = Re

A

ρ

1

iω

1− J0

(
αyi

3
2

)
J0

(
αi

3
2

)
 eiωt

 , (1.10)

where A is an amplitude, ρ is the fluid density, i =
√
−1 is an imaginary number, ω

is the angular frequency of the pressure wave form, J0 is a Bessel function of the first

kind and order 0, y is a measure of the radial distance defined by y = r
R , t is the time,

and α is the Womersley number. The Womersley number characterises the pulsatile

frequency, and is written as

α = R

√
2πf

ν
, (1.11)

where R is the radius of the pipe, f is the frequency of pressure oscillation, and ν is

the kinematic viscosity.

Having derived the equations of motion for a time dependent pressure gradient,

Womersley (1955) showed that for the limit of the frequency approaches zero (i.e.

when the pressure gradient is constant), that the parabolic Hagen–Poiseuille profile is

achieved. He also showed that there is a phase-lag between the fluid motion and the

pressure gradient which causes it.

The Womersley number of the flow dictates the phase lag between the flow field

and pressure gradient. It is a dimensionless expression of the pulsatile flow frequency

in relation to viscous effects (i.e. the ratio of the transient or oscillatory inertia force to

the shear force). When α is small (1 or less), the frequency of pulsations is sufficiently

low that the Hagen–Poiseuille parabolic velocity profile has time to develop during
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(a) α = 1.2 (b) α = 13.1

Figure 1.3: The velocity profiles of the flow resulting from a sinusoidal pressure gradient

in a pipe (cosωt) at 90◦ intervals of the oscillating pressure gradient. Sub-plot (a) depicts

the nearly classic Hagen–Poiseuille velocity profile achieved at a low Womersley number of

α = 1.2. Sub-plot (b) shows the Womersley profile which forms at high Womersley numbers

α = 13.1.

each cycle. The flow will be very nearly in phase with the pressure gradient. When

α is large (10 or more), the frequency of pulsations is sufficiently large that the rapid

acceleration-deceleration states of the pressure gradient causes flow reversal near to the

walls, and the velocity profile in the interior of the pipe is relatively flat or plug-like, the

mean flow may lag the pressure gradient by up to 90 degrees. Hale et al. (1955) showed

the effect that increasing Womersley number has on velocity profile. Figure 1.3 depicts

the departure from the classic Hagen–Poiseuille parabolic profile at large Womersley

numbers. The large Womersley number flattens the profile making it plug like. As

the pressure gradient reverses direction, the reversal of flow starts in the laminae near

the wall. The effects of the larger Womersley number is seen in figure 1.3(b), there

is a distinct flattening of the profile of the central region, a reduction of amplitude of

the flow and the rate of reversal of flow increases close to the wall. The greater the

Womersley number the further accentuated these affects are. For very high Womersley

numbers (figure 1.3(b)), the rapidly varying part of the flow lies between r = 0.35 and

r = 0.5, the central mass of the fluid reciprocates almost like a solid core.
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1.6.2 Flow in flexible vessels

Blood flow through arteries is more complicated than simple flow through straight pipes.

The elastic nature of the walls plays an important role defining the haemodynamics.

When a flow is driven through a deformable tube, interactions between the fluid and

elastic forces lead to a variety of biologically significant phenomena. These include

wave propagation through both the fluid and walls, non-linear pressure-drop/flow rate

relations, and the generation of extra instability modes (Grotberg & Jensen 2004). In

understanding the complex flow through aneurysms it is important to know the physical

origins and nature of these phenomena.

The earliest works on flow in distensible tubes was completed by Euler in 1775 (Euler

1844). In this paper Euler set out the one-dimensional equations for the conservation of

mass and momentum in a distensible tube. In his notation these respective conservation

equations are written as (
ds

dt

)
+

(
d · Vms

dx

)
= 0, (1.12)

and

2ρ

(
dP

dz

)
+ Vm

(
d · Vm

dz

)
+

(
dVm

dt

)
= 0, (1.13)

where s is the cross-sectional area, Vm is the average velocity, P is the pressure, ρ is

the density, t is time and z is the axial distance. Since Euler, many theoretical works

have been devoted to this subject.

Luchini et al. (1991) identifies the most prominent feature of flow in distensible,

as opposed to rigid, tubes is the propagation of pressure waves with finite velocity.

Young (1808) provided the first estimate of the velocity of the pressure wave using

a one-dimensional model of an inviscid fluid. He used an effective compressibility of

the fluid in place of an elastic-wall. Later, Lamb (1898), improved on Young’s model

introducing the differential equations of motion of the tube walls replacing the effec-

tive compressibility model. Witzing (1914) built on the work of his predecessors and

expressed the complex wave velocity as a function of frequency for periodic solutions.

This solution was generalised by Womersley (1957b) to include viscous effects for the

fluid and viscoelastic properties for the wall. Womersley pointed out that both velocity

and the damping coefficient of the wave are increased by viscous effects in the wall.

All of these papers only deal with the one-dimensional evolution of the cross-section-

averaged fluid pressure. The problem of the complete theoretical determination of the
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fluid flow field in a distensible tube remains.

Atabek (1968) redefined the equations including the effect of pre-stressing the tube

with a hydrostatic load and considered the presence of external loading of in vivo

arteries through its contact with the surrounding tissue. Others have since modified

these results to include non-linear elastic models for the tube to more closely match

biological data, this has the result of making the wave disturbance dependent on the

state of pre-stressing in the wall. Anliker et al. (1968, 1969) observed this effect on

anaesthetized dogs. They found for a given transmural pressure, the phase velocity

increases with distance form the heart. They conclude the pressure pulse will exhibit a

steepening of its wave front as it propagates.

Krindel & Silberberg (1979) studied the flow of a Newtonian fluid in a gel-walled

tube, and observed that the transition Reynolds number and the drag law are very

different from those of rigid tubes. Kumaran (1995b) argued the flow near a flexible

surface is very different to flow near a rigid surface due to the non zero normal velocity,

this results in a breaking of Rayleigh theorem and leads to non-trivial solutions for

the temporal stability problem. The Reynolds number analysis of Kumaran (1995b,a)

revealed the possibility of unstable fluctuations when the fluid velocity is increased

beyond a critical value. Kumaran (1995a) performed an energy balance and showed

the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress

in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to

deformation work done at the interface and that there is no net transfer from the mean

flow to the fluctuations.

Pertinent to the healthy function of the artery is the wall shear stress. The one-

dimensional models based on continuity of mass and momentum and tube laws for the

wall require a flow-dependent WSS expression to solve the set of equations (Zagzoule

et al. 1991). Often it is the case (Rockwell 1969; Stettler et al. 1981) that the local

velocity profile is assumed to be parabolic, allowing the WSS to be deduced from

Poiseuille’s law. As shown by Womersley (1955) for unsteady pulsatile flows a parabolic

velocity profile does not develop, the WSS always has a phase lead on the mean and

centre line velocities. The use of the Poiseuille approximation ignores this feature of

the flow and as a consequence the WSS is underestimated from these one-dimensional

models (Zagzoule et al. 1991). Several attempts have been made to improve the WSS

model in one-dimensional equations. Streeter et al. (1964) used a turbulent type friction
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expression and showed that the Poiseuille approximation underestimates the WSS in

laminar and turbulent régimes. Olsen & Shapiro (1967) used the first harmonic in

a Womersley velocity profile in a rigid pipe to deduce the WSS in an elastic tube.

This approximation yielded good results in high or low Womersley number ranges but

provided inaccurate information at biologically realistic régimes. While this was a good

advancement they neglected the phase lag of the pressure and velocity solutions and

the variations in cross sectional area.

The one-dimensional models for fluid flow in an elastic tube over-simplifies the sys-

tem. Attempts to combine components of two-dimensional models and one-dimensional

models (Atabek 1980) have yielded inefficient techniques with marginal gains in accu-

racy. Accuracy in modelling these flows requires a full direct numerical simulation with

appropriate boundary conditions.

1.6.3 Haemodynamics of aneurysm geometries

Many different approaches have been taken to investigate aneurysmal flow conditions.

In vitro experiments have been used in conjunction with PIV techniques to visualise flow

through aneurysms. Computational Fluid Dynamics (CFD) models have proven more

useful in determining shear stresses near the wall. Another advantage of CFD models

is the ability to look at both idealised and patient specific models. Needless to say, the

complex nature of the fluid-structure interaction has made complete modelling of the

system difficult. Much of the research conducted has used a rigid-wall assumption to

simplify their models, let this form a starting point for our discussion of haemodynamics

in aneurysms.

1.6.3.1 Rigid-wall models

Salsac et al. (2006) completed a parametric study in symmetric glass models. The

models were characterised by their aspect ratio L
d and dilation ratio D

d as depicted in

figure 1.4. The maximum aneurysm diameter D was restricted to be less than 4.5 cm as

larger aneurysms may form thromboses. Water was used as the fluid in the investigation

and assumptions were made that blood is a Newtonian fluid which is reasonable in large

vessels (Attinger 1964; El-Khatib & Damiano 2003).
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Figure 1.4: Fusiform symmetric glass models used by Salsac et al. (2006) and defining

parameters. Reproduced with the permission of Cambridge University Press from Salsac

et al. (2006).

Salsac et al. (2006) found that in the healthy aorta during systole5 a top hat flow

profile is formed with boundary layer increasing with Womersley number.

During diastole6 the bulk flow of the fluid motion is forward with backward move-

ment beginning at the boundaries. It is important to note that flow remains laminar

throughout the entire cycle. For a healthy aorta it was found that theWSSmean = 0.27,

WSSmag = 1.5 and the oscillating shear index, OSI = 0.4. The mean wall shear stress

is given by

WSSmean =
1

T

∫ T

0
WSS dt, (1.14)

where T is the time period, the wall shear stress magnitude is given by

WSSmag =
1

T

∫ T

0
|WSS| dt, (1.15)

and the oscillating shear index is given by

OSI =
1

2

(
1− WSSmean

WSSmag

)
. (1.16)

Both Finol et al. (2003b) and Salsac et al. (2006) describe the flow evolution (see

figure 1.5 in detail:

1. Systolic acceleration involves downstream ejection of the residual vortices left

from the previous cycle, yielding an attached laminar flow pattern thanks to the

5Systole refers to the gathering and contraction of the heart, this is linked to the expulsion of blood
from the heart and is represented by a positive volumetric flow rate.

6Diastole is the period of time in which the heart refills with blood after systole, it is represented
by a negative or minimum in the volumetric flow rate.
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positive pressure gradient of systole. The temporal acceleration of the flow is

at this point larger than the convective deceleration resulting from the upstream

(proximal) diverging walls of the artery.

2. Systolic deceleration is characterized by flow separation at the proximal neck,

toroid-shaped single-vortex growth and its translation downstream, followed by

a free shear layer in which secondary vortices form due to the Kelvin–Helmholtz

instability. The vortex ring will eventually impact on the distal neck, causing a

region of higher shear stress.

3. Early diastole is characterized by partial shedding of the vortex left from systole

towards the main stream. Flow recirculation is reduced in size, as the centreline

velocity increases in accord with the pressure gradient imposed by the inlet flow

condition.

4. Late diastole is the phase where the most significant flow disturbance takes place.

It is largely influenced by the effect of secondary disorganized recirculation regions

that depart from the symmetric toroidal shape. These are present downstream

of the aneurysm midsection until the onset of systolic acceleration in the next

cardiac cycle.

In terms of the wall shear stresses, the presence of the primary vortex ring so close

to the distal wall at impact induces the boundary layer to roll up into a counter-

rotating vortex of smaller size. A strong WSSG is observed in the proximal and

distal necks where flow detaches from the wall and when the changes in WSS are

maximum. The formation of the vortex ring also creates regions of high WSSG up

and downstream of it. Regions of low WSSmean correspond to Oscillating Shear Index

(OSI) of 0.5 (oscillatory), most of the wall experiences OSI greater than 0.5 indicating

a flow reversal. While the work of Salsac et al. (2006) comprehensively describes the

flow evolution in a fusiform aneurysm, they fail to capture the complete physics of flow

through an aneurysm. The rigid wall is not physiologically realistic and its exclusion

could lead to a change in flow dynamics as suggested by other studies such as Finol

et al. (2003b).

Geometry has a large impact on the distribution of wall stresses and flow evolution

(Buchanan et al. 1998; Finol et al. 2003b; Salsac et al. 2006; Sheard et al. 2007; Sforza

et al. 2009). A change in aspect ratio L/d, changes the distance along the axis that
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Figure 1.5: Flow in a fusiform aneurysm. Flow is left to right and the Meridional half plane

is plotted. Contours are of-out-of plane vorticity, with red positive and blue negative. Note

the large red primary vortex ring in the systolic acceleration phase and the blue secondary

vortices in the diastolic phase. Reproduced with the permisson of Sheard from (Sheard 2009).
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the vortex ring must travel. Aspect ratio may limit the evolution of the vortex ring

as the length scale is less than that defined by the Strouhal number. Higher aspect

ratios lead to a later separation and hence a weaker vortex (Salsac et al. 2006). A

change in aspect ratio alone has little effect on wall shear stress, in fact it typically acts

to reduce the intensity of WSS patterns, this is due to weaker vortex formation for

larger aspect ratios (Salsac et al. 2006). However, dilation factor D/d enhances WSS

patterns. As D/d increases the point of flow separation moves closer to the proximal

neck, the mean WSS increases, and recirculation regions increase in size. The time at

which flow separation occurs is not dependent on dilation factor (Salsac et al. 2006).

Sheard et al. (2007) investigated the effects of changing the radius of curvature of the

proximal and distal necks. A spectral element CFD technique was employed and results

were compared to a healthy aorta and Poiseuille’s laws for straight pipes. They found

that the rate at which fluid is flushed from the bulge is dependent on pulse frequency

and not geometry. The heart rate frequency, f, is defined by the non-dimensionalised

Womersley number. Optimal fluid removal was found at α = 20 (Sheard et al. 2007).

However, wall shear stress and pressure drop were dependent on geometry, with an

increased radius of curvature corresponding to lower WSS.

It is unlikely that an aneurysm of medium or large size (D > 4.5 mm) be of fusiform

or axisymmetric shape (Finol et al. 2003b). Di Martino et al. (2001); Finol et al. (2003b)

and Scotti et al. (2005) all analysed the effects of asymmetry using finite element CFD

techniques. Finol et al. (2003b) explains the effects of asymmetry on the flow through a

rigid-walled fusiform aneurysm. They explain that during systolic deceleration the effect

of asymmetry is to reduce the intensity of the vortex along the posterior wall, creating

an asymmetric annular structure. During early diastole aneurysm asymmetry yields

stronger velocity gradients along the anterior wall at the distal end. Finally, during

late diastole the geometric asymmetry creates secondary vortex structures which cause

disorganized recirculation regions that depart from the symmetric toroidal shape. In

terms of WSS as the asymmetry increases so too does the peak WSS in a non-linear

manner.

Like both Finol et al. (2003b) and Scotti et al. (2005), Vorp et al. (1998) investigated

the effect of geometric asymmetry on the wall shear stress experienced in a fusiform

aneurysm. Using a finite element technique and rigid-walls they found the magnitude

of the peak wall shear stress increased non-linearly with increasing maximum diameter
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(for constant asymmetry) and increasing the level of asymmetry (for constant maximum

diameter). In terms of the shear stress distribution, it was found that different levels

of asymmetry changed the location of the peak wall shear stress from the midsection

to the distal neck. Their findings were later corroborated by the works of Di Martino

et al. (2001); Finol et al. (2003b); Scotti et al. (2005).

The ultimate application of this research sees an integration of CFD software with

medical imagery in order to realistically measure the flow through patient specific

aneurysms. Shojima et al. (2004), investigated 20 such models, they concluded that

the average WSS in the vessel was significantly higher than in the aneurysm (Shojima

et al. 2004). Geometry had a profound effect on their results; small aneurysm with

low aspect ratio L/d = 0.56 had no decrease in intra-aneurysmal flow. But larger with

high aspect ratio of L/d = 1.58 saw the formation of a recirculation region leading to a

decrease in intra-aneurysmal flow and consequently a low average shear stress (Shojima

et al. 2004). There studies suggested that a WSS = 2 N/m2 will maintain endothelial

cells while a WSS of 1.5 N/m2 begins to degrade them. This is contrary to the results

presented by Salsac et al. (2006) who suggested healthy WSS be 1.5 N/m2.

Other authors suggest other factors that could be important in terms of patient

specific haemodynamics. Egelhoff et al. (1999) indicate under medium exercise inflow

conditions a transitional stage exists that may see the vortex ring bursting into turbu-

lence at late diastole. However, Finol et al. (2003b) and Finol & Amon (2002) did not

capture any numerical instabilities or singularities for time dependent flow conditions

that would lead to turbulence. Buchanan et al. (1998), while working on rabbit aorto-

celiac junctions, indicated the significance of secondary spiral or helical flows. Sforza

et al. (2009) through work on cerebral aneurysms also stated that helical or swirling

secondary flows induced by the curving geometry of cerebral arteries are fundamentally

important as they govern the areas of local flow.

1.6.3.2 Compliant-wall models

The enlargement of aneurysms has been linked to a disruption in the mechanotrans-

duction process which keeps arterial walls healthy. This disruption is closely associated

with both the haemodynamic shear stresses exerted on the wall as well as the me-

chanical characteristics of the vessel wall. The arterial endothelial lining is exposed to

both wall shear stress caused by pulsatile blood flow and circumferential stress caused
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by pulsating arterial pressure. The interaction of these two stresses, and not the sole

contribution of each, plays an important role in determining a healthy mechanotrans-

duction process (Qiu & Tarbell 2000b). Given the importance of the stress interaction it

seems prudent to perform investigations which include a compliant wall model (Lasheras

2007). Lasheras (2007) and Sforza et al. (2009) highlight a lack of knowledge of the

wall mechanical properties and changing environment as the limiting factor in forming

a wall-fluid model. Simple models have however been tested to see the effects that a

fluid-structure interaction has on the fluid flows.

The nature of the interaction is complex. Arteries deform under pressure fluctuation

generated by the heart. The blood transmits the pressure wave as a result of energy

exchange between the artery wall and the blood itself; this makes modelling of the

arterial haemodynamics a fluid-solid interaction problem. Lasheras (2007) highlighted

the lack of knowledge of the arterial wall properties as one obstacle hindering research

in this area, as few such investigations had been attempted.

It is anticipated that a compliant wall model will have an effect on the haemody-

namic metrics we use to assess aneurysms. The reported findings seem inconsistent with

some studies (e.g. Scotti et al. 2005) reporting that compliant walls increase peak wall

shear stress, while others Perktold & Rappitsch (1995); Dempere-Marco et al. (2006);

Oubel et al. (2007) reported contradictory findings.

Dempere-Marco et al. (2006) and Oubel et al. (2007) applied the pulsation of the

artery wall to patient specific cases. To do this they measured the wall motion of

different regions in the aneurysm using medical imaging. They then made a first-order

approximation of the wave, including only the fundamental frequency of the wave form,

and scaled the amplitude of the oscillation with the observed wall movement. They used

this wave form as a velocity boundary condition on a fixed-wall patient specific fluid

model. Both Dempere-Marco et al. (2006) and Oubel et al. (2007) found that a purely

rigid model with no-slip boundary condition, over-estimates the peak wall shear stress,

while compliant models yielded slightly larger areas of elevated WSS. While they did

account for the velocity of the fluid introduced as a result of the wall motion, they did

not account for the change in shape that the wall motion creates. The change in shape

is an important factor in resolving the temporal evolution of aneurysm haemodynamics,

particularly in the boundary layer.

Di Martino et al. (2001) and Scotti et al. (2005) modelled a full fluid-structure in-
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Figure 1.6: Stress-deformation curves from aneurysm specimens tested using a uni-axial

tensile test. The dashed line represents the stress-deformation curve of a healthy artery.

Reproduced with the permission of Elsevier from Di Martino et al. (2001).

teraction within AAAs. Contrary to the findings of both Dempere-Marco et al. (2006)

and Oubel et al. (2007), Scotti et al. (2005) found that non-compliant models drasti-

cally underestimated stresses in the wall. Perktold & Rappitsch (1995) reported a 25%

decrease in wall shear stress in an elastic model compared to a solid model. Both stud-

ies used a finite element solver in conjunction with an arbitrary Lagrangian–Eulerian

algorithm to solve the system. The ALE algorithm seeks at each time step the conver-

gence of three blocks of equations, fluid flow (Navier–Stokes), solid (CSD) and mesh

movements (CMD) which must then converge together before a new step is initiated.

The mechanical properties of the wall were measured using cadaver specimens. Their

stress-strain relationships are reproduced in figure 1.6. The code was limited to a linear

elastic homogeneous approximation of the non-linear behaviour shown in figure 1.6. A

linear elastic approximation is insufficient to describe this behaviour. At high stresses

the strain predicted by a linear model will be markedly different to the actual strain

shown from these uni-axial stress tests. Recently, Raghavan & Vorp (2000) showed that

the wall behaviour may be described successfully by means of a non-linear isotropic,

hyper-elastic material model defined through uni-axial tests.

Cebral et al. (2002) used magnetic resonance images to construct a model of an
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artery wall. They concluded that in rigid models, the regions with low shear stress

(< 10 dyn/cm2) were smaller compared to those in elastic models.

Scotti et al. (2005) found that the wall was displaced by an amplitude of 5 mm.

This is contradictory to the measurements from medical images which indicated a

wall movement only 2.5 mm (Dempere-Marco et al. 2006). With the fluid-structure

interaction, Scotti et al. (2005), showed at or just after peak systolic pressure there are

no vortices customary of systolic acceleration. This is contrary to results from rigid

models as energy stored by the expanding compliant vessel ejects the vortex downstream

shortly after peak flow. A phase delay is detected between the velocity inlet and

pressure outlet waveforms (Scotti et al. 2005). The same vortex dynamics are produced

regardless of asymmetry, but they remain in the midsection of the distal end in the

symmetric case and in the asymmetric case it moves toward the proximal end (Scotti

et al. 2005).

The effects of a diameter dependent wall thickness are much greater than asymmetry

for aneurysm models including a fluid-structure interaction. Scotti et al. (2005) showed

a uniform thickness in a symmetric fusiform aneurysm will yield smooth laminar flow;

however, heterogeneous wall causes vortex formation near the distal neck. Flow reversal

occurs twice as often in the variable wall thickness model. Assumptions of uniform wall

thickness gives an underestimation of stresses by 77% compared to a variable thickness

model (Scotti et al. 2005). The work of Scotti et al. (2005) provides a good description

of the effects of simple changes in wall thickness have on flow dynamics. However,

Lasheras (2007), among others, describes the stiffening or weakening of the arterial wall

that coincides with changes in wall thickness. The work of Scotti et al. does not account

for the changed stiffness conditions in the aneurysm wall that would correspond to the

imposed change in thickness. Furthermore, calcification, cell death and intraluminal

thrombus can all cause a very complex and heterogeneous wall thickness distribution.

Modelling the wall with more localised variations in wall thickness may exacerbate the

effect of a variable wall thickness.

1.6.3.3 Effect of wall mechanics on FSI

It has been widely accepted that arterial tissue has a non-linear elastic response. Many

constitutive material models have been developed to mimic the stress strain material

behaviour of the arterial wall (e.g. Lally et al. 2004; Fung et al. 1979). Largely, these
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models simplify the complex structures of the arterial wall using a single homogeneous

material. In reality the different material structures and properties of the media, in-

tima and adventitia contribute to the material response. Elastin in the media bears

most of the pressure load at low strains. The collagen fibre network limits the radial

deformability at higher blood pressure, and causes the steep rise in wall stiffness at

higher blood pressures, resulting in a material with non-linear elasticity (Oscuii et al.

2007). An alternative approach to modelling the wall as a homogenous material with

complex material model is to consider the wall as a multi-layered structure with dif-

fering material parameters for each layer of the wall reflecting the properties of the

biological structures that comprise each layer.

Schulze-Bauer et al. (2003) observed an average wall layer thickness ratio of in-

tima/media/adventitia of 13/56/31 for arteries. Driessen et al. (2004) used a thickness

ratio of 2/1 for media/adventitia. Gao et al. (2006) use a ratio of 1/6/3. The ratios

used in both Gao et al. (2006) and Driessen et al. (2004) are an approximation of that

measured in Schulze-Bauer et al. (2003).

In terms of wall stiffness, Mosora et al. (1993) used a Young’s modulus range of

2 MPa to 6.5 Mpa. In their bending experiments, Xie et al. (1995) showed the Young’s

modulus of the inner layer (intima and media) was three to four times larger than that

of the outer layer (adventitia), and it can be deduced from the experimental data in

Cabrera-Fischer et al. (2002) that the Young’s modulus of the intima is smaller than

that of the media. Gao et al. (2006) uses a Young’s modulus of the media three times

that of the adventitia and intima. Since the mean Young’s modulus of the vessel wall

across the whole wall volume is invariable, the Young’s modulus of each layer is in

inverse proportion to the area of the layer in the cross section (Gao et al. 2006).

Gao et al. (2006) presented the effects of fluid-structure interaction on the aortic

arch using a multi-layered wall model. They showed that variations of circumferential

stress are very similar to variations of pressure. The composite stress in the aortic wall

plane was shown to be much higher in the media than in the intima and adventitia

across the wall thickness. These results indicate that a single layered homogeneous

material model may underestimate wall stresses in the aneurysm.

Leung et al. (2006) directly compared using a rigid-wall model and a fluid-structure

interaction model for three patient specific aneurysms. The aneurysm was given a uni-

form thickness (1.5 mm) and stiffness (2.7 MPa) for the aneurysm wall. The aneurysm
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wall was modelled using a hyperelastic material defined by Raghavan & Vorp (2000).

The arbitrary Lagrangian–Eulerian formulation was used to couple the fluid and solid

solution. They demonstrated that including fluid flow can change the wall stress dis-

tribution slightly. However, as far as the peak wall stress is concerned, this effect is

negligible as the difference between rigid-wall and FSI models is less than 1%. While

presenting plots of peak wall shear stress in the aneurysm for the FSI simulations, they

do not comment on how this distribution is affected by an FSI model compared to a

rigid-wall model, nor do they comment on the effect these parameters may have to the

future health of the aneurysm.

Oscuii et al. (2007) investigated the effects of varying wall stiffness on the flow in

a fusiform brachial aneurysm. They used the arbitrary Lagrangian–Eulerian formula-

tion to loosely couple the incompressible Navier–Stokes equations for the fluid region

with an incompressible elastic material undergoing large deformations. Pressure and

velocity waveforms were applied specifically to the brachial artery. Resultant flow, wall

displacement, wall shear stress, wall circumferential strain waves and their phase differ-

ences were determined. Oscuii et al. (2007) showed a significant decrease in flow rate

and axial velocity profile for stiffer walled models. A ten-fold increase in wall stiffness

caused maximum wall shear stress values to decrease 51%, leading to negative mini-

mum shear that lasted almost one quarter of the pressure pulse duration. An analysis

also showed the stress phase angle was altered by stiffening of the arterial wall. It was

concluded that for elastic moduli corresponding to wall displacements less than 1%, the

blood flow and wall shear stress were not sensitive to wall stiffness.

Torii et al. (2008) compared the effect of using a linear elastic small strain model,

a neo-Hookean model and a hyperelastic Fung-type model for the material wall. A

patient specific cerebral aneurysm geometry previously shown to have flow patterns

that developed in compliant wall simulations but not in rigid-wall simulations was used

to demonstrate the effect of each wall model. They found that the neo-Hookean material

had the largest displacement at 0.346 mm compared to 0.333 mm for the Hookean and

0.222 mm for the Fung material. The larger displacement in the neo-Hookean material

compared to the Hookean material was expected due to the change in thickness of

the artery wall throughout the large displacements. The neo-Hookean model takes

this change in volume into account while the Hookean material does not. Regardless

of material model the flow patterns observed in the aneurysm lumen were consistent,
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characterised by large wall shear stress areas compared to solid state models and the

shedding of a secondary vortex. Torii et al. (2008) conclude that both linearly elastic

and hyper-elastic models can be useful to investigate aneurysm FSI. The displacements

of the aneurysm walls described in Torii et al. (2008) are small compared with the

1.2 − 2.5 mm wall dilation measured in abdominal aortic aneurysm (Stefanadis et al.

1995). Possible reasons for the underestimation of wall motion could be the choice of

material properties in each material model, the difference in the mechanical properties

in cerebral aneurysms compared to aortic aneurysms or a failure to model the effect of

a perianeurysmal environment.

1.6.3.4 Further medical complications: Calcification and thrombus

Commonly associated with AAAs is calcification and Intraluminal Thrombus (ILT).

These are generally associated with a dimmer cardiovascular prognosis. The effect of

calcification on biomechanical wall shear stress in AAAs has not been fully studied

(Detrano et al. 1999; Schmermund et al. 1999). ILT has been heavily investigated in

an aortic aneurysm context; however, a conclusive finding on their effects has not been

determined. Some believe ILT increases the risk of rupture (Satta et al. 1996; Vorp

et al. 2001), others believe ILT may significantly reduce wall stress and therefore pro-

tect from rupture (Inzoli et al. 1993; Mower et al. 1997), still others suggest ILT has

no effect on rupture risk (Dobrin 1989). Li et al. (2008) studied the effect of both ILT

and calcification on AAAs. Their study conducted a finite element analysis on some

patient specific aneurysm geometries with varying degrees of thrombus formation and

calcification. For the artery wall and ILT they used the hyperelastic model, which was

described in Raghavan & Vorp (2000). They used a Mooney–Rivlin type material for

the calcification deposits. A finite element structural analysis with large deformations

was conducted independent of blood flow information. Their findings indicated no cor-

relation between the peak values of wall stress in each case and the median values. They

found that the peak wall stress was not correlated with the percentage of calcification

in the AAA, and was negatively correlated with the percentage of ILT. Results showed

calcification led to a median 14% increase in maximum stress and that ILT led to a

24% increase in median peak wall stress. The effect of ILT and calcification is clearly

significant to AAA wall mechanics. In order to remove the effect of thrombus from this

investigation the geometry is limited to aneurysms with Diameter D < 4.5 cm which
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have been clinically shown to be typically devoid of an endoluminal thrombus (Harter

et al. 1982).

1.7 Restrictions of previous work

Due to the large parameter space involved in modelling aneurysms, many assumptions

and simplifications have been made in previous investigations. Experimental meth-

ods for measuring haemodynamic forces are restricted in their resolution of wall shear

stresses. Theoretical models of flexible vessels use assumptions that underestimate the

wall shear stresses. Conversely, while in vivo studies are possible, current methods for

measuring flow conditions are primitive compared to the accuracy achieved outside of

the body. This is also true of methods for assessing wall stresses and wall stiffnesses of

the aneurysm in situ. This leads to a basic lack of data in this field.

Of the computational studies conducted to date, many consider vessel compliance

to be only of secondary importance and neglect it (Sforza et al. 2009). As such, most

CFD modelling is conducted with a rigid-wall condition. As highlighted in this litera-

ture review this can lead to an underestimation of the mechanical wall stresses and a

variation in the wall shear stress distribution in the fluid. Furthermore, non-Newtonian

behaviour is ignored and the blood is assumed incompressible. What little work that has

been done with fluid-structure interactions has been fraught with simplified models that

lead to contradictory results. Largely, these simplifications have been driven by either

inefficient numerical methods which have made accurate modelling of the system too

expensive a task, or a lack of basic information about the aneurysmal environment. In

aneurysm investigations the most advanced simulations use a fluid-solid-growth model

FSG, these are largely limited by the lack of knowledge about the wall remodelling

processes (Sforza et al. 2009).

In order for FSG models to be viable it is vital that the fundamental aspects of the

flow through aneurysms is mastered. As such, a comprehensive understanding of the

underlying physics of the flow is necessary and therefore accurate modelling techniques

for modelling fluid-structure interactions are essential. Current fluid-structure models

are limited by one or several of the following points.

• They do not fully couple the fluid and solid solutions. The momentum method

of Figueroa et al. (2006) only loosely couples the fluid and solid solutions. Some

works have used the varying pressure gradient in the aneurysm as a pressure
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boundary condition on the solid and solved for its motion separately. This is

then applied this as a wall velocity to the fluid (Di Martino et al. 1998). Others

have used medical imaging of the aneurysm to determine the wall motion of the

solid and imposed this as a velocity boundary condition on the fluid (Oubel et al.

2007). Each of these methods fails to account for local variations in the pressure

as a result of fluid-structures such as vortices that change the local pressure on

the wall. Currently the ALE method is the best method for coupling the two

solutions.

• They do not account for large deformations in the solid domain. Linear elastic

models of the arterial wall assume that the strain is small and as such the dif-

ference in undeformed and deformed coordinate systems is small. In aneurysm

simulations this is simply not the case with wall motion being as large as 15%

of the wall thickness. Some non-linear models are also constructed using a small

strain approximation.

• They do not accurately maintain information of the location of the fluid-solid

interface. Methods that do not use an ALE method, or those that employ an

Eulerian reference frame only, cannot accurately define the position of the artery

wall. This occurs in the Eulerian formulation when the wall passes through an

element as opposed to being mapped out by its edge.

• They do not include inertial terms in the solid structural mechanics. The majority

of studies (Di Martino et al. 1998; Scotti et al. 2005; Finol et al. 2003b) use a quasi-

static approximation for the boundary. This means the boundary conditions are

time dependent but the structural response is instantaneous. Such simplifications

means pressure waves which travel in the solid are not resolved (Lasheras 2007).

Some investigations (Li & Kleinstreuer 2005) have solved the wave equation in

conjunction with thin membrane models to partially overcome this problem.

• They do not account for forces being spread from inner wall to medial and outer

walls (Scotti et al. 2005). Most investigations have modelled the wall using either

a thick or thin membrane theory or as a single layered homogeneous material.

Gao et al. (2006) showed that single layered models underestimate wall stresses.

While non-linear material models do come close to approximating the overall

mechanical response of the wall it is a simplification of the multi-layered aneurysm
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environment. Elastin in the media bears most of the pressure load at low strains.

The collagen fibre network limits the radial deformability at higher blood pressure,

and causes the steep rise in wall stiffness at higher blood pressures. This results

in a material with non-linear elasticity (Oscuii et al. 2007).

• They do not account for highly heterogeneous wall thicknesses and stiffnesses.

While some investigations (Di Martino et al. 2001; Scotti et al. 2005) have in-

vestigated the effect of changing wall thickness in an aneurysm they have done

so in a very uniform fashion, i.e. a function of wall diameter. In reality the wall

thickness and stiffness will change as a result of haemodynamic stimuli and as

aneurysm imaging has shown the wall thickness is highly heterogeneous.

• They do not account for non-linear elastic material properties of the wall (Scotti

et al. 2005). While many investigations of aneurysm walls themselves have

been modelled using highly complex anisotropic, hyperelastic material models

(Holzapfel & Weizsäcker 1998), investigations that include fluid-structure inter-

actions rarely use complex material models for the wall in order to conserve

computational efficiency. Furthermore if a non-linear elastic material is solved a

single layer model is invariably used.

• They do not account for the effects of a thrombus (Scotti et al. 2005). In large

aneurysms, formation of thrombus drastically changes the lumen shape. large

sections become occluded due to the build up of platelets in low WSS areas.

• They do not account for the forces from the perianeurysmal environment (Sforza

et al. 2009). The boundary conditions applied to the solid region are of the utmost

importance. Having the outer edge of the arterial wall free to move with no force

upon it or fixed in place is unrealistic. Humphrey & Taylor (2008) highlight the

importance of using a force feedback model on the outer surface of the arterial

wall to model the effect of the aneurysm pushing against the perianeurysmal

environment. The treatment of the perianeurysmal environment in this research

is discussed in § 7.4.4.

• They do not account for the effects of bifurcations and inlet flow conditions.

Humphrey & Taylor (2008) highlight the importance of using appropriate bound-

ary conditions in modelling the flow through an aneurysm. Currently many stud-
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ies use simplified models for the inflow and outflow conditions, not allowing phys-

iologically accurate flows to evolve. Impedance models based on the downstream

pressure in the venous branches are recommended, as is modelling outflow through

the renal branches upstream and the femoral artery bifurcation downstream.

Research that seeks to contribute to this field must strive to rectify these short-

comings. The work of this thesis looks to improve on the current numerical simulation

methods as well as performing investigations on aneurysms with physiologically appro-

priate boundary conditions.

1.8 Research aims

Lasheras (2007) and Sforza et al. (2009) both emphasized a lack of knowledge regarding

aneurysm wall properties and models. They also indicated the importance of such

models in forming a predictive model for aneurysm growth and rupture. Scotti et al.

(2005) showed that modelling of a fluid-structure interaction alters the evolution of flow

in the aneurysm compared to rigid-wall models. Following this, the present research

aims to:

1. Create a spectral element CFD algorithm facilitating the accurate modeling of the

fluid-structure interaction in an aneurysm. The FSI model should incorporate:

(a) A wall constructed of multiple layers each with different material properties,

(b) The heterogeneous nature of the wall, and,

(c) Non-linear elastic material properties of the wall.

2. Implement this fluid-structure modelling tool to assess the flow through a fusiform

abdominal aortic aneurysm and assess the effects of:

(a) Wall mechanical properties. Previous models have not accounted for the

different mechanical properties associated with the different layers of the

wall,

(b) Heterogeneous wall stiffness. Scotti et al. (2005) investigated the effect of

diameter-dependent wall thickness on an aneurysm. They showed a uniform

thickness underestimates wall stresses by up to 77%; as such a heterogeneous

wall will have significant effects on the fluid forces. The thickness of the wall
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is also linked to its deformation and stiffness; heterogeneous stiffness should

drastically change the onset of vortex shedding as well as altering the wave

speed of the pressure pulse travelling along the walls.

(c) Heterogeneous wall stiffness in the context of aneurysm initiation.

1.8.1 Developing a new method for investigating FSI in aneurysm

This phase of the project proposes to address research aims 1a-1c. In this stage a

non-linear solid solver is developed and integrated into an existing fluid solver. The

arbitrary Lagrangian–Eulerian method will be used to couple the fluid and solid solvers.

This method permits accurate determination of the boundary interface while providing

a strong coupling of the fluid and solid dynamics equations, therefore improving on

current computational practices.

Humphrey & Taylor (2008) cite the work of Wolters et al. (2005) as being the

most advanced FSI solver currently being used in aneurysm research. Wolters et al.

(2005) uses a neo-Hookean model for the artery wall material with large strain capabil-

ities, an incompressible Newtonian fluid solver and physiologically accurate boundary

conditions. The methodology implemented in this thesis intends to make a similar im-

plementation but using the highly efficient spectral element method for both the fluid

and the solid discretisations, as well as including the inertial term in the solid mechan-

ics thus improving on the current investigative tools. Spectral elements have rarely

been used in solid mechanics and are less common in non-linear solid mechanics. A

2-step operator splitting method with penalty function for enforcing incompressibility

is proposed for solving the constitutive equations for a neo-Hookean solid. Through-

out the development phase a series of validation tests will be performed to ensure the

algorithms performance.

1.8.2 Investigation: Heterogeneous wall stiffness effects on established
aneurysms

This investigation proposes to address the research aim 2a and 2b by answering the

following questions:

How will the perianeurysmal environment affect the flow through the

aneurysm?

Hypothesis: An increase in the force feedback from the perianeurysmal environment

will have the same affect as a global decrease in wall stiffness. It will reduce the
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Figure 1.7: Aneurysm geometry for investigation. D = 2 cm, d = 1 cm and L = 3 cm, t

may change as required.

size of areas with positive normalised wall shear stress. A stronger perianeurysmal

response will mean less elastic-wall motion. Therefore the effects of the elastic-wall on

the flow dynamics should be decreased. The less wall motion, the closer to the rigid-wall

approximation which has been shown to underestimate wall stresses.

How will local wall stiffness affect the flow through the aneurysm?

Hypothesis: A local increase in wall stiffness will introduce secondary regions of flow

separations and potentially the development of a secondary vortex ring system. A local

difference in wall stiffness could lead to a localised differential in displacements causing

a less smooth geometry which could act like a “backward facing step” leading to flow

separation.

Is a Hookean material model for the aneurysm wall sufficient to model

the wall response in Aneurysms?

Hypothesis: A hyper-elastic material law will cause the model to exhibit higher

wall stress at points of greatest deformation. Conversely, subject to a given pressure, a

hyper-elastic material model will predict a smaller strain or wall motion than a linear-

Hookean elastic material model. This hypothesis will be addressed in chapter 6 when

comparing the relative strain in a Hookean and neo-Hookean material.

For the established aneurysm investigations, the geometry modelled is a fusiform

aneurysm with dimensions shown in figure 1.7.

The wall mechanical properties are chosen as per Fung (1993) to describe the mean

mechanical properties of each layer in the artery wall (for detailed discussion of the

choice of parameter space see chapter 7). To assess the effect of changed material
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properties, the material properties of each layer are altered locally in locations at the

proximal neck, distal neck and extrema of the arterial bulge.

1.8.3 Investigation: The effect of heterogeneous wall stiffness on aneurysm
initiation

This investigation proposes to address the research aim 2c by answering the following

questions:

How will a stiffer (or less stiff) band of arterial wall affect the flow

through a straight pipe?

Hypothesis: A local stiffening of the artery wall will reduce the wall motion in that

local region creating a geometry similar to a stenosis. This will cause flow recircula-

tion and a change in the WSS patterns that could initiate aneurysm growth. A local

stiffening of the material wall should physiologically mimic three scenarios:

• the effect of cell death in the arterial wall,

• the formation of plaque build up, or,

• the tethering of artery by upstream branches such as the femoral and renal artery

bifurcations

Hypothesis: A local reduction in wall stiffness will lead to extra ballooning of the

arterial wall. This extra bulge will change the flow dynamics and WSS distributions

which could create a cascade affect.

Hypothesis: Wider stiffened regions will lead to less adverse flow conditions as the

gradient of the nozzle effect or ballooning effect will be reduced.

1.9 Closure

Previous research into haemodynamics in aneurysms has largely been focused on rigid-

wall dynamics. To realistically model the flow, a moving boundary condition must be

applied to account for the elasticity of the aneurysm wall. A fluid-structure interaction

problem will be studied in the context of an abdominal aortic aneurysm, with the effects

of an elastic-wall modelled using a numerical analysis. An ALE algorithm will be em-

ployed to solve fluid-mechanics, solid-mechanics, and mesh-mechanics equations, thus

allowing both fluid flows and mechanical structures to be modelled concurrently. Once

formulated, the fluid-structure model will be employed to measure the haemodynamics
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of flow through an aortic aneurysm with variable wall stiffness. An investigation will

also be undertaken to assess the effect wall stiffness may play on aneurysm initiation.
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Chapter 2

A review of continuum mechanics

In modelling the mechanical response of the arterial wall and the dynamics of blood

flow a comprehensive understanding of continuum mechanics is essential. This chapter

briefly summarizes the fundamental relations of the kinematics of large deformations,

it outlines the balance laws that govern both fluid, and solid mechanics and alludes to

the subtle differences which differentiate the Hookean, neo-Hookean and fluid dynamics

constitutive models. The similarity of the governing equations presented herein provides

the background that motivates the development of the time stepping algorithm for

a neo-Hookean solid. This class of algorithms has previously been applied to fluid

dynamics simulations. The material revised in this chapter closely follows Müller &

Ferber (2008) and Bower (2009).

2.1 Introduction to continuum mechanics

All matter is inherently discontinuous. Regardless of its classification it may be decom-

posed and shown to comprise of distinct building blocks. Biological materials can be

broken down into cells, the cells into molecules and so on. Similarly, metals and com-

posites too can be deconstructed into a finite number of atoms, which in turn consist

of finite numbers of nucleons and electrons.

Many important physical phenomena involve matter on large length and time scales.

This is the case when considering fluid flows in the human body or the response of the

artery wall to pressure. In these cases matter is being considered at a length scale

much larger than the characteristic length of atomic spacings
(
1− 5 Å

)
and similarly

at time scales significantly larger than phonons (1− 10 fs). If the physical problem of

interest occurs at length and time scales of several orders of magnitude higher that these

limiting scales, it is possible to ignore these small-scale heterogeneities and to consider
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Figure 2.1: Arbitrary solid body B.

matter as a continuous medium. A continuous medium may be conceptually defined as

a finite amount of matter whose physical properties are independent of its actual size

or the time over which they are measured. In terms of computational simulations of

a continuous medium, the assumption of a continuum holds until the resolution of the

mesh reaches length scales on the order of the atomic spacing and the solver reaches

temporal resolution equivalent to phonon sizes. If one were able to resolve past this

point a sudden change in the physical properties would be observed.

Mathematical theories developed for continuous media, such as the Navier–Stokes

equations for fluids and the Hookean relations for solids, are phenomenological in the

sense that they capture the observed physics response without directly accounting for

the discrete structure of matter. The subsequent sections look at developing a mathe-

matical equation set for which modelling both solid and fluid continua is based.

2.2 Kinematics of deformation

Let us consider a continuous body (e.g. figure 2.1), whether it be a fluid or solid,

whose particles at a particular point in time occupy the region B ⊂ R3. This body at

this time, t0, may be considered to be in a certain reference placement. Each of the

material particles, P ∈ B are defined by their position vectors X (P ), which may be

described without loss of generality by their components {X1, X2, X3}P relative to an

orthonormal-based (E1,E2,E3) coordinate system centred at some convenient origin
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Figure 2.2: A representation of a deformation in the Lagrangian point of view. The defor-

mation occurs from original coordinates X to deformed coordinates x through the mapping

x = φ (X).

O, so that in this reference configuration

X = XiEi.

This reference system will herein be referred to as the material reference frame. The

reference placement of the body is arbitrarily represented in figure 2.2.

Subject to an external load, the body B subsequently deforms over a period of

time δt. A deformation of the body B is a mapping φ : B → R3 that preserves the

distinctness of all points in the body; that is to say it is injective and one-to-one.

After an external force has caused a deformation to the material over time δt, the

body sits in the current or deformed position described mathematically by φ (B) and

shown in figure 2.3. Each material particle P ∈ φ (B) is now defined by its new position

vector x (P ). The components {x1, x2, x3}P are relative to an orthonormal coordinate

system (e1, e2, e3) centred at o (in the deformed coordinates), in which,

x = xiei.

This position is referred to as the spatial reference frame.

For an arbitrary point P the deformation mapping is defined as

xi = φi (X) . (2.1)
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Figure 2.3: A representation of a deformation in the Eulerian reference frame. In this case

the reference frame is in the original position x and the descriptions of the deformations must

be mapped back onto it using: X = φ−1 (x).

This deformation mapping describes for each component how the position vector changes

from material to spatial coordinates through this particular deformation over this given

time. Since by definition the mapping φ is one-to-one, the inverse of the deformation

map is well defined:

Xi = φ−1
i (x) . (2.2)

As indicated earlier the motion of the body B during a time interval [t1, t2] may be

described by the deformation mapping φ (x, t). In other words a motion is defined as a

single set of parametric mappings indexed by time, describing a path or trajectory for

all particles in a body,

x = φt (X) .

In describing the motion of a particle the initial and final positions of the particle

may be used. Given the definitions of position described in equations 2.1 and 2.2

the spatial (or direct) motion and material (or inverse) motion of a particle must be

distinguished in order to describe its displacement.

A Lagrangian reference frame is used in the case of direct motion. The position

of material particles are followed from the fixed material position X along the path

of motion to their spatial or deformed position. If the coordinate system follows the

particle, this point of view is known as the Lagrangian reference frame. In contrast to
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this, the Eulerian reference frame is used if the inverse motion description is adopted.

The motion of physical particles are followed through the ambient material at fixed

spatial positions x. In this case the coordinate system is fixed in space and the material

particles are defined by their relative motion to this fixed point.

The displacement field, U , for a particle relates its current (deformed) position at

time, t, to its original (reference) position at time, t0. Using a Lagrangian reference

frame the displacement field may be written

U (X, t) = x (X, t)−X, (2.3)

where x (X, t) denotes the final deformed position of the particle (in material coordi-

nates) and X denotes its original position (in material coordinates). The Eulerian form

of the displacement field is given by,

u (x, t) = x−X (x, t) , (2.4)

where x denotes the final deformed position of the particle (in spatial coordinates)

and X (x, t) denotes its original position (in spatial coordinates). The two definitions

in equations 2.3 and 2.4 are equally valid in their respective reference frames and are

shown to be related through the inverse deformation mapping,

U (X, t) = U
(
φ−1 (x, t)

)
= u (x, t) . (2.5)

In formulating a mathematical model for continuum mechanics, definitions may also be

required for the velocity and acceleration of the body B. The instantaneous velocity of

a material point in the material (Lagrangian) reference frame is

V (X, t) =
∂φi

∂t
(X, t) . (2.6)

The analogous velocity field in the Eulerian reference frame may be written

v (x, t) = V (φ (X, t) , t) =
∂φ

∂t

(
φ−1 (x, t) , t

)
=
(
V ◦ φ−1

)
(x, t) , (2.7)

where (·) ◦ (·) denotes the tensor composition.

Listing the instantaneous acceleration, A, of a material point at position X at time

t in Lagrangian coordinates,

A (X, t) =
∂V i

∂t
(X, t) , (2.8)
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and in the Eulerian reference frame, the acceleration, a, of the material occupying the

spatial location x at time t is,

a (x, t) = A (φ (X, t) , t) =
∂V

∂t

(
φ−1 (x, t) , t

)
=
(
A ◦ φ−1

)
(x, t) . (2.9)

Given a smooth spatial velocity field v (x, t), the material time derivative of equa-

tion 2.9 simplifies to

a (x, t) =
∂v

∂t
(x, t) + v (x, t) · ∇v (x, t) . (2.10)

The first term of equation 2.10 describes the local acceleration of the material incident

at point x, the second term describes a convective acceleration field. This form of the

acceleration term is particularly useful in fluid mechanics as the spatial acceleration can

be determined without knowing the motion of the particles explicitly, i.e. the position

vector is never determined.

The Eulerian descriptions will be used in solving the fluid mechanics equations due

to the advantages described earlier. In keeping with convention the model for solid

continua will be formulated using a Lagrangian reference frame.

Finally, a note on sequential deformations or transient deformations: If one chose

to consider a small strain approximation then the total deformation of a body subject

to subsequent deformations or analogously deformations over a series of time steps,

δt, is simply the sum of the deformation maps, or alternatively a superposition of the

displacement vector fields u,

φ (X, t) = φ2 (X, t) + φ1 (X, t) ≡ (φ1 + φ2) (X, t) . (2.11)

This is only possible because under a small strain assumption the difference between

the spatial and material coordinate systems is negligible. When considering successive

large deformations, e.g. figure 2.4, the total or combined deformation of the body is

φ (X, t) = φ2 (φ1 (X, t) , t) ≡ φ2 ◦ φ1 (X, t) . (2.12)

The composition of deformation mappings has a multiplicative group structure in con-

trast with the additive structure in the superposition of small strain assumptions.

2.2.1 Kinematics of local deformations

Having defined the Lagrangian and Eulerian reference frames and their respective dis-

placements, velocities and accelerations; attention is now paid to more fully defining the
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Figure 2.4: Composition of deformations.

Figure 2.5: Local deformation of an infinitesimal material Volume dV0.

basis for each of these vector fields, i.e. the deformation map φ. In measuring the local

deformation for a particular point, φi, the principle of local action is presumed valid.

This principle states that the local energy density of a material point, X, depends only

on the state of the infinitely small volume within which the point exists.

Let dV0 ⊂ B define the infinitely small volume containing the point X in the

Lagrangian material reference frame and dV be the corresponding deformed volume

in the spatial coordinate. A neighbouring point must also be considered located at

X +dX but still located within the volume dV0. The location in the deformed spatial

volume of point X can be defined as x similarly, a point located an infinitesimally

small distance from the original point, X + dX, is located at x + dx in the spatial

coordinates (see figure 2.5). These two states may be linked with the definition of a

deformation described in equation 2.1. This permits the components of x + dx to be

defined as,

xi + dxi = φi (X + dX, t) . (2.13)

While equation 2.13 fully describes the components of the deformation for the point

x + dx, it does not give any further insight into the form the deformation φ. In fact
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the deformation may be non-linear and highly complex. In an effort to simplify the

description and determine a more tangible form of the deformation, a Taylor series

expansion of 2.13 at the position X is used:

xi + dxi = φi (X + dX, t) = φi (X, t) +
∂φi

∂Xj
(X, t) dXj +O (dX) . (2.14)

Here, Xj is the jth component of the position vector X in material coordinates, dXj

is similarly the change in the jth component of X, and O (dX) denotes the higher

order terms in the expansion. It is important to recognise that with sufficient spatial

resolution, i.e. if the volume dV0 is sufficiently small as to make dX small, these

higher order terms will approach zero faster than dX and therefore these higher order

terms become negligible. By neglecting these terms equation 2.14 forms a linearised

differential relation which will have a unique solution,

xi + dxi ' xi +
∂φi

∂Xj
(X, t) dXj ⇒ dxi =

∂φi

∂Xj
(X, t) dXj . (2.15)

The deformation gradient, F , is now defined as

Fij (X, t) =
∂φi

∂Xj
(X, t) ⇒ dxi = Fij (X, t) dXj , (2.16)

which may be written as

Fij (X, t) =
dxi
dXj

. (2.17)

The deformation gradient is fundamental to non-linear continuum mechanics as it fully

describes the deformation mapping at time t on an infinitesimal material region dX

of x. The final form of the deformation gradient, equation 2.17, is a two-point ten-

sor which describes the change in the coordinate direction dxi relative to the original

coordinate system dXJ . In this way it fully describes the deformation mapping. If

the original position in three-dimensional space (X1, X2, X3) is considered, and the

deformed position at (x1, x2, x3) the expanded form of 2.17 is

Fij (X, t) =


dx1
dX1

dx1
dX2

dx1
dX3

dx2
dX1

dx2
dX2

dx2
dX3

dx3
dX1

dx3
dX2

dx3
dX3

 . (2.18)

The kinematics described in § 2.2 suggests that in terms of making use of this defor-

mation gradient map between initial and deformed coordinate space it may be more

prudent to describe the deformation gradient in terms of displacements ui over the time
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interval rather than original positions Xi and final positions xi. To make this change,

equation 2.4 is substituted into the deformation gradient giving

Fij (X, t) =


du1
dX1

+ dX1
dX1

du1
dX2

+ dX1
dX2

du1
dX3

+ dX3
dX1

du2
dX1

+ dX2
dX1

du2
dX2

+ dX2
dX2

du2
dX3

+ dX3
dX2

du3
dX1

+ dX3
dX1

du3
dX2

+ dX3
dX2

du3
dX3

+ dX3
dX3

 .

Given X = Xi · Ei, where Ei is an orthonormal base, the terms

dXi

dXj
= δij ,

where δij is the Kronecker delta function. Thus Fij (X, t) may be simplified to

Fij (X, t) =


1 + du1

dX1

du1
dX2

du1
dX3

du2
dX1

1 + du2
dX2

du2
dX3

du3
dX1

du3
dX2

1 + du3
dX3

 . (2.19)

Finally, before using the deformation gradient to define strain, some properties of the

deformation gradient are considered. Firstly an infinitesimal material volume dV0 of

finite extentX+dX is considered. This volume is given by the parallelepipedic product

dV0 =
(
dX(1) × dX(2)

)
· dX(3)

where X(i) are position vectors defining the extents of the volume. Similarly the cor-

responding volume may be defined in the deformed coordinate by,

dV =
(
dx(1) × dx(2)

)
· dx(3)

=
(
F1idX

(1)
i × F2idX

(2)
i

)
· F3idX

(3)
i

= det (F )
(
dX(1) × dX(2)

)
· dX(3)

= det (F ) dV0.

(2.20)

Consequently the following relation holds

dV

dV0
= J (X, t) , (2.21)

where

J (X, t) = det (F (X, t)) (2.22)

is the Jacobian of the deformation. Equation 2.21 states that the ratio of the volume in

the final and initial states is equal to the Jacobian and in turn the determinant of the

deformation gradient. This is an important property for continuum mechanics as the

enforcement of incompressibility requires the Jacobian J = 1. Because the deformation

mappings are one-to-one and injective, it follows that the Jacobian J (X, t) ≥ 1.
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2.3 Strain measures

Strain is a normalised measure of deformation, which represents the displacement of

particles in the deformed configuration relative to some reference length (this is nor-

mally a length in the undeformed configuration). Different measures of strain are used

throughout the literature depending on the amount of strain, the local deformation

and whether large (general) strain theory or small strain theory is being applied. The

engineering strain is defined as

ē =
`− L

L
, (2.23)

where ` is the new length of a fibre and L is the original length. This is the most

common definition for materials subject to very small deformations. It represents the

total deformation of the body to which forces are being applied. Materials that are

subject to large deformations such as rubbers, elastomers, and biological materials do

not exhibit a simple linear relationship between stress and strain; rather the strain may

vary locally through a material. This renders the engineering strain inapplicable. More

complex definitions of strain such as stretch, logarithmic strain, or the Green strain are

required.

The stretch ratio is a measure of normal strain of a differential line element. The

fact that it is a differential line element rather than the entire length of the body implies

that this is a localised strain measure. The stretch ratio may be defined in either the

deformed or undeformed configuration by

λ =
`

L
. (2.24)

For the special case when strains are not localised the stretch ratio maybe related to

the engineering strain by

ē =
`− L

L
= λ− 1. (2.25)

This implies that the normal strain is zero so there is no deformation when the stretch

ratio is equal to unity.

Other commonly used strain measures include the true strain, also known as loga-

rithmic strain, Hencky strain or incremental strain. The true strain proves to be the

correct measure of strain when the deformation takes place in a series of increments.
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Figure 2.6: Differential cube of material with normal stresses σii and shear stresses τii

shown.

The true strain is defined as

ε = ln

(
`

L

)
= ln (λ)

= ln(1 + ē)

= ē− ē2/2 + ē3/3− · · ·

(2.26)

Important to the analysis of rubber-like materials such as those found in the arterial

wall is the capacity to describe large deformations of the material. The correct strain

measure to use to describe the total strain over a body (not localised like the stretch

ratio) for a material undergoing large deformations is the Green strain. The Green

strain is defined as

εG =
1

2

(
`2 − L2

L2

)
=

1

2
(λ2 − 1). (2.27)

Finally, the difference between normal strains and shear strains is defined. Consider

a three-dimensional differential material element that undergoes an arbitrary deforma-

tion as shown in figure 2.6. Normal strains are those which act perpendicular to an

element face. In a linearly elastic material they are the result of normal stresses and

result in dilations. Shear strains act in the plane along a face of the differential element.

While normal strains are measured by a dilation or change in length, shear strain may
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be conceptualised as the change in angle between two line elements (e.g. the edge of

the plane in the differential element) as a result of a given deformation. So referring

to figure 2.7, for a normal strain (an engineering strain acting in the same direction of

the applied force),

εx =
extension

original length
=

length(ab)− length(AB)

length(AB)
=

∂ux
∂x

, (2.28)

where ux is the displacement in the x-direction. Defining a shear strain (γxy) is con-

siderably more complex. Consider a single plane of the differential element shown in

figure 2.6, which is redrawn in figure 2.7. The shear strain is defined as the change in

angle between the lines
−→
AC and

−−→
AB, i.e.

γxy = α+ β

where α is the resulting angle between the initial and deformed configurations of the line

segment
−−→
AB and β is the resulting angle between the initial and deformed configurations

of the line segment
−→
AC. This is shown in figure 2.7; using a small angle approximation

it can be shown that the shear stress becomes

γxy = α+ β =
∂uy
∂x

+
∂ux
∂y

, (2.29)

where the subscripts ux and uy represent the component of the displacement vector u

in the x and y directions, respectively.

2.3.1 Tensor representations of strain measures

For a multidimensional strain, the strain measures outlined in § 2.3, which describe

the strain in one dimension only cannot be relied upon. A two-point tensor is required

to fully describe the strain in an infinitesimal body. It is critical that all tensor strain

measures represent strain but vanish for rigid body rotations. This requirement imposes

a symmetry on the strain tensor. With this in mind the tensor representations of the

aforementioned strain measures are outlined. These include the right Cauchy–Green

tensor,

C = F TF = UTU = U2, (2.30)

the left Cauchy–Green strain tensor

b = FF T , (2.31)
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Figure 2.7: A shear deformation of a plane of the differential element.

and the Green–Lagrange strain tensor

E =
1

2

(
F TF − I

)
, (2.32)

where I is the identity matrix. The Green–Lagrange strain tensor has the additional

property of being zero for the case of zero deformation. Each of these strain tensors

are equally valid for large deformations and local strains: the choice of strain tensor

generally depends on the convention used in a particular branch of mechanics. The

logarithmic strain for incremental applications of strain is

εlog =
1

2
ln (C) . (2.33)

As an example the right Cauchy–Green strain tensor is expanded using the definition

of F in equation 2.19

C =


1 + du1

dX1

du2
dX1

du3
dX1

du1
dX2

1 + du2
dX2

du3
dX2

du1
dX3

du2
dX3

1 + du3
dX3

 ·


1 + du1

dX1

du1
dX2

du1
dX3

du2
dX1

1 + du2
dX2

du2
dX3

du3
dX1

du3
dX2

1 + du3
dX3

 (2.34)

which after some expansion leaves a highly non-linear description of strain. To complete

this section note that under the assumption of small strains the non-linear terms in

equation 2.34 approach zero, leaving the infinitesimal strain tensor

ε =
1

2

(
∇u+∇uT

)
, (2.35)
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where u is the displacement vector. In matrix form this strain tensor is,

ε =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 =


εxx

1
2γxy

1
2γxz

1
2γyx εyy

1
2γyz

1
2γzx

1
2γzy εzz

 . (2.36)

This shows the components of the strain tensor. εii represents the normal strains

described in § 2.3 and γij the shear strains.

2.4 Stress measures

Stress is defined as a measure of the internal forces acting within a deformable body, B,

in response to some external loading. The external loading may be body forces such as

gravity or electric fields which act at a distance and affect the entire material body, or,

tractions which act as a result of contact with the body. Quantitatively the stress is the

average force acting per unit area of a surface within the body on which internal forces

act. The internal forces are distributed continuously throughout the body as a result of

the material deformation. If the surface is coincident with an external interface upon

which an external force is acting, this external force is equal to the “internal force” at

this surface. The stress in a solid body is critical to failure in aneurysms. As with any

solid the artery wall has a material strength represented by a yield stress. If the applied

loads lead to a deformation which causes an internal stress exceeding this yield stress,

permanent deformation of the material or even material rupture will occur.

By definition, the stress in deformable continua is a function of the strain. As such

there are multiple definitions of the stress tensor. Broadly there are two main categories

of stress, normal stresses and shear stresses. Normal forces are analogous to normal

strains, (see figure 2.6), a normal stress relates the force normal to the strain plane

which causes a deformation or displacement in the normal plane direction. Similarly,

shear stresses are related to shear strains. A shear stress is the component of the force

acting at a tangent to a strain plane which causes a shear strain. For a simple linearly

elastic material for which small strains are assumed, the normal stress is simply,

σavg =
F̄n

A
, (2.37)

where σavg is the average normal stress across the surface, F̄n is the normal force at the

surface and A is the area of the surface element. Similarly, for a simple linearly elastic
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material under small deformations the shear stress may be defined as

τavg =
F̄t

A
, (2.38)

where τavg is the average shear stress acting across the surface and F̄t is the component

of the force acting on the surface element which is acting at a tangent to the surface.

These two definitions of stress (equations 2.37 and 2.38) give the average or total stress

in a body, B. Generally, the composition and geometry of the material body causes

a non-uniform stress distribution. Consequently the stress at a given point differs for

each infinitesimal volume within the material. Cauchy developed a stress tensor, that

relates the internal force felt after the deformation at a material point to the area in

the deformed configuration. Under the small strain approximation this is easy as the

difference between the deformed and undeformed configurations is negligible. Cauchy’s

theory states that the stress at any point of a body may be described by nine stress

components, three orthogonal normal stresses and 6 orthogonal shear stresses: these

form the Cauchy stress tensor

σ =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 ≡


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 ≡


σx τxy τxz

τyx σy τyz

τzx τzy σz

 . (2.39)

The similarities between equation 2.39 and equation 2.36 are evident. In each tensor,

the normal stresses and strains and the shear stresses and strains are coincident. Certain

invariants are associated with the stress tensor whose values do not depend upon the

coordinate system chosen or the area element upon which the stress tensor operates.

These are the three eigenvalues of the stress tensor, which are known as the principal

stresses.

While the Cauchy stress tensor is valid for small strains, when the initial and de-

formed configurations are essentially the same, it does not hold when deformations are

large. When a small strain approximation is not assumed, other measures of stress

are required that take into account the change in configuration, in this case the First

and Second Piola–Kirchhoff stress tensors must be used. The Piola–Kirchhoff tensors

account for the difference in configuration by expressing the stress relative to the unde-

formed or initial configuration rather than the deformed configuration like the Cauchy

stress. To preserve generality the Piola–Kirchhoff tensors are identical to the Cauchy

stress tensor for vanishingly small deformations.
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Whereas the Cauchy stress tensor, σ, relates stresses in the deformed configuration,

the deformation gradient and strain tensors are described by relating the motion to the

undeformed configuration; thus not all tensors describing the state of the material are

in either the undeformed or deformed configuration. The First Piola-Kirchhoff stress

tensor, P , relates forces in the deformed configuration with areas in the undeformed

(“material”) configuration.

P = J σ · F−T (2.40)

where F is the deformation gradient and J = det (F ) is the Jacobian of the defor-

mation gradient. The Second Piola-Kirchhoff stress tensor, S, relates forces in the

undeformed configuration to areas in the undeformed configuration. The force in the

undeformed configuration is obtained via the deformation gradient mapping that pre-

serves the relationship between the force direction and the area normal in the deformed

configuration.

S = J F−1 · σ · F−T . (2.41)

The advantage the Second Piola–Kirchhoff has over the First is it remains constant

irrespective of material orientation, this allows it to deal with rigid body rotations.

One may easily transform from one stress tensor to the other using the deformation

gradient. The following relationships hold:

σ = J−1FSF T ,

and

P = FS.

2.5 Balance laws

The set of balance laws for mass, linear and angular momentum, energy and entropy,

form the fundamental laws of continuum mechanics. These laws form the state equa-

tions of matter, and in conjunction with a constitutive model for the stress, fully de-

scribe the continuous system. The conservation of these three primary physical quanti-

ties results in a set of equations that must be obeyed for all continua. The balance laws

are generally cast in integral form derived from the consideration of the conservation

of each property. The integral acts to assess that quantity over the entire body B. By

obeying these laws the physical quantity contained in the system may not be created

or destroyed. However, it may be transferred from one part of the system to another,
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or in the case of energy, from one form to another. Once formed, the global balance

equations may be used to develop a specific set of field equations that are valid for the

particular reference frame being used and the type of continua whether it be fluid or

solid. These field equations will prove valid at all points within the body and on its

boundary.

In the following sections the conservation laws for mass and momentum are out-

lined. The system is assumed to be at constant temperature and as such is not subject

to thermodynamic effects. This allows the omission from this discussion of the con-

servation of entropy. Furthermore the discussion is limited to incompressible continua.

With this assumption conservation of energy may be ignored as energy can only be

stored in the system as kinetic energy (not potential energy). This means the energy

is fully described by

Ē (t) =
1

2

∫
|v|2 dx,

where Ē (t) is the total energy in the system at time t, and v is the velocity field. Given

linear momentum is loosely described as

p̄ = m · v, (2.42)

where p̄ is the linear momentum, m is the mass and v is the velocity field, the conserva-

tion of mass in conjunction with the conservation of momentum implies the conservation

of energy (Cheskidov et al. 2008).

2.5.1 Conservation of mass

In the undeformed configuration the mass density per unit undeformed volume is rep-

resented by ρ0 (X, t). In the deformed configuration the corresponding mass density

per unit deformed volume is ρ (x, t). Consider an infinitesimal volume dV0 containing

the point X at time t0 which is subject to a deformation to form the new volume dV

at time t. Given both volumes completely correspond due to the injective nature of the

deformation mapping, the total mass contained in each volume dV0 and dV must be

the same, i.e.

dm = ρ0 (X, t) dV0 = ρ (x, t) dV. (2.43)

Combining this relation with equation 2.21 gives the Lagrangian form of the mass

balance

ρ0 = Jρ. (2.44)
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The Eulerian form of the mass balance is given by

dρ0
dt

= ρ
dvi
dxi

. (2.45)

where vi are the velocity field components and xi is the position of the deformed con-

figuration.

When considering an incompressible continuum the density of the continuum re-

mains constant at all times. This means that the conservation of mass is equivalent

to a conservation of volume. Under these conditions the conservation of mass, some-

times referred to as the incompressibility condition, is mathematically described by the

divergence of the vector field.

∇ · v = 0. (2.46)

Note: This holds true for both the divergence of the displacement field and the velocity

field as it is independent of time.

2.5.2 Conservation of momentum

The total linear momentum, p̄, of a body in the deformed configuration is

p̄ =

∫
B

ρ0V dV, (2.47)

where V denotes the material velocity, V denotes the material volume and ρ0 the initial

material density.

In an isolated system (one in which external forces are absent) the total momentum

will be constant; this is implied by Newton’s first law of motion. Newton’s third law of

motion is the law of reciprocal actions, which dictates that the forces acting between

systems are equal in magnitude, but opposite in sign. This law is a product of the

conservation of momentum. The applied forces,F̄ , may be broken down into body

forces B̄ and tractions on the surface so that

F̄ =

∫
B

ρ0B̄ dV+

∫
S

ρ0P · n dS, (2.48)

where S is the surface of the body B, P is the First Piola–Kirchhoff stress tensor and

n is the surface outward unit normal. By applying Newton’s second law of motion

dp̄

dt
= F̄ ,

and using equation 2.42, the force balance equations are∫
B

ρ0A dV =

∫
B

ρ0B̄ dV+

∫
S

ρ0P · n dS, (2.49)
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where A is the material acceleration defined in equation 2.8. As in the conservation

of mass discussion, the assumption of an incompressible continuum is enforced. Gauss’

divergence theorem is then used to express 2.49 as∫
B

(
ρ0
(
A− B̄

)
−∇ · P

)
dV = 0. (2.50)

This balance equation applies for all subsets of the body B. Thus the integrand must

also equal zero, and therefore the Lagrangian form of the linear momentum balance is

ρ0A = ρ0B̄ +∇ · P . (2.51)

In the Eulerian reference frame

ρa = ρb̄+∇ · σ, (2.52)

where a is the Eulerian acceleration defined in equation 2.9, b̄ are the body forces in

the Eulerian frame of reference and σ is the Cauchy stress tensor.

2.5.3 General balance equations

In this section a Schottky system is considered. A Schottky system such as the one

depicted in figure 2.8 is a generic material domain Ω (t) which exchanges heat, power

and material with its surrounding environment. The Schottky system can be consid-

ered an extension of the previously defined body, B, of constant mass. By considering

the generic Schottky system a set of general balance equations may be derived. These

balance equations may be applied to any continua regardless of the principal quan-

tity (displacement for solids and velocity for fluids) that is specific to each continuum

category.

Let Υ (x, t) be the generic extensive quantity of the Schottky system. Again, it must

be reiterated that this may be a displacement, velocity or some other scalar quantity

which forms the basis for describing the deformation of that system. A change in Υ

may occur in three ways. Υ may change due to addition from a source within the

volume, which will be denoted as
∏Υ. It may change change through a supply

∑Υ

from outside the system, or via an outward flux, JΥ, over the boundaries of the volume

Ω. These are used to construct the generic form of a global balance equations

dΥ

dt
=

d

dt

∫
Ω(t)

ρΥ(x, t) dV

= −
∫
dΩ(t)

JΥ (x, t) · ndS +

∫
Ω(t)

(
Υ∏

(x, t) +
Υ∑

(x, t)

)
dV,

(2.53)

67



Figure 2.8: Generic Schottky system Ω with boundary ∂Ω, velocity v̂ and particle velocity

v.

where n is the unit vector normal to the boundary ∂Ω, S ≡ ∂Ω and ρΥ are the quantity

Υ (x, t) per unit volume.

If the entire body, B, is chosen as the system, Ω, so no particle transfer occurs over

the boundary, ∂Ω, then the mass in the system is conserved and the general balance

equation 2.53 becomes

d

dt

∫
Ω(t)

ρ (x, t) dV = 0. (2.54)

This special case of the general balance equation is found by modelling the Schottky

system as closed and setting Υ ≡ 1, JΥ =
∏Υ =

∑Υ ≡ 0. If alternately the system

is considered to be open and a constant volume which is moving through space (e.g.

figure 2.8) with velocity v̂ and material particles move through the control volume with

speed v then

d

dt

∫
Ω(t)

ρΥ(x, t) dV = −
∫
dΩ(t)

JΥ (x, t) dS,

where the flux of the quantity Υ is given by the relative velocity for the particles to the

system

JΥ = ρ (v − v̂) .

Note that if the domain Ω and the body B are fully coincident then v = v̂. The

consideration of such a system becomes important later in this thesis for consideration

of an arbitrary Lagrangian–Eulerian reference frame.

Using the Reynolds transport theorem and Gauss’ divergence theorem the generic

local form of the balance equations is obtained (i.e. true at any material point not just
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over the entire domain),

∂ρΥ

∂t
+∇ ·

(
v̂ρΥ+ JΥ

)
=

Υ∏
+

Υ∑
. (2.55)

To close this discussion the values of Υ, JΥ,
∏Υ and

∑Υ are outlined that give the

mass and momentum balance equations.

For the conservation of mass, the principal quantity is Υ ≡ 0, J1 ≡ (v − v̂),
∏1 ≡ 0

and
∑1 ≡ 0, resulting in equation 2.54.

For the conservation of momentum, the principal quantity is

Υ ≡ v,

where v is the particle velocity,

Jv ≡ (v − v̂)v − σT ,

where σ is the stress tensor in the relevant coordinate system,

v∏
≡ 0

and
v∑

≡ ρb̄,

where b̄ is any body forces being applied to the system in an Eulerian reference frame.

Substitution of these quantities into equation 2.55 yields

ρ
∂v

∂t
+∇ ·

(
v2
)
= ∇ · σT + ρb̄. (2.56)

Expanding the ∇ · v2 term gives

ρ
∂v

∂t
+ vT (∇ · v) + (v · ∇)vT = ∇ · σT + ρb̄.

If an incompressible material is considered the incompressibility condition can be en-

forced by substituting equation 2.46 into the second term, giving

ρ
∂v

∂t
+ (v · ∇)vT = ∇ · σT + ρb̄ (2.57)

The left hand side of equation 2.57 is easily recognisable as the acceleration in the

Eulerian reference frame from equation 2.9. Equations 2.57 and 2.46 are the general

governing equations for an incompressible continuum in an Eulerian reference frame.
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Eulerian reference frames are typically used in fluid mechanics; conversely, solid me-

chanics typically use a Lagrangian reference frame. Rewriting equations 2.57 and 2.46

in a Lagrangian reference frame is as simple as changing the Eulerian description of the

acceleration to the Lagrangian and replacing body forces in the Eulerian frame with

those in the Lagrangian. In this case the governing equations for an incompressible

material in the Lagrangian reference frame are

ρ
∂V

∂t
= ∇ · σT + ρB̄,

∇ · V = 0.

(2.58)

The set of equations 2.46, 2.57 and 2.58 form the equations of state for a continuous

system. These relations must be obeyed both globally and locally within a continuous

body B. To form the set of governing equations for a particular type of continuum (e.g.

a fluid, elastic solid or hyperelastic solid), one needs only to determine which frame of

reference, Lagrangian or Eulerian, to solve the system in and to define the stress tensor

σ. The definition of the stress tensor for a particular continuum is determined by its

constitutive equations: this is the subject of the next section.

2.6 Constitutive Equations

Section 2.2 developed the kinematic equations necessary to describe the motion and

deformation of a body. Section 2.5 used these relations to build the differential equations

of state that determine the time evolution of the primary vector fields. Combined these

mathematical constructs do not form a closed system of equations because they fail

to distinguish one material from another. This section outlines the constitutive laws

required to specify the material behaviour by forming a definition of the stress, σ, in

terms of a strain measure in the material.

A constitutive model is a relation between two physical quantities that is specific

to a material or substance and approximates the response of that material to external

forces. Some constitutive models are derived from first principles but largely they are

phenomenological, being based on observations and generalizations. Given the material

dependence of the constitutive relations and the plethora of material categories that

exist this discussion is limited to an incompressible fluid, an elastic Hookean solid and

a hyperelastic neo-Hookean solid. At the conclusion of this section a relationship for

the stress, σ, for each material type will be formed to complete the set of governing

equations.
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2.6.1 Strain energy density, W

The strain energy density function W (F ) is a function that relates the energy formed

by a strain on the material, i.e. the result of a deformation, to the deformation gradient.

It is analogous to the work done on the material to cause the deformation. The work

done by a particular deformation described by the deformation gradient F along a

certain path Γ is

Work =

∫ t2

t1

P (t) · F (t) dt (2.59)

where P is the First Piola–Kirchhoff stress. A material is said to be elastic if the work

done to cause the deformation is path independent. All materials considered herein will

be considered elastic, isotropic and isothermal. The definition of elasticity implies for

any deformation path the strain energy density W is of the form

W (F ) =

∫
Γ
P dF . (2.60)

This definition clearly states the strain energy density is a function of the deformation

only. Equation 2.60 may be rearranged to give an expression for the First Piola–

Kirchhoff stress tensor,

Pij (F ) =
∂W

∂Fij
(F ) . (2.61)

To complete this section definitions of the Cauchy stress tensor and Second Piola-

Kirchhoff stress tensors are provided in terms of the strain energy function, as well as

some alternate identities based on the use of a strain measure rather than the defor-

mation gradient. Note, that these are completely analogous with equation 2.61. The

Cauchy stress tensor, σ, is

σ =
1

J
F T ∂W

∂F T
, (2.62)

where J is the Jacobian of the deformation gradient. The Second Piola–Kirchhoff stress

tensor, S, is

S =
∂W

∂F T
=

∂W

∂E
= 2

∂W

∂C
, (2.63)

where E is the Green–Lagrange strain tensor and C is the right Cauchy–Green tensor.

2.6.2 Hookean materials

A Hookean material is a special case of elastic isotropic materials which has a simple

linear relationship between stress and strain. If a uni-axial tensile test is conducted

on almost any material, and the stress levels are kept sufficiently low, the following

behaviour will be observed (Bower 2009):
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• The specimen deforms reversibly: If you remove the loads, the solid returns to its

original shape.

• The strain in the specimen depends only on the stress applied to it. It does not

depend on the rate of loading, or the history of loading.

• For most materials, the stress is a linear function of strain. Because the strains

are small, this is true whatever stress measure is adopted (Cauchy stress or nom-

inal stress), and is true whatever strain measure is adopted (Lagrange strain or

infinitesimal strain).

• For most, but not all, materials, the material has no characteristic orientation.

Thus, if you cut a tensile specimen out of a block of material, the stress-strain

curve will be independent of the orientation of the specimen relative to the block

of material. Such materials are said to be isotropic.

• If you heat a specimen of the material, increasing its temperature uniformly, it

will generally change its shape slightly. If the material is isotropic (no preferred

material orientation) and homogeneous, then the specimen will simply increase

in size, without shape change.

Such a material is referred to as a Hookean material, it obeys Hooke’s law,

σ =<4> Cε, (2.64)

where ε is the infinitesimal strain measure, σ is the Cauchy stress and <4>C is a linear

four-point tensor relating the two. One of the major assumptions in Hooke’s law is that

the deformation is small, which is why the infinitesimal strain tensor and the Cauchy

stress are used. The deformed configuration is assumed to be the same (within error)

as the initial configuration. The strain energy density for the Hookean material is

W (ε) =
λL

2
[tr (ε)]2 + µLtr

(
ε2
)
, (2.65)

where tr (·) denotes the trace of a tensor, µL and λL are Lamé coefficients defined by

λL =
Eυ

(1 + υ) (1− 2υ)
, µL =

E

2 (1 + υ)
(2.66)

and E is a measure of the material stiffness, the Young’s modulus, and

υ =
εt
εL

(2.67)
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is the Poisson ratio in which εt is the transverse component of strain and εL is the

longitudinal component of strain.

By applying the differential in equation 2.62 the Cauchy stress can be determined.

The derivative of a function with respect to a tensor is conducted relative to the prin-

cipal invariants of the tensor, for a detailed description of this the reader is directed to

Synge et al. (1978). The Cauchy stress for a Hookean solid becomes,

σ = λLtr (ε) I + 2µLε, (2.68)

where I is the identity matrix. Using the definition of the infinitesimal strain tensor ε

given in equation 2.35, the Cauchy stress tensor in extended form is,

σ =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 , (2.69)

where

σ11 = λL

(
du1
dx1

+
du2
dx2

+
du3
dx3

)
+ 2µL

du1
dx1

σ22 = λL

(
du1
dx1

+
du2
dx2

+
du3
dx3

)
+ 2µL

du2
dx2

σ33 = λL

(
du1
dx1

+
du2
dx2

+
du3
dx3

)
+ 2µL

du2
dx2

σ12 = σ21 = µL

(
du1
dx2

+
du2
dx1

)
σ13 = σ31 = µL

(
du1
dx3

+
du3
dx1

)
σ23 = σ32 = µL

(
du3
dx2

+
du2
dx3

)
.

(2.70)

With an expression for the Cauchy stress in terms of the primary variables, and

the displacement u, equation 2.69 can be substituted into equation 2.58 to form the

final form of the governing equations for a Hookean material. The Lagrangian reference

frame is used widely in solid mechanics, and in keeping with convention it is chosen here.

Note that the time derivative on the left hand side of 2.58 becomes a second derivative

because the primary variable is a displacement, not a velocity. The governing equation

for a Hookean material is

ρ
∂2u

∂t2
= ∇ ·

(
λLtr (ε) I + 2µLε

T
)
+ ρB̄

= L̂ (u) + ρB̄,

(2.71)
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where L̂ (u) is a linear derivative operator, which contains a combination of derivatives.

Equation 2.71 fully describes the state of any point within a Hookean material subject to

an external load. A Hookean material does not require a conservation of mass equation

as this is inherent in the Hookean constitutive model through the Poisson ratio. A

Poisson ratio of υ = 0.5 gives a completely incompressible material.

2.6.3 Neo-Hookean materials

Organic materials and rubber-like materials require a more sophisticated constitutive

model than the Hookean model. Features of the behaviour of a solid rubber or biological

material include (Bower 2009):

• The material is close to ideally elastic. i.e. (i) when deformed at constant temper-

ature or adiabatically, stress is a function only of current strain and independent

of history or rate of loading, (ii) the behaviour is reversible: no net work is done on

the solid when subjected to a closed cycle of strain under adiabatic or isothermal

conditions.

• The material strongly resists volume changes. The bulk modulus (the ratio of

volume change to hydrostatic component of stress) is comparable to that of metals

or covalently bonded solids;

• The material is very compliant in shear. Shear modulus is in the order of 10−5

times that of most metals;

• The material is isotropic, its stress-strain response is independent of material

orientation.

• The shear modulus is temperature dependent. The material becomes stiffer as it

is heated, in sharp contrast to metals.

The structure of these materials allows very large strains, up to 400% in some

materials. Experimental stress testing has shown that they exhibit a non-linear stress-

strain relationship (Di Martino et al. 2001). Examples of this can be seen in figure 1.6.

The non-linearity of the material is due to both the complex structure of the material

absorbing stresses at different strain levels and the large deformations which it is un-

dertaking. The neo-Hookean material model captures the non-linearity which results
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from the large deformations experienced by the material. To assure incompressibility

the strain energy function takes the form,

W incompressible = W (C) + P (det (F )− 1) , (2.72)

where C is the right Cauchy–Green strain tensor and P is a Lagrange multiplier intro-

duced to enforce the incompressibility condition,

det (F ) = 1.

The physical interpretation of this pressure is a hydrostatic pressure in the solid. The

strain energy density for a neo-Hookean material is given by

W incompressible (C) =
G

2

(
IC1 − 3

)
+ p (det (F )− 1) , (2.73)

where G is the shear modulus of the material and IC1 is the first invariant of the right

Cauchy–Green strain tensor. As a neo-Hookean material takes into account the finite

strains, the First Piola–Kirchhoff stress tensor is required to describe the relations. By

substituting equation 2.73 into equation 2.61 and again utilising tensor calculus, the

stress term for a neo-Hookean material is

P = F−T pI +G∇2u, (2.74)

Again, this relation is substituted into equation 2.58 to form the governing equations

for an incompressible neo-Hookean material in the Lagrangian reference frame,

ρ
∂2u

∂t2
= G∇2u+ F−T pI + ρB̄,

∇ · u = 0.

(2.75)

Equation 2.75 holds many similarities to the Hookean governing equation 2.71. Both

are cast in the Lagrangian reference frame, both have displacement, u, as their primary

variable and as such a second-order temporal term for the right hand side acceleration

and both have a linear operator acting on u on the left hand side. For the neo-

Hookean material, L̂ (·) ≡ ∇2. The incompressible neo-Hookean also requires the

hydrostatic pressure term and the mass conservation term to enforce incompressibility

and to complete the set of equations.

2.6.4 Fluids

A fluid is a continuum that continually deforms under an applied shear stress. Fluids

are a subset of matter that include liquids, gases, plasmas and, to some extent, plastic
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solids. In this thesis, an incompressible Newtonian fluid is modelled. A Newtonian fluid

implies a linear relationship between shear stress and strain rate. The shear stress is

given by

τ = µ
(
∇v +∇vT

)
, (2.76)

where τ is the shear stress, v is the velocity field, and µ is the fluid viscosity. This

is analogous to the time derivative of the infinitesimal strain tensor. The total stress

tensor for a fluid includes a pressure term to enforce incompressibility and is given by,

σ = −PI + µ
(
∇v +∇vT

)
(2.77)

where P is the pressure.

Due to the large deformations common in fluid mechanics, an Eulerian reference

frame is used. By substituting the stress (equation 2.77) into the Eulerian form of the

generalised balance equation 2.57, the Navier–Stokes equations are recovered. These

govern time-dependent fluid flows,

∂v

∂t
+ (v · ∇)v = −∇P + ν∇2v + ρB̄,

∇ · v = 0

(2.78)

where ν is the kinematic viscosity, P is the total kinematic pressure and v is the velocity.

The ∂v
∂t term is known as the inertial term and represents the local temporal acceleration

of the material.

The (v · ∇)v term is known as the advection term and describes a convective accel-

eration field. Convective acceleration is the effect of time-independent acceleration of

a fluid with respect to space. The convective acceleration of the flow field is a spatial

effect, one example is a fluid speeding up in a contracting nozzle.

The −∇P term is known as the pressure term and accounts for the isotropic com-

ponents of stress arising from normal stresses. When modelled with the conservation

of mass equation 2.46, the pressure term enforces the incompressibility of the system.

The ν∇2u term is known as the diffusion term. This term arises from the anisotropic

terms in the stress tensor. Diffusion describes the spread of particles through random

motion from regions of higher velocity to regions of lower velocity.

Finally, the ρB̄ term accounts for any body forces experienced by the material.

Such forces may include gravity or the action of magnetic fields in charged fluids.

To close this section the similarity between the Navier–Stokes equations 2.78 and

the incompressible neo-Hookean governing equation 2.75 is considered. In each equation
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there is a pressure gradient term, a Laplacian diffusion term, a body forces term and

an inertial term. The only difference between these sets of equation is the convective

acceleration term which arises from the use of an Eulerian reference frame rather than

a Lagrangian reference frame. The similarity is hardly surprising given both materials

are continua. The similarity stimulates the notion of using a similar computational

method to solve for the mechanics of each kind of material. Such a method will be

outlined in chapter 4.

2.7 Closure

In this chapter, a review is presented describing how the governing equations for con-

tinuum mechanics are derived from first principles. For any continuum the change in a

body is fully described by a deformation mapping. This deformation mapping can be

used in either the Lagrangian or the Eulerian reference frame to describe displacements,

velocities, accelerations and measures of strain such as the Green–Lagrange strain ten-

sor. These form the fundamental basis through which a change in a system can be

described.

Considering a continuous body as part of a system that interacts with its surround-

ing environment the conservation of mass and conservation of momentum equations in

general form were derived. These equations form the equations of state for a continuous

system and describe how the system changes in time.

Finally a description of the constitutive models for various materials were formed

and substituted into the state equations to fully describe different continuous systems

such as the Hookean and neo-Hookean solids and the incompressible Navier–Stokes

equations for fluids.

Moving forward, the significance of the similarity in the Navier–Stokes and neo-

Hookean equations is recognised. Many of the terms are identical, which should permit

a similar numerical algorithm to be used to solve both the fluid and solid equations.

Perhaps the reason for the similarity comes down to the initial premise of this chapter,

i.e. both fluids and solids are examples of continua, for which the equations of state

are identical. Different constitutive models (and in turn a different primary variable,

displacement rather than velocity), is all that separates the two systems.
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Chapter 3

The arbitrary
Lagrangian–Eulerian method

This chapter serves to introduce the background mathematics of an Arbitrary Lagrangian–

Eulerian (ALE) method (§ 3.1-3.4), describe the different types of ALE implementations

that have previously been used (§ 3.5) and present the new implementation that has

been developed in this thesis (§ 3.5.1). The mathematical framework reviewed in this

chapter closely follows the works of both Hirt et al. (1974) and Donea et al. (2004).

3.1 Introduction

Large deformations of continua pose a significant problem for numerical simulations.

Lagrangian descriptions subject to large deformations suffer from element skew which

can reduce the accuracy of a solver. Eulerian reference frames are bound by tight time

step restrictions when modeling large deformations. Accurate numerical investigations

of fluid-structure interactions and non-linear solid mechanics often requires coping with

strong distortions of the continua while maintaining precise information of the free

surface or the fluid-structure interface.

In chapter 2 the two classical descriptions of motion, the Lagrangian and Eulerian,

were described. Algorithms of continuum mechanics usually make use of one of these

descriptions by solving the governing equations for the continuum with respect to a ref-

erence frame or mesh which is either Lagrangian or Eulerian (see, for instance Malvern

1969). The ALE description was developed in order to combine the advantages of each

classical frame of reference while minimizing their weaknesses.

Original developers included Noh (1963), Franck & Lazarus (1964), and Trulio

(1966), but perhaps the greatest contribution came from Hirt et al. (1974); this last
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Figure 3.1: Lagrangian description of motion. The Lagrangian reference frame (depicted

by the dashed mesh) is fixed to the deforming material and deforms with it.

contribution was reprinted in 1997. Subsequent to the development of the ALE method

was its implementation. It was adopted in finite element codes in work by Donea et al.

(1977), Belytschko & Kennedy (1978), Belytschko et al. (1980), and Hughes et al.

(1981). Since then it has been widely used in many applications, including free surface

flows, fluid-structure interactions, and non-linear solid mechanics.

In solid mechanics, the Lagrangian reference frame is most commonly used. La-

grangian algorithms force each individual node of the computational mesh to follow the

material particle it is associated with during the deformation (see Figure 3.1). The

benefits of using a Lagrangian description is it allows convenient tracking of the free

surface; or in structural interactions, the interface between fluids and structures. While

accurate boundary tracking is critical to the accuracy of fluid-structure interactions in

aneurysms, the Lagrangian reference frame is not without its limitations. It is unable

to follow large distortions of the material as this results in high levels of skew in the

computational mesh. Numerically, skew introduces large errors into the solution. This

occurs because the accuracy of the mapping from a regular shaped standard domain

to the realistic element shape is compromised. The accuracy of the quadrature used

to solve the equations over the elemental domain rely on accurately placed quadrature

nodes. Skew reduces the accuracy of the solver and eventually leads to divergence

because of invalidated elements (singularities in the mapping functions) or extreme

Courant–Friedrichs–Lewy conditions.

In fluid dynamics, the Eulerian reference frame is almost exclusively used. Eulerian

algorithms separate the computational mesh from the continuum; the mesh is fixed in
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Figure 3.2: Eulerian description of motion. The Eulerian reference frame (depicted by the

dashed mesh) is fixed in space and the material deforms independently of the mesh.

space and the continuum is free to move with respect to the grid (see Figure 3.2).

The advantages of an Eulerian description is it can handle large deformations of

the continuum with ease, simply restricting the time step allows arbitrary deformations

to be computed. However, the Eulerian reference frame has its drawbacks: figure 3.3

shows the interface between two continuous media on a finite element mesh. When

mesh nodes are coincident with the interface the position of the interface is accurately

determined. However, when the interface lies within an element, the exact location of

the interface is not known, it is located with some uncertainty between grid points.

The ALE technique was developed as a compromise whereby the best features of

the Lagrangian and Eulerian descriptions are combined so that an algorithm can handle

large deformations while still maintaining accurate information about the location of

boundaries and interfaces. In the ALE description, the nodes of the computational

mesh are permitted to move with the continuum in the normal Lagrangian fashion

(allowing accurate interface information), or be held fixed in an Eulerian manner (to

handle large deformations). Later implementations allowed the mesh to be moved in

an arbitrary fashion which gives a continuous rezoning capability.

The freedom to move the computational mesh allows greater distortions of the

continuum to be modelled while accurately resolving free surfaces or material interfaces.

To demonstrate the advantages of an ALE formulation, Donea et al. (2004) offer the

example of using a coarse finite element mesh to model the detonation of an explosive

charge in an extremely strong cylindrical vessel partially filled with water. A comparison

is made between the mesh configuration after t = 1.0 ms using an ALE description,
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Figure 3.3: The interface of a two continua solved on an Eulerian mesh. The location of

the interface cannot be accurately determined as it lies within an element.

and a purely Lagrangian description. Figure 3.4 demonstrates that a Lagrangian mesh

becomes highly degraded with skewed and inverted elements. The ALE mesh in contrast

preserves a regular mesh configuration of the charge-water interface.

In this chapter, a referential domain upon which the ALE technique is based is

introduced and the relevant changes to the governing equations are derived based on

the new frame of reference. A description of the ALE time stepping algorithm for fluid-

structure interactions is outlined in § 3.5, which will include a discussion of relevant

details for implementation.

3.2 Lagrangian and Eulerian viewpoints

The Lagrangian and Eulerian reference frames have been extensively covered in chap-

ter 2. Here a summary of the salient points is presented before moving on to a descrip-

tion of the kinematics of the ALE-referential coordinate system. The review presented

herein follows closely the work of Donea et al. (2004).

3.2.1 Lagrangian

A Lagrangian reference system denoted by RX is fixed to the material as it deforms

(figure 3.2). The material points in the Lagrangian reference frame are denoted by

X while the spatial coordinates are denoted by x. The map φ denotes the injective

deformation mapping from the material coordinates X to the spatial coordinates x,

i.e.,

xi = φi (X) .
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(a) (b) (c)

Figure 3.4: An illustration of a detonation of an explosive charge in an extremely strong

cylindrical vessel partially filled with water. Lagrangian versus ALE descriptions are shown.

(a) shows the initial FE mesh; (b) shows the Lagrangian mesh at t = 1 ms; and (c) shows

ALE mesh at t = 1 ms. The ability of the ALE description to accommodate significant dis-

tortions of the computational mesh is shown. The Lagrangian approach suffers from a severe

degradation of the computational mesh, exhibiting highly skewed and inverted elements, in

contrast the ALE approach is able to maintain a quite regular mesh configuration of the

chargewater interface. Reproduce with the permission of Wiley and sons from Donea et al.

(2004).

The mapping φ is time dependent and describes the motion over an interval δt. As

such a velocity and acceleration may also be described. Let the material velocity be

defined as

v (X, t) =
∂x

∂t

∣∣∣∣
x

, (3.1)

where |x signifies that the derivative is relative to a fixed material coordinate X.

Since the material points coincide with the same grid points during the whole mo-

tion, there are no convective effects in Lagrangian calculations and the total mate-

rial derivative reduces to a simple time derivative. The fact that each element of a

Lagrangian mesh always contains the same material particles represents a significant

advantage from the computational viewpoint, especially in cases such as modeling an

arterial wall where different layers have different mechanical properties.

When large material deformations do occur, Lagrangian algorithms undergo a loss in

accuracy due to excessive distortions of the computational mesh linked to the material.
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3.2.2 Eulerian

An Eulerian reference system denoted by Rx is fixed in the spatial coordinates x and the

continuum moves with respect to the mesh. The conservation equations are formulated

in terms of the spatial coordinates x and time t. The deformation φ in this case can

be interpreted as the inverse of the Lagrangian description,

Xi = φi (x) .

The Eulerian description of motion only involves variables which have instantaneous

significance in a fixed region of space. The material velocity v at a given mesh node

corresponds to the velocity of the material at the node at the given time, t. The velocity,

v, is consequently expressed with respect to the fixed spatial mesh and requires no

reference to an initial configuration of the material coordinates X, i.e. v = v (x, t).

As the material points convect past the Eulerian reference frame, convective effects

are required to describe the time derivative of the material vector field. Convective

effects appear because of the relative motion between the deforming material and the

computational grid. That is, both a spatial and temporal term appear in the time

derivative of the vector field.

3.3 ALE referential frame

Having reviewed the classical Lagrangian and Eulerian descriptions of motion, a clear

understanding of the advantages and disadvantages of each reference frame is under-

stood. Furthermore, the potential benefits of combining aspects of the classical de-

scriptions of motion are clear. In order to implement the ALE description of motion

we recognise that neither the material (Lagrangian) configuration (RX) or the spatial

configuration (Rx) provide a sufficiently general reference frame such that an applica-

tion is not shielded from their disadvantages. As such, Donea et al. (2004) describe a

third reference frame which is needed: the referential configuration Rχ, where χ are the

reference coordinates which are introduced to identify the grid points. Figure 3.5 shows

these configurations and the injective transformations relating each of the domains. Let

the mappings Φ and Ψ describe the maps from the referential coordinate system to

the material and spatial configurations respectively. The particle motion φ described

at length in § 2.2 may be expressed though the alternate path,

φ = Ψ−1 ◦Φ. (3.2)
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Figure 3.5: The motion of the ALE computational mesh is independent of the motion of

the material. The maps φ represents the mapping from material to spatial coordinates, i.e. a

Lagrangian map whose inverse mapping is an Eulerian map, Ψ is a map from the referential

reference frame to the material configuration, and Φ is a map from the referential reference

frame to the spatial coordinates.

Each of the mappings may be interpreted physically. As discussed, the map φ

describes the motion of the particles with respect to the spatial coordinates. The map

Φ from the referential domain to the spatial domain can be understood as the motion

of the grid points in the spatial domain. The map Ψ−1 from the material configuration

to the referential domain can be interpreted as the particle movement relative to the

referential domain.

Just as in the Eulerian and the Lagrangian reference frames where the time deriva-

tive of the deformation φ gave rise to a velocity and acceleration, the time derivative

of the maps Φ and Ψ also yield a velocity. From the time derivative of the map Φ we

derive the velocity of the referential mesh in the spatial domain as the mesh velocity,

v̂ =
∂x

∂t

∣∣∣∣
χ

. (3.3)

Similarly, from the temporal derivative of the map Ψ−1, we derive the particle velocity

in the referential domain,

w =
∂χ

∂t

∣∣∣∣
X

. (3.4)

In equation 3.2 an alternate description of the deformation φ was described using

the referential coordinate system. That relation demonstrates the link between the
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coordinate systems which allows us to define a relationship between each of the velocities

described previously, i.e. v, v̂, and w. This relationship is

v = v̂ +
∂x

∂χ
·w, (3.5)

where ∂x
∂χ relates the spatial and referential coordinate system and is analogous to the

convective velocity terms in the governing equations in § 2.5. Note this arises from

the arbitrary motion of the referential coordinate system, its motion is not inextricably

linked to the motion of the material, nor is it fixed in space. This equation may be

rewritten as

c := v − v̂ =
∂x

∂χ
·w, (3.6)

thus defining the convective velocity c (that is, the relative velocity between the material

and the mesh). To clarify precisely, w is the particle velocity as seen from the referential

domain Rχ, whereas c is the particle velocity relative to the mesh as observed from the

spatial domain Rx.

To emphasize the fact that the referential description of the ALE is a generalisation

of both the Lagrangian and Eulerian reference frames, it can be demonstrated that both

the Lagrangian and Eulerian descriptions of motion can be obtained from equation 3.2.

With the choice that Ψ = I (the identity matrix), the referential system is the material

coordinate system, i.e. X ≡ χ, which results in a Lagrangian description of motion. In

this instance the material and mesh velocities, (equations 3.1 and 3.3) coincide, and the

convective velocity c vanishes, i.e. there are no convective terms in the conservation

laws (see § 2.5). Conversely, with the choice that Φ = I, the referential system is

the spatial coordinate system, i.e. x ≡ χ, thus implying an Eulerian description. In

this case the mesh velocity v̂ = 0 and the convective velocity c is simply the material

velocity v.

3.4 Fundamental ALE equations

Fundamental to the balance equations developed in § 2.5 is an expression for the total

time derivative D
Dt . It was shown that in an Eulerian reference frame

D

Dt
≡ ∂

∂t
+ (v · ∇)v, (3.7)
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which includes both a temporal derivative and a spatial convective derivative term. In

the Lagrangian reference frame the total derivative consists of only a time derivative,

D

Dt
≡ ∂

∂t
. (3.8)

To express the governing equations in an ALE framework an expression for the total

derivative is required.

3.4.1 Time derivatives

Before deriving the total derivative for the ALE framework (following the work in Donea

et al. (2004)), an expression for the total derivative expressed in equations 3.7 and 3.8

is required. Let us consider a physical scalar quantity f (x, t) in the spatial domain,

f∗ (χ, t) in the referential domain, and f∗∗ (X, t) in the material domain. The star

superscripts emphasize that the functional form of the scalar field is different in each

of the domains.

Figure 3.5 shows that the deformation can be described by the mapping φ and

so the spatial description f (x, t) of the scalar quantity and the material description,

f∗∗ (X, t), may be related as

f∗∗ = f ◦ φ, (3.9)

with gradients expressed by

∂f∗∗

∂ (X, t)
(X, t) =

∂f

(x, t)
(x, t)

∂φ

(X, t)
(X, t) . (3.10)

The (·) ◦ (·) operation implies a multiplicative structure of the relationship, as such a

matrix form of the relation in equation 3.10 can be written

[
∂f∗∗

∂X

∂f∗∗

∂t

]
=

[
∂f

∂x

∂f

∂t

] ∂x

∂X
v

0T 1

 , (3.11)

which after block manipulation yields(
∂f∗∗

∂X

)
=

(
∂f

∂x

)(
∂x

∂X

)
,(

∂f∗∗

∂t

)
=

(
∂f

∂t

)
+

(
∂f

∂x

)
· v.

(3.12)

The second term in this expression is the well-known total derivative for an Eulerian

reference frame, in 3-space this equation is recast as

Df

Dt
=

∂f

∂t
+ v · ∇f, (3.13)
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which is the generic expression for any field f of the total derivative in equation 3.7.

This may be interpreted in the usual way as the variation of a physical quantity for a

given particle at position X. This variation consists of the local variation in time plus

a convective term taking into account the relative motion between the material and

spatial reference frame. Of course, if a Lagrangian algorithm is employed the relative

velocity between the material and spatial domains is zero (i.e. v = 0), thus recovering

the Lagrangian expression for the total derivative (equation 3.8).

Having derived the total derivative for an Eulerian and Lagrangian reference frame,

the discussion is extended to include the ALE-referential configuration Rχ. As such the

mapping Ψ−1 is used to transform the referential description of the physical quantity

f∗ (χ, t) to the material description f∗∗ (X, t) through

f∗∗ = f∗ ◦Ψ−1. (3.14)

Just as before, through describing the gradient of this field in matrix form and applying

some block manipulation, the expressions(
∂f∗∗

∂X

)
=

(
∂f∗

∂χ

)(
∂χ

∂X

)
,(

∂f∗∗

∂t

)
=

(
∂f∗

∂t

)
+

(
∂f∗

∂χ

)
·w,

(3.15)

are obtained. The second of these two equations relates the material and referential

time derivatives. Again a convective term
(
∂f∗

∂χ

)
·w appears, with the velocity w being

the relative velocity between the material and the referential domain. Unfortunately

equation 3.15 requires the evaluation of the considered quantity in the referential do-

main. While possible, in implementation it is easier to work in either the material or

spatial domains. To facilitate this the expression for w developed in equation 3.4 is

used to remove any spatial derivatives in the referential domain in the total derivative.

The fundamental ALE relationship is finally cast as

∂f∗∗

∂t

∣∣∣∣
X

=
∂f∗

∂t

∣∣∣∣
χ

+ c · ∇f. (3.16)

This shows that the time derivative for a physical quantity f at a given position X is

its local derivative plus a convective term taking into account the relative velocity, c,

between the material and reference system. Note that this is equivalent to equation 3.13,

but instead of the spatial frame being the laboratory frame, the referential frame is the

laboratory, which may move independently of the deformation.
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The total derivative defined in this section for the ALE referential domain may now

be used to augment the governing equations for fluid and solid mechanics, thus allowing

an ALE implementation to be solved.

3.4.2 Conservation equations in the ALE formulation

The ALE differential form of the conservation equations for mass and momentum are

readily obtained from the corresponding Eulerian descriptions outlined in equations 2.57

and 2.46. These are rewritten here in their general form:

Mass:
Dρ

Dt
= −ρ∇ · v, (3.17a)

Momentum: ρ
Dρ

Dt
= ∇ · σ + ρb, (3.17b)

where b is the net body force, ρ is the material density, σ is the stress tensor, and v

is the Eulerian velocity in the spatial domain. Equations 3.17a and 3.17b differ from

equations 2.57 and 2.46 only in that the general form of the total derivative is used on

the left hand side of the equation. This is done for generality purposes as the desired

form of the total derivative, Lagrangian (3.8), Eulerian (3.7) or ALE (3.16) may be

substituted as desired.

Substituting the ALE description of the total derivative given in equation 3.16 gives

the ALE form of the governing equations,

Mass:
∂ρ

∂t

∣∣∣∣
χ

+ c · ∇ρ = −ρ∇ · v, (3.18a)

Momentum: ρ

(
∂v

∂t

∣∣∣∣
χ

+ (c · ∇)v

)
= ∇ · σ + ρb. (3.18b)

When comparing equation 3.18 to the Eulerian balance equation we note that the only

difference is that instead of the convective term on the LHS including the relative

velocity between the material and spatial reference frames v, it now uses the convective

velocity c = v− v̂ which is the relative velocity between the material and the mesh. Of

course in the Eulerian reference frame the velocity of the mesh v̂ is zero so this relative

velocity is the velocity between the material and the spatial (fixed) configuration. This

shows that they are completely analogous.

It is also important to note that the right hand side of equation 3.18 is written in

classical Eulerian form. This reflects that these terms vary only spatially and so are

consistent regardless of the reference frame chosen.
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3.5 ALE algorithms for FSI

A combination of convention, numerical accuracy, efficiency and application, has led to

a raft of different fluid-structure interaction solvers. In most applications the fluid and

solid solver components are modelled using different techniques with different levels of

complexity. As an example, some solvers employ a full three-dimensional fluid dynamics

solver which is highly accurate, yet they may use a one-dimensional thin shell model

for wall dynamics (Formaggia et al. 2001). In addition to the choice of accuracy in each

component of the solver, solvers may also differ in the way they transfer information

across the physical interface. For the case of information transfer, the choices are

somewhat more limited as they must be transferred at the interface and at the beginning

or end of each time step (or sub-step). A summary of these coupling techniques may

be found in Giannopapa (2006), which is reproduced herein figure 3.6. Giannopapa

(2006) identified five methods of data transfer: non iterative over all time, iterative over

all time, non-iterative over time step, iterative over time step and the single solution

method. Figure 3.6 shows the information flow for each of these methods. Solid lines

represent solution solves in the fluid (F) or solid (S) solvers while dashed lines represent

an information transfer between the solvers. The core elements of each of these methods

are as follows:

• Method 1 is the most basic approach: non iterative over all time, the system

is completely uncoupled. Each equation of state (for fluid and solid) is solved

separately for the entire simulation time. Typically the fluid is solved first to

gather the time history of pressure along the boundary and this is specified as

a time varying boundary condition on the solid. There is no feedback in this

method at all.

• Method 2 is iterative over all time. This method is similar to the non-iterative

over all time approach in that information is not passed at each time step, it is

instead passed at the end of the solution. In the iterative over all time method,

the fluid solver is typically solved first and the pressure history that is determined

is then passed as a boundary condition to the solid. The motion of the solid in

response to the pressure boundary condition is then passed back to the fluid solver

as a time varying velocity boundary condition and the fluid is recomputed. In

this way, feedback between the solvers is achieved. This process is repeated until
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Figure 3.6: A summary of fluid-structure interaction coupling methods. The numbers in

italics are counters of the computational time step. The straight dashed arrow represents

the transfer of the denoted variable from one medium to the other. The curved dashed

arrow represents an iterative procedure. Reproduced with the permission of Giannopapa

from Giannopapa (2006).
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the solution reaches a predetermined convergence limit.

• Method 3 is non-iterative over each time step. The boundary conditions are

passed between fluid and solid at the end of each individual time step. This has

advantages over Method 1 as it provides some feedback from the solid to the fluid

at regular intervals.

Method 3a non-iterative over each time step with equal time steps. This

means that at every time step the fluid and solid solvers pass boundary informa-

tion to each other.

Method 3b is identical to Method 3a except that it relaxes the requirement

that both the fluid and solid algorithms have the same time step. It is known

as the non-iterative over unequal time steps method. This variant is useful in

physical problems in which temporal changes occur much faster in one continuum.

A small downside in this case is the exchange of boundary data cannot occur after

every time step, it only occurs at the beginning and end of the largest time step.

• Method 4 is iterative over each time step. This method is similar to Method 2

in that the fluid equations are solved in a continuous feedback loop with the

solid solver. However, instead of being iterated over the total time domain, the

iterations occur over each sub-step. Typically, the fluid solver is solved for a single

time step and the pressure solution becomes the boundary condition for the solid

equations. The solid equations are then solved for the same time step and the

solution is returned to the fluid as a velocity boundary condition. This process

is repeated until convergence is achieved at each time step. This is the most

highly coupled solution approach and as a result gives the most accurate answers.

However, it has an associated computational cost as the number of iterations

within each time step is high. Despite this, it may reach equivalent convergence

levels faster than Method 2 due to the smaller time scale over which change may

occur in each iteration.

• Method 5 is a special kind of fluid-structure solver referred to as a single solution

solver. In this, the governing equations for fluids and solids are constructed to be

based on the same primary variables, which are solved simultaneously in the one

matrix solve. The two domains may be separated by a coefficient only. This is

highly efficient, though the method does have its drawbacks. These include the
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Figure 3.7: Fluid-structure interactions conventional terminology. Reproduced with the

permission of Giannopapa from Giannopapa (2006).

complexity of the fluid and solid mechanic models being used, the order of the

boundary conditions being shared, and depending on the time-stepping scheme

the stability of the solver.

For Methods 1, 3a and 3b, information is only passed one way from the fluid to the

solid solver. Physically, this does not make sense as the response of each component will

have an effect on the other. When a fluid-structure interaction is being solved, a fully

coupled algorithm (Method 2 or Method 4) should be used, in which a two-way transfer

of information occurs. Furthermore, data exchange should occur at small intervals to

get the most realistic simulation (Giannopapa 2006).

Fluid-structure interaction solvers can be categorised more broadly by their treat-

ment of time discretisation. According to the conventional terminology in the literature,

current numerical methods can be categorised as either partitioned, monolithic or single

solution (figure 3.7).

Partitioned methods are based on the separation of the fluid and the solid solu-

tion. Each equation set is solved alternately and the interface conditions are exchanged

asynchronously. Typically this kind of algorithm involves two separate methods for

solving the fluid and solid components, while merging the different software packages

is possible it is a complex task and the computational overhead of running such a code

is restrictive (Belytschko et al. 1986). The data transfer between the solvers usually

93



requires a third programme, this also has its drawbacks in file-input/file-output bottle-

necks. Finally, partitioning can lead inherently to degradation of the conservation of

properties of the continua (fluid and structure).

Alternately coupled methods can be used, coupled methods offer advantageous in

terms of accuracy by ensuring both the fluid and solid are satisfied in a two-way fash-

ion at each time step. Despite the accuracy considerations, partitioned methods offer

computational efficiency benefits that may make them attractive in some applications.

Monolithic approaches use separate sets of equations (fluid and solid) and couple the

fluid and solid dynamics implicitly. They solve the dynamics of the interface through an

iterative procedure as suggested in Method 4 at each time step: examples of this include

Blom (1998) and Le Tallec & Mouro (2001). Van Brummelen et al. (2003) showed that

if an Osher scheme (an algorithm capable of capturing shocks in fluid dynamics) is used

for the fluid elements these methods are unconditionally stable. Despite the obvious

advantages over partitioned methods, the sub-step iterations can make them quite

computationally expensive.

Single solution methods have been proposed by Giannopapa (2006). The single

solution method treats both the fluid and solid as a single continuum, thus the whole

computational domain, both fluid and solid, is a single entity in a single grid. The

behaviour of this continuum is described by a single set of equations rather than a

pair of equations. There is no explicit exchange of information between the fluid and

solid interface as it is inherently implicit. As such the computational expense of the

sub-iterations can be avoided.

So far, fluid-structure interaction algorithms have been categorised based on the

level of coupling in the time stepping scheme. Along with this point of difference there

is also an enormous range of solvers that use different algorithms to solve either the

fluid or solid mechanic equations. Furthermore, in the context of aneurysm simulations

many investigations differ further on the types of boundary conditions applied to the

computational domain. For a full discussion of different methods in an aneurysm con-

text the reader is directed to chapter 1 and the reviews of Humphrey & Taylor (2008)

and Lasheras (2007).

The following sections in this chapter detail the newly developed coupling algorithm

used herein. This method is an implicit fully coupled iterative scheme with unequal

time steps: in essence it is a combination of Method 3b and Method 4 outlined in
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figure 3.6. To the authors knowledge, such a time stepping scheme for a fluid-structure

interaction has not been previously developed. The iterative nature of Method 4 over

each time step ensures convergence to the correct solution over each increment in time.

Iterating at each time step is more computationally efficient and accurate than doing so

over an entire time period as small changes in the solution are immediately accounted

for. The unequal time steps for the fluid and solid (Method 3b) are used to improve

the stability characteristics of the solver. The time marching scheme developed in this

thesis improves on the combination of these two methods by interpolating the boundary

condition values for each fluid sub-step in order to continuously pass information be-

tween the two solvers and to remove step changes in the solution which may introduce

numerical errors.

3.5.1 ALE time marching algorithm

The arbitrary Lagrangian–Eulerian time stepping scheme developed in this thesis is a

new formulation. The time marching scheme uses a monolithic approach. An existing

in-house fluid dynamics package, Viper, which solves the time dependent incompressible

Navier–Stokes equations is used as a basis for the new solver. A spectral-element solid

mechanics solver for neo-Hookean materials was developed and fully integrated into

the existing Viper code. Details of the spectral discretisation schemes and the time

stepping algorithm for each of these individual solvers can be found in chapter 4. This

section focuses on the implementation of the arbitrary Lagrangian–Eulerian algorithm,

in particular the coupling of the two components and the impact it has on the governing

equations.

3.5.1.1 Coupling: The information flow

Broadly, the algorithm is inspired by the method used by Bodard & Deville (2006). It

is an iterative over each time step method, described schematically in figure 3.8. In

their algorithm, the following steps are completed:

Step 1: Initialise the fluid and solid solvers. Based on the initial positions of the

solvers, the matrices for each solver are created. At this stage the referential

domain is the initial configuration so the mesh has no velocity (v̂ = 0) associated

with it. As such, the fluid solver is simply a classical Eulerian solver, and the

solid a Lagrangian solver.
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Figure 3.8: The ALE algorithm inspired by Bodard & Deville (2006). This time stepping

algorithm is used for simulations where the motion of the solid body is well defined such as

the forced oscillation of a cylinder.

Step 2: Calculate the first fluid time step. This is done based on the fluid dynamics

boundary conditions only. The walls of the domain are assumed to be rigid with

a no-slip wall boundary condition. This is a purely Eulerian solve. It is also

implicit so the resulting fields at the completion of this step are the field values

corresponding to the next time step.

Step 3: Complete a solid mechanics solve using as boundary conditions the pressure

determined in the previous pressure solve. As the solid solver is also implicit the
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pressure that is passed by the fluid solver is the pressure at the end of the solid

time step.

Step 4: Having solved the solid mechanics equation the position of the fluid and solid

meshes must be updated. This is known as the mesh regularisation phase: the

strategy for this is discussed in § 3.5.1.2. Vectors holding the mesh position are

updated. The movement of the mesh also has associated with it a mesh velocity

v̂: this velocity is calculated and made available to the fluid solver.

Step 5: At this stage, because the mesh has moved, the Jacobians and matrix oper-

ators must be reinitialised based on the new mesh position.

Step 6: Finally, the fluid is re-updated using the new mesh position and mesh velocity,

i.e. the fluid is solved for using an ALE referential domain. The velocity of the

wall determined in Step 4 is used as a velocity boundary condition in the fluid

step.

Step 7: Update the time step. If the new pressure, velocity and mesh position are

within a predetermined convergence criterion update the time to the next time

step. If not, iterate by repeating Steps 3 to 6.

In this thesis a variation on this algorithm is proposed. Figure 3.9 shows schemat-

ically the new algorithm, it follows a similar stepping and iterative procedure as just

described except a different-sized time step is used for the fluid and solid in order to

improve stability. It was found for fluid-structure interactions where there was direct

feedback between fluid and solid, there was some stability concerns when using the

fluid and solid time stepping algorithms outlined in chapter 4. It was found for some

problems that a larger time step for the solid domain delivered a more stable algorithm.

Information exchange still occurs at each time step and each sub-step in at least one

direction. To illustrate how this solver works, consider a solid time step that is five

times bigger than the fluid time step, ∆ts = 5 × ∆tf . Let it also be assumed that

the fluid time step ∆tf = 1. The following time step headings describe what steps are

being completed when the fluid solver is at tf and the solid solver is at ts. The solution

starts at tf = ts = 0 and one complete step is completed at tf = ts = 5.

tf = 0 ts = 0 The first time through, the algorithm outlined in Bodard & Deville

(2006) (figure 3.8) is used until convergence is reached. Pressures are passed to
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Figure 3.9: Schematic representation of information flow in the fluid-structure interaction

solver developed in this thesis. It consists of different fluid and solid time step to allow better

stability of the algorithm. At each solid step the solid and mesh positions are extrapolated

to the next time step. Intermediate values are interpolated and passed to the fluid at each

fluid time step. When fluid and solid time steps occur together a correction is made to the

extrapolated value.

the solid; position and velocities are passed back to the fluid, and the referential

mesh positions (and velocities) are updated within each iteration. To complete

an iterative solve of the fluid dynamic equations given in chapter 4, the updated

mesh velocity at the boundary and fluid velocity in the domain is used as the new

guess of the velocity field in the first sub-step. The previous time history remains

the same.

tf = 1 − 4 ts = 0 At this point the previous history of solid movement is used to

extrapolate forward in time to the end of the next solid time step; this gives a

prediction of the solid displacement at the end of the time next solid time step.

This is done using a third order accurate polynomial extrapolation. Once the

prediction has been made, a third order accurate Aitken’s interpolation scheme

is used to determine what the solid position and velocity will be at the next fluid

time step (which is between the current time step and the next solid step). These

predicted velocities and positions are used to reposition the mesh and define the

mesh velocity, v̂, for the next fluid time step. This extrapolation/interpolation

routine replaces the solid stepping algorithm for these intermediate fluid time

steps. Note: mesh regularization and reforming the Jacobians must still occur
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based on the interpolated values.

The fluid solver is then computed for the next fluid time step using the extrapo-

lated/interpolated values for the mesh velocity in the ALE equations and as the

appropriate boundary conditions.

Next the time is progressed by one fluid time step and the interpolation is com-

pleted once more to determine the mesh velocity, position, and boundary con-

ditions for the fluid region at the end of the next time step. The fluid is again

updated as per the previous step. This is continued a total of five times until the

point when the fluid and the solid solvers are next evaluating for the same time.

Note: For these intermediate fluid time steps the pressure is not passed back to

the solid solver.

tf = 5 ts = 5 When ts = tf once more, the time step is updated in the same manner

as the algorithm of figure 3.8 using an iterative procedure. This corrects any

discrepancy between the extrapolated value and the real value.

For cases where the deformation of the solid body is known, e.g. a forced oscillation

of a cylinder, the different time stepping is not required and the algorithm shown in

figure 3.8 is used. This is simply achieved in the algorithm by setting the different

time steps to the same size. Despite not passing the pressure back to the solid for

reconsideration at every time step (this is only done when tf = ts) the use of a consistent

third-order accurate polynomial extrapolation is sufficient to accurately predict the

updated positions with a high degree of accuracy. The results presented in chapter 6

will demonstrate that the scale of the error introduced by this technique is small.

3.5.1.2 Mesh movement scheme

The advantage of using an arbitrary Lagrangian–Eulerian technique is the ability to

have a moving reference frame. The movement of this referential frame is arbitrary.

The type of problem being looked at has some impact on how the mesh will be moved,

the desire to conserve the accuracy of a mesh is another consideration.

In the context of a fluid-structure interaction, the location of the interface is paramount

to the accuracy of the simulation. As such, the mesh is chosen to move with the solid

phase in a Lagrangian manner in order to accurately map out the location of the inter-

face. This will in turn change the position of the fluid mesh. In this way, the problem

being investigated has driven the way in which the mesh will move: it must follow the
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(a)

(b)

Figure 3.10: Flow through a flexible pipe undergoing a large localised dilation. Sub-plot

(a) shows the case when only the boundary nodes are moved; this leads to large distortion

of elements along the wall and under resolution. Sub-plot (b) shows the case of using the

Hookean solid model for the mesh regularisation scheme, which leads to conservation of the

mesh quality.

interface. However, this only defines the movement of the boundary of the fluid region,

not the interior mesh nodes.

For accuracy purposes it is advantageous to maintain equal, non-deformed mesh

elements. If for example, flow through a distensible pipe was being simulated and the

pipe underwent a large dilation, simply moving the mesh nodes on the boundary inter-

face would cause large stretching of the elements nearest the wall (see figure 3.10(a))

resulting in undesirable aspect ratios and reduced resolution in this area. If instead a

technique to cause all of the nodes in the mesh to move is used, such that they each

absorb some of the dilation, the accuracy of the elements can be conserved. An example

of this type of mesh regularization can be seen in figure 3.10(b).

In this implementation the mesh regularisation scheme used considers the fluid mesh
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region as a solid body. Similar strategies have been used in Winslow (1963); Benson

(1989) and Le Tallec & Martin (1996), this strategy is a natural choice in fluid-structure

interactions in which a solid mechanics code already exists and is readily adaptable to

the mesh regularization. The displacement of the interface is applied as the boundary

conditions. All other boundaries are taken to be fixed. The mesh region is modelled as

a steady-state Hookean solid. This requires the solution of the elliptic problem

∇σ = 0, (3.19)

where σ is the Cauchy stress. Details of how the solver handles Hookean materials can

be found in chapter 4. By using a high material stiffness in the Cauchy stress tensor

(in equation 3.19), an even distribution of the dilation throughout the mesh region is

ensured, which allows the relative spacing of mesh nodes to be conserved.

3.6 Closure

The kinematic relations for the arbitrary Lagrangian–Eulerian formulation are not too

dissimilar from those of an Eulerian formulation. In fact the Arbitrary Lagrangian–

Eulerian formulation represents a generalisation of both the classical domains. The

referential domain introduced for the Arbitrary Lagrangian–Eulerian formulation allows

continuous rezoning capability as the laboratory frame moves independently of the

material. Careful choice of the mesh regularisation scheme, which may be interpreted

as the motion of the laboratory frame, allows for accurate knowledge of the interface

while allowing large deformations of the fluid region and a changing geometry of the

fluid domain. Such capability is not possible with either classical reference frame.

The governing equations for the ALE formulation are only changed in the total

derivative term. The convective velocity is used in the convective acceleration term in

place of the velocity in the spatial coordinates. The right hand side of the governing

equation 3.18 is written in classical Eulerian form. This is because these terms vary

only spatially and so are consistent regardless of the reference frame chosen.

A monolithic solver is used with a modified iterative over unequal time step coupling

routine. The unequal time stepping algorithm ensures information is updated in the

fluid solver at each fluid time step using an extrapolation/interpolation method on

intermediate time steps and a full iterative feedback method during time steps when

both the fluid and the solid are being updated. To preserve the relative spacing of mesh
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nodes in the fluid region as the domain size changes, a Hookean solid model is used to

regulate the mesh movement.

The arbitrary Lagrangian–Eulerian time stepping scheme developed in this thesis

allows the coupling of the fluid and solid mechanics solvers. This enables the solver

to handle the complex fluid-structure interactions found in arterial flows. This work is

integral to aim 1 defined in chapter 1. While the mathematical background of the ALE

technique is well defined, this algorithm represents a novel contribution to the field with

its new information transfer scheme. Having defined the full set of governing equations

for solids and fluids and outlining the time stepping algorithm for the ALE method the

following chapter clarifies the details of the temporal and spatial discretisation of each

of the individual solver components.
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Chapter 4

Numerical methods for fluids and
solids

Presented in this chapter are the numerical methods used to solve the governing fluid

and solid dynamics equations. The mathematical framework relating to the spectral

element method described herein follows closely the work of Karniadakis & Sherwin

(1999). While the temporal discretisation of the Navier–Stokes equations in § 4.2.2 is

based on Karniadakis et al. (1991), here a new method is developed for the temporal

discretisation of the neo-Hookean and Hookean governing equations.

4.1 Introduction

A variety of techniques are available to discretise a set of governing mathematical

equations both in space and time. Within the class of mesh-based methods, where the

domain is discretised into a grid of elements, three discretisation paradigms are popular:

the Finite Element Method, Finite Difference Method, and Finite Volume Method.

The Finite Element Method was developed primarily to solve problems in the area of

structural mechanics. The Finite Volume Method, which was developed from the Finite

Difference Method, has been applied with great success in fluid mechanics and heat

transfer applications. The Spectral Element Method (SEM) is a highly efficient subset

of the Finite Element Method, that has recently been applied largely to Computational

Fluid Dynamics (CFD) problems with limited use in structural mechanics. Spectral

element methods use adaptive high-order basis functions to discretise the spatial domain

which provides them with exponential convergence properties compared with the linear

or low order polynomial basis functions used in traditional finite element methods.

In chapter 3 the governing equations for fluid flows (the Navier–Stokes equations)
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and those of a neo-Hookean hyperelastic solid were shown to contain very similar terms.

The similarity of the two equation sets suggests a similar discretisation scheme could

reasonably be adapted for both the solid and fluid domains. Such an approach would

have some obvious efficiency benefits when it comes to coupling a fluid-solid solver.

The emerging need to simulate multi-physics processes such as Fluid Structure Inter-

actions (FSI) that are governed by a number of interactive physical phenomena, drives

the construction of integrated solvers that improve efficiency by reducing input and

output (Giannopapa 2006). This chapter provides both the time stepping algorithm

and outlines the existing mathematical framework that underpins the algorithm used

to solve the fluid and solid domains described in chapter 3.

This chapter will present the algorithm for the solution of fluid and solid mechanic

problems. For fluid mechanics the time dependent incompressible Navier–Stokes equa-

tions are solved for Newtonian fluids, comprising the momentum equation

∂v

∂t
+ (v · ∇)v = −∇P + ν∇2v, (4.1)

where v is the velocity vector v = (v1, v2, v3) =
(
du1
dt ,

du2
dt ,

du3
dt

)
where ui are components

of the displacement vector, P is the kinematic pressure, ν is the kinematic viscosity

and t is time. The incompressibility condition requires

∇ · v = 0. (4.2)

For solid mechanics problems a similar momentum equation is solved,

ρ
∂2u

∂t2
= ρb̄+∇ · σ, (4.3)

where u = (u1, u2, u3) is the displacement vector, ρ is the solid material density, σ is a

stress tensor, and b̄ are the body forces. The stress tensor σ will take a different form

depending on the constitutive model being used, for further discussion on this refer to

chapter 3.

Equations 4.1 and 4.3 must be discretised in both space and time. Section 4.2

describes the numerical algorithm used to evolve the solution in time. Sections 4.3 to

4.5 will then outline the mathematical framework used by the numerical algorithm to

spatially discretise the governing partial differential equations and recast them into a

set of ordinary differential equations and subsequently algebraic expressions that may

be efficiently solved numerically.
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4.2 Time stepping algorithm

In continuum mechanics (fluid or solid) the governing equations are formed under the

basis of a series of conservation laws. These are commonly referred to as the con-

servation of mass, momentum and energy. Their conservative nature implies a time

dependent aspect such that as time progresses, changes in the quantity in question can

only occur in balance with fluxes in and out of the domain and subject to any sources

or sinks inside the domain (see chapter 3).

Given the time dependent nature of the continuum mechanics governing equations

the presence of the time derivative is recognised in both the fluid and solid governing

equations (4.1 and 4.3) respectively. This implies a dynamic system in which boundary

conditions may be transient and an environment in which the conserved quantities may

propagate through the domain. This captures important physics; indeed neglecting

this term implies that mass, momentum and energy transfer throughout the domain

instantaneously, which in many systems is physically inaccurate. This is particularly

important in fluid dynamics in which convective transfer is the principal mechanism of

energy and mass transfer.

Unlike many fluid-structure interaction solvers, the algorithm developed in this

project includes a time stepping scheme for both the fluid and the solid, thus accounting

for the inertial term. The following section details the time stepping scheme employed

for each continuum.

Many different formulations have been developed to handle the temporal discretisa-

tion of conservative equations. For a detailed description of fluid dynamic formulations

see Quartapelle (1993), Gunzburger et al. (1993), and Karniadakis & Sherwin (1999);

and in solid mechanics Glowinski & Tallec (1989), and Glowinski (2008). The time

stepping algorithm described herein applies an operator-splitting approach described

by Karniadakis et al. (1991) for incompressible fluid flows. This scheme is then adapted

for the temporal discretisation of the solid domain equations.

4.2.1 Operator splitting schemes

To evolve the Navier–Stokes equations forward in time, Karniadakis et al. (1991) pro-

pose a stiffly-stable operator-splitting scheme for high-order accurate Navier–Stokes

solvers. This high-order stiffly-stable splitting algorithm builds directly on Adams type

operator-splitting schemes for fluid dynamics also described in Karniadakis et al. (1991).
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These stiffly-stable schemes have since been recognised as a class of backwards-multistep

schemes by Blackburn & Sherwin (2004). The stiffly-stable algorithm was chosen for

its improved stability characteristics at high-orders of accuracy.

Operator splitting schemes (Yanenko 1971) were first applied to Navier–Stokes prob-

lems by Issa (1986). The basis of generic splitting schemes may be explained by con-

sidering a general equation of the form

∂u

∂t
= L̂ (u) (4.4)

where L̂ is a linear operator that advances the vector u in time (Press 2007). Assuming

the operator can be written as a linear sum of m pieces,

Lu = L̂1u+ L̂2u+ . . .+ L̂mu, (4.5)

the solution that eventually updates the variable u to the next time step (n+ 1) can

be derived simply by summing the contribution of each L̂m operating on u separately

(Press 2007).

4.2.2 Time evolution of the Navier–Stokes equations

In applying the operator-splitting scheme to the Navier–Stokes equations (4.1) the type

of differencing scheme is first chosen for the temporal derivative term. Blackburn &

Sherwin (2004) identified the stiffly-stable scheme of Karniadakis et al. (1991) as a

class of backward multi-step methods which employ backward differencing to evolve

the solution in time.

Backward differencing evaluates the time derivative at the next time step (n+ 1)

using a weighted sum of values at previous time steps, the number of previous time

steps required and the value of the weights are determined by the level of accuracy

required of the approximation. Weights (and hence the combination of previous time

steps) are determined through combining Taylor series expansions at antecedent time

steps in order to have the leading error term of the Taylor series at the desired accuracy

level for the solution (Ames 1965). It is noted that increasing the order of the solver

does affect its stability.

For the incompressible Navier–Stokes equations, Karniadakis et al. (1991) propose

an implicit three-step (m = 3) time splitting scheme

∂v

∂t
= − (v · ∇)v −∇P + ν∇2v, (4.6)
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becomes
v̂ −

∑Ji−1
q=0 αqv

n−q

∆t
=

Je−1∑
q=0

βqN̂
(
vn−q

)
, (4.7)

ˆ̂v − v̂

∆t
= −∇Pn+1, (4.8)

κvn+1 − ˆ̂v

∆t
= ν∇2vn+1, (4.9)

where v̂ and ˆ̂v are intermediate velocity fields, N̂ =
∑Je−1

q=0 βq [(v · ∇)v]n−q is the

non-linear advection operator and Je and Ji represents the order of integration: for

third-order accuracy in time Je = Ji = 3. We note here that this is analogous to the

operator-splitting form of equation 4.5, i.e.

(v · ∇)v = L̂1 =

Je−1∑
q=0

βqN̂
(
vn−q

)
, (4.10)

∇P = L̂2 = −∇Pn+1, (4.11)

ν∇2v = L̂3 = ν∇2vn+1, (4.12)

by back substitution of each sub-step the Navier–Stokes equations (equation 4.6) are

recovered with a backwards differencing approximation to the inertial term and a stiffly-

stable polynomial approximation of the advection term.

The first sub-step, equation 4.7, involves an explicit solve for the advection term.

The contribution of the non-linear advection term at the (n+ 1)st time step is approx-

imated using an appropriate-order polynomial extrapolation. In this implementation,

third-order accuracy is achieved using Je = 3 and the coefficients β0 = 3, β1 = −3 and

β2 = 1, where βq applies to the (n− q)th time-step. To maintain third-order temporal

accuracy the coefficients for the inertial terms are κ = 11/6, α0 = 3, α1 = −3/2 and

α2 = 1/3, where again αq applies to the (n− q)th time-step (Karniadakis & Sherwin

1999).

In the second sub-step, equation 4.8, the intermediate velocity field v̂ is corrected

to account for the contribution of the pressure term; finding the second intermediate

velocity field ˆ̂v. This first requires evaluation of the kinematic pressure, P . In this

sub-step the incompressibility condition, ∇ ·v = 0, is also enforced. The first step is to

take the divergence of both sides of equation 4.8,

∇ ·

(
ˆ̂v − v̂

∆t

)
= ∇ ·

(
−∇Pn+1

)
, (4.13)
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which becomes

∇ · ˆ̂v −∇ · v̂
∆t

= −∇2Pn+1 (4.14)

and by enforcing the incompressibility constraint on the second intermediate velocity

field ˆ̂v, this becomes a Poisson problem

∇2Pn+1 =
∇ · v̂
∆t

. (4.15)

The intermediate velocity field v̂ is calculated during the first sub-step, so the right-

hand side of equation 4.15 is known and this equation can be solved as a Poisson

equation for the kinematic pressure P at time tn+1. Once found, the kinematic pressure

P can be substituted back into equation 4.8 to find the second intermediate velocity

field, ˆ̂v. The Galerkin formulation (described in detail in § 4.3.2) provides a course

for implementing the appropriate high-order Neumann pressure boundary conditions

imposed on homogenous boundaries. The pressure boundary condition imposed at the

(n+ 1)st time step written in rotational form is

∂Pn+1

∂n
= −

∂vn+1

∂t
+ ν

Jp−1∑
q=0

βq (∇× ω)n−q +

Je−1∑
q=0

βqN̂
(
vn−q

) · n, (4.16)

where n is the unit normal vector, and ω is the vorticity. This is simply the Navier–

Stokes equations rearranged in terms of P in the direction of the unit normal vector

on homogenous boundaries. To ensure it provides the boundary conditions at the next

time step (n+ 1) the non-linear advection term is again determined using a polyno-

mial extrapolation method based on past velocity fields vn−q, a third-order accurate

approximation of this term, Je = 3 is maintained. However, for the pressure term a

second-order integration Jp = 2 is used. Karniadakis et al. (1991) show that using a

rotational formulation with a second-order extrapolation Jp = 2, maintains third-order

accuracy and improves stability conditions. The βi coefficients for Jp = 2 are β0 = 2

and β1 = −1 (Karniadakis et al. 1991).

The pressure boundary condition is written in rotational form to reinforce the in-

compressibility condition on the boundaries. This allows the time step to directly

control the divergence at the boundary (Petersson 2001, see) and to preserve the el-

lipticity of the Laplacian diffusion term. Leriche & Labrosse (2001) demonstrate this

characteristic and the importance of maintaining ellipticity in preserving the stability

of the algorithm.
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The third sub-step, equation 4.9, involves solving a Helmholtz equation for the final

velocity field vn+1. The intermediate velocity field, ˆ̂v, is known and provides contribu-

tions from the pressure and advection terms as well as the enforced incompressibility

condition. Velocity boundary conditions are prescribed during this sub-step. Dirich-

let boundary conditions are strongly enforced in the familiar fashion, while again the

Galerkin formulation allows Neumann velocity boundary conditions to be imposed on

the velocity field with ease.

4.2.3 Time evolution of the solid mechanics equations

The underlying physics that governs both fluid and solid mechanics is summarised

by the conservation of mass and momentum. These are the basis for the Navier–

Stokes equations (4.1) and also the solid mechanics equations (4.3). Given this common

basis many analogous terms can be found in each set of equations. For instance, both

equations have an inertial term of the same form. For the Hookean solid governing

equations the Cauchy stress term (at least in terms of a computational implementation)

can be seen to be analogous to the diffusion term in the Navier–Stokes equations. For

a neo-Hookean solid the Cauchy stress term has components analogous to the diffusion

term and and a penalty pressure term is introduced to maintain incompressibility just

as in the Navier–Stokes equations. Given the similarity in the equations a very similar

time-stepping algorithm is presented to evolve the solution in time. The time stepping

scheme outlined in the forthcoming sections is novel in solid mechanics and, along with

the new implementation of the ALE in § 3.5.1 represent the contribution of a new

methodology for solving fluid-structure interactions in aneurysms.

4.2.3.1 Time evolution of a Hookean solid

Given the relatively simple linear structure of the Cauchy stress tensor in the Hookean

solid, a splitting scheme is not required. The algorithm uses a second-order accurate

implicit scheme to solve for the updated displacement field, Un+1. A second-order

accurate backwards difference approximation is used for the second-order derivative in

the inertial term, and a high-order linear operator is formed from the Cauchy stress

term which is analogous to the diffusion term in the Navier–Stokes equations. Because

a Lagrangian reference system is used for the solid mechanics the displacement in the

material frameU is used rather than the displacement in the spatial (Eulerian) reference
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frame, u. Rewriting 4.3 with the approximations gives

ρ
κsUn+1 +

∑Js
q=0 α

s
qU

n−q

(∆t)2
= L̂ ·Un+1, (4.17)

where for second-order accuracy Js = 2, κs = −2, αs
0 = 5, αs

1 = −4 and αs
2 = 1. To

form the Helmholtz equation 4.17 is recast as[
ρ

κs

(∆t)2
− L̂

]
·Un+1 = −ρ

∑Js
q=0 α

s
qU

n−q

(∆t)2
. (4.18)

The forces applied to a solid cause the deformations that are described by this

equation. These forces are described in terms of a pressure on a boundary and appear in

the stress tensor for the boundary nodal positions. The Galerkin formulation described

in § 4.3.2 again allows explicit prescription of the boundary conditions as they appear in

a separate surface integral term in which the boundary forces may be inserted. Dirichlet

displacement boundary conditions are handled in the standard manner using the static

condensation technique described in § 4.6.

4.2.3.2 Time evolution of a neo-Hookean solid

The neo-Hookean solid has a more complex structure for the Cauchy stress tensor, i.e.

σ = PI + F

(
∂W

∂F

)T

, (4.19)

where W is the (non-linear) neo-Hookean strain energy function, F is the deformation

gradient (a function of U), P is the pressure arising to maintain incompressibility, and

I is the identity matrix. When substituted into equation 4.3 this yields

ρ
∂2U

∂t2
= ρb̄+∇ · PsI +∇2 (U) , (4.20)

where ∇2 (·) is the linear component of the divergence of the stress tensor term, the

Laplacian. The similarity of this equation and the Navier–Stokes momentum equation

is remarkable. Both contain an inertial term (one is Lagrangian, the other Eulerian

which contains a non-linear convective term). They both have a ∇ · P term, and

a high-order linear operator (L̂ in the Navier–Stokes equations and the Laplacian in

the neo-Hookean equation). These similarities inspire the use of an operator-splitting

scheme similar to that of the Navier–Stokes solver to evolve the solid domain. A two-

step splitting scheme is proposed that is implicit, second-order accurate, and utilises

backwards differencing for the temporal discretisation as described in § 4.2.3.1,

ρ
Û −

∑Ji
q=0 α

s
qU

n−q

(∆t)2
= −∇Pn+1

s , (4.21)
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κsUn+1 − Û

∆t
= L̂Un+1. (4.22)

In the first sub-step, equation 4.21, the contributions of the previous displacement

field
∑Ji

q=0 α
s
qU

n−q are used to account for the contribution of the pressure term finding

the intermediate displacement field Û . This first requires evaluation of the kinematic

pressure, P . Taking the divergence of both sides of 4.21,

∇ ·

(
Û −

∑Ji
q=0 α

s
qU

n−q

(∆t)2

)
= ∇ ·

(
−∇Pn+1

)
, (4.23)

and rearranging gives

∇ · Û −
∑Ji

q=0 α
s
qU

n−q

(∆t)2
= −∇2Pn+1. (4.24)

The pressure P introduced in the neo-Hookean Cauchy stress is introduced as a penalty

function to enforce incompressibility. As such it is recognised that the vector field should

satisfy an incompressibility constraint. In fluid mechanics this constraint is described

by

∇ · v = 0 (4.25)

where v is a velocity vector. In the solid equations the principal variable is displace-

ment. Because velocity is simply the time derivative of displacement we see that if

equation 4.25 holds then so to must

∇ ·U = 0. (4.26)

Therefore the incompressibility constraint is enforced on the intermediate displacement

field Û , leaving
−∇ ·

∑Ji
q=0 α

s
qU

n−q

(∆t)2
= ∇ ·

(
−∇Pn+1

)
. (4.27)

The inertial contribution to the displacement field
∑Ji

q=0 α
s
qU

n−q is calculated explicitly,

so this equation can be solved as a Poisson equation for the kinematic pressure P . Once

found, the kinematic pressure, P, is substituted back into equation 4.21 to find the inter-

mediate displacement field Û . The Galerkin formulation detailed in § 4.3.2 provides a

method for implementing the appropriate high-order Neumann pressure boundary con-

ditions imposed on homogenous boundaries. The pressure boundary condition imposed

at the (n+ 1)st time step is

∂Pn+1

∂n
= −

∂2Un+1

∂t2
+ ρ

Jp−1∑
q=0

βs
q∇2 (U)n−q

 · n, (4.28)
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where n is the unit normal vector. Just as with the Navier–Stokes pressure bound-

ary condition, this is simply the governing equations rearranged in terms of P and

dotted with the unit normal vector on homogenous boundaries. To ensure it provides

the boundary conditions at the next time step (n+ 1) the non-linear stress term is

determined using a polynomial extrapolation method based on past displacement fields

Un−q, where second-order accuracy (Je = 2) is maintained for this term. The coeffi-

cients for the polynomial extrapolation in the boundary condition of the pressure step

(Jp = 2) are β0 = 2 and β1 = −1 (Karniadakis & Sherwin 1999).

The second sub-step, equation 4.22, involves solving a Helmholtz equation for the

final displacement field Un+1. The intermediate displacement field, Û , is known and

provides contributions from the pressure and inertial terms as well as the enforced

incompressibility condition. Displacement boundary conditions can be prescribed at

this point. Dirichlet boundary conditions may be prescribed in the familiar fashion

while the Galerkin formulation allows high-order displacement boundary conditions to

be imposed with ease.

4.3 Fundamental concepts in one-dimension

Having described the numerical algorithm used for temporal discretisation of equa-

tions 4.1 for fluid dynamics and 4.3 for solid mechanics the mathematical framework of

the spatial discretisation used to construct the matrix operators used in the governing

equations is presented. The spectral element spatial discretisation presented herein is

well documented in texts such as Karniadakis & Sherwin (1999) and is presented only

to demonstrate understanding of the computational methods employed in developing

the FSI solver.

Modelling of continuum mechanics has primarily been driven by finite element mod-

elling of solid structures. The finite element model can be shown to be a case of the

Rayleigh–Ritz problem (Courant & Hilbert 1989). In these modelling techniques a

variational form of the problem is considered, which can be shown to approximate the

original differential equation.

For example, following Karniadakis & Sherwin (1999), the quadratic functional

F (u) =

∫ 1

0

[
p (x)

(
u′ (x)

)2
+ q (x) (u (x))2 − 2f (x)u (x)

]
dx (4.29)
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has a minimum with respect to a variation in u (x) given by the Euler equation

− d

dx

(
p (x)

du (x)

dx

)
+ q (x)u (x) = f (x) . (4.30)

So rather than solving the partial differential equation 4.30 to determine u (x), an

alternate and, importantly, equivalent solution is to find the value u (x) which minimises

equation 4.29.

Using the Rayleigh–Ritz approach, the solution u (x) is approximated by a finite

number of functions Φi,

u (x) =

N∑
i

qiΦi, (4.31)

and the weights qi are determined in order to minimise the functional-variational form

of equation 4.29.

The finite element method is analogous to the Rayleigh–Ritz problem (Courant &

Hilbert 1989). In the finite element method the solution domain is typically broken

into smaller local segments over which the solution approximation is enforced. In addi-

tion to the global-local difference, the finite element method would use the differential

equation 4.30 recast in the integral-Galerkin form as the mathematical basis for the

discretisation scheme. The Galerkin form of the differential equation is mathematically

equivalent to the variational functional form of 4.29, which provides the connection be-

tween the Rayleigh–Ritz problem and the finite element technique. Once in this form

the method aims to reduce the system to a series of algebraic expressions which can be

solved numerically.

It has since been shown that a functional form is not required to reach the Galerkin

form of the problem. A more general formulation is possible using the method of

weighted residuals which leads to the standard Galerkin formulation.

4.3.1 The method of weighted residuals

In describing the method of weighted residuals consider first a linear differential equa-

tion arbitrarily denoted by equation 4.32 which is subject to appropriate initial bound-

ary conditions,

L̂ (u) = 0. (4.32)
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The solution, u (x, t), is assumed to be accurately represented by an infinite expansion,

which is approximated with the finite sum

uδ (x, t) = u0 (x, t) +

Ndof∑
i=1

ûi (t)Φi (x) (4.33)

where Φi (x) are known as trial functions, û are the unknown trial function coefficients

and u0 satisfies the initial and boundary conditions. By definition Φi (x) satisfies

homogeneous boundary conditions allowing u0 to account for all Dirichlet values on

the boundary. Given this is only a finite approximation of an infinite solution when

substituting equation 4.33 into 4.32 a residual R
(
uδ
)
remains. In order to solve for the

exact solution a restriction is placed on the residual, which has the added advantage of

reducing the system of equations to a linear first-order system.

Defining the restriction enforced on the residual first requires definition of the Leg-

endre inner product

(f, g) =

∫
Ω
f (x) g (x) dx, (4.34)

where f and g are arbitrary functions.

The desired restriction of the residual is that the inner product (equation 4.34) with

respect to a weight function (sometimes referred to as a test function) is equal to zero,

that is

(wj (x) , R) = 0, j = 1, ..., Ndof , (4.35)

where wj is the weight function: the weighted residual is then said to be zero.

As the number of degrees of freedom, Ndof , approaches infinity, the residual tends

to zero and the approximation uδ approaches the exact solution u. The type of compu-

tational method is determined by the choice of the trial and test functions. To obtain

the standard Galerkin formulation the same analytical function is used for both the

test and trial function (Finlayson 1972).

4.3.2 The Galerkin method

The Rayleigh–Ritz problem and equivalently the method of weighted residuals forms a

mathematical basis for finite element and spectral-hp element solvers. In this section,the

Galerkin formulation is introduced and used to manipulate a series of Partial Differential

Equations (PDEs) into a set of Ordinary Differential Equations (ODEs) which may be

solved using numerical techniques.
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Consider for example the one-dimensional Poisson equation

L̂ (u) ≡ ∂2u

∂x2
+ f = 0, (4.36)

with domain

Ω = {x |0 ≤ x ≤ 1}

and boundary conditions

u (0) = gD ,
∂u

∂x
(1) = gN ,

where gD and gN are given constants for the Dirichlet and Neumann boundary con-

ditions, respectively. In a variational formulation, Dirichlet type boundary conditions

can be expressed explicitly using equation 4.33. However, Neumann boundary condi-

tions prove difficult to enforce. Inherent in the Galerkin formulation is a method in

which Neumann boundary conditions are explicitly expressed. However, the method

for handling Dirichlet conditions is dependent on the choice of trail and test functions.

To complete the Galerkin formulation and manage the Neumann boundary conditions

the equations must be recast in “weak form”.

Finding the weak form is analogous to taking the Legendre inner product of the

ODE with a weight or test function1, w (x). It is important for the implementation

of the Dirichlet boundary conditions that the test function by definition is zero on all

boundaries. The inner product of equation 4.36 is

(w,L (u)) =

∫ 1

0
w

(
∂2u

∂x2

)
+ wf dx = 0. (4.37)

Remember that equation 4.37 is equivalent to setting the weighted residual to zero and

as such the approximation, uδ, will approximate u as Ndof tends to infinity.

In forming the Galerkin formulation, the next step is to apply Gauss’ Divergence

theorem to obtain ∫ 1

0

∂w

∂x

∂u

∂x
dx =

∫ 1

0
wf dx+

[
∂u

∂x

]1
0

. (4.38)

Using the fact that the test function is zero on the boundaries allows the enforcement

of the Neumann boundary condition ∂u
∂x = gN via a direct substitution into the final

term (see equation 4.39). The ease with which the Neumann boundary conditions are

implemented is a direct result of the integral in the weak formulation. This operation

1A test function, is a functional space against which the subject is checked. It attributes different
weight (or importance) to the value of the subject across its domain and is used to check it meets the
prescribed criteria (Karniadakis & Sherwin 1999)
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implements Neumann boundary conditions, reduces the maximum order of derivatives

in the discrete problem, and makes the resulting matrix equation symmetric, giving∫ 1

0

∂w

∂x

∂u

∂x
dx =

∫ 1

0
vf dx+ w (1) gN . (4.39)

In order to solve equation 4.39 the Galerkin approximation must be completed by

substituting the exact solution u (x) with a finite expansion uδ and the continuous test

function w (x) with a finite test function wδ such as∫ 1

0

∂wδ

∂x

∂uδ

∂x
dx =

∫ 1

0
wδf dx+ wδ (1) gN . (4.40)

By casting the equations in their weak form, the Neumann boundary conditions are

intrinsically handled. Dirichlet boundary conditions require further treatment through

a process known as “lifting the solution”. To lift a boundary condition the approximate

solution uδ is split into a known lifted-Dirichlet function uD which satisfies the Dirichlet

boundary conditions and an unknown homogenous function uH which has a zero value

on the boundaries, i.e.,

uδ = uH + uD (4.41)

By substituting 4.41 into 4.40,∫ 1

0

∂wδ

∂x

∂uH

∂x
dx =

∫ 1

0
wδfdx+ wδ (1) gN −

∫ 1

0

∂wδ

∂x

∂uD

∂x
dx. (4.42)

Since uD is a known function satisfying the boundary condition, the right hand side

of equation 4.42 contains only known quantities. Note: the gradient of the Dirichlet

boundary condition is known because uD is approximated by the weighted sum of a set

of trial functions (see equation 4.50) which has a generic shape which is scaled using

uD and the shape of the element, both of which are known. The left hand side contains

only uH and wδ which are a finite number of functions. Essentially, the Galerkin

formulation has taken a continuous partial differential equation and converted it to a

matrix problem which can be solved computationally.

4.4 Spatial discretisation scheme

Due to the historical use of Taylor expansions to form approximate solutions to complex

functions, polynomials are by far the most dominant form of expansion bases for finite

element solvers (Karniadakis & Sherwin 1999). Finite element solvers, of which spectral
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element solvers are a subset, may be categorized by their expansion bases as either h-

type or p-type.

h-type solvers split the domain, Ω, into a set of N el elements, Ωe. The sum of the

set of elements forms the entire solution domain. h-type solvers use a fixed-order poly-

nomial in every element with convergence to the exact solution attained by reducing the

size of elements; this is true of classical finite element solvers (Karniadakis & Sherwin

1999). The h represents the characteristic size of an element. This type of extension

allows high geometric flexibility (Karniadakis & Sherwin 1999).

p-type solvers use a fixed mesh that encompasses the entire solution domain. A

polynomial of order p is used as the test function across the entire domain fitting

through a set of fixed mesh points. Convergence to the exact solution is achieved

by increasing the polynomial order used to interpolate across the domain. Here, p

represents the order of the polynomial function used to interpolate across the solution

domain. This type of expansion allows rapid convergence in smooth problems, but is

complicated in geometrically difficult domains. For the case where the whole solution

domain is modelled with only one element then this kind of solver is a spectral method

(Karniadakis & Sherwin 1999).

The spectral-hp element method, of which the algorithm developed in this thesis is

a type, combines attributes of both extensions.

The following sections discuss the required components to form numerical opera-

tors that are capable of performing integration and differentiation. In the context of

spectral-hp elements, the contribution of the h-type and p-type refinement in forming

a global solution is recognised. This type of refinement dictates the procedure in which

integration and differentiation operators are formed.An integral or differential operator

may be formed over a standard element using a p-type discretisation, this can then be

mapped to any local element coordinates before the h-type refinement maps this onto

the global solution domain.

4.4.1 Forming the discrete system h-type decomposition

h-type methods subdivide the solution domain into non-overlapping sub-domains termed

elements, within which the polynomial expansion basis is expressed.

Consider the domain Ω, which is partitioned into the arbitrarily sized N el elements,

each of spatial extent Ωe, such that the domain is fully expressed by the union of the
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Figure 4.1: Elemental decomposition of the solution domain Ω into three elements Ω1, Ω2

and Ω3. Above the domain the global expansion modes Φ0 (x), Φ1 (x), Φ2 (x) and Φ3 (x)

are shown for a linear finite element expansion over the domain Ω. On the right are local

expansion bases φ0 (ξ) and φ1 (ξ) defined in the standard region Ωst which can be used

to define the global expansion modes. Reproduced with the permission of Karniadakis &

Sherwin and oxford university press from Karniadakis & Sherwin (1999).

individual elements. As an example consider the domain shown in figure 4.1 describing

the 1-Dimensional domain Ω = {x |0 ≤ x ≤ 1}.

Figure 4.1 depicts the global expansion modes for a linear finite element expansion.

Each mode has a value of one at the end of one of the elemental domains with a linear

decay to zero at the other. Figure 4.1 also shows the four global degrees of freedom in

this expansion Φ0 (x), Φ1 (x), Φ2 (x) and Φ3 (x). The global modes are non-zero in no

more than two neighbouring elements.

On an elemental level each global mode consists of two linearly varying functions.

If a one-dimensional standard element, Ωst = {ξ | − 1 ≤ ξ ≤ 1}, is considered then an

equivalent linear function can be defined over the standard element described by:

φ0 (ξ) =


1− ξ

2
, ξ ∈ Ωst,

0, ξ /∈ Ωst,
φ1 (ξ) =


1 + ξ

2
, ξ ∈ Ωst,

0, ξ /∈ Ωst.
(4.43)

This is the standard form of a linear expansion basis for a one-dimensional element.

To move from the standard element to any local elemental domain the mapping function

χe (ξ) is used where

x = χe (ξ) =
1− ξ

2
xe−1 +

1 + ξ

2
xe, ξ ∈ Ωst. (4.44)
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and for mathematical completeness the inverse mapping is

ξ = (χe)−1 (x) = 2
x− xe−1

xe − xe−1
− 1, ξ ∈ Ωe. (4.45)

This mapping function can be used to express the global modes Φi (h-type discretisa-

tion) in terms of the local elemental expansions φp (p-type discretisation).

The final step is to move from the elemental sub-space to the global domain through

a process called the direct stiffness summation, or global assembly. In terms of global

modes the finite element expansion uδ is

uδ (x) =

Ndof−1∑
i=0

ûiΦi (x) . (4.46)

This is expressed in terms of local-elemental modes as

uδ (x) =

Ndof−1∑
i=0

ûiΦi (x) =

Nel∑
e=1

p∑
p=0

ûepφ
e
p (ξ) , (4.47)

where p is the polynomial order of the expansion (spectral methods are not restricted

to the linear expansion mode of equation 4.43), Φi (x) is the global expansion modes,

and φp the local expansion modes. Note that φe
p (ξ) = φp

(
[χe]−1 (x)

)
, where the

superscript, e, denotes the element in which the function is non-zero.

As a result of the division of the domain into sub-domain regions there exists a

necessary bordering of elements in order to account for the entire solution region. As

such, in this discretisation there exists more local expansion coefficients ûep than global

expansion coefficients ûi. As such, further conditions are required to relate the local

and global definitions of the solution. Therefore, a constraint is enforced at element

boundary edges in which uδ must have the same value in each element expansion. In

the example of Figure 4.2, the constraint may be expressed by

û11 = û20,

û21 = û30.
(4.48)

In this way C0-continuity is enforced across the domain.

To facilitate the implementation of the local to global mapping the global boundary

mapping matrix also known as the assembly matrix, A, is introduced.

ûl = Aûg, (4.49)

where ûg denotes the vector of all global coefficients and ûl denotes the vector of all

local coefficients within an element. A is simply a mapping between global and local

coordinates.
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Figure 4.2: Global and local expansion coefficients and bases in a three-element decomposi-

tion of the domain Ω. Reproduced with the permission of Karniadakis & Sherwin and Oxford

University Press from Karniadakis & Sherwin (1999).

In the Galerkin formulation it is advantageous to consider the inverse of the map-

ping, which can be mathematically shown to be the transpose of the assembly matrix(
AT
)
. The integral structure of the Galerkin formulation implies the summation of

the elemental contributions of each test function in order to find the global solution.

As such, operations may be performed on a local level before assembly into the global

solution. This can be quite advantageous in terms of computational efficiency as matrix

inverse problems are very expensive in large degree-of-freedom systems. Furthermore,
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the mapping from standard element to local element coordinate χe (ξ), can also be

exploited to perform all integrals on a standard elemental level, thus minimising the

number of degrees of freedom in each matrix system solve.

In closing this discussion on the h-type expansion, it is recognised that in practice

the global assembly matrix A is never explicitly formed. The matrix is extremely sparse

and so for implementation it is easier to represent the matrix as a mapping array.

4.4.2 Interpolating within an element: The p-type decomposition

While complex geometries, different scaling and localised structures necessitate h-type

decomposition of a solution domain, it can be very numerically efficient and accurate

at lower levels of h-type refinement to then use p-type extensions within elements

to approximate the solution. In all that follows the p-type extension is interpreted

as increasing the polynomial order of the polynomial expansion within the elemental

region.

There are many types of polynomial expansions acceptable to spectral-hp element

implementations, these can be classified in two groups as either modal or nodal ex-

pansions. The fluid and solid continuum algorithms used in this investigation are of

nodal type; as such, modal expansion bases will not be discussed here. For further

information on modal type expansion bases see Karniadakis & Sherwin (1999). Nodal

expansion sets are based on a set of predetermined nodal points xq. As an example

consider a Lagrange polynomial

hp (x) =

∏P
q=0,q 6=p (x− xq)∏P
q=0,q 6=p (xp − xq)

, p = 0, ..., P. (4.50)

The Lagrange polynomial has the property that at the nodal points, x = xq, the

Lagrange polynomial represents a Kronecker-delta function. This property implies that

uδ (xq) =

p∑
p=0

ûphp (xq) =

p∑
p=0

ûpδpq = ûq, (4.51)

where the expansion coefficient ûp can be defined in terms of the approximate solution at

the nodal points xq. Therefore the coefficients, ûp, physically represent the approximate

solution at the nodal points. Linear finite elements use nodal expansions with the nodal

points located at either end of the solution domain; for the Gauss–Legendre–Lobatto

quadrature used in this solver, nodal points are chosen to be internal and include all

extremes of the solution domain.
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The choice of nodal expansion basis is influenced by numerical efficiency and ap-

proximation properties. Consider for example, the Galerkin approximation of a smooth

function, f (x) , (
wδ, uδ

)
=
(
wδ, f

)
. (4.52)

Using a Galerkin formulation the test and trial functions have the same form, uδ (x) =

wδ (x) =
∑p

p=0 ûpΦp (x) . As such, equation 4.52 can be transformed to a matrix prob-

lem of the form,

wT [M û = f ] ⇒ M û = fp, (4.53)

where,

Mpq = (Φp,Φq) , û = [û0, · · · , ûp]T , fp = (Φp, f) . (4.54)

The matrix M is known as the mass matrix and contains the global expansion base

coefficients, û is the solution vector at the p nodal points, and fp is the elemental nodal

values of the forcing term in the ODE. The matrix M may be inverted to find the

solution to the algebraic equation 4.53. The numerical efficiency associated with the

choice of expansion base stems from the cost of constructing and inverting the matrix.

As such, to promote numerical efficiency the expansion base used is chosen on the basis

of generating a matrix with a predetermined structure that is conducive to construction

and inversion.

From this perspective, the Lagrange polynomial is particularly useful as it produces

a purely diagonal mass matrix, on an elemental level, by virtue of the Kronecker-

delta function. The diagonal structure is very inexpensive to construct and invert.

Lagrange–Legendre polynomials have the added advantage of being orthogonal, leading

to excellent matrix conditioning which is important to numerical accuracy in terms of

the numerical matrix inversion process.

4.4.2.1 Gauss–Legendre–Lobatto quadrature

As described earlier, nodal expansions are based on the value of a function at a set

of nodal points, i.e. they are based on the Lagrange polynomial. In the algorithm

employed herein, the nodal points may be spaced in any way throughout the solution

domain with the only restriction being they include nodal points at the extremes of

the domain (this is in order to enforce C0-continuity between elements). The location

of nodes does impact on the stability of the numerical method. Using nodal points at

the zeros of Gauss–Legendre–Lobatto integration rules creates a particularly efficient,
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stable and accurate expansion. Unlike the pure Gaussian quadrature, Gauss–Legendre–

Lobatto quadrature includes nodal points at the edges of the domain, for a small cost

in accuracy.

Lagrange polynomials, hp, are unique polynomials that have the value of unity at

the node xp and zero at all other nodes xq,

hp (xq) = δpq. (4.55)

Note the Lagrange polynomial, as defined by equation 4.50, can be expressed at the

nodal locations using the property 4.55. The test function interpolation approximation

requires the interpolant I which is a function of u,

Iu (xq) = u (xq) ,

and therefore the interpolant can be written as

Iu (x) =

P∑
p=0

ûphp (x) . (4.56)

If u (x) is a polynomial of order p the relationship is exact. For the particularly accurate

case of Gauss–Legendre–Lobatto quadrature, the p-type expansion in the standard

element is

φp (ξ) 7→ hp (ξ) =


1, ξ = ξp,

(ξ − 1) (ξ + 1)L′
P (ξ)

p (p+ 1)LP (ξp) (ξp − ξ)
, otherwise,

(4.57)

where LP is the Legendre polynomial, L′
P is its derivative and p is the polynomial order

of the expansion. The shapes of these modes for a polynomial order p = 3 are shown

in figure 4.3

Owing to its nodal construction, all modes are polynomials of order p. The bound-

ary modes φ0 and φ3 are the only modes to exhibit a value other than zero on the

boundaries; this allows the h-type decomposition of the solution domain to enforce

C0-continuity.

As the Galerkin formulation with Gauss–Legendre–Lobatto quadrature uses the

same nodal points on which the expansion was defined for the test function; the property

in equation 4.51 implies that the mass matrix is diagonal rather than full.

M e [p] [q] = (hp, hq) '
p∑

i=0

wihp (ξi)hq (ξi) =

p∑
i=0

wiδpiδpq = wpδpq, (4.58)
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Figure 4.3: Nodal expansion modes for a polynomial order of p = 3 in the standard element.

The red, green, blue and black lines represent the φ0, φ1, φ2, and φ3 modes respectively.

where wi are the weights for Gauss–Legendre–Lobatto quadrature using p + 1 points.

Using the same nodal points for both the quadrature rule and Lagrange polynomial

ensures discrete orthogonality, which ensures an exact solution for polynomials of order

2p− 1 (Karniadakis & Sherwin 1999).

4.4.3 Numerical integration

Having developed a numerical basis for decomposing the global expansion basis into

elemental sub-domains and mapping them onto a standard region over which a poly-

nomial expansion base is expressed, the Gauss–Legendre–Lobatto quadrature can now

be used to integrate and differentiate within the standard region.

Given the Galerkin formulation is cast in weak form which is based on the sum of

elemental integrals, a technique is required to evaluate the integral of each function

across the standard domain. Once established in the standard domain this may then

be mapped to local-elemental co-ordinates. The integral over a standard domain is∫ 1

−1
u (ξ) dξ, (4.59)

where u (ξ) may be made up of products of the polynomial basis functions (e.g.equation 4.57).

124



Given the form of u (ξ) is application-specific a generic evaluation technique must be

employed. This provides the motivation to use numerical quadrature techniques such

as Gaussian quadrature.

Gaussian quadrature represents the integrand as a Lagrange polynomial using the

Q points ξi in

u (ξ) =

Q−1∑
i=0

u (ξi)hi (ξ) + ε (u) , (4.60)

where ε (u) is the approximation error. Combining this with the integration equa-

tion 4.59 gives, ∫ 1

−1
u (ξ) dξ =

Q−1∑
i=o

wiu (ξi) +R (u) , (4.61)

where,

wi =

∫ 1

−1
hi (ξ) dξ, (4.62)

and

R (u) =

∫ 1

−1
ε (u) dξ. (4.63)

Equation 4.62 describes the integration weights in terms of integrals of the Lagrange

polynomial. All that is required then to perform the integration is the nodal locations,

namely the zeros ξi (also known as abscissae). If the nodal positions are equispaced, an

exact solution for u (ξ) which is represented by a polynomial of order Q− 1; could only

be achieved with a polynomial of Q − 1 (Karniadakis & Sherwin 1999). In Gaussian

quadrature non-equispaced zeros are chosen. To facilitate easy implementation of global

boundary decomposition a sub-class of the more accurate Gaussian quadrature, Gauss–

Legendre–Lobatto quadrature is employed. This form of Gaussian quadrature has zeros

at either end of the standard region. i.e.

ξi =


−1, i = 0,

ξ1,1i−1,Q−2, i = 1, . . . , Q− 2,

1, i = Q− 1,

w0,0
i =

2

Q (Q− 1) [LQ−1 (ξi)]
2 , i = 0, . . . , Q− 1

R (u) = 0 if u (ξ) ∈ P̂2Q−3 ([−1, 1]) .

(4.64)

where LQ (ξ) is the Legendre polynomial
(
LQ (ξ) = P̂ 0,0

Q (ξ)
)
. The zeros of the Jacobi

polynomial P̂ are ξα,βi,m for which there is no analytical solution. Karniadakis & Sherwin

(1999) describes a recursive strategy for determining the Jacobi zeros.
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4.4.4 Differentiation

Using the polynomial approximation,

uδ (x) =

p∑
p=0

ûpφp

(
χ−1

)
=

p∑
p=0

ûpφp (ξ) , (4.65)

where χ (ξ) is the standard-to-elemental domain mapping, differentiating using the

chain rule to obtain,

duδ (ξ)

dx
=

duδ (ξ)

dξ

dξ

dx
=

p∑
p=0

ûp
dφp (ξ)

dξ

dξ

dx
. (4.66)

Thus in approximating the differential of the unknown u a method for evaluating
dφp(ξ)

dξ

and dξ
dx is required. Given a polynomial expansion using Lagrange polynomials (see

equation 4.50) and utilizing Gauss–Legendre–Lobatto quadrature the derivative of u in

the standard domain (i.e. in ξ- space) is

du (ξ)

dξ
=

Q−1∑
i=0

u (ξi)
d

dξ
hi (ξ) , (4.67)

Typically, we only require the derivative at the nodal points ξi which is given by

du (ξ)

dξ

∣∣∣∣
ξ=ξi

=

Q−1∑
j=0

diju (ξj) , (4.68)

where

dij =
dhj (ξ)

dξ

∣∣∣∣
ξ=ξi

. (4.69)

For the specific case of Gauss–Legendre–Lobatto quadrature the standard element dif-

ferentiation matrices may be described by

ξi =


−1, i = 0,

ξ1,1i=1,Q−2, i = 1, . . . , Q− 2,

1, i = Q− 1,

dij =



−Q (Q− 1)

4
, i = j = 0,

LQ−1 (ξi)

LQ−1 (ξj)

1

ξiξj
, i 6= j, 0 ≤ i, j ≤ Q− 1,

0, 1 ≤ i = j ≤ Q− 2,

Q (Q− 1)

4
, i = j = Q− 1.

(4.70)

Note: Just as with the quadrature formulae the construction of the differentiation

matrices requires the numerically determined quadrature zeros which are found using

a recursive formula given in Appendix A of Karniadakis & Sherwin (1999).
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4.5 Forming global operators

In the discussion thus far the merits of the Galerkin approximation and the choice of a

nodal-based Gauss–Legendre–Lobatto quadrature scheme to discretise a set of partial

differential equations has been outlined. It has been shown how this mathematical

framework may be used to perform integration and differentiation over a standard do-

main. It has also been demonstrated how the Galerkin formulation allows easy enforce-

ment of boundary conditions. The following sections illustrate how this mathematical

basis is used to solve complex systems by mapping the solution from a standard region

to a local elemental space and finally how this is connected to form the global solution.

Algebraic matrix operators are formed from the mathematical framework and special

operators for higher-order operations and enforcing boundary conditions are expressed.

4.5.1 The Jacobian

As discussed earlier when performing elemental operations, integrals and differentials

are efficiently computed by performing them over a standard region and then mapping

them onto the elemental domain. It has been shown how such a mapping may be formed

in one dimension. In two and three dimensions the concept of Jacobian mapping is

introduced. Just as in one dimension the integral becomes∫
Ωe

u (x1, x2) dx1 dx2 =

∫
Ωst

u (ξ1, ξ2) |J2D| dξ1 dξ2. (4.71)

Here J2D is defined as

J2D =

∣∣∣∣∣∣
∂x1
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ1

∂x2
∂ξ2

∣∣∣∣∣∣ , (4.72)

and for completeness J3D is defined as

J3D =

∣∣∣∣∣∣∣∣∣
∂x1
∂ξ1

∂x1
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ1

∂x2
∂ξ2

∂x2
∂ξ3

∂x3
∂ξ1

∂x3
∂ξ2

∂x3
∂ξ3

∣∣∣∣∣∣∣∣∣ , (4.73)

where |. . .| represents the determinant of the matrix.

Given the form of the mapping xi = χ (ξ1, ξ2), all partial derivatives required for

the Jacobian can be calculated. For a straight-sided quadrilateral element with corner

nodes at
{(

xA1 , x
A
2

)
,
(
xB1 , x

B
2

)
,
(
xC1 , x

C
2

)
,
(
xD1 , x

D
2

)}
the mapping is described by

xi = χ (ξ1, ξ2) = xAi
1− ξ1

2

1− ξ2
2

+xBi
1 + ξ1

2

1− ξ2
2

+xCi
1 + ξ1

2

1 + ξ2
2

+ xDi
1− ξ1

2

1 + ξ2
2

.

(4.74)
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The simple form of these mappings ensures that the partial derivatives and Jacobians

are constant for all quadrilateral regions of this shape. For deformed elements the Jaco-

bian may be evaluated and stored at the quadrature points, thus storing the standard-

to-elemental mapping at each of the nodal points.

An analogous application of the Jacobian mapping may be applied to differential

operations. A chain rule expansion shows that the differential operator may be given

by

∇ =


∂

∂x1
∂

∂x2

 =


∂ξ1
∂x1

∂

∂x1
+

∂ξ2
∂x1

∂

∂x2
∂ξ1
∂x2

∂

∂x1
+

∂ξ2
∂x2

∂

∂x2

 . (4.75)

Through a process of manipulating the coordinate mapping (in 2D)

∂ξ1
∂x1

=
1

J

∂x2
∂ξ2

,
∂ξ1
∂x2

= − 1

J

∂x1
∂ξ2

,
∂ξ2
∂x1

= − 1

J

∂x2
∂ξ1

,
∂ξ2
∂x2

=
1

J

∂x1
∂ξ1

. (4.76)

At this point computation of the two-dimensional gradient operator equation 4.75 is

possible using the relationships in equation 4.76, as all partial derivatives can be ex-

pressed in terms of the standard elemental co-ordinates (ξ1, ξ2). This allows us to

pre-compute and store the differential operators using the Jacobian mapping, just as

with the integral formulae.

4.5.2 Mass matrix, W

As a consequence of the Galerkin formulation a method of numerically performing

an integral is required. The following discusses the development of the W matrix

(Karniadakis & Sherwin 1999, following), a matrix operator which performs integrals

in the numerical algorithm.

As solutions are computed across a standard region and then mapped to elemental

space, let the vector u denote the evaluation of u (ξ) at the standard elemental points.

The weight matrix, W, is a diagonal matrix which contains the Gaussian quadrature

weights, augmented by the elemental Jacobian at each quadrature point. It is designed

to be consistent with u evaluated at each of the quadrature points. This forms the

matrix implementation of the numerical integration formulae discussed in § 4.4.3 in one

dimension.

W [m (ijk)] [n (rst)] = Jijkwiwjwkδmn, (4.77)

where δmn is the Kronecker-delta function, and m (ijk) and n (rst) are integer values

which run consecutively from 0 to the number of quadrature points NQ thus relating
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all nodes in the domain. The use of the Jacobian in forming the matrix W allows it

to perform integration in the local-elemental coordinate system. In global co-ordinates

the assembly matrix, A, is used to combine the degrees of freedom.

4.5.3 Differentiation matrix, D

The final matrix required to complete the set of discrete operators is the differentiation

matrix (analogous to the one-Dimensional operation in equation 4.67), extended to

global co-ordinates. The partial derivative of local-elemental co-ordinates with respect

to standard co-ordinates is defined by

∂u

∂ξ1
(ξ1i, ξ2j , ξ3k) =

Q1∑
r=0

Q2∑
s=0

Q3∑
t=0

dhr (ξ1)

dξ1

∣∣∣∣
ξ1,i

hs (ξ2j)ht (ξ3k)urst, (4.78)

where hr (ξ) is the one-dimensional Lagrange polynomials through theQGauss–Legendre–

Lobatto quadrature points. A differentiation matrix may be formed,

Dξi =
dhr (ξ1)

dξ1

∣∣∣∣
ξ1,i

hs (ξ2j)ht (ξ3k) , (4.79)

which acts on the global vector u evaluated at the quadrature points to form the

derivative at the quadrature points in each of the ξi directions. To finalize this discussion

it is recognized that the derivative with respect to the local coordinates may be obtained

from the chain rule (i.e. equation 4.75). Given this definition, the differential operator

must be pre-multiplied by a diagonal matrix containing the factors dξ
dx evaluated at

each of the quadrature points. This may be represented by the diagonal component

notation Λ (f (ξ1, ξ2ξ3)) = f (ξ1i, ξ2j , ξ3j) δmn. Finally the differentiation matrix in

global coordinates takes the form,

∂u

∂x1
=

[
Λ
∂ξ1
∂x1

Dξ1 +Λ
∂ξ2
∂x1

Dξ2 +Λ
∂ξ3
∂x1

Dξ3

]
u. (4.80)

In this discussion it has been shown that by casting the equations in the weak

Galerkin form enables the reconstruction of the partial differential equations in a form

that may be approximated using polynomial functions. Using Gauss-type quadrature

rules it is evident that the equations may be cast into simple algebraic matrix equations.

Equipped with the quadrature rules and the standard-local Jacobian mappings enables

construction of the matrices W and D. Finally, the assembly matrix A can be used

to combine local degrees of freedom to form a global system. A numerical toolbox

has been described which may be used to solve complicated PDEs with integral and

differential operators.
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4.5.4 Forming higher-order operators

While it has been shown that integrals and differentials can be easily performed, a

non-trivial extension that is required is the formation of high-order operators such as

the Laplacian, ∇2. These higher-order operators are required in this implementation

for the viscous term in the Navier–Stokes equations (4.1) and the stress gradient term

in the solid mechanics equations (4.3). To illustrate this consider the example used in

Karniadakis & Sherwin (1999) of the Galerkin approximation of a Poisson equation

∇2u (x) = f (x) . (4.81)

Taking the Legendre inner product and applying Gauss’ Divergence theorem (as per

Galerkin approximation) obtains

(∇v,∇u) =

∫
∂Ω

v∇u.ndS − (v, f) , (4.82)

where ∂Ω is the boundary of the problem domain and n is the unit normal vector to

the boundary. The weak Laplacian is (∇v,∇u) , and in two dimensions may be written

as

(∇v,∇u) =

(
∂v

∂x1
,
∂u

∂x1

)
+

(
∂v

∂x2
,
∂u

∂x2

)
. (4.83)

Given that the Galerkin approximation uses the same test and trial functions, the

matrix form of the weak Laplacian, becomes

Le =

[
Λ

(
∂ξ1
∂x1

)
Dξ1 +Λ

(
∂ξ2
∂x1

)
Dξ2

]T
W

[
Λ

(
∂ξ1
∂x1

)
Dξ1 +Λ

(
∂ξ2
∂x1

)
Dξ2

]
+

[
Λ

(
∂ξ1
∂x2

)
Dξ1 +Λ

(
∂ξ2
∂x2

)
Dξ2

]T
W

[
Λ

(
∂ξ1
∂x2

)
Dξ1 +Λ

(
∂ξ2
∂x2

)
Dξ2

]
.

Note the transpose in the pre-multiplied differentiation matrix is simply a result of the

matrix algebra required to recover the form of the Laplacian (see equation 4.83).

4.5.5 The surface integral

As a direct consequence of the Galerkin formulation and specifically the step involving

Gauss’ Divergence theorem, a surface integral (in 3D) or a line integral (in 2D) must be

performed. See for example the Galerkin form of the Helmholtz equation. Physically

130



this line or surface integral may be interpreted as representing the enforcement of

boundary conditions on the reformulated equations

(∇v,∇u)Ω + λ (v, u)Ω = 〈v,∇u · n〉 − (v, f)Ω . (4.84)

It is noted that the surface integral which results from the Galerkin approximation

allows explicit enforcement of the Neumann boundary conditions. To solve the PDE

an operator which evaluates the surface integral is required,

〈v,∇u · n〉 = 〈v, gN 〉 =
∫
∂ΩN

vgN dS =

Nel∑
e=1

∫
∂ΩN

⋂
∂Ωe

vegN dSe. (4.85)

As with regular integrals the strategy is to perform the integration using efficient Gaus-

sian quadrature across a standard element and subsequently map these to each indi-

vidual element in order to find their elemental contribution. In following this approach

the surface Jacobian is introduced, which is analogous to the Jacobian for full integrals.

Let us first consider the two-dimensional case, which is simply a line integral of the

form ∫ b

a
f (x1, x2) ds, (4.86)

where ds =
√

(dx1)
2 + (dx2)

2 is the differential length along the path of integration.

The differential length, ds, may be expressed in terms of the local co-ordinates, ξ,

through knowledge of the mapping χ, i.e.

x1 = χ1 (ξ1, ξ2) , x2 = χ2 (ξ1, ξ2) , (4.87)

allowing dx1 and dx2 to be expressed as

dx1 =
∂x1
∂ξ1

dξ1 +
∂x1
∂ξ2

dξ2, dx2 =
∂x2
∂ξ1

dξ1 +
∂x2
∂ξ2

dξ2. (4.88)

A method for solving the partial derivatives (equation 4.68) has already been developed.

Along a boundary the element edge is completely parametrised by only one of the

standard co-ordinates. That is to say, one of the standard coordinates ξ1 or ξ2 will be

constant on the edge. Thus evaluation of ds can be made in terms of the differential

change in the other dimension, equation 4.89 is for the case where ξ2 is held constant

ds =

√
(dx1)

2 + (dx2)
2 =

√√√√( ∂x1
∂ξ1

∣∣∣∣
ξ2=−1

)2

(dξ1)
2 +

(
∂x2
∂ξ1

∣∣∣∣
ξ2=−1

)2

(dξ1)
2. (4.89)
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Thus the contribution to the eth element in the integral equation may be found using∫
∂Ωe∩s

f (x1, x2) ds =

∫ 1

−1
f (ξ1, ξ2)

√(
∂x1
∂ξ1

)2

+

(
∂x2
∂ξ1

)2

dξ1, (4.90)

which may be simply evaluated using the Gaussian quadrature rules.

The extension to three dimensions is slightly more complex because on any surface

only one of the standard co-ordinates is constant while the other two vary, for example

for a surface for which ξ3 is fixed

x1 = χ1 (ξ1, ξ2,−1) , x2 = χ2 (ξ1, ξ2,−1) , x3 = χ3 (ξ1, ξ2,−1) . (4.91)

To relate the differential change in surface area dS in terms of parametric coordinates

it is recognised that a change in position dx, will be the vector [dx1, dx2, dx3]
T and in

parametric co-ordinates,

dx =
∂x

∂ξ1
dξ1 +

∂x

∂ξ2
dξ2, (4.92)

where x is the position vector and ∂x
∂ξ are surface tangent vectors along lines of constant

ξ1 and ξ2 (in the case that ξ3 is constant). Given this interpretation, along lines of

constant ξ2 the change in differential length dlξ2 is

dlξ2 =
∂x

∂ξ2

∣∣∣∣
ξ2

dξ1 =


∂x1
∂ξ1

∂x2
∂ξ1

∂x3
∂ξ1

dξ1. (4.93)

Finally, these differential tangent vectors may be used to determine the change in area

on the surface using a cross product rule

dS = |dlξ2 | |dlξ2 | sin θ, (4.94)

where θ is the angle between the two vectors dlξ1 and dlξ2 which expressed explicitly

as a cross product becomes

dS = |dlξ2 × dlξ1 | =
∣∣∣∣ ∂x∂ξ1 × ∂x

∂ξ2

∣∣∣∣ dξ1 dξ2 (4.95)

It may be easier to interpret this as finding the component of the vector normal to the

surface. Finally the surface integral may be evaluated as∫
∂Ωe∩s

f (x1, x2, x3) dS =

∫ 1

−1

∫ 1

−1
f (ξ1, ξ2,−1)

∣∣∣∣ ∂x∂ξ1 × ∂x

∂ξ2

∣∣∣∣ dξ1 dξ2 (4.96)

This completes the numerical toolbox needed to construct algebraic approximations of

the partial differential equations to be solved in this thesis.
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4.6 Static condensation

Having described the mathematical framework described in Karniadakis & Sherwin

(1999), which transforms a partial differential equation into a set of algebraic matrix

equations, an efficient technique is now described for solving the system, known as

static condensation. For details on the derivation of the static condensation technique,

the reader is directed to the discussion in Karniadakis & Sherwin (1999). It is assumed

the matrix system to be solved is of the form

Mx = ATMeAx = f , (4.97)

where x is a vector of global unknowns M is a block diagonal matrix formed from the

Laplacian, local mass matrices, or both. In the static condensation technique use is

made of the global elemental decomposition to perform the matrix inversion over an

elemental matrix domain, which is far more efficient due to the smaller matrix sizes.

Each of the elemental matrices Me can be broken down into components containing

boundary and interior contributions (as a result of the numbering scheme employed),

that is,

Me =

 Me
b Me

c

(Me
c)

T Me
i

 , (4.98)

Where Me
b is the boundary-boundary mode interactions, Me

c is the components re-

sulting from a coupling between boundary and interior nodes and Me
i is from interior-

interior mode interactions. Just as with the matrix Me the vectors x and f may be

broken into the boundary and interior components xb, xi and f b, f i respectively, that

is,

x =

 xb

xi

 , f =

 f b

f i

 , (4.99)

then equation 4.97 can be written as Me
b Me

c

(Me
c)

T Me
i

 xb

xi

 =

 f b

f i

 . (4.100)

To solve this system a standard block elimination can be performed (Karniadakis &

Sherwin 1999). After block elimination, equation 4.100 becomes Me
b −Me

c (M
e
i )

−1 (Me
c)

T 0

(Me
c)

T Me
i

 xb

xi

 =

 f b −Me
c (M

e
i )

−1 fi

f i

 . (4.101)
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The equation for the boundary unknowns is therefore(
Me

b −Me
c (M

e
i )

−1 (Me
c)

T
)
xb = fb −Me

c (M
e
i )

−1 fi. (4.102)

Once the boundary unknowns xb are determined the internal degrees of freedom xi can

be determined from the second row of equation 4.101 since

xi = (Me
i )

−1 fi − (Me
i )

−1 (Me
c)

T xb. (4.103)

To solve the matrix system (equation 4.97) no longer requires finding the inverse

of M. Instead evaluation of Mi alone is required. Since Mi is a block diagonal matrix

(due to the choice of Legendre polynomials for the basis function) the local matrices

Me
i and its inverse (Me

i )
−1 are also diagonal. This can be inverted locally within each

element which is much less computationally expensive than a global inversion of the

Mi matrix. Once this inverse is found, simple matrix multiplication can be used to

form Me
c (M

e
i )

−1 =
[
(Me

i )
−1 (Me

c)
T
]T

.

The final component is to form and invert the Schur complement, Msc = Me
b −

Me
c (M

e
i )

−1 (Me
c)

T . Once these three components have been formed equations 4.102

and 4.103 can be easily solved for xb and xi Most of the memory is used in storing

this large matrix. Although it may be formed on an elemental level it cannot be

inverted on an elemental level as it is not in a block diagonal form. By using the static

condensation technique the size of the global inversion matrix has been drastically

reduced. Section 4.6.1 goes on to discuss how the Schur complement matrix (which

has all of the boundary-boundary and boundary-interior node information) can be

solved more efficiently while enforcing both the homogenous and Dirichlet boundary

conditions.

4.6.1 The Schur complement, Msc

The Schur complement matrix has all of the boundary-boundary and boundary-interior

node information. As such it is where the boundary conditions must be enforced (re-

call § 4.3.2 in which the lifting of boundary conditions was discussed). The Galerkin

formulation allows a direct implementation of Neumann boundary conditions. Other

boundary nodes may be considered to be either homogenous or Dirichlet. As before,

the homogenous unknown solution of xb is denoted by xH
b and the Dirichlet component

by xD
b so the total boundary vector xb may be written

xb = xH
b + xD . (4.104)
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For the efficient manipulation of the Schur complement matrix and to easily handle

the different homogeneous and Dirichlet boundary conditions, a numbering system

is adopted whereby the Dirichlet degrees of freedom are listed after the homogenous

degrees of freedom. In this way the boundary degree-of-freedom vector may be written

xb =

 xH
b

xD
b

 . (4.105)

Similarly. the Schur complement matrix is reordered into

Msc =

 MHH
sc MHD

sc

MDH
sc MDD

sc

 , (4.106)

where the sub-matrices MHH
sc , MHD

sc , MDH
sc and MDD

sc correspond to the homogenous

and Dirichlet solutions xH
b and xD

b , respectively. This matrix may be used to solve the

problem  MHH
sc MHD

sc

MDH
sc MDD

sc

 xH
b

xD
b

 =

 f̂H
b

f̂D
b

 , (4.107)

where f̂H and f̂D are the homogenous and Dirichlet components of the vector f̂ respec-

tively. f̂ is the right hand side of the boundary equation 4.102, i.e.

f̂ = fb −Me
c (M

e
i )

−1 fi.

Having already constructed the vector f̂ , equation 4.107 may be solved with enforcement

of the Dirichlet boundary conditions. The sub-matrices MDH
sc and MDD

sc are not part

of the Galerkin problem as they contain weight functions that are not zero at Dirich-

let boundary conditions. To enforce the Dirichlet boundary conditions the system is

manipulated to

MHH
sc xH

b = f̂H
b −MHD

sc xb, (4.108)

where the known Dirichlet boundary conditions have been moved to the right hand

side. The symmetry of the system MHH
sc has been maintained, essentially lifting the

known solution from the problem. Now all that remains is the inversion of the MHH
sc

matrix in order to solve the system of equations 4.97. Despite containing the majority

of the connectivity data, MHH
sc remains a sparse matrix. It is of much smaller size than

the original matrix M of equation 4.97, which makes it much more efficient to solve.

This static condensation technique also shows how the Dirichlet boundary conditions

may be accounted for.
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Numerically, the matrix manipulation is handled by two separate packages. The

LAPACK package is used for linear algebra operations including the inversion and

multiplication of matrices on an elemental level where the matrices are dense. The

sparse matrix solver PARDISO (Schenk & Gärtner 2004) is used for all higher level

matrix manipulation due to its excellent efficiency properties when handling sparse

matrices.

4.7 Closure

In solving continuum mechanics, fluid or solid, the conservation laws of mass and mo-

mentum are modelled. This common underlying physics precipitates mathematically

into quite similar mathematical expressions for the evolution of each primary variable

through time. This similarity was exploited to develop very similar and highly accu-

rate time stepping schemes for both the fluid and solid mechanics equations based on

operator-splitting and backwards differencing approaches. In both cases polynomial ex-

trapolation was used to determine the contribution of non-linear terms at the updated

time-step as the algorithm uses an implicit matrix solve.

The Galerkin formulation allows each step in the three-step splitting schemes to be

recast in integral form and allows a simple way to enforce higher-order Neumann bound-

ary conditions such as those required for the pressure sub-step in the Navier–Stokes

problem and for the forces applied at the boundaries to solid domains. A spectral-hp

element spatial discretisation was chosen for both solvers to take advantage of the highly

efficient refinement of p-type discretisations. Gauss–Legendre–Lobatto quadrature was

chosen as the basis for the nodal expansion for its efficiency, accuracy and the ease it

offers for enforcing C0 continuity between elements.

Using this discretisation scheme a series of matrix-based numerical operators can

be formed for conducting integration differentiation and higher-order operations, these

were constructed for the numerical implementation of this model.

A mathematical toolbox for spatial discretisation and a framework for the temporal

discretisation has been outlined. This framework can be similarly applied to fluid

dynamics and both linear and non-linear solid mechanics. This work leads to the

completion of aim 1c of this thesis, construction of a fluid-strucutre interaction solver

capable of modelling the non-linear elastic material properties of the wall.

The validity of this algorithm will be proven in chapter 6. While the algorithm
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is well documented for fluid mechanics problems, it has not explicitly been used in

solid mechanics and fluid-structure interactions. With the successful validation of the

algorithm, the similarity of the fluid and solid algorithms prove advantageous in FSI

problems with the efficient and accurate passing of boundary information.
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Chapter 5

The neo-Hookean solver

5.1 Introduction

Chapter 4 detailed the mathematical framework used for the temporal and spatial

discretisation of the Navier–Stokes and neo-Hookean governing equations. Typically

investigations into aneurysm haemodynamics that involve an elastic wall do not include

the inertial term in the neo-Hookean governing equations. Instead, previous solvers

solve a quasi-static system in which a time varying boundary condition is employed in

conjunction with a steady state solver. The temporal discretisation described briefly

in § 4.2.3.2 includes the inertial term. A combination of a finite differencing approach

and an operator splitting method is used to solve the set of equations.

A spectral element discretisation is used for the spatial terms. In solid mechanics,

finite element schemes are by far the most popular methods used. Spectral element

methods have been shown to exhibit exponential convergence properties in their ap-

plications to fluid mechanics. In the context of solid mechanics, the spectral element

discretisation in addition to the inclusion of the inertial term and using an operator

splitting method for the temporal discretisation represents a new algorithm. Such an

algorithm has not previously been developed to solve the neo-Hookean governing equa-

tions.

In the following description the neo-Hookean algorithm will be presented in more

detail. Also developed in this thesis is a new coupling method for fluid-structure inter-

actions. For details on this the reader is directed to § 3.5.1.
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5.2 Splitting the governing equations

For solid mechanics problems the governing equations are

ρ
∂2U

∂t2
= ρb̄+∇ · σ, (5.1)

where U = (U1, U2, U3) is the displacement vector, ρ is the solid density, σ is the stress

tensor, b̄ are the body forces and t is time. The stress tensor σ will take a different

form depending on the constitutive model being used; for further discussion on this

refer to chapter 2.

As described in chapter 2, the neo-Hookean solid has a complex structure for the

Cauchy stress tensor, i.e.

σ = PI + F

(
∂W

∂F

)T

, (5.2)

where W is the neo-Hookean strain-energy-density function, which is non-linear in

nature, F is the deformation gradient (a function of U), P is the pressure arising to

maintain incompressibility, and I is the identity matrix. Substitution into equation 5.1

obtains

ρ
∂2U

∂t2
= G∇2U + F−T pI + ρb̄,

∇ ·U = 0,

(5.3)

where G is the shear modulus, F−T is the inverse transpose of the deformation gradi-

ent F which describes the map from deformed to original coordinates. The physical

ramifications of this term will be treated in § 5.3

As discussed in § 4.2.1, operator splitting schemes assume an operator can be written

as a linear sum of m components

Lu = L̂1u+ L̂2u+ . . .+ L̂mu, (5.4)

the solution that eventually updates the variable u to the next time step n + 1 can

be derived simply by summing the contribution of each L̂m operating on u separately

(Press 2007).

Using a second-order accurate backwards differencing approach for the inertial term,

the present work proposes a two-step splitting scheme (§ 4.2.3.2). This scheme is

implicit, second-order accurate and utilises backwards differencing for the temporal

discretisation as described in § 4.2.3.2,

ρ
Û −

∑Ji
q=0 α

s
qU

n−q

(∆t)2
= −∇

(
F−TPn+1

)
, (5.5)
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κsUn+1 − Û

∆t
= ∇2Un+1. (5.6)

Details of the finite differencing coefficients κ and α can be found in §4.2.3.2. The

following sections describe in detail the matrix operators used and the solution method

to solve each of the sub-steps defined in equations 5.5 and 5.6.

5.3 Sub-step 1

In the first sub-step, equation 5.5, the contribution of the previous displacement field,∑Ji
q=0 α

s
qU

n−q is used to account for the contribution of the pressure term and to

determine the intermediate displacement field Û . This first requires evaluation of the

kinematic pressure, P . Toward this goal, one must take the divergence of both sides of

equation 5.5,

∇ ·

(
Û −

∑Ji
q=0 α

s
qU

n−q

(∆t)2

)
= ∇ ·

(
−∇F−TPn+1

)
, (5.7)

which becomes

∇ · Û −
∑Ji

q=0 α
s
q∇ ·Un−q

(∆t)2
= −∇2

(
F−TPn+1

)
. (5.8)

The pressure P introduced in the neo-Hookean Cauchy stress is introduced as a penalty

function to enforce the incompressibility. As such the vector field should satisfy an

incompressibility constraint (Bower 2009),

∇ ·U = 0. (5.9)

To enforce the incompressibility constraint on the intermediate displacement field, Û ,

∇ · Û = 0 is substituted leaving

−∇ ·
∑Ji

q=0 α
s
qU

n−q

(∆t)2
= −∇2

(
F−TPn+1

)
. (5.10)

Equation 5.10 is the final form of equation 5.5 that must be solved. The inertial

contribution to the displacement field
∑Ji

q=0 α
s
qU

n−q is calculated explicitly from knowl-

edge of the displacement field history. As such, it is a known quantity and forms the

right hand side of a Poisson matrix equation, which shall be called f . Equation 5.5 must

then be solved for the kinematic pressure, P. To do this the framework in chapter 4 is

followed; recasting the equation

−∇2
(
F−TPn+1

)
= f, (5.11)
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in its weak form by taking the Legendre inner product with respect to a test function

w (x),

−
(
w,∇2

(
F−TPn+1

))
= (w, f) . (5.12)

Since ∇2P = ∇ · ∇P , Gauss’ divergence theorem can be applied to obtain

(
∇w,∇

(
F−TPn+1

))
+ 〈w,∇P · n〉 = (w, f) (5.13)

where

〈w,∇P · n〉 =
∫
∂Ω

w∇P · ndx (5.14)

and n is the outward normal to the boundary ∂Ω.

The flux contribution in equation 5.13, and explicitly defined in 5.14, only makes

a contribution on the Neumann boundary since, by definition, w (∂ΩD) is zero on all

Dirichlet boundaries. Equation 5.14 therefore allows us to weakly enforce the Neumann

boundary conditions

∇P · n = gN , (5.15)

where gN are the Neumann boundary conditions. These boundary conditions can sim-

ply be enforced by substituting the value gN into the integral 5.14. As the contribution

of gN is zero on all Dirichlet boundaries and known for all Neumann type boundaries

it may be moved to the right hand side of the equation and enveloped into the forcing

function f∗, (
∇w,∇

(
F−TPn+1

))
= (w, f)− 〈w,∇P · n〉

= f∗,
(5.16)

where f∗ = (w, f)−〈w,∇P ·n〉. Handling of Dirichlet boundary conditions is performed

through lifting the solution as discussed in the static condensation technique description

in § 4.6.

Having manipulated the equations into their weak form, a method for solving equa-

tion 5.16 is considered. The mathematical framework of chapter 4 provides a method

for developing the appropriate differential, integral and higher-order operators neces-

sary to solve the equation. Initially a single element will be considered, and later the

global system will be constructed. Within each element a discrete approximation is

made of the solution using a polynomial expansion

P e = MeP̂ e, (5.17)
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where P e is the elemental pressure, Me is the elemental mass matrix (comprising the

test function weights), and P̂ e are the discrete trial functions in the elemental domain.

Similarly, the forcing function (or right hand side) of equation 5.16, f∗, is denoted by

fe at the quadrature points. Using Gauss–Legendre–Lobatto quadrature and Legendre

polynomial basis functions the elemental contribution of equation 5.16 can be written

as

LeF−T P̂ e = Wefe − Se
(
gN +∇PH

)
(5.18)

where it is recalled from chapter 4 that,

W [m (ijk)] [n (rst)] = Jijkwiwjwkδmn, (5.19)

Le =

[
Λ

(
∂ξ1
∂x1

)
Dξ1 +Λ

(
∂ξ2
∂x1

)
Dξ2

]T
W

[
Λ

(
∂ξ1
∂x1

)
Dξ1 +Λ

(
∂ξ2
∂x1

)
Dξ2

]
+

[
Λ

(
∂ξ1
∂x2

)
Dξ1 +Λ

(
∂ξ2
∂x2

)
Dξ2

]T
W

[
Λ

(
∂ξ1
∂x2

)
Dξ1 +Λ

(
∂ξ2
∂x2

)
Dξ2

]
,

(5.20)

and Se is the surface integral from § 4.5.5. PH represents the homogeneous pressure

boundary contributions.

At this point the definition of F is considered. This describes the map between

the original and deformed coordinates. The inverse transpose, F−T , describes the

map from deformed to original coordinates. Physically, the effect that this has is to

link each state of matter. If the derivative matrices are formed with respect to the

deformed coordinates this term can be omitted from the matrix equation 5.18. To

form the matrices at this deformed configuration the third-order accurate polynomial

extrapolation, i.e.

xn+1 = 3xn − 3xn−1 + xn−2, (5.21)

is used to predict the position of the solid at the next time step. Then this geometry

is used to form the matrix operators Le. This simplifies the equations to

LeP̂ e = Wefe − Se
(
gN +∇PH

)
. (5.22)

The next step is to form the global matrix solution. To form the global matrix

system, the assembly matrix A is used. The assembly matrix is described in § 4.4.1 as

P̂l = AP̂g, (5.23)

where P̂l is the discrete local coordinates and P̂g are the discrete global coordinates. A

can be stored as a vector, as it links global and local coordinate systems. As such, to
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go from local to global coordinates simply substitute equation 5.23 and pre-multiply

equation 5.22 by AT to obtain

ATLeAP̂g = ATWefe − ATΓ, (5.24)

where

Γ = Se
(
gN +∇PH

)
, (5.25)

is the non zero surface integral terms from equation 5.22.

Before solving for P using the static condensation method outlined in § 4.6, which

allows the strong enforcement of the Dirichlet pressure boundary conditions, the homo-

geneous pressure boundary contributions ∇PH are described. The pressure boundary

condition imposed at the (n+ 1)st time step is

PH · n =
∂Pn+1

∂n
= −

∂2Un+1

∂t2
+ ρ

Jp−1∑
q=0

βs
q∇2 (U)n−q

 · n. (5.26)

This homogenous boundary condition is derived by rearranging the governing equations

in terms of P and taking the component which is normal to the homogenous bound-

aries. To ensure it provides the boundary conditions at the next time step (n+ 1) the

non-linear stress term is determined using a polynomial extrapolation method (see equa-

tion 5.21) based on past displacement fields Un−q. The pressure boundary condition

can be explicitly determined based on the previous displacement fields. Once found,

PH can easily be substituted directly into equation 5.25 and in turn equation 5.24 to

form the known right hand side of the matrix equation.

Finally, to solve the matrix equation the static condensation technique (§ 4.6) is

applied. The kinematic pressure P that is determined is then substituted back into

equation 5.5 to find the intermediate displacement field Û .

5.4 Sub-step 2

The second sub-step, solving equation 5.6, involves solving a Helmholtz equation for the

final displacement field Un+1. The intermediate displacement field, Û , is known from

the solution to equation 5.5, and provides contributions from the pressure and inertial

terms as well as the enforced incompressibility condition. To construct the matrix

operator system for sub-step 2, the same steps are followed as were outlined in § 5.3.

The subsequent matrix operator system may be solved using the static condensation

technique described in § 4.6.
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Firstly, equation 5.6 is rewritten with all of the known quantities on the right hand

side
κsUn+1

∆t
+∇2Un+1 =

Û

∆t
. (5.27)

Next equation 5.27 is recast in weak form by taking the Legendre inner product

with respect to the test function w (x)(
w,∇2Un+1

)
+

κs

∆t

(
w,Un+1

)
=

(
w,

Û

∆t

)
. (5.28)

Since ∇2U = ∇ · ∇U , Gauss’ divergence theorem can be applied to obtain

〈w,∇U · n〉 −
(
∇w,∇Un+1

)
+

κs

∆t

(
w,Un+1

)
=

(
w,

Û

∆t

)
, (5.29)

where

〈w,∇Un+1 · n〉 =
∫
∂Ω

w∇Un+1 · ndx. (5.30)

Following § 5.3 the flux contribution defined in equation 5.30 allows weak enforce-

ment of the Neumann boundary conditions,

∇Un+1 · n = gN , (5.31)

where gN are the Neumann boundary conditions. As the contribution of this is zero on

all Dirichlet boundaries and known for all Neumann type boundaries it may be moved

to the right hand side of the equation(
∇w,∇Un+1

)
− κs

∆t

(
w,Un+1

)
= 〈w, gN 〉 −

(
w,

Û

∆t

)
. (5.32)

Again the Dirichlet boundary conditions are handled through lifting the solution as

discussed in the static condensation technique in § 4.6.

In following the method of § 5.3, the differential, integral, and higher-order operators

developed in chapter 4 are now substituted into equation 5.32. A single element is

initially considered and the global system constructed later. Within each element a

discrete approximation is made of the solution using a polynomial expansion

U e = MeÛ e, (5.33)

where U e is the elemental displacement vector, Me is the elemental mass matrix (made

of the test function weights) and Û e are the discrete trial functions in the in the ele-

mental domain. Using Gauss–Legendre–Lobatto quadrature and Legendre polynomial

basis functions the elemental contribution of equation 5.32 can be written as

LeU e,n+1 − κs

∆t
WeU e,n+1 = SegN −We Û

∆t
(5.34)
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where We, Le and Se are defined in both § 5.3 and chapter 4.

Unlike sub-step 1 (equation 5.5) there is no F−T term. This means that the matrix

operators may be formed using the current geometry.

The next step is to form the global matrix solution. To form the global matrix

system assembly matrix A is used. Just as in § 5.3, to go from local to global coordinates

equation 4.49 is substituted into equation 5.34 and pre-multiplied by AT to obtain

AT

[
Le − κs

∆t
We

]
AU e,n+1 = ATΓ, (5.35)

where

Γ = SegN −We Û

∆t
, (5.36)

is the non zero surface integral terms from equation 5.22.

By setting H =
[
L− κs

∆tW
]
as the global Helmholtz operator equation 5.35 may

finally be rewritten as

HUn+1 = Γ. (5.37)

All of the components of Γ on the right hand side are known having been explicitly

calculated in sub-step 1. As such the matrix equation for the displacement field at

the next time step Un+1 is finally able to be solved using the static condensation

technique (§ 4.6). Displacement boundary conditions are prescribed through the static

condensation process.

5.5 Closure

The governing equations for an incompressible neo-Hookean material are solved using

a backward differencing temporal discretisation and a spectral element spatial discreti-

sation. A two-step operator splitting scheme is proposed in order to implicitly solve for

the displacement at the next time step. The Galerkin approximation of the equations

allows weak enforcement of the Neumann boundary conditions. Once the matrix system

is formed the static condensation method described in § 4.6 is used to simultaneously

enforce the Dirichlet boundary conditions and solve for the system of equations.

The combination of a two-step operator splitting scheme, the inclusion of the inertial

term and the use of a spectral element spatial discretisation makes this a new technique

for solving the governing equations for an incompressible neo-Hookean solid. When

simulating the response of the arterial wall in an aneurysms, a hyperelastic material
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model such as the neo-Hookean is essential. This algorithm in conjunction with the new

fluid-structure interaction coupling scheme described in § 3.5.1 represents a new and

highly accurate tool for investigating FSI in aneurysms. Validation of this technique

can be found in chapter 6, while preliminary results on aneurysm haemodynamics are

presented in chapters 8 and 9.
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Chapter 6

Validation

The purpose of this chapter is to present a series of validation cases which were used

to confirm the accuracy of the numerical techniques developed in chapters 3 to 5. The

fluid-structure interaction solver consists of both solid-structural and fluid dynamics

components. The fluids component of the algorithm has been rigorously validated and

used in many published papers, for examples of its validation the reader is directed to

Sheard & Ryan (2007). The validation presented in this chapter focuses on the accuracy

of the Hookean and neo-Hookean solid solvers and the Arbitrary Lagrangian–Eulerian

(ALE) algorithm for coupling the solvers.

6.1 Introduction

The validation of a numerical algorithm is a process whereby the accuracy of the al-

gorithm is assessed. This is performed using a test case for which the results are well

defined. The capacity of the algorithm to model the desired physics is determined by

how closely it reproduces the known solution.

The numerical algorithms developed in this thesis were constructed in a sufficiently

broad manner so as to allow their application to a wide range of engineering problems. A

series of validation cases were constructed to determine the accuracy of each component

of the algorithm and the sum of their parts. The variability in the function of each model

means that the same testing procedure cannot be applied to each problem. As such,

the series of validation cases presented in the following sections focus on very different

problems. The generality with which the algorithm was developed allows testing to

be conducted on simple known solutions rather than complicated application-specific

examples for which data may not be readily available.

To this end, the accuracy of the Hookean solver is tested using a simple three-
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Figure 6.1: The seven-element patch test mesh used for Hookean model verification.

dimensional patch test, the neo-Hookean solver is compared to an existing algorithm

and some experimental data for a rubbery material; and the ALE solver is tested using

three different test cases.

6.2 Hookean solver

Testing of the Hookean solver is conducted using a simple uni-axial stress test. The test

uses the patch test mesh which is widely used in the testing of linear finite element solid

mechanics codes (see for example Pierson et al. 2004; Koteras et al. 2006; Scherzinger

& Hammerand 2007). The mesh, shown in figure 6.1, is a cube consisting of seven

elements. The elements in this mesh are not parallelepipeds, which makes the mesh

useful in assessing the linear consistency of the hexahedral elements used in the spatial

discretisation of the domain. The patch-test mesh has eight exterior nodes that are

used to define boundary conditions. The boundary conditions can be either prescribed

displacements or tractions.

A simple uni-axial stress test is used to validate the Hookean model solver. A uni-

axial stress is prescribed using displacement control in the x-direction and traction-free

boundary conditions are applied in all other directions. One face of the cube which
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Displacement Predicted % error

ux ε σ uy ε σ uy

0.005 0.995 1.05× 107 −1.2461× 10−3 0.0 0.12 0.1

-0.005 -0.005 9.95× 106 1.2539× 10−3 0.0 0.13 0.15

Table 6.1: Comparison of the predicted lateral displacements and stresses to simulated

values. Simulations were conducted using a polynomial order of n = 8.

is oriented normal to the x-direction is fixed in space while the corresponding face on

the opposite side of the cube has displacements of 0.005 m and -0.005 m prescribed as

boundary conditions for two tests. All other surfaces are free to move. A polynomial

order of n = 8 was used in both test cases, at this resolution the solution has reached

a mesh independent result which exhibits very little numerical error.

The material constants for the Hookean model used in this problem are: Young’s

modulus, E = 10× 106 Pa, and Poisson ratio, υ = 0.25.

Given a uni-axial strain problem on a unit cube with zero lateral tractions, the

stress calculated using a Hookean elastic model is

σ = Eε, (6.1)

where E is the Young’s modulus and ε is the true strain. Given the axial displacements

prescribed on the unit cube, the true strain and axial stress may be calculated as known

values, these are shown in table 6.1. Since the lateral surfaces are traction free they are

free to contract. The displacement of the lateral surfaces is

uy = uz =
1

(1 + ux)
υ − 1. (6.2)

Using the prescribed displacements, the minimum and maximum lateral displacements

are tabulated in table 6.1

Figure 6.2 shows the patch test cube after it has undergone the deformation. When

an axial displacement elongated the domain (figure 6.2(a)) the lateral surfaces con-

tracted, forming an hourglass shape. When the axial displacement compressed the

domain (figure 6.2(b)) the lateral surfaces bulged outward. The lateral displacements

and stresses determined from the simulation show excellent correspondence with the

predetermined solution. Table 6.1 shows that when using a polynomial order of n = 8

the maximum error was less than 0.2%.
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(a) ux = 0.005 (b) ux = −0.005

Figure 6.2: Elongated and compressed unit cube in Hookean model patch test. Sub-plot

(a) shows the case with a displacement of 0.005 enforced on the right hand face and sub-plot

(b) shows the case with a displacement of -0.005 enforced on the right hand face. Contours

are of lateral displacement magnitude.

6.3 Neo-Hookean solver

Testing of the neo-Hookean solver was conducted using a simple compression test.

The results of the neo-Hookean simulation were validated against the experimental and

numerical results presented in Mesa Múnera (2011). Mesa Múnera (2011) measured the

deformation of an 80 mm diameter by 70 mm height cylinder fabricated from silicone

rubber Ecoflex 00-10. They then developed a neo-Hookean model and determined

the elasticity of the material which best matched the deformation characteristics of

the silicone specimen. They found that the elastic modulus of the silicone was E =

8769 MPa.

The current validation simulation aims to replicate the conditions of the experimen-

tal and numerical work conducted in Mesa Múnera (2011). To this end, figure 6.3(a)

shows the mesh created to test the compression of the silicone block (a polynomial order

of n = 6 is used within the macro elements). The dimensions are 80 mm in diameter

and a height of 70 mm. A uniform pressure force was applied to the top and bottom

surfaces of the cylinder causing a compression of the material. Figure 6.3(b) shows the

deformed configuration of the material. As expected, the material has compressed in

the axial direction and expanded laterally. The side walls do not exhibit the bulging

shape seen in the Hookean displacement test results (figure 6.2(b)), because in this test
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(a) (b)

Figure 6.3: Compression test of a rubbery cylindrical block. Sub-plot (a) shows the initial

mesh of the cylindrical block, while sub-plot (b) shows the case after deformation using a

neo-Hookean material model. The simulation was conducted with a polynomial order n = 6.

The contours are of axial displacement.

the boundary conditions do not limit the diameter of the top and bottom surfaces where

the pressure is applied. This matches the results published in Mesa Múnera (2011) in

which they indicate the surfaces of the silicone block were lubricated in order to allow

free movement of the upper and lower surfaces in the compression rig.

Figure 6.4 compares the stress-strain curve produced from the neo-Hookean solver

developed in this thesis to the published data in Mesa Múnera (2011). The results

show an excellent agreement between the neo-Hookean models used in the literature

and the one developed in this thesis. Using a polynomial order of n = 6 (shown in

figure 6.4), the maximum error between the neo-Hookean solvers is 0.52%. Table 6.2

shows the performance of the neo-Hookean solver as the resolution is increased which

shows good convergence towards the published data in Mesa Múnera (2011). This

verifies the neo-Hookean algorithm developed in this thesis as accurate in describing

neo-Hookean constitutive models.

One of the aims in this thesis is to determine the efficacy of using a linear elastic-wall

model for modelling the fluid-structure interaction in aneurysms. The results presented

in figure 6.4 show that at large stresses, such as those found in the natural function

of the arterial wall, the linear elastic assumption of the material properties grossly

overestimates the wall motion. At an intermediate stress of 1000 Pa the linear elastic

model predicted a strain 20.5% greater than the neo-Hookean model. These results
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Figure 6.4: Comparison of neo-Hookean solver results to the results presented in

Mesa Múnera (2011). The blue line represents the experimental data from Mesa Múnera

(2011), green squares � represent the neo-Hookean simulations conducted by Mesa Múnera

(2011) and the red line represents the neo-Hookean model developed in this thesis. The

dashed black line shows the Hookean response for the same test case.

p ε %-error

2 7.786× 10−2 1.44

3 7.776× 10−2 1.58

4 7.819× 10−2 1.02

5 7.847× 10−2 0.67

6 7.859× 10−2 0.52

7 7.860× 10−2 0.51

Table 6.2: Results of a grid resolution study for the neo-Hookean solver. Strains were

measured at σ = 750 and compared to the neo-Hookean solver used in Mesa Múnera (2011)

154



indicate that use of a linear elastic model would overestimate the wall displacement in

an aneurysm. As such, a linear elastic model is not sufficient for modelling the fluid-

structure interaction in an aneurysm. The results presented in chapter 9 will show the

impact that wall motion has on the haemodynamic environment.

6.4 Arbitrary Lagrangian–Eulerian algorithm

The previous sections have verified the accuracy of the Hookean and neo-Hookean al-

gorithms. These algorithms were coupled with an existing in-house fluid solver (Sheard

& Ryan 2007) to form a solver capable of studying fluid-structure interactions. As the

accuracy of each of the fluid and solid components has been confirmed, the remaining

validation concentrates on the accuracy of the arbitrary Lagrangian–Eulerian coupling

scheme.

To this end three benchmark tests were conducted. The first was a case of forced

solid body motion in which the motion of the solid body was predetermined and pre-

scribed as a boundary condition on the fluid domain. Next, the conservation of mass

was confirmed using the case of a pressure driven flow against a membrane separating

two chambers. The final test case simulated a strongly coupled system in which two-

way coupling is dominant in the system. A velocity driven flow in a lid driven cavity

was used for this test case. These test cases were designed to verify all aspects of the

coupling between the two solvers. The first case (§ 6.4.1; oscillating cylinder) describes

the case of a one-way information flow. The second case (§ 6.4.2; bulging membrane)

verifies the code in terms of conservation of mass and in the framework of a pressure

driven flow. Finally, the third case validates the capacity of the ALE algorithm in

a fully coupled two-way information flow in which the results are driven via a mixed

pressure-velocity boundary response (§ 6.4.3; lid driven cavity).

6.4.1 Oscillating cylinder

The first test of the ALE solver investigated the performance when the motion of the

solid was prescribed as a boundary condition on the fluid. To this end, the forced

transverse oscillation of a cylinder in a cross flow was considered. Under various flow

conditions, notably the Reynolds number, the frequency of oscillation and amplitude

of oscillation, the wake shed behind the oscillating cylinder will form different flow pat-

terns. Leontini et al. (2006) presented a study which mapped the energy transitions and
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Figure 6.5: Macro-element mesh used in the forced oscillation validation case of an oscil-

lating cylinder.

wake states formed across a large combination of Reynolds numbers, frequencies and

amplitudes of oscillation. Their study was conducted using a moving reference frame

algorithm and solved the incompressible Navier–Stokes equations. This validation case

endeavours to repeat the simulations conducted in Leontini et al. (2006) and identify

identical wake states under the different flow regimes.

The mesh used in this analysis is identical to that used in Leontini et al. (2006).

The spatial domain is discretised into 508 elements, with the majority concentrated in

the wake and boundary-layer regions. This macro-element mesh is shown in figure 6.5.

Leontini et al. (2006) chose this mesh after an extensive mesh and domain optimization

study. Similarly, a polynomial order of n = 8 was used for verification purposes,

matching that used in the spectral element discretisation in Leontini et al. (2006).

The cross flow is applied on the left hand boundary and the top and bottom walls

with a non-dimensionalised velocity v∗ = 1. A prescribed reference value is imposed on

pressure at the right-hand side of the domain where the fluid exits, along with a zero

normal gradient condition on the velocity field. At the cylinder wall a no-slip condition
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(a) (b)

Figure 6.6: Flow in the near wake region behind an oscillating cylinder in a cross flow.

Sub-plot (a) shows the wake when the amplitude of oscillation is A∗ = 0.7D and (b) shows

the wake when the amplitude of oscillation is A∗ = 1.1D. The simulation was conducted at

a Reynolds number of 100 and an oscillating frequency f = fst. Red and blue contours show

positive and negative vorticity, respectively which range from -2 to 2.

is imposed. The motion of the cylinder is prescribed by the function,

uy =
A∗

D
sin (2πft) , (6.3)

where A∗ is the amplitude of oscillation, D is the diameter of the cylinder, and f is the

frequency of oscillation of the cylinder (The Strouhal frequency was determined to be

fst = 0.189). The Reynolds number of the simulation is controlled via the kinematic

viscosity. For this validation case a Reynolds number of 100 was used. The amplitude

of oscillation was set at 0.7D and 1.1D and the frequency of oscillation was selected

such that f
fst

= 1.

Figure 6.6 shows the wake formed behind the oscillating cylinder at the two am-

plitudes of oscillation 0.7D and 1.1D. In the region directly behind the cylinder, two

different wake modes were observed. At the lower value of A∗ = 0.7D, a synchronized

2 S shedding mode is observed, with two single vortices shed per oscillation cycle. This

is depicted in figure 6.6(a). At the higher value of A∗ = 1.1D, a synchronized P + S

shedding mode occurs, with one single and one pair of vortices of opposite sign shed

per shedding cycle (see figure 6.6(b)). This reflects the findings of Leontini et al. (2006)

which are reproduced in figure 6.7.

A quantitative comparison of the results presented in Leontini et al. (2006) was

also conducted. Figure 6.8 shows the coefficient of lift on the cylinder for the case of

A∗ = 0.7D and Re = 200. These results demonstrate an excellent correlation with

those presented in Leontini et al. (2006), the maximum error was found to be 1.9% at

the time of peak coefficient of lift.
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Figure 6.7: Flow regimes for a Re = 100 in the primary synchronization region. It is clear

that at various values of cylinder oscillation amplitude and oscillation different flow regimes

are achieved. Reproduced with the permission of Leontini, Stewart, Thompson & Hourigan

from Leontini et al. (2006)

These results show that the ALE formulation is capable of achieving results in

the fluid domain when the motion of a solid boundary is prescribed as a boundary

condition. These results extend to the validation of three-dimensional examples. While

the 3D cases are not explicitly shown here, the extra degree of freedom serves only to

increase the dimensions of the matrix and not the fundamentals of the algorithm. As

such validation of the 2D or 3D case provides sufficient validation of the solver.

6.4.2 Pressure driven bulging membrane

The case of a bulging membrane in a fluid is used to verify that mass is conserved

throughout the fluid and solid domains. This is important as both the fluid and solid

constitutive relationships are incompressible. To this end, an adaptation of the bulging

membrane problem suggested in Van Loon et al. (2007) is presented. Different boundary

conditions are imposed compared to Van Loon et al. (2007) which mimic the type of
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Figure 6.8: The change in coefficient of lift as a function of time as the vortices are shed

downstream for the case of A∗ = 0.7D, Re = 200 and f
fst

= 1.01. The black line shows the

reported data from Leontini et al. (2006) found using the moving reference frame technique,

the red line shows the lift calculated using the ALE formulation developed in this thesis.

boundary conditions used in the aneurysm studies presented in chapter 8. As such, the

aim of this validation case is not to compare studies, rather it is purely to verify the

mass conservation properties of the algorithm. Measurements of flow rate though the

domain inlet and outlet and the rate of volumetric displacement of the membrane are

monitored to determine any error associated with mass conservation. Similar studies

have been used to assess the accuracy of FSI algorithms, see for example the bulging

pipe case in Bathe & Ledezma (2007).

In this test case a slender solid membrane is considered that separates the fluid

domain in two parts as shown in figure 6.9. The boundary conditions applied to the

fluid domain are a linearly increasing pressure boundary condition on the lower inlet

Γ1,

P = h (t) = 25000t, (6.4)

where h (t) is a linear function of time. A zero pressure boundary condition is applied

at the outlets of the second chamber Γ2. A no-slip boundary condition is applied at all

surfaces including the surface of the membrane
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(a) (b)

Figure 6.9: Details of the fluid domain used in the pressure driven bulging membrane test.

Sub-plot (a) shows the detail of the domain including dimensions, inlet and outlets; while (b)

shows the undeformed macro-element mesh used in the simulation.

Dimension Fluid parameters Solid parameters

W1 1 ν 0.004 E 2× 106

W2 0.5 ρf 1000 ρs 1000

H1 1

H2 0.5

tmem 0.016

Table 6.3: Dimensions of the bulging membrane problem and relevant physical parameters.

Since no flow is allowed through the membrane, an influx through Γ1 will cause

the pressure to rise in the bottom part of the fluid chamber and induce deformation

of the membrane. Due to the incompressibility of the fluid, the amount of fluid that

enters the domain will equal the amount leaving the domain through Γ2. The increase in

pressure leads to a deformation in the membrane and increase in the volume of the lower

chamber. This in turn leads to a flow rate through Γ1. Due to the incompressibility

conditions, this flow rate is also equal to the fluid volume displaced by the membrane,

i.e.∫
t

∫
Ain

Qin dAin dt

∣∣∣∣
Γ1

=

∫
t

∫
Amem

Qmem dAmem dt =

∫
t

∫
Aout

Qout dAout dt

∣∣∣∣
Γ2

, (6.5)

where Q represents the flow rate through a surface of area A. This observation can be

used to monitor the flow conservation at various stages of the coupling.
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Figure 6.10: Visualisation of the flow in the bulging membrane domain. Flooded contours

are of velocity magnitude (varying from 0 to 0.07) with streamlines overlaid.

The macro-element mesh used for the computations is shown in Figure 6.9(b), and a

polynomial order of n = 7 is used as the basis function within each element. Dimensions

of the domain and the relevant physical parameters are detailed in table 6.3. The

solid membrane was modelled using ten quadrilateral macro-elements, and the same

polynomial order was used for the solid domain to allow efficient transfer of data from

one domain to the next. As a final note, the membrane is fixed in all degrees of freedom

where it connects to the channel walls at the edges of the fluid domain.

Figure 6.10 shows the flow field in the two cavities at an advanced stage of the

simulation. The solid membrane has bulged outwards into the upper chamber decreas-

ing its volume and increasing the volume of the lower chamber. Fluid is seen to be

drawn in from the bottom boundary, Γ1, and as a result of conservation of mass, the

fluid is forced out of outlets of the upper chamber. Figure 6.11 shows the flow rate

results of the simulation. It is evident that the algorithm conserves mass with excellent

precision. The flow rate at the inlet and outlet are within 0.012% of each other with

the membrane flow rate remaining at an equivalent value. Figure 6.11(b) shows the

error in the flow rate as a function of time. As the membrane is increasingly stretched,
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(a) (b)

Figure 6.11: Flow rate results for the bulging membrane study. Sub-plot (a) shows the flow

rate through the inlet � in the lower cavity and out the outlets in the top cavity �. Sub-plot

(b) shows the error between the inlet and outlet flow rates.

the quality of the mesh begins to degrade and as a result, the accuracy of the mass

conservation is reduced. This highlights a shortfall in the current implementation of

the ALE solver. When modelling multiple fluid-solid interfaces, as the deformation

between interfaces gets large mesh elements may become skewed. This limitation is a

result of the Lagrangian fashion with which the solid is modelled. This interface track-

ing strategy ensures high accuracy at the interface boundary but may lead to poorly

structured meshes at very large deformations. For the aneurysm investigations studied

in this thesis the deformations are small enough that this is not of concern.

These results demonstrate that this implementation of the ALE algorithm is very

capable of modelling a pressure driven flow in which the fluid pressure causes a defor-

mation of the solid which in turn affects the velocity of the fluid. These results show

that mass is well conserved throughout both the fluid and solid domains.

6.4.3 Flow in a lid driven cavity with a membrane

The final validation case for the fluid-structure interaction solver is the strongly coupled

case of a lid driven cavity with an elastic membrane at the bottom surface. This example

was first introduced in Wall (1999) and has since been reproduced in many validation

studies (Mok & Wall 2001; Förster et al. 2007; Küttler & Wall 2008; Bathe & Zhang

2009; Jog & Pal 2011). It is a variant of the classical lid-driven cavity problem in

fluid mechanics, where the bottom is a flexible membrane of non-dimensional thickness
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(a) (b)

Figure 6.12: Details of the fluid domain used in the lid driven cavity study. Sub-plot (a)

shows the details of the domain including dimensions, inlet and outlets; while (b) shows the

undeformed macro-element mesh used in the simulation.

0.002L, and there are apertures near the top through which fluid can flow in or out

as shown in figure 6.12. In this example, the high elasticity (low elastic moduli) of

the membrane causes it to distort rapidly as the velocity field in the near field region

changes.

No-slip boundary conditions are applied on all walls and the surface of the mem-

brane. A gap in the wall is made either side of the lid in order to allow flow to enter

and exit the domain to conserve mass as the motion of the membrane changes the vol-

ume in the cavity. A traction-free, zero normal pressure gradient boundary condition

is applied at these openings. The lid of the cavity is driven by an oscillating velocity

acting at a tangent to the lid (in the x-direction). The lid velocity boundary condition

is prescribed by

vx = 1− cos

(
2πt

5

)
, (6.6)

which has a maximum non-dimensionalised amplitude of 1 m/s and a period of os-

cillation of 5 time units. The solid membrane is fixed at each edge in both the x

and y-directions. A zero reference pressure boundary condition is applied to the outer

surface while the inner surface is subject to the pressure conditions in the fluid domain.

The properties of the fluid are the same as used in the work of Bathe & Zhang (2009)

and Jog & Pal (2011). For the fluid domain these are: fluid density ρf = 1 kg/m3,

dynamic viscosity µf = 0.01 Pa · s which gives a Reynolds number of Re = 100. The

flexible membrane of thickness 0.002 mm, has a stiffness of E = 250 Pa. The mesh used
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to discretise the fluid domain consists of 20 macro-elements with a polynomial order of

n = 7 used as the basis function for interpolation (see figure 6.12(b)). The solid domain

consists of a strip extending across the bottom boundary, 5 macro-elements long and 1

element thick, with an identical polynomial order to allow efficient and accurate transfer

of data between the solid and fluid domains.

Figure 6.13 shows the computed flow field and membrane displacement at three

snapshots in time. The motion of the membrane can clearly be seen to be oscillating

in response to the changing velocity boundary condition at the lid. The motion of

the wall is dominated by the presence of the recirculation region which forms in the

main chamber. At the times shown in figure 6.13(c) the response of the membrane to

the presence of the recirculation region is most obvious as the asymmetric shape of the

deformation is reflected in the offset of the recirculation region. Such deformations of the

membrane and flow fields mimic (qualitatively) the results presented in Kassiotis et al.

(2011). This indicates the high level of coupling between the membrane deformation

and the local flow dynamics.

Figure 6.14 shows the vertical displacement of the midpoint of the membrane as

a function of time. There is reasonable qualitative agreement with the corresponding

solution presented in Jog & Pal (2011) and Bathe & Zhang (2009). The membrane

moves in the mean upwards direction, the oscillations of the membrane reach a steady

state and oscillate at a steady amplitude (after the initial transients have died out)

reflecting the findings presented in the literature. The time period of the oscillation is

almost exactly 5 time units as is expected from the velocity boundary condition and

was reported by Jog & Pal (2011).

Despite the good qualitative agreement with the corresponding solutions presented

in the literature, some discrepancies and limitations must be discussed. Firstly, Jog

& Pal (2011) highlight that the solution to the problem is extremely sensitive to the

boundary conditions imposed on the gaps left in the wall near the lid of the domain. In

this case a zero normal pressure gradient boundary condition has been applied. Other

studies impose a zero y-velocity component (Jog & Pal 2011), while some use a zero

velocity gradient at the boundary (Bathe & Zhang 2009). The sensitivity of the solution

to the boundary conditions is also stated by Bathe & Zhang (2009), who note that in

their solution the bottom membrane moves in the mean downwards direction, whereas

in the solution of Küttler & Wall (2008) (who do not indicate what type of boundary
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Figure 6.13: Visualisation of the flow in the lid driven cavity. Colour flood is of pressure

with red indicating positive pressure (maximum +0.1) and blue indicating negative pressure

(maximum -0.1). Streamlines of velocity are also shown.

condition they impose) it moves upwards.

Finally, in terms of the limitations, the membrane displacements reported herein are

smaller than those reported in Bathe & Zhang (2009) and Jog & Pal (2011). This is a

result of the difference in membrane stiffness employed in this study compared to their

works. In this study the membrane was stiffened to reduce its motion. In the event that

the membrane motion became too large, the solution became unstable and diverged.

This emphasizes an important aspect of the coupling between the fluid and solid solvers.

Owing to their construction, the stability characteristics of each algorithm (fluid and

solid) are quite similar. However, the appearance of a first-order time derivative in the

fluid and a second-order time derivative in the solid, leads to a difference in the Courant
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Figure 6.14: Displacement of the central point of the membrane (0.5, 0) as a function of

time.

condition, which scales as

ςf =
1

Re

∆x

∆t
,

for the fluid and

ςs = E
∆x

∆t2
,

for the solid. This presents a challenge when coupling the solvers. The fluid algorithm

is most stable using smaller time steps and lower Reynolds numbers, while the solid

solver is more stable at larger stiffnesses and smaller time steps. Furthermore, issues

arise when the time step is lowered to satisfy the stability of the fluid solver, the

∆t2 term in the stability condition of the solid solver can cause extrema (either very

large or very small numbers). Extreme values can induce significant round-off errors.

Furthermore, matrices formed with extrema may be poorly conditioned; not satisfying

diagonal dominance which is a problem for some linear solvers. Finally, the difference

in the scale of the Reynolds number and wall stiffness typically modelled presents a

problem, this leads to a larger time step being preferential to solve the solid domain

and a lower time step for the fluid.

In order to circumvent some of the stability concerns a different time step can be
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applied to each of the solution domains. This helps some cases to run more smoothly,

though if the required difference in time step is too large it can produce step changes

in the solution (as the extrapolation used to supply information at intermediate steps

misrepresents the change in the solution over that time) which can lead to solution

divergence. This proved to be the case in the lid driven cavity problem presented here.

Despite these limitations, these results demonstrate that the algorithm is capable of

solving a strongly coupled problem in which changes in the velocity field effect the

local wall deformation. These results also show that for the stability of the solution,

the solver is best suited to solving problems in which the pressure and stiffness of the

wall is high (as is the case in the bulging membrane test case and the arterial flows

investigated in chapters 8 and 9).

6.5 Closure

In this chapter, the numerical algorithms developed in chapters 3, 4 and 5 were tested

against a series of benchmark studies. Each component of the solver was tested inde-

pendently to verify its accurate performance before ensuring the coupling algorithm was

capable of combining the solutions and resolving complex fluid-structure interactions.

Previously validation has been conducted on the fluid dynamics solver. This validation

showed excellent accuracy and solution convergence properties (Sheard & Ryan 2007).

The Hookean solver was tested using a simple uni-axial patch test. The results of the

simulation were compared with known analytical solutions for both the displacement

and stress in the material. In all cases the Hookean algorithm performed excellently

producing results within 0.2% of the analytical solution. The patch test also involved

using non-orthogonal mesh elements which tested the linear consistency of the spatial

discretisation.

The neo-Hookean solver was validated against experimental and numerical data

from Mesa Múnera (2011). In this, the strain response in a rubber specimen was

assessed in a uni-axial compression test. Like the Hookean solver, the neo-Hookean

solver proved highly accurate with the maximum error reported as 0.52%. In conducting

this compression test, a Hookean model was also used, These results showed that even

at intermediate levels of stress, the Hookean material drastically overestimated the

strain in the material. This result implies that using a Hookean material model to

model the wall dynamics in an aneurysm would lead to an over-estimate of the wall

167



motion. Consequently it would be inappropriate to use a Hookean elastic model in the

context of aneurysm FSI. Such sentiment is widely supported in the literature (see for

e.g. Humphrey & Taylor 2008).

Having determined the accuracy of each of the solver components, a series of bench-

mark studies were conducted to assess the performance of the ALE coupling algorithm.

It was determined that the ALE algorithm was capable of simulating a variety of fluid

structure problems with varying degrees of coupling between the fluid and solid. The

solver performed exceptionally well in unidirectional coupling problems and strongly for

cases which were pressure driven. While proving capable of simulating strongly coupled

systems such as the lid driven cavity problem in § 6.4.3, stability of the solution did

become an issue in large deformation cases. To resolve these issues the algorithm has

been constructed such that the time step of the fluid and solid can be varied indepen-

dently of each other allowing the user extra capabilities to tune the algorithm to the

problem at hand. In any case, the solver performs well under conditions where wall

stiffnesses are high and the pressure is driven from the boundary conditions. This suits

the problems considered in subsequent chapters well.

The first phase of this thesis aimed to develop a numerical method for analysing

fluid structure interactions in aneurysms. The numerical method needed to be suffi-

ciently complex so as to consider the non-linear constitutive models of the wall, which

included non uniform wall properties. The validation cases presented in this chapter,

combined with the numerical algorithm outlined in chapters 3, 4 and 5 achieve this

outcome. Furthermore, the unique combination of spectral elements, a new time step-

ping algorithm for neo-Hookean applications and a modified coupling algorithm for the

ALE formulation presents a novel contribution to this field.

168



Chapter 7

Parameter space

7.1 Introduction

Numerical modelling of fluid-structure interactions necessitates the prior knowledge of

a set of parameters pertaining to the geometry, the fluid and solid continuum models, as

well as the appropriate physiological boundary conditions for both continuum phases.

Humphrey & Taylor (2008) emphasize a major downfall in current fluid-structure inter-

action models in aneurysms is the use of inappropriate, non physiological, continuum

properties and boundary conditions.

Modelling biological material and flows is always fraught with generalisations and

simplifications. Firstly, because humans are unique, different genetic predispositions

and different environmental stimuli leads to each individual having a particular resting

heart rate, artery wall stiffness and aneurysm size. Secondly, because measurement

is difficult, biological materials are difficult to work with, and can easily be damaged

during measurement. Furthermore, access to the material to accurately test their prop-

erties is impossible without causing harm to the patient.

This chapter aims to canvas the literature in order to define a reasonable value

for the fluid and solid properties which can be utilised in the subsequent aneurysm

investigations. It will also provide justification of the wall stiffness parameter space to

be investigated. Finally it will present an explanation of the geometries chosen for the

ensuing fluid-structure interaction research.

7.2 Geometry

Aneurysms are prevalent in the large blood vessels throughout the human body. Most

commonly they are located in the abdominal aorta just above the iliac junction, but
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Figure 7.1: The location of an abdominal aortic aneurysm with renal arteries above and

the iliac junction below. Reproduced with the permission of Annual reviews from Lasheras

(2007).

are often also located in the knee joint, and with a lower prevalence, in the circle

of Willis (Lasheras 2007; Sforza et al. 2009). With the mortality rate of abdominal

aortic aneurysms at 70-90% (Lindholt et al. 2005) investigation into these aneurysms

is crucial. Abdominal aortic aneurysms form in the aorta between the renal artery

junction and the iliac junction which sends blood down each of the lower limbs, this

location is depicted in figure 7.1.

7.2.1 Healthy aorta

Figure 7.2 shows the computational domain for the aneurysm initiation investigation.

It simulates blood flow through a healthy aortic section in which abdominal aortic

aneurysms commonly form.

An aortic diameter of 20 mm is used, which is a value commonly used throughout

the literature (Di Martino et al. 1998; Finol et al. 2003a,b; Salsac et al. 2006). In their

investigation, Stefanadis et al. (1995) measured the dilation of the aorta throughout

the pressure pulse from the heart. They found the aortic diameter varied from 20.5 mm
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Figure 7.2: The geometry used in the straight pipe aneurysm initiation investigation. The

darker raised region is the aneurysm wall (thickness, ttotal = 1.5 mm), with the brighter red

region representing the fluid flowing into the moving wall section (diameter d = 20 mm).

at peak diastole to 22.5 mm at peak systole. This is in good agreement with the 20 mm

diameter wall used for rigid-wall simulations in the aforementioned studies.

7.2.2 Aneurysm

Aneurysm shapes may be saccular (balloon-like expansions of only a portion of the

wall), fusiform (gradual dilation of the complete circumference of the artery), or cylin-

droidal. The different shapes have not been related to any specific cardiovascular disease

or clinical manifestation (Morrison 1999). While in the early stages of development ab-

dominal aortic aneurysms are often approximated by a fusiform shape, it is unlikely

that well developed aneurysms of medium or large size (diameter > 45 mm) would be

fusiform or axisymmetric. In fact, advanced AAAs form truly asymmetric shapes due to

the presence of the tissue in the perianeurysmal environment and the vertebral column

located posterior to this artery segment. This makes a large AAA less fusiform and

asymmetric, accounting for a major anterior dilation and a flattened posterior surface

(Finol et al. 2003b).

While recognising the departure from the fusiform shape in the late stages of ab-

dominal aortic aneurysm development, the work in this thesis will focus on a fusiform

shape only. In their investigation into the effects of asymmetry, Finol et al. (2003b)

recognise that in early stages of development the aneurysm takes on a nearly fusiform

geometry. Furthermore, in order to determine the effect of a heterogeneous wall stiff-
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Figure 7.3: The geometry used in the established aneurysm investigation. The darker raised

region is the aneurysm wall (thickness, ttotal = 1.5 mm), with the brighter red region repre-

senting the fluid flowing into the moving wall section (diameter d = 20 mm). The bulge may

be described by an aspect ratio L
d = 3 and dilation ratio D

d = 2.

ness on the flow dynamics in an aneurysm all other parameters that have an effect on

the haemodynamics are held constant in order to isolate the effect of the variable wall

stiffness.

The fusiform bulge created for the aneurysm in this investigation (shown in fig-

ure 7.3) is created using the sinusoidal relationship,

r (z) =


d
2 if z < z0 or z > z0 + L,

d
2 + D−d

2

[
sin
(
π(z−z0)

L

)]
if z0 < z < z0 + L,

(7.1)

where r (z) is the radius of the aneurysm as a function of z-position, z0 is the starting

position of the aneurysm bulge, L is the aneurysm bulge length, D is the maximum

diameter of the aneurysm, and d is the diameter of the original artery (Sheard 2009).

Fusiform aneurysms may be characterised by their aspect ratio L
d and dilation ratio

D
d as seen in figure 1.4. Previous numerical studies have investigated a range of aspect

and dilation ratios (e.g. Salsac et al. 2006). Table 7.1 summarises some of the ratios

used. In this investigation a dilation ratio D
d = 2 and an aspect ratio L

d = 3 is chosen.

This is within the range of aspect and dilation ratios used in the literature. It also

corresponds to a small to medium sized aneurysm, which should not have departed too

far from a fusiform shape.

In terms of physical dimensions the maximum diameter of the aneurysm was kept

at 40 mm (in accordance with the dilation ratio D
d = 2), this was chosen to remove
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Bulge shape

Aspect ratio L
d Dialation ratio D

d

Salsac et al. (2006) 2.9-5.2 1.3-2.4

Sheard (2009) 2.9 1.9

Finol et al. (2003b) 6.0 3.0

Finol et al. (2003a) 9.0 3.0

This study 3.0 2.0

Table 7.1: Literature survey of aneurysm aspect and dilation ratios of aneurysms that have

been used in numerical simulations.

the likelihood of intraluminal thrombus forming which has been shown to affect flow

dynamics (Di Martino et al. 1998). Aneurysms with diameter D < 45 mm are clinically

shown to be typically devoid of an intraluminal thrombus (Harter et al. 1982). Again the

choice of this parameter is aimed at isolating the effect of wall stiffness on the aneurysm

haemodynamics while maintaining a physiologically relevant simulation environment.

The length of the aneurysm will be 60 mm. This parameter is simply chosen based

on the aspect ratio which has been commonly used in the literature. It represents

an aneurysm of medium size. Large aneurysms can grow up to the full length of

the section of the abdominal aorta which lies between the renal arteries and the iliac

junction. The average length of this arterial section is 130 mm across both males and

females (Hoffmann 2008).

In the following investigations, the length of arterial wall that is allowed to move is

120 mm in both the aneurysm initiation and established aneurysm cases (note: longer

inlet and outlet regions are used with solid walls to ensure inlet and outlet conditions

do not affect the solution in the region of interest). This closely matches the length

of the abdominal aorta described in Hoffmann (2008). The circulatory system is much

longer than this section and the vessel wall is compliant throughout, however, junctions

such as the renal artery and iliac junctions will form tethering points limiting the local

dilation of the artery wall. As such, modelling just the 120 mm section between the

renal and iliac junction with the ends tethered closely models the human physiological

environment.
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7.3 Fluid parameters

In modelling the blood flow in an aneurysm it is important to select a physiologically

accurate set of fluid properties and boundary conditions to accurately assess the haemo-

dynamics in vivo. The choice of fluid dynamic parameters and boundary conditions

used in this study follows closely the works of Finol et al. (2003b) and Leung et al.

(2006).

7.3.1 Fluid properties

The density of blood is widely accepted to be 1060 kg/m3 (Finol et al. 2003b; Leung

et al. 2006) which is very close to that of water at 1000 kg/m3. The extra density is a

result of the small amounts of protein and inorganic salts in the plasma and haematocrit.

In § 1.2 the composition of blood is discussed. Due to the level of haematocrit

which exists within the plasma, blood is strictly a non-Newtonian fluid (it does not

have a linear stress-strain relationship). Regardless, the results presented in this thesis

use a Newtonian fluid assumption. The works of Rodkiewicz et al. (1990); Perktold &

Rappitsch (1995) and (Wootton & Ku 1999) showed that in large vessels such as the

abdominal aorta, blood behaves like a Newtonian fluid. In the present study a dynamic

viscosity of µ = 3.85× 10−3 Pa · s (Finol et al. 2003b) is used.

7.3.2 Boundary conditions

The boundary of the fluid domain is divided into the following regions for the assignment

of boundary conditions: an inlet, outlet, and the fluid-structure interaction interface.

The applied boundary conditions for the fluid inlet and outlet are a time dependent fully

developed Poiseuille velocity profile for the inlet, and at the outlet a time dependent

pressure boundary condition. The Poiseuille velocity profile is described by

vz = 2
vpeak
R2

(
R2 − x2 − y2

)
, (7.2)

where vz is the inlet velocity in the z direction, vpeak is the time dependent peak inlet

velocity (shown in figure 7.4), R is the radius of the artery and x and y are positions

in the x-y plane. While the Womersley profile is the naturally forming velocity profile

for oscillatory flows in pipes, the Poiseuille flow forced at the inlet will develop into a

Womersley profile given enough time before it reaches the proximal neck.

The pressure outlet boundary condition is time dependent due to the pressure pulse
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Figure 7.4: Time-variation in the peak velocity at the inlet over a single period, used in

this thesis.

from the heart driving the flow. The variation in outlet pressure as a function of time

is plotted in figure 7.5.

The systolic and diastolic pressures shown in figure 7.5 match those used in Finol

et al. (2003b) which use the in vivo luminal pressure measured at the iliac junction

in Mills et al. (1970). Similarly the velocity profile of figure 7.4 matches the peak

systolic velocity and velocity range measured in Mills et al. (1970) at the renal artery

junction. The use of this transient input velocity based on normal arterial conditions

(not aneurysm geometries) is justified by the fact that the inlet boundary condition is

applied well upstream of the proximal neck of the aneurysm, where the abdominal aorta

is undilated. For average resting conditions (heart rate of 60−70 bpm), blood flow in the

abdominal aorta is generally laminar (Finol & Amon 2002); flow deceleration achieved

after peak systole induces laminar disturbed flow conditions and vortex formation even

under simulated exercise conditions (Moore Jr et al. 1994). Inlet peak systolic flow

occurs at t = 0.4 s and outlet peak pressure at t = 0.5 s.

Some previous investigations have used Windkessel models to reproduce the physio-

logical influence of the arterial beds distal to the outlets (e.g. Arzani et al. 2012). Such
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Figure 7.5: Pressure outlet boundary condition as a function of time used in this thesis.

models use a three-element Windkessel model coupled to the computational domain

using the method described in Vignon-Clementel et al. (2006) with outlet volumetric

flow rates determined by the Windkessel model. In the Windkessel model of the arterial

network, the pressure, flow rate and flow resistance are seen as the voltage, current and

resistance in an electric circuit. The pressure is determined by integrating the following

equation:

Q = C
dP

dt
+

P

D
(7.3)

where Q is the flow rate in the artery, C is the compliance of the artery, and D is the

resistance of the distal arterial network.

In the context of this work, the compliance factor C can be readily calculated,

however the resistance D of the distal arterial and vascular network remains unknown.

The dependence of the Windkessel model on the pressure drop implies a domain size

dependence. If a Windkessel model were adopted, complications could arise with in-

let velocity profiles. In order to constrain the number of parameters in this study a

Windkessel model is not used.

While the pressure and velocity profiles do not exhibit the same systolic and diastolic

acceleration shown in figure 7.6, matching the relevant peak physiological parameters
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Figure 7.6: In vivo luminal pulsatile velocity based on the velocity profile in Mills et al.

(1970). Inlet peak systolic flow occurs at t = 0.304 s. Reproduced with the permission of

BioMed Central Ltd from Scotti et al. (2005).

should give a good approximation of the in vivo flow conditions. The peak velocity

measured in Mills et al. (1970), is reflected in this velocity inlet as it is expected that

the peak wall shear stress (in the case of laminar flow) should occur when the velocity is

the greatest. The simplification of the time evolution of the velocity and pressure fields

does limit how physiologically representative the simulations are. However, an aim of

this thesis is to determine the effect of heterogeneous wall stiffness on the haemodynamic

stimuli in an aneurysm. By performing simulations that compare changes in stiffness

under like boundary conditions; conclusions can be drawn in relation to the variations in

wall stiffness. Furthermore, the simplification of the time evolution of the pressure and

velocity boundary conditions allows analytical expressions to be developed, providing a

platform from which the underlying physics driving the changes in the flow fields may

be understood.
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7.3.2.1 FSI interface boundary conditions

The boundary conditions applied at the fluid-structure interface are as follows: displace-

ment (u) of the fluid (∂Ωf ) and solid (∂Ωs) domain boundaries must be compatible,

u∂Ωs = u∂Ωf
, (7.4)

the traction (stress, σ) normal to the wall must equal the pressure (P ) applied by the

fluid at the wall,

σ · n = P, (7.5)

where n is the unit normal vector to the wall; and the fluid must obey a non-slip

boundary condition at the wall, that is,

vf = vs, (7.6)

where vf is the velocity of the fluid and vs is the velocity of the FSI interface.

7.3.3 Flow properties

Finally we define some of the non-dimensionalised parameters that describe the flow.

The time-averaged Reynolds number is Remean = 410, which is characteristic of a

patient in resting conditions (Milnor 1989). The dynamic range of the Reynolds number

is Re = 61.5− 758.

The heart rate of the resting patient for which such a time averaged Reynolds

number is appropriate is 60 bpm which implies a period of each heart cycle of T = 1 s.

The Womersley number, α, characterizes the flow frequency ω = 2π
T , the geome-

try and the fluid viscous properties. For this investigation, which has been based on

physiological properties, the Womersley number α = 9.7. As the rest of the study is

based on the physiologically accurate boundary conditions the Womersley number is

also physiologically realistic, α = 9.7 is a typical value for the human abdominal aorta

under resting conditions (Nichols & O’Rourke 1990; Finol et al. 2003b; Scotti et al.

2005; Lindholt et al. 2005).

7.4 Solid parameters

In their reviews, both Lasheras (2007) and Sforza et al. (2009) indicated a major short-

coming in the current modelling of fluid-structure interactions in aneurysms is based
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Figure 7.7: A computed tomography (CT) scan slice of an abdominal aortic aneurysm.

A three dimensional model (also shown) is reconstructed from the series of 2D segments

identified in the CT scan. The arterial wall (cross-sectioned) has a highly variable thickness.

Reproduced with the permission of Elsevier Ltd from Di Martino et al. (2001).

around the lack of information about the mechanical properties of the wall. Further-

more they highlighted the inadequacy of the existing continuum models used for the

solid phase. While many models use highly complex constitutive models to describe

the wall, incorporating hyperelasitc material models (Raghavan & Vorp 2000), linear

or non linear viscoelastic models (Pontrelli 2001; Čanić et al. 2006) and anisotropic

models (Grotberg & Jensen 2004; Rissland et al. 2009); very few have accounted for

the heterogeneous thickness and stiffness distribution in an aneurysm.

Figure 7.7 shows the reconstruction of an aneurysm from a CT scan. What is readily

visible is the high degree of variation in the arterial wall thickness. Furthermore, in fig-

ure 7.8, the stress distribution is shown to be highly heterogeneous, with calcification

deposits scattered sporadically throughout the aneurysm. The highly heterogeneous

wall stiffness environment motivates this study. This examination aims to investigate

the effect of localised variations in material stiffness in both a healthy artery and an es-

tablished aneurysm geometry. The healthy artery investigation focuses on investigating

causes of aneurysms while the aneurysm study shows how an uneven stress distribution

may cause undesirable haemodynamic properties which could perpetuate the growth of

aneurysms.
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Figure 7.8: The computed von-Mises stress distribution in a patient specific aneurysm (A).

The stress distribution changes dramatically if calcification regions (B) or Intra-Luminal

Thrombus (ILT) (C) are excluded. Reproduced with the permission of Elsevier Ltd from Li

et al. (2008).

7.4.1 Wall thickness

Previous studies such as Scotti et al. (2005), have investigated the effect of a changing

wall thickness on the haemodynamics in a fusiform aneurysm. They showed that a

variable wall thickness drastically affects the wall stresses. The current study will

investigate the effect of varying the other heterogenous material parameter, the stiffness.

The wall response to the haemodynamic forces is not a function of stiffness or thickness

alone. If identical forces are applied then a decrease in stiffness or thickness will lead to

larger stresses being felt by the wall. In order to isolate the effect of changes in stiffness

for the purpose of assessing its feasibility as a risk of rupture indicator, the thickness

of the wall will be kept constant and the wall stiffness varied.

The artery wall is made up of three layers, the intima, media and adventitia. Many

investigations have either measured the wall and layer thickness of an abdominal aorta

or used a derived wall thickness in a simulation. Table 7.2 summarises the range of

180



Thickness (mm)

Intima Media Adventitia Total

Healthy aorta

Lindsay & Hurst (1979) 0.13 1.00 - 1.63

Restrepo et al. (1979) 0.13 1.00 - 1.63

Åstrand et al. (2005) - 0.73 - 1.06∗

Restrepo et al. (1979) 0.10 - - -

Gao et al. (2006) - - - 2.00

Driessen et al. (2004) - 0.26 0.13 0.41∗

Aneurysms

Raghavan et al. (2006) - - - 1.48

Thubrikar et al. (2001) - - - 1.58-3.19

Scotti et al. (2005) - - - 1.50

Papaharilaou et al. (2007) - - - 2.00

Di Martino et al. (2006) - - - 2.00

This study 0.195* 0.840* 0.465∗ 1.50

Table 7.2: Literature survey of healthy arterial wall and aneurysm wall thicknesses. Both

values of wall thickness determined by experiment and implemented in numerical simulations

are presented. ∗ represents a value determined using the layer thickness ratio found in Schulze-

Bauer et al. (2003).

thicknesses quoted in the literature.

From these papers, the mean artery wall thickness is 1.346 mm. For aneurysm

measurements and simulations the average thickness is 1.95 mm. Aneurysm formation

is usually associated with large variations in wall thickness as cell apoptosis occurs and

intraluminal thromboses form. In this study the thickness of the wall was chosen to

be a constant across both the aneurysm bulge and the healthy artery sections just as

in Scotti et al. (2005); Di Martino et al. (2006); Gao et al. (2006) and Papaharilaou

et al. (2007). In this study a thickness of ttotal = 1.5 mm is chosen which is close to the

average of thicknesses for aneurysms and healthy aorta.

Schulze-Bauer et al. (2003) observed a thickness ratio for the artery wall layers of

intima/media/adventitia of 13/56/31 for healthy arteries. Driessen et al. (2004) used a
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ratio of 2/1 for media/adventitia and Gao et al. (2006) used a ratio of 1/6/2. The ratios

used by both Driessen et al. (2004) and Gao et al. (2006) are simplifications of the ratio

quoted in Schulze-Bauer et al. (2003); as such, this ratio is used in determining the

layer thicknesses for the model. Given a total thickness ttotal = 1.5 mm, this yields an

intima thickness of ti = 0.195 mm, a media thickness of tm = 0.84 mm, and adventitia

thickness of ta = 0.465 mm.

7.4.2 Wall stiffness

As with wall thickness, many studies have been completed to assess the stiffness of an

artery wall. Determining the stiffness of the wall in situ is a complicated prospect.

Estimates of the stiffness have been made by observing the dilation or response of

the wall to the different pressures of systole and diastole. Other measurements have

been performed using ultrasound techniques (Claridge 2010; Couade et al. 2010). Some

investigations have completed uniaxial and biaxial tensile tests on ruptured aneurysm

tissue or animal tissues (Di Martino et al. 2006; Lally et al. 2004). Table 7.3 compiles

the range of stiffnesses determined throughout the literature.

From these papers the median healthy artery stiffness is 0.8 MPa. Some of the

papers used in forming this average cite data for artery sections that are not near the

abdominal aorta and others use data for elderly subjects with hypertension and other

health concerns. Although this does skew the data to a stiffer value of the overall stiff-

ness, the prevalence of aneurysms is greatest in the elderly population. Furthermore,

the incidence of aneurysm is often coincident with hypertension, atherosclerosis or other

health concerns that adversely affect wall stiffness, making this value of 0.8 MPa plau-

sible. In further support of this argument, figure 7.9 from Claridge (2010) shows the

regression of the artery stiffness with age. The stiffness of 0.8 MPa corresponds to a

person of approximately 65 years, which is the beginning of the age bracket in which

there is a high prevalence of abdominal aortic aneurysms.

The stiffness of aneurysm sections will be varied from 0.2 − 6.0 MPa, this encom-

passes the full range of stiffnesses quoted in the literature for both healthy and damaged

vessels. This range should provide a physiological parameter space sufficient to deter-

mine if non-uniform stress distributions affect the flow haemodynamics.
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Stiffness

Youngs modulus, E (MPa) Shear modulus, G (MPa)

Healthy aorta

Di Martino et al. (2006) 0.200 0.066

Laurent et al. (1994) 2.250 0.750

Claridge (2010) 0.250-1.000 0.083-0.333

Couade et al. (2010) 0.300 0.100

Mosora et al. (1993) 0.600-2.000 0.200-0.666

Aneurysms

Vorp et al. (1996) 3.510-5.690 1.170-1.890

Di Martino et al. (2006) 3.800 1.260

Thubrikar et al. (2001) 1.000-6.000 0.333-2.000

Scotti et al. (2005) 2.700 0.933

Finol et al. (2003a) 5.000 1.666

This study

Healthy aorta 0.800 0.267

Aneurysm 0.200-6.000 0.066-2.000

Table 7.3: Literature survey of the stiffness of both healthy arterial walls and aneurysm

walls. Values represented in this table are average wall stiffnesses and not accurate for

individual layers of the arterial wall. Both values of wall stiffness determined by experiment

and implemented in numerical simulations are presented.

7.4.2.1 Layer stiffness

The measurements of the material stiffness parameters are performed on bisected artery

and aneurysm sections (Mosora et al. 1993; Claridge 2010; Couade et al. 2010). A tensile

or compressive test rig is used such as the one shown in Dokos et al. (2000). This rig

is capable of measuring the stress-strain behaviour of the arterial tissue, and from this,

the material parameters of the tissue may be determined. Due to the complex nature of

the layers of the artery walls and their thickness it is difficult to accurately dissect the

layers in order to measure precisely the material properties of each. As such the stiffness

values quoted in table 7.3 are average stiffnesses of the entire arterial cross-section.
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Figure 7.9: The regression of the mean Young’s modulus (E) in kPa plotted as a function

of age. Reproduced with the permission of Claridge from Claridge (2010).

Xie et al. (1995) provides a means to determine the stiffness of the individual layers

of the artery wall. They found the Young’s modulus of the inner layers (intima and

media) was three to four times larger than that of the outer layer (adventitia). Cabrera-

Fischer et al. (2002) presented some experimental data showing that the Young’s mod-

ulus of the intima is smaller than that of the media. This investigation follows the

work of Gao et al. (2006). The Young’s modulus of the media is set to be three times

that of both the adventitia and intima (i.e. 1:3:1). Since the mean Young’s modulus of

the vessel wall across the entire wall volume is invariable, the Young’s modulus of each

layer is in inverse proportion to the area of the layer in the cross-section (Gao et al.

2006). The stiffness of each layer may be related to the average stiffness of the arterial

wall using

Emean =
Ei × ti + Em × tm + Ea × ta

ttotal
, (7.7)

where Emean is the mean stiffness of the wall, Ei, Em and Ea are the stiffnesses of

the intima, media and adventitia respectively; ti, tm and ta are the thicknesses of the

184



Layer stiffness, E (MPa)

Average stiffness, Emean 0.2 0.4 0.6 0.8 (healthy) 2.0 4.0 6.0

Intima stiffness, Ei 0.031 0.063 0.094 0.126 0.314 0.629 0.943

Media stiffness, Em 0.094 0.189 0.283 0.377 0.943 1.887 2.830

Adventitia stiffness, Ea 0.031 0.063 0.094 0.126 0.314 0.629 0.943

Table 7.4: Breakdown of the layer stiffness used at each of the prescribed average stiffnesses

used in this investigation.

intima, media and adventitia respectively and ttotal is the thickness of the wall. Also

required is the relation from Xie et al. (1995),

Em = 3Ei = 3Ea. (7.8)

Using these relations the stiffnesses of each layer is calculated and summarized in

table 7.4.

7.4.3 Wall assumptions

At this point some of the assumptions made in choosing these material properties are

recognised. Firstly, the wall is modelled as an isotropic incompressible neo-Hookean

solid. Biological tissues such as the artery wall have been shown by Raghavan & Vorp

(2000) among others to be anisotropic in nature and feature both hyperelastic and

viscoelastic properties. This is a result of the highly complex structure of the artery

wall. Humphrey & Taylor (2008) indicated that the most advanced FSI solvers currently

use a neo-Hookean wall model (Wolters et al. 2005). Other investigations such as Torii

et al. (2008) tested the effect of using more complex material models on the artery

wall response. They found that while neo-Hookean material models gave very different

results to Hookean material models, more complex models had a negligible impact on

the results.

In terms of choosing the wall stiffness and thickness, Lopez-Candales et al. (1997)

and Thompson et al. (1997), identified a thinning of the intima and medial layers dur-

ing aneurysm formation. In this study the layer thickness is kept constant regardless

of whether it is in the aneurysm or healthy aorta region. Lopez-Candales et al. (1997)

also described the change in the material stiffness that occurs as a result of the wall re-

modelling process that leads to an aneurysm forming. In this study the overall stiffness
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will be changed to simulate the stiffening of different regions. However, individual layer

stiffness will remain proportional to the total stiffness of the region. This would be a

good subject of further investigation but is beyond the scope of the work completed in

this study. Finally, the grain like structure of the stiffness and thickness pattern shown

in figure 7.8 is considered. The stiffening that is to be conducted in this investigation

is applied across bands of the arterial wall giving a very axisymmetric stiffness profile.

This is obviously a simplification of the structure shown in figure 7.8 but is done in

order to investigate a pattern or distribution which may be generalized across many

aneurysms. While the case of non-symmetric stiffening would be more physiologically

accurate and of interest, it is again beyond the scope of this investigation.

7.4.4 Solid boundary conditions

The solid domain boundary consists of the fluid-structure interaction interface, the

inlet and outlet cross-sectional ends and the outer surface which interacts with the

perianeurysmal environment.

The FSI interface will have the boundary conditions that were described in § 7.3.2.1.

The cross-sectional ends at the inlet and outlet of the geometry will be fixed in place,

that is,

u = 0, (7.9)

where u is the displacement of the solid material. As discussed in § 7.2.2 the renal

and iliac artery junctions provide a stabilising platform which tethers the abdominal

aortic section. The length of the simulated section between these two boundary faces is

comparable to the abdominal aortic section. Finol et al. (2003b) use identical boundary

conditions for these surfaces.

The final boundary condition is the outer wall surface. This surface interacts with

the perianeurysmal environment. Finol et al. (2003b) could find no published data on

normal forces exerted by internal organs and tissue on the wall of the abdominal aorta.

A further search of the literature yielded no further information about pressures exerted

by the perianeurysmal environment. Fixing the outer surface of the artery wall, as is

common practice in Finol et al. (2003b); Lindholt et al. (2005) and Scotti et al. (2005),

can result in underestimating the movement of the artery wall. Stefanadis et al. (1995)

measured the dilation of the artery wall in two patients throughout the cardiac cycle.

They reported a change in vessel diameter of ∆d = 1.2−2.5 mm. A short investigation
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found that using an external pressure which matched the diastolic pressure at diastole

and varied by 20% of the change in luminal pressure throughout the cycle produces a

dilation of 1.54 mm in a healthy artery which falls within the range of values quoted in

Stefanadis et al. (1995). The external pressure boundary condition that is then applied

is,

Pext = Pdia + 0.2
Ppeak − Pdia

2

[
1− cos

(
2π

T
t

)]
, (7.10)

where Pext is the pressure applied to the external surface of the artery wall, Pdia is the

diastolic pressure in the lumen, Ppeak is the peak systolic pressure in the lumen, T is

the period of the heart beat and t is time.

7.5 Summary

Through an extensive survey of the literature and careful consideration of the phys-

iological environment; the full parameter space of the subsequent investigations into

aneurysm initiation and growth has been justified. Table 7.5 provides a summary of

the chosen fluid and solid dynamic parameters used throughout the rest of this thesis.
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Summary

Parameter value

Geometry

Length of solid section (aneurysm) 140 mm

Length of solid section (straight pipe) 120 mm

Length aneurysm bulge 60 mm

Aortic diameter d 20 mm

Aspect ratio L
d 3

Dilation ratio D
d 2

Total wall thickness ttot 1.5 mm

Intima layer thickness ti 0.195 mm

Media layer thickness tm 0.84 mm

Adventitia layer thickness ta 0.465 mm

Fluid

dynamic viscosity µ 3.85× 10−3 Pa · s

density ρ 1060 kg/m
3

Inlet velocity mean vmean 16.25 cm/s

Inlet velocity peak vpeak 30 cm/s

Outlet pressure systolic P sys 120 mmHg

Outlet pressure diastolic P dia 70 mmHg

Phase lag (velocity-pressure) 0.1 s

Heart rate (period) T 1 s

Time averaged Reynolds number Remean 410

Peak Reynolds number Repeak 750

Womersley number α 9.7

Solid

Stiffness (healthy) Emean 0.800 MPa

Aneurysm stiffness range 0.200-6.000 MPa

density ρs 1160 kg/m
3

Table 7.5: Summary of the parameter space used in the aneurysm initiation and growth

investigations.
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Chapter 8

Investigation 1: Aneurysm
initiation

8.1 Introduction

The precise initiation process of aneurysms is currently unknown (Lasheras 2007; Sforza

et al. 2009). Many physiological studies have identified a series of risk factors that

increase the risk of aneurysm formation. These include smoking, sex, alcohol, hyper-

tension, atherosclerosis, disease or infection (e.g. syphilis). While these risk factors

have been identified, the asymptomatic nature of aneurysms means early detection is

unlikely. In fact, generally aneurysms are not identified until they are quite advanced

in their evolution. As such, little is known about aneurysm initiation (Lasheras 2007).

Age is considered to be the greatest risk factor, with aneurysms being most prevalent

in the elderly. Age makes arteries thicker and stiffer. The median layer thins and loses

its orderly arrangement of elastin changing to a disordered “patchwork” of elastin grain.

The elastin to collagen ratio becomes more collagenous which leads to a stiffening of

the arterial wall (Lasheras 2007). Furthermore, histological studies have shown that in

the early stages of aneurysm formation there is a degeneration of endothelial cells and

internal elastic lamina (Stehbens 1963, 1989). A thinning of the medial layer through

apoptosis (programmed cell death) of smooth muscle cells is also evident (Stehbens

1963, 1989). Disruptions in the remodelling process have been identified with increased

levels of elastase (Chaytte & Lewis 1997) and matrix metalloproteinase (Bruno et al.

1998). This could lead to a weakening of the wall.

Nichols & O’Rourke (1990) suggest that fatigue through cyclic stresses causes the

fracture of the load-bearing elastic sheets. Under the pulsatile haemodynamic forces,

the polymerised structure of elastin sheet and fibres reorganises, causing them to fail
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at lower tensional stresses. The tearing of these sheets is associated with a loss in

elastic re-coil which may cause a permanent dilatation of the vessel. The permanent

stretching of the smooth muscle tissue is accompanied by a permanent remodelling

process whereby collagen content in the muscular layer increases. The end result of

this irreversible process is the creation of an aneurysm.

Haemodynamic factors play a key role due to the capacity of endothelial cells to

sense and react to Wall Shear Stresses (WSS). Studies have shown that low wall shear

stress and high oscillatory patterns of wall shear stress correlate with intimal wall

thickening (Dardik et al. 2005; Friedman et al. 1981; Ku et al. 1985). A uniform

shear stress field tends to stretch and align endothelial cells. Furthermore, studies on

animals show an increase in WSS can fragment the internal elastic lamina or damage

the endothelium (Sforza et al. 2009).

Presented in this chapter are the results of an investigation into the initiation of

aneurysms. There exists a consensus in the literature (Stehbens 1963, 1989; Nichols &

O’Rourke 1990; Bruno et al. 1998; Lasheras 2007) that through the ageing process and

possible exposure to disease, arterial walls undergo a slow degradation which leads to

a localised discontinuity in arterial wall stiffness. Nichols & O’Rourke (1990) suggest

the fatigue-like wall degradation triggers an interruption in the mechanotransduction

process which leads to the negative progression of arterial wall health and the creation

of an aneurysm.

This study aims to address aim 2c from § 1.8, to investigate the effect of a heteroge-

neous wall stiffness on the haemodynamics in an artery and how this in turn may lead

to a haemodynamic environment that could disrupt the mechanotransduction process

leading to the initiation of aneurysm growth.

In addressing this aim, blood flow through a straight section of pipe with elastic-

walls was simulated. To simulate the localised wall degradation that can occur naturally

as part of the ageing process or as a result of disease; sections of the elastic-wall were

prescribed a spatially varying stiffness. This investigation shows the effect that lesions,

calcification or wall tethering can have on arterial haemodynamics and the eventual

initiation of aneurysms.

For the set of hypotheses relating to this investigation the reader is referred to

§ 1.8.3.
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8.2 Geometry

Figure 8.1 shows the computational domain used for this aneurysm initiation inves-

tigation. The model simulates blood flow through a healthy aortic section in which

abdominal aortic aneurysms commonly form. As discussed in § 7.2.1, an aortic diam-

eter of d = 20 mm is used. The length of the elastic-wall region shown in figure 8.1

is 120 mm (or 6d). Figure 8.1 shows the macro-element mesh used in the meshing of

the straight pipe. Gauss–Legendre–Lobatto quadrature points are used to interpolate

within each of the macro-elements shown. By using these quadrature points a highly

accurate mesh is formed (see § 8.3 for details of the accuracy).

It is clear from figure 8.1(a) that the computational domain extends both upstream

and downstream of the elastic region. While physiologically this region does not exist,

it must be included to ensure that inlet and outlet boundary conditions do not affect

the flow in the region of interest. Further details of the choice of inlet and outlet length

can be found in § 8.3.2. The large inlet length allows the Poiseuille velocity profile

inlet condition to adopt the stable Womersley profile for oscillating flows by the time it

reaches the inlet of the elastic region. The inlet is 9d upstream of the entrance to the

elastic region and the outlet is 6d downstream.

Downstream of the elastic region is a flared section leading to the outlet (fig-

ure 8.1(d)). A velocity inlet boundary condition is applied to the side walls of the

flared section and a periodic pressure boundary condition is applied at the end of the

pipe. Due to the motion of the elastic-wall blood is drawn back into the elastic section

periodically throughout the heart-cycle. Figure 7.6 shows the time evolution of velocity

in an artery which includes a diastolic phase with reverse flow. In order to simulate

this reverse flow through the elastic region in a stable manner, this flared velocity inlet

condition was included to ensure positive flow through the pressure outlet at all times

while allowing reversed flow in the region close to the elastic-wall. While the boundary

condition itself is covered in § 8.2.1 it is noted here that the flared shape was chosen to

minimise the energy input into the system thus providing a minimal effect on the elastic

region upstream. The flare has a length of 3d and expands from the pipe diameter d

to 1.5d at the downstream boundary.

Hexahedral mesh elements are used to simulate the flow through the three-dimensional

domain (see figure 8.1(b)). To maximise accuracy in the elastic region where the mov-

ing arterial wall introduces multi-dimensional flow dynamics, the mesh is much denser.
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In this region the macro mesh elements are of approximate size 0.2d× 0.2d× 0.2d (i.e.

aspect ratio of unity). A near cube-shaped macro-element should ensure that numeri-

cal errors introduced through the matrix inversion process (which is more accurate on

diagonally dominant matrices) is minimized.

Outside of the elastic region, the mesh is coarser. The rigid walls and uniform

geometry in this region ensures the flow is almost completely unidirectional. As such,

less resolution is required to describe the flow in these regions (see § 8.3.3). A coarser

mesh was used in these regions to decrease simulation time.

Figure 8.1(c) also shows the solid domain mesh used. This mesh consists of three

macro-element layers. Each layer represents a layer in the arterial wall. The wall

has a constant initial thickness throughout the geometry and each layer is also initially

constant along the length of the artery. The overall thickness is 1.5 mm with the intima

thickness, ti = 0.195 mm, the media thickness, tm = 0.84 mm, and the adventitia

thickness of ta = 0.465 mm. Justification of these thicknesses can be found in § 7.4.1.

Section 8.3.4 demonstrates the accuracy of the mesh.

The investigation into aneurysm initiation involves a local change in wall stiffness.

The results presented in § 8.5 include a stiffer band of material that is one element (or

0.2d) wide, in the centre of the elastic region. All three layers of the wall are stiffened by

the same amount. The results presented in § 8.5.6 investigate the effects of expanding

this thickened region to two elements (or 0.4d) wide and three elements (or 0.8d) wide.

In § 8.5.7 flow though an expanded rigid-walled pipe is simulated, to assess if the

geometry alone is responsible for some of the flow structures being observed in the

fluid-structure interaction study. For this investigation the geometry from figure 8.1(a)

is used. All of the mesh features described for the fluid-structure interaction cases are

used with the shape of the bulge determined from the maximum solid response in an

FSI simulation.

8.2.1 Fluid properties and boundary conditions

In this investigation blood is modelled as a Newtonian fluid. The viscosity of blood is

µ = 3.85× 10−3 Pa · s, with a density of ρ = 1060 kg/m3. These parameters have been

extensively documented in the literature. For justification of the Newtonian model of

blood see § 1.2.

The fluid boundary conditions are extensively documented and justified in chapter 7.
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(a) Geometry

(b) Mesh detail (c) Solid mesh (d) Flared Outlet

Figure 8.1: Mesh detail used in the aneurysm initiation investigation, blood flows from

left to right. (a) shows macro-elements in the entire computational domain. Red regions

represent blood flow, the green region shows the band of solid material that is to be stiffened.

(b) shows a detailed cross-section of the mesh, clearly visible are the cube-shaped elements

in the fluid region and the thinner layer of solid elements. (c) shows a detailed cross-section

of the solid mesh with its three macro-element layers. (d) shows the outlet flare with vectors

representing the inlet boundary conditions and outflow at the pressure outlet.

These consist of a velocity inlet boundary condition with Poiseuille profile. Figure 7.4

showed the temporal flow profile at the velocity inlet, which comprises a sinusoidal

profile with a peak inlet velocity of vpeak = 30 cm/s and a mean velocity of vmean =

16.25 cm/s. A time-varying pressure outlet boundary condition is also used. Figure 7.5

shows the time evolution of the pressure boundary condition, which features a sinusoidal

profile with a phase lag of 0.1 s behind the inlet velocity profile. The period of both the

inlet and outlet boundary conditions is T = 1 s. These boundary conditions correspond

to a time-averaged Reynolds number of Remean = 410 and a peak Reynolds number of

Repeak = 750. The Womersley number used in the investigation is α = 9.7.

At the vessel wall a no-slip boundary is applied. At the fluid-structure interface in

the elastic region, the velocity of the wall is prescribed as the fluid boundary condition.

i.e.

vf = vs. (8.1)
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Finally, the flared inlet boundary condition near the pressure outlet is described.

Figure 8.1 shows the velocity vectors on a two-dimensional slice of the flared section.

The magnitude of the velocity entering the domain increases linearly from the start

of the flared section to the end. This allows the boundary conditions at the end of

the straight section (which is a no-slip boundary condition, i.e. v = 0) to match the

flared boundary condition at their interface edge. The x, y, and z components of this

boundary condition are

vx =− 1

4
[(z − Lfs) vf ] ·

x

R
,

vy =− 1

4
[(z − Lfs) vf ] ·

y

R
,

vz = [(z − Lfs) vf ] ·
1

R
,

(8.2)

where vx, vy, vz are the x, y, and z components of this velocity, Lfs is the length of

straight pipe leading to the beginning of the flared section, R is the radius of the pipe,

and vf is

vf = 4− 2 cos (2πt) . (8.3)

As discussed in § 8.2 this boundary condition is applied to ensure continuous out-

flow at the pressure outlet. The time-varying component vf is used rather than a con-

stant value as throughout the cardiac cycle flow periodically reverses direction. This

boundary condition is therefore not required at all times and to minimise the energy

it introduces into the system the flow rate through the boundary is reduced (by the

sinusoidal time dependence) at times when the velocity through the outlet is naturally

outward. The domain size study conducted in § 8.3.2 showed that the addition of this

outlet sufficiently far downstream of the elastic region had no measurable impact on

the flow through the elastic region of interest.

For the rigid-wall expanded-pipe case the geometry formed at peak systole was

captured. Once formed the walls were held fixed in this location while the velocity and

pressure boundary conditions at the inlet and outlet respectively were allowed to vary

as in the previous investigations. Finally, a no-slip boundary condition is applied to all

walls with no fluid-structure interaction occurring.

Justification of each of the parameters and boundary conditions used in this inves-

tigation may be found in chapter 7.
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8.2.2 Solid properties and boundary conditions

The elastic artery wall represents the second component of the fluid-structure interac-

tion in aneurysms. The wall is modelled as a hyperelastic neo-Hookean material. In

chapter 7 a literature survey is used to determine the Young’s modulus of the healthy

abdominal aorta as Emean = 0.800 MPa. Details of the layer stiffness are given in

§ 7.4.2.1. In conjunction with the Young’s modulus, a density of ρs = 1160 kg/m3 is

specified for the healthy arterial wall.

The band of material to be stiffened in the elastic region is shown in figure 8.1(a).

This region will have stiffnesses ranging from Emean = 0.2−6.0 MPa. Specifically, sim-

ulations were conducted with a rigid-wall; a uniform healthy stiffness throughout the

artery (Emean = 0.8 MPa); and adverse conditions (Emean = 0.2, 0.4, 0.6, 2.0, 4.0 and 6.0 MPa) .

This range of stiffnesses were chosen based on the literature survey conducted in chap-

ter 7.

The boundary conditions of the solid domain are described in § 7.4.4. They include

a zero displacement boundary condition on the inlet and outlet faces; this mimics

the tethering that occurs at the iliac and renal artery junctions at either end of the

abdominal aortic section. On the interior surface a pressure boundary condition is

applied. The pressure is calculated during the fluid phase and applied as a normal

stress to the solid domain, i.e.

σ · n = P. (8.4)

The exterior of the artery wall is in contact with the periarterial environment. To

simulate the response of the periarterial environment a pressure boundary condition is

applied to the surface,

Pext = Pdia + 0.2
Ppeak − Pdia

2

[
1− cos

(
2π

T
t

)]
. (8.5)

The exterior pressure increases as the luminal pressure increases. This simulates the

increase in the periarterial response to the dilation caused by the luminal pressure. The

period and phase of this pressure boundary condition is the same as the outlet pressure

boundary condition for the fluid.

Justification of each of the parameters and boundary conditions used in this inves-

tigation may be found in chapter 7.
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8.3 Solution validation

Rigorous validation of the numerical techniques, domain size, and mesh independence

were conducted as part of this research. The numerical techniques developed in this

thesis are validated in chapter 6.

To ensure the mesh used in this investigation provided sufficient spatial and tem-

poral resolution while maintaining a minimal computational cost, a mesh optimisation

investigation was conducted (see § 8.3.1). A series of meshing strategies were tested for

their accuracy, and based on the time taken to achieve a certain level of accuracy, the

mesh shown in figure 8.1 was chosen.

After selecting the optimized mesh, a domain analysis was conducted to guarantee

that the inlet and outlet boundary conditions were not affecting the flow through the

region of interest. Inlet and outlet lengths extending up to 24D upstream and down-

stream were investigated while monitoring the flow in the elastic region. Section 8.3.2

presents the results of the domain analysis.

Once the most efficient mesh and domain size were established, a grid independence

study was performed to determine the spatial accuracy of the simulations.The results

of this are detailed in sections 8.3.3 and 8.3.4.

Finally, the accuracy of the temporal discretisation was examined in § 8.4. This

study considered the effect of varying the time step of the solver and the number

of oscillation cycles were required in order to evolve the flow to its asymptotic fluid-

structure interaction state.

In this thesis, an error threshold of < 1% for global error measures and < 2% for

local error measures was used to direct the choice of spatial and temporal resolution;

and domain size.

8.3.1 Mesh optimisation

The spectral-hp element method allows both h-type and p-type refinement of a com-

putational mesh. Spectral methods exhibit exponential convergence properties when

the number of degrees of freedom are increased (Karniadakis et al. 1991). This means

in order to achieve a desired spatial resolution, the spectral element method can use a

coarser macro-element mesh with a higher degree polynomial which amounts to fewer

degrees of freedom when compared to traditional linear finite element methods. How-

ever, the improved spatial convergence properties do not guarantee a reduction in the
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computational cost. Simulation time, while strongly linked to the number of degrees

of freedom, is also dependent on the density and structure of the matrix system (Kar-

niadakis & Sherwin 1999). The software packages used to perform the matrix solves

have different performance results dependent on the structure of the matrix system.

To determine the most time-efficient mesh for a prescribed level of accuracy, a mesh

optimisation analysis was performed.

Four meshes were created in the mesh optimisation study. Each mesh, shown in

figure 8.2, employed a different level of h-type refinement. The meshes were created by

linking successive 2D planes of elements. To ensure accuracy at the boundary, element

depth (plane spacing) was set to match the width of the element closest to the boundary.

This gives an aspect ratio as close to unity as possible for these boundary elements.

A near cube-shaped macro-element should ensure that numerical errors introduced

through the matrix inversion process (which is more accurate on diagonally dominant

matrices) is minimized. Accuracy is especially important at the fluid-structure interface

where boundary layers form: in this region vorticity is high and wall shear stresses are

to be determined. Mesh 1 in figure 8.2(a) employs very few macro-elements. As such it

requires a higher polynomial order, p, to attain spatial convergence. Conversely, Mesh 4

employs a large number of macro-elements, which in turn permits a lower polynomial

order to attain spatial convergence. Meshes 2 (figure 8.2(b)) and 3 (figure 8.2(c))

employ intermediate levels of h-type refinement.

To determine the optimal mesh configuration, a p-type grid independence study

was conducted for each mesh. As the haemodynamic parameters are of the greatest

importance to aneurysm initiation, only the fluid region was simulated with a non-slip

rigid-wall boundary condition. The time-dependent inlet velocity and outlet pressure

boundary conditions discussed in § 8.2.1 were applied to each mesh, and a number of

global and local parameters were recorded in order to assess the accuracy of each mesh.

The time taken for the simulation to run was also recorded to give an indication of the

computational cost associated with each meshing strategy.

To assess the spatial resolution of the solution produced from each mesh at each

level of p-type refinement, a set of global and local flow measurements were taken. The

L2-norm is used to measure the overall difference between the solutions from different

meshes and resolutions. It is a vector norm mathematically described by

L2 =

∫
Ω
|v|2 dΩ, (8.6)
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(a) Mesh 1 (b) Mesh 2

(c) Mesh 3 (d) Mesh 4

Figure 8.2: Macro element meshes used in the mesh optimisation investigation. Meshes 1-4

show an increasing level of h-type refinement. The meshes were created by linking successive

2D planes of elements. To ensure accuracy at the boundary element, depth (plane spacing)

was set to match the width of the element closest to the boundary. Note: a curvilinear

mapping of the element faces onto the circular pipe is used - the flat faces depicted on

the pipe walls here is a product of the plotting package used, which accentuates the poor

representation of the geometry at the limit of small p-type resolution.

where Ω represents the computational domain, v are the velocity vector, and |·| the

local magnitude of the vector. The additive nature of the L2-norm and the use of a

magnitude function make it useful in assessing the global error in a solution as local

variations are amalgamated into a single value.

Local variations in the solutions are observed by monitoring vz, the z-component

of velocity, and the strain-rate-magnitude at a point in the global domain. In the

results presented in figure 8.3, these parameters are sampled along the centreline at

the midpoint of the elastic region (x, y, z) = (0, 0, 12D). The velocity component is a
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first-order quantity which should be reasonably smooth due to the use of C0-continuous

elements. The strain-rate-magnitude defined is by

|ε̇| =
√
2ε̇ : ε̇, (8.7)

where ε̇ is the strain rate,

ε̇ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (8.8)

is more likely to exhibit resolution-based variation as it is based on spatial derivative

quantities ∂ui
∂xj

. Spatial derivatives reduce by one the order of the polynomial approx-

imation of the field (i.e. ∂ui
∂xj

of a fourth-order resolved field becomes a third-order

representation of the gradient field). As such, gradient fields require higher resolution

(relative to zero-th order fields) to resolve. In this regard, gradient fields are more sensi-

tive to borderline resolution. The numerical “wiggle” which presents in some results is

a by product of the post-processing of data in which data fields are interpolated across

C0-continuous element interfaces where the local mismatch has been averaged. As such

at large polynomial orders where numerical “wiggle” becomes prevalent this property

may give the first indications of error in the solution.

The results presented in figure 8.3 show the p-type grid independence studies con-

ducted for each of the 4 meshes (see figure 8.2). In order to compare the resolution

achieved between meshes, the results are plotted against the number of independent

degrees of freedom in the solution domain. As expected, as the polynomial order is

increased for each mesh the solution converges to a consistent value. The results for

the L2-norm shows the most consistent convergence behaviour. Mesh 3 produces a

slower convergence rate with some fluctuation present in the vz results. Mesh 2 shows

similar wiggle characteristics in terms of the strain-rate-magnitude data. The sparse

nature of these two meshes meant they were run at higher polynomial orders compared

with Mesh 4. Mesh 4 exhibits stable convergence behaviour in both global and local

error cases. The higher-degree polynomial basis functions may be responsible for the

poor convergence observed for meshes 2 and 3. Mesh 1 is also sparse and simulations

were conducted at higher polynomial orders, though similar fluctuations were not ob-

served in this case. This may be due to the larger z-dimension of elements in Mesh 1

as compared to Meshes 2 and 3, which may mean that small-scale flow variations along

the longitudinal axis were not resolved and hence did not contribute to the wiggle in

the solution.
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(b) (c)

Figure 8.3: Results of the p-type grid independence study for each mesh 1-4 shown in

figure 8.2. In each sub-plot red, green, blue and grey lines and symbols represent meshes 1,

2, 3 and 4, respectively. For all sub-plots and meshes as the number of degrees of freedom

(polynomial order) is increased the mesh solution converges to a stable value. (a) shows the

L2-norm, a global measure of the energy in the solution. (b) shows the vz velocity component

at a point along the centre line of the pipe and (c) shows the magnitude of strain rate at a

point on the pipe centreline. All values were taken at time of peak energy.
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% error

p Mesh 1 Mesh 2

L2 vz |ε̇| L2 vz |ε̇|

7 1.3× 10−4 7.1× 10−3 0.13 3.9× 10−3 1.3× 10−3 7.8

8 4.1× 10−4 3.4× 10−4 0.22 1.1× 10−3 4.5× 10−4 0.01

9 8.7× 10−5 1.3× 10−3 0.03 4.2× 10−4 3.3× 10−4 0.76

10 1.9× 10−5 4.3× 10−4 2.4× 10−3 3.0× 10−4 3.7× 10−4 0.17

11 3.3× 10−6 1.2× 10−3 0.10 1.5× 10−4 1.5× 10−4 1.18

12 0.0 0.0 0.0 0.0 0.0 0.0

p Mesh 3 Mesh 4

L2 vz |ε̇| L2 vz |ε̇|

4 0.157 0.13 2.5 - - -

5 6.5× 10−3 3.2× 10−4 2.70 0.02 1.8× 10−4 2.61

6 3.0× 10−4 3.7× 10−3 0.36 9.2× 10−4 1.0× 10−3 1.45

7 1.9× 10−4 1.1× 10−3 0.24 8.0× 10−5 9.9× 10−5 0.07

8 6.9× 10−4 7.5× 10−5 0.10 0.0 0.0 0.0

9 0.0 0.0 0.0 - - -

Table 8.1: Percentage error in each mesh when compared to the most resolved case. Error

is shown for global measures (L2-norm) and local measures (vz and |ε̇|).

Table 8.1 provides a numerical estimate of the error associated with each mesh

at each resolution level. The error was calculated by comparing the flow parameter

measured at each resolution level to the most resolved case. Here the assumption is

made that each mesh has reached a mesh independent state at the highest resolution

case. The data presented in table 8.1 supports the results presented in figure 8.3. As

the polynomial order is increased, the error in each case decreases. In all cases the

error is small (error< 1%) for the more resolved cases. The smallest error is observed

in the global L2-norm error estimate, with error converging to less than 10−4% for each

mesh. The greatest error was observed in the strain-rate-magnitude with error only

converging to (< 10−1%) in most cases. The larger error in the strain-rate-magnitude

is to be expected for the reasons outlined previously. Finally, to emphasize the validity

of using any of the meshes in solving this system, the maximum difference between any

mesh at the most resolved case was 0.011% for L2-norm, 0.008% for vz and 0.25% for
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Figure 8.4: Simulation time required to complete 100 time steps, t100, is plotted with respect

to the number of degrees of freedom for each simulation. As in figure 8.3, red, green, blue

and grey lines and symbols represent Meshes 1, 2, 3 and 4, respectively. A more efficient

simulation has a shorter run time at higher resolution. Mesh 4 is the most efficient mesh.

strain-rate-magnitude.

The most appropriate mesh for the aneurysm initiation study should provide a grid

independent solution at the lowest computational cost. Figure 8.3 and table 8.1 show

each meshing strategy is capable of producing a sufficiently accurate mesh. Figure 8.4

shows the physical time taken to complete 100 time steps (t100) in the solver for each

mesh at each level of resolution. This clearly shows that Mesh 4 which is based on

more macro-elements and a relatively low polynomial order is more efficient than the

other meshes. Mesh 4 is capable of running faster at higher levels of resolution than

the other meshes.

Figure 8.3 and table 8.1 present a clear case that when using all mesh types a grid

independent solution can be achieved. Mesh 4 with the use of relatively low polynomial

orders provides the most stable, accurate and efficient solution. This mesh is used

throughout the aneurysm initiation study. Finally, a polynomial order of 5 was used as

it provided less than 1% error with minimal computational cost. A similar paradigm

for balancing h- and p-type refinement can be found in Blackburn et al. (2008)
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8.3.2 Domain size

The mesh optimisation study conducted in § 8.3.1 simulated flow through a straight

rigid section of pipe that represents the abdominal aorta. To ensure that the blood

flow through the region of interest is physiologically accurate it is imperative that the

proximity of the boundary conditions does not affect the results. The upstream inlet

velocity is prescribed with a Poiseuille profile which needs time to adapt to the phys-

iological profile for oscillating flows. Furthermore, the downstream inlet and pressure

outlet could introduce back pressure and propagate numerical error. To minimise the

effect that each of these have on the region of interest they should ideally be located

as far away as possible. A domain size analysis was conducted to determine the mini-

mum upstream and downstream distances required to prevent the boundary conditions

affecting the solution.

Five inlet and outlet lengths were simulated in each case, 0d, 3d, 6d, 9d and 24d.

8.3.2.1 Upstream

Simulations were conducted using a constant outlet length and varying the upstream

length. The flow was monitored at a series of points throughout the region of interest.

Figure 8.5(a) shows the velocity profile at the entrance to the region of interest at

t = 0.4 s for each of the inlet length cases. For the case of 0d upstream the velocity

distribution is that of the perfect Poiseuille profile that is described at the outlet. As

the inlet length is increased the flow has time to adopt the Womersley profile which is

the natural state for oscillating flow. Figure 8.5(b) demonstrates that increasing the

inlet length beyond 6d yields a negligible change in the velocity profile.

To illustrate precisely the effect of changing the inlet length, figure 8.5(b) plots

the error-norm of the axial velocity across the diameter of the pipe at the entrance to

the elastic region. As the inlet length is increased, the change in velocity diminishes

dramatically. This correlates well with the velocity profile plots of figure 8.5. The

percentage change of flow as a result of varying the inlet length is listed in table 8.2. The

inlet length has a greater effect on the peak velocity than at the near-wall region. These

results show that with an inlet length of 9d or greater, the effect of the inlet boundary

condition is less than 0.01%. This is sufficiently accurate for this investigation, so an

inlet length of 9d is used hereafter.
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(a) (b)

Figure 8.5: Velocity profile at the beginning of the elastic zone, velocity is normalised using

the period of oscillation and diamter of the vessel. Black squares �, red diamonds �, blue
circles •, green triangles N, and orange inverted triangles H represent the profile for an inlet

length 0d, 3d, 6d, 9d and 24d upstream, respectively. (a) shows the velocity profile across

the pipe diameter and (b) shows the percentage error of each velocity profile relative to the

longest inlet case in (a). As the inlet length is increased, the difference in velocity profiles

becomes negligible.

% error

Inlet length r = 0 r = 0.3d

0 13.8 5.7× 10−1

3 8.3× 10−5 2.7× 10−4

6 3.6× 10−5 3.0× 10−5

9 2.1× 10−5 3.0× 10−5

24 0.0 0.0

Table 8.2: Percentage error of the axial velocity at the centreline and near-wall locations.

The error decreases as the inlet length increases.
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(a) (b)

Figure 8.6: Velocity profile at the end of the region of interest, velocity is normalised using

the period of oscillation and diamter of the vessel. Black squares �, red diamonds �, blue
circles •, green triangles N, and orange inverted triangles H represent the profile for an outlet

length 0d, 3d, 6d, 9d and 24d downstream, respectively. (a) shows the velocity profile across

the pipe diameter and (b) shows the percentage error of each velocity profile relative to the

longest inlet case in (a). As the outlet length is increased, the difference in velocity profiles

becomes negligible.

8.3.2.2 Downstream

Having established an inlet length of 9d, a series of simulations were conducted to

determine the appropriate outlet length. The inlet length was fixed at 9d, while the

outlet length (distance from the end of the elastic region to start of the flared region)

was varied between 0d and 24d. The flow was monitored at identical locations to the

upstream domain study. Figure 8.6(a) shows the velocity profile at the aneurysm bulge

outlet (distal neck) at t = 0.4 s for each of the outlet length cases. A top-hat profile is

clearly visible, as is expected for oscillating flow through a straight pipe. It is clear that

for the straight pipe case changing the outlet length has a negligible effect on the flow

in the region of interest. Figure 8.6(b) demonstrates that increasing the outlet length

beyond 3d yields a negligible change in the velocity profile.

To further elucidate the effect of changing the outlet length, figure 8.6(b) shows the

error-norm of the axial velocity across the diameter of the pipe at the exit of the elastic

region. As the outlet length is increased, the change in velocity diminishes dramatically.

Table 8.3 shows the percentage error for each outlet length. The maximum error is only

0.75%, which is negligible compared to errors associated with spatial discretisation. As
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% error

Outlet length r = 0 r = 0.38d

0 4.4× 10−3 0.75

3 6.7× 10−3 1.3× 10−2

6 6.3× 10−3 1.4× 10−3

9 2.0× 10−3 3.7× 10−4

24 0.0 0.0

Table 8.3: Percentage error of the axial velocity at the centreline and near-wall locations.

The error decreases as the outlet length increases.

a result, the impact of the outlet length on the flow was small enough that an outlet

length of only 3d was chosen for all simulations. This produced an error < 0.05%.

8.3.3 hz-type refinement

In § 8.3.1, a variety of meshing strategies were used to determine the most efficient

strategy for this geometry using the numerical algorithm described in chapter 6. As

part of this, a p-type investigation was conducted and a polynomial order of p =

5 was determined to provide sufficient accuracy for this investigation. The previous

investigations identified the most efficient meshing strategy, the appropriate polynomial

order and the inlet and outlet domain lengths to negate any boundary condition effects.

In a further effort to reduce the computational cost, a further hz-type analysis was

conducted.

The aim of this hz-type analysis was to determine the required resolution in the axial

(or longitudinal) direction. Using fewer macro-elements reduces computation time,

and consequently it is desirable to have a longer axial element length. In the hz-type

refinement study, axial element length was varied between 0.2d (giving approximately

cube-shaped elements with a unit aspect ratio), 0.36d, 0.4d, 0.5d and 0.75d.

Figure 8.7 shows the effect that changing the hz-type refinement has on the L2-

norm. The L2-norm is sampled at the time of peak flow through the aneurysm (i.e

0.4 s), this corresponds to the time of peak energy in the system. As the axial element

length is reduced, so too does the change in L2-norm. Such convergence is expected as

the spatial resolution is increased. Table 8.4 shows the percentage difference in L2-norm
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Figure 8.7: Results of the h-type refinement study. The L2-norm is measured at t = 0.4 s

for each level of refinement. Note: only the axial length of the elements was changed.

as a function of element length. Error was calculated relative to an estimate of the mesh

independent value. This value was calculated using a Richardson-type extrapolation.

As is clearly evident from table 8.4, for the straight pipe case, extra hz-type re-

finement in the axial direction has little effect on the accuracy of the simulation. As

this study is primarily interested in the effect a moving wall, the smaller cube-shaped

elements are maintained in the region of interest (i.e. hz = 0.2). This ensures that the

highest level of accuracy is maintained in this region. Outside this region, in the inlet

and outlet sections where the flow is less critical to this investigation, the element size

in the axial direction is set to hz = 0.75.

8.3.4 Solid domain p-type refinement

In this section, the spatial resolution of the solid domain is analysed. To simplify

the meshing process, the solid mesh is created with macro-elements which completely

coincide with the exterior fluid elements. In this way the h-type refinement for the solid

is fixed. A p-type refinement study was conducted in which the polynomial order was

increased from p = 2 to p = 6.

Each end of the elastic region was fixed in space. The pressure boundary condition
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hz % error

0.75d 0.0255

0.5d 0.0133

0.4d 0.0103

0.36 0.0101

0.2d 0.0091

Table 8.4: Percentage error in the L2-norm with reference to a theoretical 100% accurate

case defined using a Richardson extrapolation. The error decreases as the element length

decreases.

described in equation 8.5 was applied to the perianeurysmal interface. As a forcing

function, the outlet pressure boundary condition for the fluid was applied to the inner

surface of the solid. In flow through an aneurysm unsteady flow structures locally alter

the pressure at the fluid-structure interface. However, the change in mean pressure is

many orders of magnitude greater than the local variations caused by the unsteady

flow. As such, these boundary conditions closely match those encountered by the solid

in the fluid-structure interaction. The neo-Hookean wall model was used with a mean

Young’s-modulus of 0.8 MPa (that of a healthy artery).

The maximum displacement in the lateral direction was monitored as the polynomial

order was increased. The maximum lateral displacement occurred at t = 0.5 s and at a

position exactly half way along the elastic region for all levels of resolution. Figure 8.8

shows the maximum lateral displacement, umax, as a function of increasing polynomial

order. The convergence behaviour described for the fluid domain throughout § 8.3.1 is

clearly evident here. In fact, for the solid the solution converges to a mesh independent

value at a much lower polynomial order, p = 3, than the fluid cases.

Table 8.5 shows the percentage error in the solution compared to the most refined

case. Here, the most resolved case is assumed to contain no error. These results

correlate well with the convergence behaviour shown in figure 8.8. Using a polynomial

order of 3 or greater gives a mesh independent solution (error < 0.02%). These results

suggest that for a neo-Hookean solid continuum, less elements are required to spatially

resolve the system than for similar fluid elements. As the equations governing each are

so similar this is likely due to the state parameters, viscosity and Young’s modulus.
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Figure 8.8: Results of the p-type refinement study for the solid domain. The maximum

lateral displacement, umax, is measured at t = 0.5 s for each level of refinement.

p % error

2 2.9338

3 0.0138

4 0.0027

5 0.0002

6 0.0000

Table 8.5: Percentage error in maximum lateral displacement, umax. The error decreases

rapidly as the polynomial order is increased.

The Young’s modulus in this case is several orders of magnitude larger than viscosity.

While using a polynomial order p = 3 provides a sufficiently resolved solution for

this investigation, a polynomial order of p = 5 is chosen. Using a polynomial order

that matches that of the fluid provides an efficient and accurate method for passing

information between the fluid and solid meshes. Matching the polynomial order ensures

both macro and quadrature nodes are coincident at the fluid-structure interface. As

such, vector fields do not require interpolation between the two regions, a direct copy
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of information can be passed. This is both highly efficient and more accurate than

interpolation. The polynomial order of p = 5 is well resolved spatially and will produce

a solution with only 0.002% error.

8.3.5 Fluid-solid coupling p-type refinement

In the preceding sections the spatial resolution of both the fluid and solid mesh compo-

nents were analysed. It was concluded that a polynomial order of p = 5 and p = 3 for

fluid and solid, respectively was required to attain a sufficiently mesh-independent so-

lution. Before proceeding, the spatial resolution is tested once more for a fully coupled

fluid-structure interaction solution. This determines whether the use of the arbitrary

Lagrangian-Eulerian solver affects the spatial resolution of the mesh.

For this investigation, the full computational domain was solved with physiologically

accurate fluid and solid boundary conditions (see chapter 7 and § 8.2). A healthy

artery wall was simulated with stiffness of 0.8 MPa. A p-type grid resolution study was

conducted in which the polynomial order was increased from p = 3 to p = 6.

As was anticipated given the results of the preceding sections, figure 8.9 shows the

classic convergence behaviour. Figure 8.9(a) and 8.9(b), respectively, show the L2-

norm and z-velocity component for the fluid region. After an initial variance, each plot

begins to converge to a single value. A polynomial order of p = 5 initiates the converged

section and exhibits a low percentage error. Table 8.6 records the error relative to the

most resolved case for each metric. For each fluid measurement the error at p = 5 is

less than 0.1%, which is well within the desired level of accuracy for the simulations.

This correlates well with the p-type study conducted in § 8.3.1 in which the polynomial

that delivered the desired level of accuracy for a fluid solve alone was p = 5.

Similarly, for the solid, figure 8.9(c) shows the variation in maximum radial displace-

ment, umax, as a function of polynomial order. Just as the fluid components correlated

well with previous results, the solid solver too exhibits an analogous convergence be-

haviour. Again convergence is reached at a polynomial order of p = 4. Table 8.6 shows

that the error associated with the solid region is less substantial than the fluid at p = 4

the error is merely 0.0027%.

This fluid-structure interaction spatial resolution study confirms the findings of

§ 8.3.1. For both fluids and solids the solution reaches a mesh independent state at a

polynomial order of p = 5. This mesh and this level of resolution can now be used with
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(a) L2 (b) vz

(c) umax

Figure 8.9: Results of the spatial resolution study using the fully coupled FSI algorithm.

In each plot the polynomial order was used to change the spatial resolution of the mesh. (a)

shows the L2-norm of the fluid domain, measured at t = 0.4 s at the time of peak velocity

inlet. (b) shows the maximum fluid velocity along the centreline at t = 0.4 s. (c) shows the

peak displacement of the wall at t = 0.5 s.

confidence in the proceeding aneurysm initiation study.

8.4 Temporal resolution

The continuum mechanics governing equations describe both spatial and temporal

changes. In § 8.3 the appropriate spatial resolution of the computational mesh was

determined to ensure a mesh independent solution was being produced. It is just as

important to ensure that a sufficiently small time step is being used to capture the

physics of the system. Depending on the flow properties different structures can de-

velop over different time scales. If a large time step is used, there may not be sufficient
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% error

p L2 vz umax

3 0.4487 0.5036 0.0139

4 0.1619 0.1016 0.0027

5 0.0028 0.0051 0.0001

6 0.0000 0.0000 0.0000

Table 8.6: Percentage error in fluid parameters L2-norm and axial velocity component vz

and as well as the solid domain parameter umax relative to the most resolved case.

temporal resolution to simulate the formation of these structures thus introducing error

into the simulation. The following investigation determines the appropriate time step

required to resolve the flow in a distensible aneurysm and determine how many bound-

ary condition cycles are necessary to capture the asymptotic fluid-structure response.

8.4.1 Time step

Firstly the temporal resolution is assessed and the appropriate time step is selected

that captures the physics of the aneurysm problem. As an Eulerian reference frame is

used for the fluid domain, large time steps may cause the solution to diverge as fluid

moves fast enough to pass through an entire element within a time step. This alludes

to a Courant stability condition. Courant stability conditions relate the stability to a

quantity such as

ςf =
1

Re

∆x

∆t
< 1, (8.9)

for the fluid and

ςs = E
∆x

∆t2
< 1, (8.10)

for the solid, where ς is the Courant condition, E is the Young’s modulus of the solid,

Re is the Reynolds number, ∆x is the characteristic element length and ∆t is the

time step. Given the restrictions on spatial resolution applied by the grid resolution

study, this investigation seeks to determine the largest possible time step that allows

an accurate and stable solution.

A number of time steps were tested ranging from 0.0001 s, to 0.05 s. As with

the spatial resolution study, the L2-norm and vz (component of the velocity in the z-
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(a) (b)

Figure 8.10: Results of the time step independence study are presented. Closed symbols (�)

represent simulations that run in a stable fashion, open symbols (2) represent simulations

that diverge later in the simulation. (a) shows the change in L2-norm and (b) shows the

change in the velocity component in the z-direction at the centre of the aneurysm bulge. All

measurements were conducted at t = 0.05 s.

direction) were used to assess the global and local error in the solution. The z-velocity

component was measured at the centre of the aneurysm bulge. Measurements were

taken at t = 0.05 s, and while some simulations ultimately diverged, all were capable

of integrating to this point in time. Figure 8.10 shows the results of the time step

independence study. As the time step is reduced the solution converges to a particular

value. The closed symbols on each sub-plot represents simulations that are stable, while

open symbols represent those that diverge.

Table 8.7 shows the percentage error for each time step. The error is measured

relative to a theoretical fully resolved value at ∆t = 0, calculated using a Richardson

extrapolation. These results show that once a time step small enough to satisfy the

stability criterion is used, the effect the time step has on the results is small. In

order to reduce the computational cost of each simulation the largest stable time step

∆t = 0.0006 s is chosen for all further investigations. At this time step the error is only

0.026% in L2-norm and 0.096% in vz.

8.4.2 Time period

Finally, a small study was conducted to determine if the fluid-solid coupling caused any

interactions to occur on a longer time scale than the boundary condition period. A
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% error

∆t L2 vz

0.05 1.482 3.548

0.01 0.754 1.659

0.005 0.347 0.826

0.001 0.055 0.163

0.0006 0.026 0.096

0.0005 0.019 0.082

0.0002 0.002 0.034

0.0001 0.009 0.018

Table 8.7: Percentage error in the L2-norm and z velocity component vz relative to a theo-

retical resolved value (calculated using a Richardson type extrapolation). Time steps below

the double horizontal line are stable, those above diverge.

fully coupled fluid-structure interaction simulation was conducted for a healthy aorta.

The boundary conditions and geometry described in § 8.2 were used with a stiffness of

0.8 Mpa for the artery wall and a time-averaged Reynolds number of 410 for the fluid.

Figure 8.11 shows the results of the time period analysis. Two parameters were

monitored throughout the time period, the L2-norm (in sub-plots 8.11(a) and 8.11(b))

and vz the z-component of velocity (in sub-plots 8.11(c) and 8.11(d)). These plots

indicate that the first time period produces very different results to subsequent cycles.

This is caused by transient conditions in the pipe created by the initial imposition of

a Poiseuille velocity profile throughout. It takes nearly the entire first period to flush

this initial condition from the computational domain. Subsequent cycles exhibit very

small deviation from the asymptotic solution state.

Figures 8.11(b) and 8.11(d) plot the percentage error in each parameter compared

to the asymptotic periodic solution. The periodic solution was calculated by averaging

the last three time periods of the time saturated simulation. Data is plotted with

respect to a scaled time

t∗ = t− (n− 1)T, (8.11)

where t is the physical time, T is the boundary condition period (in this case T = 1 s)

and n indicates the nth period. Plotting relative to the scaled time t∗ allows each time
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(a) L2 (b) L2 error

(c) vz (d) vz error

Figure 8.11: Results of the time period study. In each sub-plot red, green, blue and grey

lines and symbols represent the first, second, third and fourth boundary condition time

periods respectively. (a) shows the time evolution of the L2-norm, a global measure of energy

in the solution. (b) shows the percentage error in L2-norm relative to the time saturated

value. (c) shows the time history of vz velocity component at a point along the centre line of

the pipe. (d) shows the percentage error in vz relative to the time saturated value. In each

case the error in the latter periods is minimal.

period to be compared with ease. The first time period exhibits errors in excess of 20%,

while subsequent cycles are subject to less than 1% error.

From this study two conclusions can be drawn. Firstly, there are no long-timescale

phenomena observed in the FSI in a straight pipe. Measurement of the L2-norm and

vz showed no discernible variation as more time periods were simulated. Secondly, the

initial conditions in the pipe are inaccurate and take a full cycle to be flushed from the

computational domain. This was observed in the large error in the L2-norm and vz for

the first period when compared to the time-averaged data (see figure 8.11).
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As a result of this investigation, simulations will be evolved for 4 inlet waveform

cycles to eliminate transient startup errors from the reported results. This is sufficiently

long to remove the errors associated with the initial conditions and to capture all

interactions in the system.

8.5 Results

Having determined the spatial and temporal accuracy of the mesh, the effect of local

variations in wall stiffness is investigated. First § 8.5.1 describes the flow through a

pipe with rigid-walls. Section 8.5.2 discusses the effect of a moving wall boundary

condition compared to a rigid-wall. Section 8.5.3 describes how a local variation in the

wall stiffness can effect the flow dynamics in the aneurysm both globally and locally.

In order to assess the impact on the potential initiation of an aneurysm the wall shear

stress is studied in the context of varying stiffness.

8.5.1 Flow in a rigid pipe

Before discussing the flow characteristics in an abdominal aorta in the context of

aneurysm initiation, the flow in a healthy artery with a rigid-wall is characterised.

This case will form the reference case for the aneurysm initiation study; it epitomises

the majority of the work currently conducted in this field (Salsac et al. 2006; Lasheras

2007) and serves as a point of comparison for quantifying the affect a dynamic wall has

on the haemodynamics. The aorta was idealized using the dimensions and boundary

conditions described in chapter 7. Briefly, this corresponds to an aorta of diameter

20 mm, with a time varying velocity inlet and pressure outlet boundary conditions,

similar to those experienced in a subject at rest. The input flow conditions correspond

to a peak Reynolds number of Repeak = 750, a time-averaged Reynolds number of

Remean = 410 and a Womersley number of 9.7.

The velocity profile of the flow in a straight pipe is determined by the relative

strength of transient inertial effects to the viscous forces (see the discussion in § 1.6.1).

The Womersley number is a non-dimensionalised parameter which describes the balance

of these forces. At high Womersley numbers such as those involved in arterial flow, the

velocity profile forms a top-hat profile, in which the flow is characterised by transient

changes in the flow occurring in the near-wall region first with bulk movement of the

flow slow to follow.
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The input waveform of the flow rate, is replotted in figure 8.12(a). The time evolu-

tion of the velocity field was measured in the centre of the refined region in the axial

plane. Figure 8.12(b) shows, at a few instants of time, the profiles of the axial velocity

component vz. During the systolic acceleration phase, t∗ = 0.0− 0.5, the peak velocity

increases. The flow develops the characteristic top-hat profile (or flattened Poiseuille

profile) of the Womersley solution. When the Womersley number is small (α ∼ 1), vis-

cous forces dominate and the velocity profiles are parabolic in shape. However, for a

Womersley number of α = 9.7, which is the case in the abdominal aorta, the unsteady

inertial forces dominate, and the flow approaches a top-hat profile with thin boundary

layers. At peak systole, the thickness of the boundary layer scales as

δt ∝
d

α
, (8.12)

where δt is the transient boundary layer thickness (Fung 1997).

The effect of the dominant inertial forces is highlighted in comparing the profile at

t∗ = 0.25 and t∗ = 0.75. At these two times the flow rate through the pipe is identical,

however a distinct difference in the velocity profile is evident. During the acceleration

phase (t∗ = 0.25) the centreline velocity is lower and the velocity in the boundary layer

is greater compared to the velocity profile in the decelerating phase (t∗ = 0.75). This

demonstrates that the change in flow in the boundary layer leads the change in the flow

of the overall profile.

After the peak systole, the flow decelerates first along the walls. Despite the bulk

fluid motion remaining in the forward direction, the flow along the wall reverses (see

t∗ = 1.0). For the time varying velocity profile used in this study, the bulk flow

never reverses as the area-averaged flow rate is always positive. Having completed the

deceleration phase the flow sets forward again with the increase in forward momentum

first being observed in the boundary layer. Interestingly, despite the development of an

inflectional velocity profile during diastole, the flow remains entirely laminar throughout

the entire cardiac cycle. Salsac et al. (2006) state that a transition to turbulence does

not occur at these high values of Womersley number because the characteristic time for

the growth of the instability is much longer than the period of the pulsatility.

8.5.1.1 Analytical solution

As a first approximation, the healthy abdominal aorta can be modelled as an infinitely

long straight pipe. The flow of a viscous fluid in an infinite tube under a periodic
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(a)

(b)

Figure 8.12: (a) peak flow velocity (vz) waveform at the inlet. (b) velocity profiles measured

across the healthy abdominal aorta with a rigid-wall at various times throughout a single

cardiac cycle. Velocity profiles were taken at the non-dimensionalised times indicated in (a);

red, green, blue and grey represent the velocity profiles at the non-dimensionalised times t∗ =

0.25, 0.5, 0.75, and 1.0, respectively. Comparison is made between the simulated data (single

points) and the velocity profiles calculated with the Womersley solution (solid lines).
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pressure gradient was first mathematically described by Womersley (1955). Helps &

McDonald (1954) and Womersley (1955) calculated analytical solutions for the arterial

pulsating flow. They started by expressing the time-varying pressure gradient as a

Fourier series of sinusoidal modes. The axial velocity component vz(r, t) can be related

to the time varying pressure gradient by

vz (r
∗, t∗) =

ReG∗
0

4

(
1− r∗2

)
+

Re

i

∞∑
n=1

G∗
n

α2
n

1−
J0

(
r∗i3/2αn

)
J0

(
i3/2αn

)
 eint

∗
, (8.13)

where the length r has been non-dimensionalised by the radius d
2 giving the non-

dimensionalised radius r∗ and the time is normalised by the pulsation frequency ω

to t∗. i =
√
−1 is the imaginary number, J0 is the Bessel function of the first kind

of order 0, G∗
n are the Fourier coefficients of the pressure gradient which have been

normalised by the radius r and time t, and

αn =
d

2

√
nω

ν
, (8.14)

is the dimensionless Womersley number associated with the nth harmonic of the Fourier

series expansion of the time varying pressure gradient.

An analogous expression can be derived relating the velocity profile to an area-

averaged inlet velocity by taking the surface integral of equation 8.13 and dividing by

the area,

v̄ (t) =

∫ 2π
0

∫ R
0 vz (r) rdrdθ

πR2
. (8.15)

Given an area average flow is to be imposed of the form

v̄ = An cos (ωnt) +Bn cos (ωnt) (8.16)

where An and Bn are the Fourier coefficients of the nth mode. The velocity profile is

described by

vz (r, t) =
(
crJ

0
r (r)− ciJ

0
i (r)

)
cos (ωt)−

(
ciJ

0
r (r) + crJ

0
i (r)

)
sin (ωt) , (8.17)
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where

cr =
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(
i3/2α r

R

)
J0

(
i3/2α

)


(8.18)

and Jν is the complex Bessel function of the first kind of order ν. This solution was

developed by Professor Spencer Sherwin and provided via private correspondence.

Figure 8.12(b) compares the simulated velocity profile in the rigid pipe to those

calculated using the Womersley solution. Excellent agreement is observed with the

simulated velocity profile (data points in figure 8.12(b)) falling within 0.4% of the

Womersley solution (lines in figure 8.12(b)). The Womersley solution predicts an in-

flectional flow profile which remains laminar as a result of the unsteadiness of the flow

preventing the instability from developing. This supports the lack of turbulence ob-

served in the rigid artery model. The small difference in the theoretical and simulated

velocity profiles are within the spatial uncertainty of the mesh.

8.5.2 Flow in a healthy artery

Of principal interest to this investigation is how the motion of the wall affects the flow

in a straight pipe. As such, figure 8.13 compares the axial velocity profile in a rigid pipe

to the flow in a healthy artery with uniformly flexible walls. Figure 8.13(a) shows the

time evolution of the axial velocity component (vz) for a rigid pipe in the y-z plane. The

flow reversal predicted by the Womersley profile is observed in the non-dimensionalised

time period t∗ = 0.55− 0.85. As discussed in § 8.5.1 this is indicative of a Womersley

profile in which the transient inertial forces first affect the near-wall region prior to

being evident in the bulk flow; i.e. the greatest change is found in the boundary layer.

Figure 8.13(b) shows an identical plot for the case where the walls are elastic with a
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(a)

(b)

(c)

Figure 8.13: Visulaisation of the time evolution of axial velocity field vz in a straight pipe

in the y-z plane. (a) shows the rigid-walled case, and (b) shows the case of a elastic-walled

pipe with uniform stiffness E = 0.8 MPa. (c) shows both the velocity inlet condition and

the wall velocity as a function of non-dimensionalised time. Note: for the case of the wall

velocity, an expanding wall corresponds to a negative velocity.
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stiffness of 0.8 MPa (that of a healthy artery). In comparison to the rigid-wall case, the

period of reversed flow is reduced by the elastic-wall from 0.3 s to 0.2 s. Furthermore,

the onset of the reversed flow is delayed from t∗ = 0.55 s to t∗ = 0.75 s. The added

inertia of the wall modifies the effective Womersley number of the vessel. This occurs

in two forms; firstly the diameter of the vessel increases, and secondly the motion

of the wall introduces extra transient inertia into the elastic region. In determining

the new velocity profile with the distended and moving wall, the modified Womersley

number must be considered. An analytical solution is described later in § 8.5.5.1. In

this section, the change in effective Womersley number is related to a change in the

transient boundary layer thickness which in turn changes the velocity profile.

The motion of the wall has a dramatic effect on the flow. The additional inertia

acts in the wall-normal direction, perpendicular to the bulk motion of the fluid. Fig-

ure 8.13(c) shows the velocity inlet boundary condition and velocity of the wall, respec-

tively. The motion of the artery wall is driven by the time-varying pressure boundary

condition which is 0.1 s out of phase with the inlet velocity. The pressure-velocity

phase lag may contribute to the delayed onset of the flow reversal in the elastic-walled

case. When the bulk fluid motion driven by the inlet velocity boundary condition is

starting to reverse, the phase lag causes the wall to continue to constrict. The changing

vessel volume contributes momentum to the flow in the downstream direction in order

to conserve mass (for an analytical argument of this point the reader is directed to

the Reynolds transport theorem analysis conducted in § 8.5.5.1). The extra velocity

introduced by this process reduces the onset and duration of the reversed flow.

Also evident in figure 8.13(b) is a reduction in the magnitude of vz at the peak

systolic time t∗ = 0.2 s compared to the rigid case in figure 8.13(a). This may be an-

ticipated as the increased vessel diameter drives a reduction in the velocity magnitude

in order to conserve mass. However, the area-averaged flow rate (figure 8.15) for each

case shows a reduced peak flow rate suggesting this is not the sole contributing factor.

Another hypothesis is that the velocity of the wall introduces components of velocity

in the non-axial direction. In order to validate this hypothesis the velocity magnitude

was plotted for the rigid pipe in figure 8.14(a) and for the elastic-walled case in fig-

ure 8.14(b). The relative difference in the velocity magnitudes (in figure 8.14) is less

than the difference between velocity profiles (in figure 8.13), this indicates that a small

amount of velocity in the radial direction is introduced by the velocity of the wall.
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(a)

(b)

(c)

Figure 8.14: Visualisation of the time evolution of velocity magnitude in a straight pipe in

the y-z plane. (a) shows the rigid-walled case, and (b) shows the case of a elastic-walled pipe

with uniform stiffness E = 0.8 MPa. (c) shows both the velocity inlet condition and the wall

velocity as a function of non-dimensionalised time. Note: for the case of the wall velocity, an

expanding wall corresponds to a negative velocity.
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Figure 8.15: Flow rate through outlet boundary in a rigid pipe (red) and elastic artery

(blue).

It is clear that the motion of the wall causes a reduction in both the peak axial

velocity component and the peak velocity magnitude. Figure 8.15 shows the time

evolution of the flow rate through the outlet of both the rigid and elastic pipe cases.

A reduction in the peak flow rate (at peak systole) is observed in the elastic case,

this is matched by an increase in the peak diastole flow rate. The result of this is to

maintain the mean flow rate across the entire cardiac cycle regardless of the elasticity

of the walls. Note: the phase difference between the flow rates for the rigid case and

elastic case matches the phase difference between the pressure and velocity boundary

conditions.

8.5.3 Flow dynamics with localised stiffness variations

To assess the impact of heterogeneous stiffness properties, the stiffness of a thin band

of material was altered (see figure 8.1(a)). Figure 8.16 shows the variation in the axial

component of velocity vz throughout the cardiac cycle. The black lines represent the

case of flow in a rigid pipe, while coloured lines and symbols show the case of flow

through an elastic artery. The most prominent feature of figure 8.16 is the difference

in peak velocity in the rigid pipe cases compared to the elastic pipe cases. During the
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systolic acceleration phase the rigid-wall cases have a higher peak velocity than the

elastic cases. This trend is reversed during the diastolic deceleration phase in which

the peak velocity of the elastic cases is greater than the rigid pipe case. As discussed

in § 8.5.2 this is due to flow being directed in the wall-normal direction as the wall

moves. During the systolic phase this motion is acting to subtract flow from the axial

direction and during the diastolic phase it is acting to add flow. Figure 8.16(f) shows

the velocity profile at a time when the wall motion is zero. At this snapshot in time

there is negligible difference between the velocity profile predicted with a rigid or elastic

wall.

Figure 8.16 also shows how the locally varied wall stiffness affects the axial velocity

component of the flow. As the section of wall is stiffened, the peak velocity trends

towards the rigid-wall case (this is shown in more detail in figure 8.18). This trend

is expected since as the stiffness of the entire artery wall is increased to infinity the

rigid-wall solution is approached. For the elastic-walled cases simulated here, the wall

predominantly has the stiffness of a healthy artery with a localised band of material

with altered stiffness. As such, changes in stiffness have a less significant effect (i.e. the

material maintains a stiffness of 0.8 MPa along much of its length, with only a small

stiffness fluctuation in the small banded region). Figure 8.17 shows the relationship

between the peak axial velocity at t∗ = 0.37 as a function of wall stiffness. A nearly

linear relationship between the peak velocity and the inverse stiffness is observed at this

snapshot of the cardiac cycle (similar linear trends of varying gradient are observed

at different times). The relationship is not perfectly linear due to the neo-Hookean

material model used for the wall. If a Hookean model were used a linear relationship

governs the wall displacement (or strain) in response to the force applied (stress),

ε =
σ

E
. (8.19)

If it is assumed that the wall motion is linearly proportional to any change in the flow

dynamics; a linear relationship between the peak axial velocity and the inverse stiffness

can be expected. Figure 8.17 indicates that as the thin band of material is stiffened

the impact it has on the flow is diminished. In fact any change in stiffness beyond

6.0 MPa (7.5× Ehealthy) will change the flow by less than 0.08% based on a Richardson

extrapolation of the results. Conversely, reductions in stiffness will have a profound

impact on the peak flow rate.

Variation in the stiffness has both a global and local effect on the wall motion.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 8.16: Plots of axial velocity in the y-z plane in the centre of the stiffened band

(z = 12), velocity is normalised using the period of oscillation and diamter of the vessel. Sub-

plots (a)-(f) show the axial velocity component for various wall stiffnesses at times A-F shown

in (g). In each plot filled black squares (�), filled red squares (�), filled green squares (�),

filled blue squares (�), open grey squares (2), open blue squares (2), open green squares (2),

and open red squares (2) represent the cases of a fully rigid pipe, the region with 6 MPa,

4 MPa, 2 MPa, 0.8 MPa (healthy-uniform), 0.6 MPa, 0.4 MPa, and 0.2 MPa, respectively.

(g) shows the velocity inlet (red) and wall velocity (blue) a negative wall velocity indicates

the volume is expanding.
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Figure 8.17: The peak axial velocity at non-dimensionalised time t∗ = 0.37 plotted as a

function of 1
E .

Globally, if the stiffness is reduced it acts to increase the total dilation of the wall as

the less stiff region can stretch more. Conversely, an increase in stiffness will cause

a global reduction in the resulting dilation. Locally, there is a slight variation in the

expansion shape. Figure 8.19 shows the local change in wall profile as a result of

varying the stiffness. A stiffer band causes a localised constriction of the artery akin

to a mini stenotic geometry while the less stiff geometry causes a localised dilation of

the geometry above that of the normal wall motion. Figure 8.19 also shows the change

in global dilation as a result of the varying stiffness. Note that an increase in the wall

displacement corresponds to a greater wall-normal velocity: detail of this are shown

in figure 8.20. In terms of the size of the impact that a change in local stiffness has

on the flow, the results shown in figures 8.17 and 8.18 indicate that an increase in

stiffness above 0.8 MPa has a less significant effect than a local weakening of the wall

of the same order of magnitude. This is a result of the inverse relationship between

stiffness and wall motion (for a given stress, see equation 8.19). Increases in stiffness

form the asymptotic region of this relation, while decreases in stiffness move away from

the asymptote where relative changes in wall motion resulting from changes in stiffness
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Figure 8.18: Axial velocity in the y-z plane in the centre of the stiffened band (z = 12) at

t∗ = 0.3868, velocity is normalised using the period of oscillation and diamter of the vessel.

Filled black squares (�), filled red squares (�), filled green squares (�), filled blue squares

(�), open grey squares (2), open blue squares (2), open green squares (2) and open red

squares (2) represent the cases of a fully rigid pipe, the region with 6 MPa, 4 MPa, 2 MPa,

0.8 MPa (healthy-uniform), 0.6 MPa, 0.4 MPa and 0.2 MPa, respectively with the rest of the

wall being an elastic 0.8 MPa.

are greater.

The results presented in figure 8.16 describe the effects of wall dilation on the bulk

flow. However, local variations in the flow resulting from the local variation in wall

motion are not well represented. This is because the local change in wall profile arising

from the local change in stiffness is small relative to the length of the artery. The

small length scale of the localised variation in stiffness leads to a minimal change in

the bulk flow. The change in surface profile has a greater effect in the boundary layer.

Figure 8.20 shows the variation in the wall-normal component of velocity, vy, at the

centre of the localised stiffness region throughout the cardiac cycle.

Figure 8.20 shows the elastic case, which varies significantly in comparison to the

inelastic case. This is particularly evident at the wall boundary where for an inelastic-

wall the no-slip boundary condition forces the velocity to be zero while the elastic

boundary is free to move. The motion of the elastic-wall causes a non-zero velocity
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Figure 8.19: Wall displacement, exaggerated by a factor of 5 for visualisation. Black lines

show the case of a uniform healthy artery stiffness of 0.8 MPa, red lines represent the case of

0.8 Mpa with a 6.0 MPa central band, and green lines represent the case of 0.8 Mpa with a

0.2 MPa central band.

in the boundary layer. The effect of the local change in wall stiffness is evident when

looking at the wall-normal velocity component in the stiffened region. As the local

stiffness increases, the magnitude of the peak wall-normal velocity also increases. As

with the axial velocity component (vz) , as the wall is stiffened it approaches the rigid-

wall solution: this is true of all but time t∗ = 0.8684 in figure 8.20(f). At this time the

trend reverses due to the phase lag between the wall motion and the inflow velocity.

The phase lag is also responsible for the difference in the vy velocity profile between

the elastic cases and the rigid case at time t∗ = 0.5348 in figure 8.20(c). Note that this

occurs at both times when the magnitude of the wall-normal velocity is a minimum.

To emphasize the local nature of the effect on the flow, figure 8.21 shows the wall-

normal velocity vy at a location 1 diameter downstream of the altered stiffness region.

When comparing figure 8.21 to figure 8.20 it is immediately apparent from the partial

collapse in the data that the difference between the less stiff (0.2 MPa) and stiffened

(6 MPa) elastic cases is much less significant downstream. The variation of the velocity

with stiffness alteration is on a scale closer to that observed for the axial wall component

in figure 8.16, which demonstrated the global effect of a local alteration in wall stiffness.

To finalise this discussion on the effect that local stiffness has on local flow dynamics,

figure 8.22 shows the vorticity in the vicinity of the region of varying stiffness. The

small variation in wall profile in this region changes the vorticity distribution along the

wall. For the case when the material is stiffened, figure 8.22(e) shows that the local
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 8.20: Plots of the wall-normal velocity in the y-z plane in the centre of the stiffened

band (z = 12), velocity is normalised using the period of oscillation and diamter of the vessel.

Sub-plots (a)-(f) show the wall-normal velocity component for various wall stiffnesses at times

A-F shown in (g). In each plot filled black squares (�), filled red squares (�), filled green

squares (�), filled blue squares (�), open grey squares (2), open blue squares (2), open green

squares (2), and open red squares (2) represent the cases of a fully rigid pipe, the region

with 6 MPa, 4 MPa, 2 MPa, 0.8 MPa (healthy-uniform), 0.6 MPa, 0.4 MPa, and 0.2 MPa,

respectively.(g) shows the velocity inlet (red) and wall velocity (blue) a negative wall velocity

indicates the volume is expanding.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 8.21: Plots of the wall-normal velocity in the y-z plane in the downstream of the

stiffened band (z = 13), velocity is normalised using the period of oscillation and diamter

of the vessel. Sub-plots (a)-(f) show the wall-normal velocity component for various wall

stiffnesses at times A-F shown in (g). In each plot filled black squares (�), filled red squares

(�), filled green squares (�), filled blue squares (�), open grey squares (2), open blue squares

(2), open green squares (2), and open red squares (2) represent the cases of a fully rigid

pipe, the region with 6 MPa, 4 MPa, 2 MPa, 0.8 MPa (healthy-uniform), 0.6 MPa, 0.4 MPa,

and 0.2 MPa, respectively. (g) shows the velocity inlet (red) and wall velocity (blue) a

negative wall velocity indicates the volume is expanding.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.22: Left: contours of vorticity in the y-z plane in the region of varying stiffness.

Vorticity contours are constant and vary from -75 to 75 (depicted by blue and red respec-

tively). Right: the λ2 field with contour levels of -0.0001 shown. Small negative values of

λ2 identify vortical regions of the flow. (a) and (b) shows the case of a 0.2 MPa region; (c)

and (d) the uniform stiffness 0.8 MPa (healthy wall); and (e) and (f) is the stiffened case of

6 MPa.

restriction of the artery wall causes a region of greater vorticity to form close to the

wall, figure 8.22(f) confirms that this is in fact a vortex core forming as a result of

the restriction (a negative λ2 implies that a vortex core is present). For the case of a

less stiff wall the extra wall motion reduces the vorticity magnitude upstream of the

disturbance and increases it downstream.

These results demonstrate that models which use a rigid-wall fail to capture the full

flow dynamics in an aorta. The peak axial velocity predicted with a rigid-pipe model

exceed the healthy elastic-wall case by over 32%. Furthermore, large variations in

velocities close to the wall were observed. Section 8.5.5 will discuss the impact this has

on the wall shear stresses which are integral to the healthy function of the endothelial
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cells in the arterial wall. In the proceeding sections the rigid-wall model will be used

as a comparison only to demonstrate the inadequacy of such models in describing the

haemodynamic environment in the large arteries. Comparisons to the uniformly stiff

healthy elastic-wall case will provide the basis upon which the heterogeneous wall results

are discussed.

8.5.4 Wall shear stress in a perfectly rigid aorta

The evolution of the wall shear stress was calculated over time using equation 1.4. For

the case of flow in a rigid-walled aorta where the flow is laminar and axisymmetric

the wall shear stress may be approximated by equation 1.1. Using this approximation,

and substituting the description of the Womersley velocity profile in equation 8.13, the

analytical expression for the wall shear stress may be written as

τWSS (t∗) = −∂v∗

∂r∗
‖r∗=1 =

ReG∗
0

2
+

∞∑
n=1

ReG∗
n

2

2

i3/2αn

J1

(
i3/2αn

)
J0

(
i3/2αn

)eint, (8.20)

where

G∗
0 =

8

πRe
Q∗

0, (8.21)

and

G∗
n =

2iαn

Re

(
1− 2

i3/2αn

J1(i3/2αn)
J0(i3/2αn)

)Q∗
n, (8.22)

where Q∗
n are the Fourier coefficients of the input flow rate, and quantities denoted by

a (∗) indicate that it has been non-dimensionalised by the input flow rate and viscosity

(Salsac et al. 2006).

This analytical expression for the wall shear stress in a rigid-walled artery is com-

pared to the wall shear stress calculated in the rigid-walled simulation using equation 1.4

in figure 8.23. The correlation between the analytical expression and the calculated wall

shear stress is excellent for this simple laminar flow case. The wall shear stress ranges

from -1.38 Pa to 3.56 Pa, the extrema occurring respectively at the peak diastole and

peak systole. The simulated WSS measurements were within 2% of the analytical so-

lution at all times. This shows an excellent correlation despite the assumptions made

in the analytical solution. These include assumptions of a perfectly laminar and axi-

symmetric flow and a uniform wall geometry (i.e. it assumes the geometry is a flat

plate). Other investigations have recorded wall shear stresses in rigid-walled pipes,

Salsac et al. (2006) found the wall shear stress varied in the range of -3 Pa to 4.9 Pa.
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Figure 8.23: Variation of wall shear stress as a function of time inside a rigid-walled artery.

The black line represents the analytical solution while the red squares, �, show the results

of the simulation.

In vivo measurements have also been conducted which would account for a moving

wall, Oyre et al. (1997) reported a wall shear stress range of -1.3 Pa to 4.9 Pa, Cheng

et al. (2002) found the peak wall shear stress in a resting patient to be only 2 Pa. The

wall shear stress range found in this investigation is well within the range described

within the literature, the difference in the wall shear stress between Salsac et al. (2006)

and this study is likely due to the difference in inlet velocity profile. This study has a

minimum inlet velocity of 2.5 cm/s compared to -8.8 cm/s (Salsac et al. 2006), which

would allow for a greater near-wall velocity gradient in the reverse flow direction and

therefore a greater negative wall shear stress. Furthermore, Salsac et al. (2006) uses a

physiologically realistic heart beat waveform which includes sharper velocity gradients

compared to the sinusoidal profile considered in this investigation.

Regardless of these small differences, the variation in the calculated wall shear stress

correlates well with the analytical solution and is within the previously reported range

of wall shear stress values. As this is a rigid-walled simulation and analytical model,

the wall tangent shear stress model is sufficient to accurately predict the shear stress.

The wall shear stress is the parameter that is physiologically relevant at the level of
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the endothelial response. Figure 8.23 showed that the WSS fluctuates in a healthy

abdominal aorta. Any departure from the healthy pattern of WSS strongly affects the

morphology, metabolism and gene expression of the endothelial cells (Salsac et al. 2006;

Lasheras 2007).

8.5.5 Wall shear stress in an elastic aorta

With an elastic wall, the flow dynamics inside an artery vary dramatically compared

to rigid-walled models (examples of these variations were discussed in § 8.5.2). This

section describes the repercussions of the changed flow dynamics in terms of the wall

shear stress. Section 8.5.5.1 analytically describes how a change in the wall geometry

will cause a change in the wall shear stress distributions. Section 8.5.5.2 goes on to

compare the wall shear stress distributions in an elastic artery to that of a rigid pipe.

8.5.5.1 Analytical approach

The purpose of this section is to propose an analytical model of the flow through a

bulging pipe to aid explanations of the root of changes in wall shear stress as a result

of a changing geometry. Much of the discussion included later in this thesis relates

changes in wall shear stress to three factors.

1. The change in geometry causes a spatial acceleration or deceleration.

In order to conserve mass if the local radius of the pipe changes, the velocity of

the fluid through the pipe must change to ensure a constant fluid flux.

2. The temporal dependence of the wall geometry, i.e. the velocity of the

wall causes a change in the pipe volume The changing volume of the pipe

changes the downstream flow rate at a point in order to conserve mass flow rate.

3. An increase in mass flow rate is associated with a thinner boundary

layer A thinner boundary layer corresponds to large velocity gradients, strain

rates and consequently, wall shear stresses.

The ultimate goal is to describe what happens to the wall shear stress in the changing

arterial environment. Primarily this may be linked to the boundary layer thickness.

As such, the boundary layer is defined by referring to the momentum equation of the

Navier–Stokes equations,

∂v

∂t
+ (v · ∇)v = −∇P + ν∇2v. (8.23)
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The momentum equation of the Navier–Stokes equations represent a balance of the four

forces, term by term these are:

Transient
inertia per
unit volume

+ Convective
inertia per
unit volume

= Net pres-
sure force
on the sur-
face of the
infinitesi-
mal control
volume

+ Net viscous
forces on
the surface
of the in-
finitesimal
control
volume

To determine the relative importance of these terms under differing flow conditions

the Navier–Stokes equations are re-cast into a non-dimensionalised form using a charac-

teristic velocity V, frequency ω, and length L. In the particular context of flow through

an artery V = vmean (the mean flow speed), ω is the heart rate and L = d (the diameter

of the artery). Using these characteristic quantities the non-dimensionalised variables

are

v∗ =
v

vmean
, t∗ = ωt, P ∗ =

p

ρv2mean

, ∇∗ =
1

D
. (8.24)

Substituting these quantities into equation 8.23 yields the non-dimensionalised Navier–

Stokes equations

α2

Re

∂v∗

∂t∗
+ (v∗ · ∇∗)v∗ = −∇∗P ∗ +

1

Re
∇∗2v∗,

∇∗ · v∗ = 0,

(8.25)

where,

Re =
vmean d

ν
, (8.26)

and

α = d

√
ω

ν
. (8.27)

These form the complete set of field equations for an incompressible fluid, it is clear that

the Reynolds number and the Womersley number are the only two physical parameters.

This implies that two flows in geometrically similar vessels but with different sizes

will exhibit identical flow dynamics if both the Reynolds number, Re, and Womersley

number, α, are the same. Thus the Reynolds and Womersley numbers may be said to

govern the balance of forces in a flow (Fung 1997).

The Reynolds number expresses the ratio of the convective inertial forces to the shear

force. A large Reynolds number indicates a predominant convective inertial effect; a

small Reynolds number indicates a predominant shear effect. Similarly, the Womersley
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number expresses the ratio of the transient inertial forces to the shear force. If the

Womersley number is large, the oscillatory inertial forces dominate.

The concept of a boundary layer was presented by Prandtl (1904). It can be under-

stood by comparing the significance of various terms in the Navier–Stokes equations. If

an ideal inviscid fluid is considered (i.e. ν = 0) the last term in equation 8.23 vanishes.

At a boundary, an ideal fluid may not penetrate the wall but its tangential velocity is

unrestricted. For a viscous fluid the non-slip condition must apply regardless of the

magnitude of the viscosity of the fluid. Prandtl (1904) postulates that if the viscosity

is small, the influence of the no-slip condition and final term in equation 8.23 is limited

to a small layer adjacent to the solid wall. Conversely, in this scenario, far from the

wall the influence of the last term in equation 8.23 is insignificant and can be neglected.

In this case the boundary layer thickness δ can be deduced by comparing proper terms

in equation 8.23. The boundary layer is therefore defined as the region in which the

viscous forces are dominant in the Navier–Stokes equations.

First consider an oscillating velocity field of frequency, ω, and velocity amplitude,

V . The first term of equation 8.23 shows that the transient inertial force is of order

ρωV . The last term in equation 8.23 shows that the order of magnitude of the viscous

forces is µV
δ2t

, where δt is the transient boundary layer thickness (a length scale used

to non-dimensionalise the viscous term in the Navier–Stokes equations as a result of

the definition of a boundary layer). In the transient boundary layer these terms are of

similar orders of magnitude and balance each other to determine the flow. Hence

ρωV ' µV

δ2t
(8.28)

or

δt '
√

ν

ω
. (8.29)

In a tube flow let the characteristic length be the radius R, then the ratio of R to δt is

the Womersley number

R

δt
' α. (8.30)

Hence, if the Womersley number is large, the transient boundary layer is thin compared

to the tube radius. This supports the discussion of Womersley profiles in § 8.5.1 in which

it was shown that at high Womersley numbers the flow becomes plug like with changes

in flow first occurring (as a result of the oscillatory nature of the flow) close to the
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walls. When the Womersley number is low the flow approaches a Poiseuille flow profile

in which the boundary layer thickness is equal to the entire tube radius.

Also of significance are the convective inertial forces: these are particularly im-

portant in the aneurysm context in which the changing shape will cause a convective

acceleration. In a convective boundary layer of thickness δc the magnitude of the con-

vective inertial forces ρV 2

L compete with the viscous forces µV 2

δ2c
. Thus the convective

boundary layer may be described as

δc '

√
µL

ρU
. (8.31)

In a tube flow let the characteristic length be the radius R, then the ratio of R to δc is

the square root of the Reynolds number

R

δc
'

√
Re. (8.32)

Therefore, if the Reynolds number is large, the convective boundary layer is very thin.

In a pipe flow at a distance from the wall much larger than δt and δc the flow may be

considered ideal and the effect of viscous forces neglected.

Having defined some relationships between the non-dimensionalised physical pa-

rameters and relationships between the physical parameters and the boundary layer

thickness, changes in local Reynolds and Womersley numbers can be used to describe

changes in boundary layer thickness and consequently wall shear stresses.

In an artery model with an elastic wall, both the radius and the flow velocity can

change. To determine the boundary layer thickness at a particular location the Reynolds

transport theorem may be employed. Consider the bulging pipe shown in figure 8.24

with an arbitrary control volume shown. For an arbitrary moving and deformable

control volume the Reynolds transport theorem is

dm

dt
=

d

dt

(∫
CV

ρdV

)
+

∫
CS

ρVrn dAout −
∫
CS

ρVrn dAin, (8.33)

where

Vr = V − VCS (8.34)

is the relative velocity between the fluid (V ) and the control surface (VCS), m is the

mass and Aout and Ain are the areas of the control surface through which fluid flows.

If the fluid is incompressible the mass flux

dm

dt
= 0, (8.35)
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Figure 8.24: An example of the control volume used to determine the flow rate at any

position along the pipe. The control volume deforms with the walls and has velocity flowing

through its inlet on the left and out the outlet on the right.

giving the relationship

0 =
d

dt

(∫
CV

ρ dV

)
+

∫
CS

ρVrndAout −
∫
CS

ρVrn dAin (8.36)

For the control volume shown in figure 8.24 there is an input upstream of the elastic

region, inflow as a result of the wall motion, and an output at the region at which the

boundary layer thickness is of interest. i.e.

0 =
d

dt

(∫
CV

ρ dV

)
+

∫
CS

ρVr · ndAout−(∫
CS

ρVr,inlet · n dAin +

∫
CS

ρVr,wall · ndAin

)
.

(8.37)

If the control volume is fixed to the wall, the relative velocity between the control

surface and the wall/fluid flow is zero, similarly if the control volume is fixed in space

relative to the longitudinal axis, the relative velocity is simply the velocity of the fluid.

As such, the final Reynolds transport equation is:

0 =
d

dt

(∫
CV

ρ dV

)
+

∫
CS

ρVout · ndAout −
∫
CS

ρVin · ndAin, (8.38)

where the first term accounts for the change in volume of the artery and the motion

of the wall, the second term describes the mass flow rate at the outlet of the control

volume (location of interest) and the final term represents the mass flow rate at the

inlet to the control volume. In this analysis, the location of the control volume inlet is

fixed at the inlet to the elastic region. At this location the area of the control surface is

constant as the elastic walls cannot move. Therefore at a particular instant in time, the

final term is constant and known from the velocity inlet boundary conditions. Hence,
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the Reynolds transport theorem can be re-written as∫
CS

ρVout · n dAout = ρQ (t)− d

dt

(∫
CV

ρ dV

)
, (8.39)

where Q (t) is the volumetric flow rate at the inlet.

Equation 8.39 shows that if the volume of the aneurysm is increasing with time, the

flow rate at the outlet is reduced. Conversely a decreasing control volume will cause

an increase in the flow rate at the control volume outlet. Furthermore, if the radius at

the outlet is greater than the radius at the inlet, the velocity at the outlet will be less

than the velocity at the inlet.

Consider the relationship shown in equation 8.32. If the local velocity increases,

the boundary layer becomes thinner and consequently the wall shear stress increases.

By considering equation 8.32 in conjunction with equation 8.39, it can be seen that an

increasing volume or an increasing radius of the pipe causes a reduction in the local fluid

velocity, an increase in boundary layer thickness, and consequently a decrease in the

local wall shear stress. Conversely, a decreasing volume or radius causes an increase in

the local fluid velocity, a thinning of the boundary layer, and consequently an increase

in the local wall shear stress.

This analysis can be taken further to derive an analytical expression for the flow

through an incipient aneurysm with moving walls.

Salsac et al. (2006) present an analytical solution to flow through an incipient

aneurysm with rigid walls. An analytical solution for the wall shear stress in a slowly

expanding pipe is derived via an extension of the analytical solution for a straight pipe

in § 8.5.1.1. In formulating this expression it is assumed that changes in the axial

velocity occur very slowly along the longitudinal axis, i.e. the expansion is at a very

small rate. In the case of a slowly expanding pipe the radial velocity, vr, can no longer

be neglected. Salsac et al. (2006) defines a characteristic length, L along which the

local radius varies, i.e.

L = r0
dr

dz
, (8.40)

where r0 is the original pipe radius, z is the axial direction and r is the radius of the

pipe at location z. The definition in equation 8.40 is rearranged to form a new small

parameter

ε =
L

r0
, (8.41)
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which is used to define a new set of parameters,

Z∗ = εz∗, P ∗ = εp∗, v∗r = εV ∗
r , (8.42)

where Z∗ is the new non-dimensionalised axial position, P ∗ is the non-dimensionalised

pressure and V ∗
r is the new radial velocity. To extend the Salsac et al. (2006) approach

to the case of an elastic bulging pipe the small parameter of equation 8.41 is defined

not simply as a linear approximation of the radial position of the wall, but instead as

the instantaneous gradient of the radius in the axial direction,

ε =
L

r0
=

dr

dz
. (8.43)

If the change in radius is small this allows consideration of the case of a continually

changing radius rather than a simple expanding pipe case. This definition permits the

slightly bulging pipe case of this investigation to be considered (see figure 8.19).

A first-order approximation of the momentum equations decouples the flow into

axial and radial velocity components, i.e. the axial velocity component reduces to a

similar form as that of the straight pipe equations in § 8.5.1.1. The dimensionless

longitudinal velocity v∗z(Z
∗, r∗, t∗) is given by

v∗z (Z
∗, r∗, t∗) =

ReG∗
0 (Z

∗)

4

(
R∗2 − r∗2

)
+

Re

i

∞∑
n=1

G∗
n (Z

∗)

α2
n

1−
J0

(
i3/2αn

r∗

R∗

)
J0

(
i3/2αn

)
 eint

∗
,

(8.44)

where R∗ (Z∗) = r(Z∗)
r0

is the local dimensionless radius, αn (Z
∗) = r (Z∗)

√
nω
ν is the

local Womersley number corresponding to the nth harmonic of the input arterial flow

rate and G∗
n (Z

∗) is the nth Fourier coefficient of the pressure gradient ∂P ∗

∂Z∗ .

As in § 8.5.1.1 it is preferential to recast equation 8.44 in terms of the flow rate Q∗
n

rather than the pressure gradient. The pressure coefficients G∗
n (Z

∗) are then calculated

using,

G∗
0 (Z

∗) = 8
πReR∗4Q

∗
0; G∗

n (Z
∗) = iα2

n

πReR∗4[1−F (αn)]
; (8.45)

where

F (αn) =
2

i3/2αn

J1

(
i3/2αn

)
J0

(
i3/2αn

) , (8.46)

and J1 is the Bessel function of the first kind with order one.
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In addition, the radial velocity takes the form (Salsac et al. 2006):

V ∗
r =

2Q0

πR∗2
dR∗

dY ∗
r∗

R∗

(
1− r∗2

R∗2

)
+

∞∑
n=1

Qn

4πR∗2
dR∗
dY ∗

iα2
nF (αn)

2

(1− f (αn))
2

 r∗

R∗ −
J1

(
i3/2αn

r∗

R∗

)
J0

(
i3/2αn

)
 eint.

(8.47)

In equations 8.44 and 8.47 the velocity is now dependent on the local wall gradient

through the inclusion of the small parameter defined in equation 8.43. To account

for the motion of the wall the Fourier components of the flow rate must include a

component from the inlet boundary condition as well as the changing volume of the

vessel,

Q∗
n = Q∗

n,inlet +Q∗
n,wall. (8.48)

This is a direct result of the Reynolds transport theorem analysis in equation 8.39.

The wall shear stress can be approximated by taking the gradient of the axial

velocity component at the wall location,

τWSS (t∗) = − ∂v∗

∂r∗

∣∣∣∣
r∗=R∗

=
ReG∗

0 (Z
∗)

2
+

∞∑
n=1

ReG∗
n (Z

∗)

2

2

i3/2αn

J1

(
i3/2αn

)
J0

(
i3/2αn

)eint (8.49)

where G∗
0 and G∗

n are as described in equation 8.45.

Each of the Fourier coefficients in equation 8.45 are dependent on the parameter

R∗ (Z∗) = r(Z∗)
r0

. Consider the differential control volume shown in figure 8.25. This

shows that for a particular control volume, r0 is the radius of the control volume on

the inlet side and r∗ is the radius of the control volume at the outlet side. If the

differential control volume is located in the diverging section of the aneurysm, R∗ > 1,

conversely if the differential control volume is located in the converging section of the

aneurysm, R∗ < 1. Because the wall shear stress involves a fourth-order relationship

with R∗, small changes in this ratio have a greater effect than other terms which are

of order O(1). Thus if the wall is diverging and R∗ > 1, the coefficients G∗
0 and G∗

n

are reduced and so too is the wall shear stress. Similarly if the wall is converging and

R∗ < 1, the coefficients G∗
0 and G∗

n are increased and the wall shear stress also increases.

This matches the findings of § 8.5.5.2 in which the diverging wall at the distal neck is

associated with a reduction in the wall shear stress and the converging wall near the

distal neck is associated with an increase in wall shear stress.

Similarly, analysis of the Fourier coefficients in equation 8.45 in association with

the Reynolds transport relationship in equation 8.39 supports these findings. At times
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Figure 8.25: An example of a differential control volume. Depending on the axial location

of the control volume, the ratio R∗ (Z∗) = r(Z∗)
r0

may be greater than or less than unity.

when the wall is collapsing and the volume is decreasing the flow rate increases: this

leads to an increase in both G∗
0 and G∗

n and consequently an increase in the wall shear

stress at these times.

8.5.5.2 Simulated wall shear stresses

In § 8.5.4 an analytical expression for the wall shear stress was compared with rigid-

walled results. Here, the variation in the wall shear stress with an elastic-wall is con-

sidered. Figure 8.26 shows contours of the variation in wall shear stress in the elastic

region of interest through time. Figure 8.26(a) shows the case of a rigid pipe, the wall

shear stress pattern is dominated by continuous horizontal bands. This shows that at a

particular time the wall shear stress is spatially invariant along the length of the artery.

This correlates well with the velocity distribution in a rigid smooth-walled artery in

which the velocity profile is expected to be laminar throughout the cardiac cycle. The

structure of figure 8.23 can be seen when looking at a vertical transect of figure 8.26(a),

the wall shear stress reaches a maximum at peak systole before decreasing to a minimum

at peak diastole. As the inlet velocity has a non-zero mean the intensity of contours

around the peak systole is greater than the peak diastole.

Figure 8.26(b) shows the case when the wall has a uniform elasticity of E = 0.8 MPa.

The elasticity of the wall allows it to balloon outward and form the shape shown in

figure 8.19. Each contour plot shows the extents of the elastic region only, not the rigid

sections up- or down-stream. The variation in shape drastically affects the banded

contour profile of the wall shear stress. The peak wall shear stress occurs during systole

as expected. However, rather than the peak shear stress occurring continuously across
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(a) rigid (b) E = 0.8

(c) E = 0.2 (d) E = 6.0

Figure 8.26: The variation of wall shear stress (WSS) in a straight pipe as a function of

both time and space. Contours show WSS with high low levels represented by red and blue,

respectively. Negative values are represented by dashed contour lines. The contour levels are

equispaced and vary from -3 Pa to 3 Pa. Sub-plot (a) represents the WSS distribution in a

straight pipe with rigid-walls. Sub-plots (b)-(d) represent the WSS in a straight pipe with a

localised variation in wall stiffness of 0.8 MPa (healthy), 0.2 MPa and 6.0 MPa, respectively.

The figures on the right show the velocity inlet (red) and wall-normal velocity (blue). A

negative wall-normal velocity indicates that the wall is expanding.

the section of artery, it occurs predominantly at the distal neck formed by the change

in shape. Similarly the minimum wall shear stress occurs at the peak diastole localised

around the proximal neck. A close comparison of the time at which the maximum

and minimum wall shear stress occurs in the rigid and elastic cases reveals that the

peak wall shear stresses occur later in the time cycle for the elastic-walled cases (see

figure 8.27). In fact the peak wall shear stresses occur at times of peak wall velocity

t∗ = 0.4 in rigid-walled cases. Equations 8.39 and 8.32 describe how the presence of the

wall velocity causes the boundary layer to change size. As the boundary layer changes

in size so too does the local strain rate. This in turn changes the wall shear stress which
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Figure 8.27: The time at which peak wall shear stress occurs at the distal neck as a function

of wall stiffness. Results are for an elastic region with stiffness of 0.8 MPa with a stiffened

region with a stiffness of E MPa

is strain rate dependent (equation 1.4). In the near-wall region the wall motion has a

greater effect on the flow than the bulk motion of the fluid. This is why a delayed onset

of peak wall shear stress is observed.

Figures 8.26(c) and 8.26(d) also show cases of an elastic-wall. However, they feature

a localised change in stiffness (thickness 0.2D) centred around z = 12. As discussed

in § 8.5.3 this altered stiffness band causes both global and local effects. Globally

the change in stiffness affects the amount the wall will displace; a lower stiffness (fig-

ure 8.26(c)) causes a greater dilation of the artery wall. Conversely a higher stiffness

(figure 8.26(d)) causes a smaller dilation. The effect of the global change can be ob-

served in comparing each of the plots in figure 8.26. As the stiffness is increased the

peak wall shear stress occurs earlier in the time cycle (see figure 8.27). When comparing

the elastic cases only, the peak wall shear stress is more localised around the distal neck

as the stiffness increases. Also evident is that as the stiffness is increased the peak wall

shear stress occurs earlier, i.e. closer to the peak systolic flow of the rigid-walled case.

With a reduced stiffness and increased dilation of the wall, the change in volume of the

artery is increased.
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Equation 8.39 shows that the flow rate at the distal neck increases as a result of two

processes. Firstly, as the local geometry is akin to a converging nozzle at any instant in

time, the flow rate must increase at the outlet in order to conserve mass. This effect is

enhanced by large wall motions as the wall gradient is larger for these cases. In addition

to this effect an increase in the flow rate at the distal neck may also occur as a result

of the motion of the wall itself for the case when the wall is contracting, the negative

rate of change in volume causes an increase in the flow rate through the distal neck.

An increase in the wall-normal velocity (which is a maximum after the peak systolic

velocity) simultaneously increases the flow rate through the distal neck and therefore

the peak velocity. The result of this increase in the flow velocity is an increase in

the local Reynolds number at the distal neck and as described by equation 8.32 the

convective boundary layer is thinner. A thinner boundary layer corresponds to an

increase in velocity gradients near the wall and as a result, an increase in the wall shear

stress. With a stiffer wall the wall displacement is reduced and consequently so too

is the effect on the wall shear stress. Figure 8.27 shows that as the wall stiffness is

decreased (and consequently the motion of the wall increases) the onset of peak wall

shear stress is delayed. This indicates that the wall motion has a greater effect on the

flow conditions as the wall stiffness is reduced. When the wall is rigid the peak in wall

shear stress correlates directly with the peak in inflow rate.

Also evident in figures 8.26(c) to 8.26(d) is that a variation in the wall shear stress

contours around the z = 12 position where the wall stiffness is locally changed. As

discussed in § 8.5.3 and pictured in figure 8.19 the local change in stiffness causes a

local variation in the wall geometry. This local change in wall shape and velocity causes

a local change in the fluid flow at that location. Figure 8.26(c) shows that with a less

stiff section the wall shear stress in this local region is lower for a longer period than

for the stiffer case in figure 8.26(d).

Figure 8.28(a) shows the variation in wall shear stress at the centre of the altered

stiffness region. This supports the finding in figure 8.26(c) whereby the local wall

shear stress is lower for more of the cardiac cycle. Upstream near the proximal neck,

(figure 8.28(b)) changes in stiffness have little affect on the wall shear stress distribution.

Downstream at the distal neck (figure 8.28(a)) large variations in the peak wall shear

stress are observed. The control volume analysis in § 8.5.5.1 provides an explanation for

this phenomenon. Figure 8.19 shows that the change in wall displacement as a result of
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the change in stiffness is largely localised to the region of altered stiffness. Therefore,

far upstream of the change in stiffness, the wall motion is nearly independent of the

stiffness at the central location. As such the change in volume of the wall upstream of

this point is almost the same regardless of the wall stiffness. This leads to the same

flow rate through a control volume with an outlet at this location. At the position of

altered stiffness, the wall motion is very different depending on the stiffness, leading to

a change in the flow dynamics at this location. Equation 8.49 describes how the local

wall gradient and change in radius at this location can affect the wall shear stress. A

less stiff wall leads to a local increase in radius at this location, equation 8.49 shows

this leads to a decrease in the wall shear stress. Conversely, a stiffer wall leads to a

local decrease in radius and consequently an increase in wall shear stress. As with

the upstream case, downstream at the distal neck the local wall displacement varies

negligibly with the stiffness of the upstream region (see figure 8.19). Despite this, a

large difference in the local wall shear stress is observed. Unlike the upstream case,

downstream of the altered elastic band the flow is affected by the increase or decrease

in volume upstream. Equation 8.39 shows that including this region in the control

volume will affect the local velocity downstream and as a result of equation 8.32 the

wall shear stress is further altered.

Further supporting this finding is figure 8.29 which shows the time-averaged wall

shear stress in the elastic artery. The rigid-walled case shows an almost uniform time-

averaged wall shear along the artery length. This is expected given the banded nature

of the wall shear stress distribution shown in figure 8.26(a). The cases which include

an elastic-wall show a large variation in the time-averaged wall shear stress through the

elastic region (z = 9 − 15). The elastic cases are dominated by a sharp decline in the

wall shear stress at the proximal neck before the wall shear stress begins to increase

beyond the initial wall shear stress value. The wall shear stress gradient continue to

increase until the distal neck is reached. The peak time-averaged wall shear stress is

observed at the distal neck.

Also evident in figure 8.29 is the local variation in wall shear stress at the location

of the local change in wall stiffness. For the case of a uniform stiffness (E = 0.8 MPa)

the wall shear stress gradient is smooth, in contrast to the stiffened and less stiff cases.

A less stiff artery causes a greater local wall motion and this causes a local increase

in the boundary layer thickness and consequently a reduction in the local wall shear

247



(a) z = 12

(b) z = 10 (c) z = 15

Figure 8.28: The wall shear stress plotted as a function of time at (a) the centre of the

altered stiffness region z = 12, (b) near the proximal neck z = 10 and (c) the distal neck

z = 15. The black line represents the rigid-walled reference case, red, green and blue lines

represent the cases with a local variation in wall stiffness of E = 0.2 MPa, 0.8 MPa (healthy),

and 6.0 MPa respectively.
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Figure 8.29: Comparison of the time-averaged wall shear stresses with varying local wall

stiffness. The black line represents the rigid-walled reference case, red, green and blue lines

represent the cases with a local variation in wall stiffness of E = 0.2 MPa, 0.8 MPa (healthy),

and 6.0 MPa respectively. Note: for the elastic-walled cases a stiffness of E = 0.8 MPa is

applied outside the region of local stiffness variation.

stress. Conversely, a stiffer artery causes a reduction in the local wall motion and

velocity. A stenotic geometry forms which causes a local acceleration of the fluid and

a corresponding thinning of the boundary layer, the thinner layer is synonymous with

an increase in the wall shear stress (equation 8.32).

The minima of wall shear stress occurring immediately behind the proximal neck

is a result of the local expansion of the artery wall. This causes an increase in the

boundary layer thickness as the increasing radius causes a decrease in local flow velocity

(equation 8.39). The wall shear stress begins to increase again at the point where the

wall displacement gradient has reached a maximum and the spatial deceleration of

the fluid catches up to re-establish contact between the bulk fluid flow and the wall

motion. To determine the axial position of the minimum or maxima in wall shear stress
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analytically, one must solve

0 =
dτWSS

dZ∗ , (8.50)

where τWSS may be given by equation 8.49. This shows that the minima of wall shear

stress will occur at a location where

dR∗

dZ∗ =
d2r (Z∗)∗

dZ∗2 , (8.51)

is also minimised, i.e. where the wall displacement gradient has reached a maximum.

The peak wall shear stress observed at the distal neck in figure 8.29 is much higher

in the elastic-artery case than in the rigid-walled case. This increase in the wall shear

stress is due to two factors. Firstly, the wall profile at the distal neck forms a converging

nozzle shape causing a spatial acceleration (seen through the convective acceleration

term in the Navier-Stokes equations) as the fluid speeds up to conserve the mass flux

through the pipe. Equation 8.32 describes how the increase in local velocity is associated

with a thinning of the boundary layer and as a result a local increase in the strain-rate

and consequently the wall shear stress. The artery wall motion also acts to enhance

this effect, the motion of the wall after peak systole forces extra fluid through the distal

neck as the volume of the artery decreases (see equation 8.39). This causes the flow

rate through the distal neck to be greater than that which would occur in a rigid-walled

artery alone. This allows the peak wall shear stress to far exceed the wall shear stress

predicted using a rigid-walled aneurysm model. The time-averaged wall shear stress

at the distal neck is 85% higher in the elastic case. Furthermore, figures 8.28(c) and

figure 8.29 show that the peak wall shear stress at the distal neck is greatest in the

0.2 MPa case in which the total wall motion is greatest.

Further to the discussion of wall shear stress, figure 8.30 shows the time-averaged

wall shear stress magnitude. The oscillatory nature of the flow means that a time-

averaged wall shear stress result can obscure the total shear felt at the wall as negative

values of shear artificially reduce the intensity of the time-averaged wall shear stress.

In terms of healthy endothelial cell function, wall shear stress magnitude may be more

important to consider as shear stress direction is not important. Figure 8.30 shows

that the wall shear magnitude in the elastic-wall case is close to 50% lower than the

rigid-wall case across the majority of the aorta. The wall shear stress at the distal neck

still exceeds the wall shear stress magnitude for the elastic cases.

Experiments, in which the temporal distribution of shear stresses applied to the en-
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Figure 8.30: Comparison of the time-averaged wall shear stress magnitude with varying

local wall stiffness. The black line represents the rigid-walled reference case, red, green

and blue lines represent the cases with a local variation in wall stiffness of E = 0.2 MPa,

0.8 MPa (healthy), and 6.0 MPa respectively. Note: for the elastic-walled cases a stiffness of

E = 0.8 MPa is applied outside the region of local stiffness variation.

dothelial cells could be carefully controlled, have shown that the endothelial behaviour

depends not only on the magnitude of the shear stresses, but also on their spatial and

temporal variations. The Oscillating Shear Index (OSI) quantifies the pulsatility and

primary direction of the flow. It ranges from 0 (forward flow throughout the cardiac

cycle) to 1 (fully reversed flow). An OSI index of 0.5 corresponds to a purely oscillating

flow with a WSS mean of 0. Figure 8.31 shows the oscillating shear index distribution

along the healthy aorta. Salsac et al. (2006) found the OSI of a rigid-walled healthy

aorta to be 0.4, while others have calculated the OSI in a healthy artery to be 0.32

(Oyre et al. 1997). Figure 8.31 shows the oscillating shear index distribution along a

rigid-walled artery to be 0.22. An OSI = 0.22 implies the flow is mostly forward which

is to be expected given the inlet velocity profile for these simulations. The difference
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Figure 8.31: Comparison of the oscillating shear index (OSI) along the pipe with varying

local wall stiffness. The black line represents the rigid-walled reference case, red, green

and blue lines represent the cases with a local variation in wall stiffness of E = 0.2 MPa,

0.8 MPa (healthy), and 6.0 MPa respectively. Note: for the elastic-walled cases a stiffness of

E = 0.8 MPa is applied outside the region of local stiffness variation.

in velocity profile is the likely cause of the discrepancy between the OSI values quoted

in the literature and those determined here. The inclusion of an elastic-wall drastically

changes the distribution of OSI. At the proximal neck the OSI reaches 0.38 and at the

distal neck it dips as low as 0.04. This implies that the proximal neck is more prone

to reverse flow and the distal neck is dominated by forward flow. Such local variation

of the OSI away from the healthy range (0.32-0.42) at the proximal and distal necks

may lead to endothelial cell damage in these locations. The locations of high wall shear

stress gradients correspond strongly with the extreme values of OSI.

8.5.6 Effects of stiffened band thickness

The results presented in § 8.5.5 focus on the effect of varying the local stiffness of a band

of material at the centre of the elastic region of the aorta. The results were discussed
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Figure 8.32: Wall displacement, exaggerated by a factor of 5 for visualisation. Grey lines

show the case of a uniform healthy artery stiffness of 0.8 MPa; green, blue, and red lines

represent the case of a 6.0 MPa stiffened region with thicknesses of 0.2d, 0.4d and 0.8d,

respectively.

(a) 0.4d (b) 0.8d

(c) 0.2d (d) healthy

Figure 8.33: The variation of wall shear stress (WSS) in a straight pipe as a function of

both time and space. Contours show WSS with high low levels represented by red and blue,

respectively. Negative values are represented by dashed contour lines. The contour levels are

equispaced and vary from -3 Pa to 3 Pa. Sub-plots (a)-(c) represented the WSS in a straight

pipe with a locally stiffened zone (6.0 MPa) of thickness 0.4d, 0.8d and 0.2d respectively.

Sub-plot (d) shows the uniform healthy stiffness case. The figures on the right show the

velocity inlet (red) and wall velocity (blue) as a function of time. A negative wall-normal

velocity indicates that the wall is expanding.
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in relation to the magnitude of the wall displacement and velocity in both a global

and local context. This section focuses on the affect that varying the thickness of the

stiffened region has on the wall shear stress distribution in the aorta.

Three scenarios were tested, those relating to a stiffened band of width 0.2d (pre-

sented in § 8.5.5), 0.4d and 0.8d. Each scenario consisted of a constant stiffness of

0.8 MPa outside of the local stiff zone and 6.0 MPa in the stiffened zone. Comparison

is made to an elastic artery case. Figure 8.32 shows the displacement of each of the

scenarios relative to an artery with uniform stiffness. As the thickness of the stiffened

region is increased the outward displacement at the centre of the stiffened region is

decreased forming a more stenotic geometry (Note: the stenotic shape forms as a result

of the smaller expansion of the stiff band relative to the surrounding material. At sub-

sequent times such as peak diastole the artery forms a straight pipe shape). Associated

with this reduced wall motion in the vicinity of the stiffened band is a global reduction

in the total wall motion. This is expected as a greater proportion of the wall is less

susceptible to changes in pressure. The increase in the stiffened band thickness is anal-

ogous to a localised increase in the wall stiffness in that both create an exaggeration of

the wall motion effect.

Figure 8.33 shows contours of the variation in wall shear stress in the elastic region

of interest through time. In figure 8.33(d) the case of an artery with a uniform stiffness

is presented. As discussed in § 8.5.5 a region of high shear stress is present around

the proximal neck at peak systole and a low wall shear stress region forms around

the distal neck around peak diastole. For an elastic-walled artery, the wall shear stress

distribution through time is driven more by the wall velocity (in phase with the pressure

wave) than the inlet velocity waveform. This is a result of the spatial variation of the

wall shear stress being directly related to a change in the wall geometry. Changes in the

wall geometry occur as a result of the changing pressure conditions felt by the artery

wall.

Figure 8.33(c) shows the case of a wall with a stiffened band of size 0.2d centred

around z = 12. Along the line of constant position at this stiffened location, is a

localised increase in wall shear stress. Figures 8.33(a) and 8.33(b) show the case of a

stiffened band of thickness of 0.4d and 0.8d respectively. The presence of the increased

stiffness region size is reflected in a more pronounced wall shear stress increase along

the z = 12 position as the thickness of the stiffened region increases.
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In conjunction with the localised increase in wall shear stress, as the size of the

stiffened region increases, the width of the region of increased wall shear stress also

increases. This is a result of the wider stiffened region causing a wider section through

which the fluid velocity is high with a thinner boundary layer. Furthermore, the in-

creased thickness of the stiffened region reduces the overall motion of the wall, both

the high and low wall shear stress regions extend further along the artery wall from

the proximal and distal necks. This is approaching the banded contour profile seen in

figure 8.26(a) for a rigid-walled case. As the thickness of the stiffened region increases,

the global displacement of the artery wall decreases; the geometry of the wall is closer

to that of the rigid-wall case.

Further supporting this finding is figure 8.34, which shows the time-averaged wall

shear stress in the elastic artery. As the thickness is increased the wall shear stress at

the thickened location increases both in peak value and in the width of the increased

region. In this way, the larger stiffened zone has a greater local effect on the wall

shear stress distribution in the artery. Furthermore, the increase in wall shear stress

localised around the variation in stiffness is greater for the thickest stiffened region, this

correlates well with the case of a greater wall displacement gradient. The greater wall

displacement gradient leading to the centre of the stiffened region corresponds to an

R∗ < 1. Equation 8.49 shows that this corresponds to a thinning of the boundary layer

and an increase in the wall shear stress. After the stiffened region the wall shear stress

decreases again as the flow exits the stenotic geometry and R∗ > 1. Interestingly, the

case in which the thickest region is the widest corresponds to a lower wall shear stress

in the downstream region. This occurs despite the reduced global wall motion which

would suggest a greater wall shear stress in this region as the flow is more attached to

the walls and the wall velocity is affecting the boundary layer less. This indicates that

the wall displacement gradient has a greater impact on the wall shear stress than the

change in flow rate associated with a greater wall motion. Equation 8.49 supports this

finding as it shows that

τWSS ∝ 1

R∗4 ∝ Q∗.

The fourth-order dependence on the radius implies that small changes in the radius

of the vessel will lead to greater changes in the wall shear stress than small changes

in flow rate. Similar trends are also observed in the wall shear stress magnitude (fig-

ure 8.34(b)) and the oscillating shear index (figure 8.34(c)) in which the thicker wall
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(a)

(b) (c)

Figure 8.34: Comparison of time-averaged wall shear stress, (a), time-averaged wall shear

stress magnitude, (b), and oscillating shear index, (c), with varying wall stiffened region

thickness. The black line represents the rigid-walled reference case; red, green, and blue lines

represent the cases with a local variation in wall stiffened region thickness of 0.2d, 0.4d and

0.8d respectively. Note: for the elastic-walled cases a stiffness of E = 0.8 MPa is applied

outside of the stiffened region which has a stiffness of E = 6.0 MPa.
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stiffness exaggerate the trends observed when increasing the stiffness.

Increasing the thickness of the local variation in wall stiffness has been shown to

increase the local effect of the variation in wall stiffness. This trend was established

for all stiffened region sizes studied. These results may not hold true as the size of the

stiffened region exceeds 50% of the total elastic zone. In this case, the wall geometry

may differ substantially from those formed in this study. Investigations into larger

stiffened regions is beyond the scope of this work which is limited to analysing the

effect of a localised lesion or calcification on aneurysm formation.

8.5.7 Flow in an expanded pipe with a rigid-wall

Much of the discussion in sections 8.5.5 and 8.5.6 has revolved around a local change in

shape as a result of the wall motion causing a change in the wall shear stress distribution.

This, in combination with the additional wall-normal velocity, is responsible for the

variation in wall shear stress in an elastic-walled pipe. In this investigation flow through

an expanded pipe is simulated in order to isolate the effect that the geometry change

has on the flow dynamics. In order to perform this simulation the geometry formed by

the uniform stiffness elastic-walled case at peak systole was captured and the identical

velocity inlet and pressure outlet conditions applied with the wall position fixed.

Figure 8.35 shows contours of the variation in wall shear stress in the elastic region

of interest through time. It is striking how similar the wall shear stress distribution

in the expanded rigid-wall case looks in comparison to the uniform elastic-walled case.

Both exhibit the high wall shear stress region at the proximal neck at peak systole and a

low negative wall shear stress region at the peak diastole. Again, equation 8.49 supports

this finding as the fourth-order dependence on the radius implies small changes in the

radius of the vessel will lead to greater changes in the wall shear stress. The subtle

differences appear in the timing of the extrema in wall shear stress. For the rigid-walled

expanded case the peak values coincide with the peaks in inlet velocity waveform, just

as in the rigid-walled case. In contrast to this the wall shear stress distribution of the

elastic-walled cases follows the phase of the pressure waveforms. This indicates that

while the spatial distribution of wall shear stress is largely driven by the geometry of

the wall, the temporal distribution is dependent on the velocity of the wall itself.

Figure 8.36 compares the time-averaged wall shear stress, wall shear stress magni-

tude and oscillating shear index in elastic arteries to an expanded rigid artery. The
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(a) expanded rigid-wall (b) rigid straight wall

(c) E = 0.8

Figure 8.35: The variation of wall shear stress in an expanded rigid pipe as a function

of time and space. Contours show WSS with high low levels represented by red and blue,

respectively. Negative values are represented by dashed contour lines. The contour levels

vary from -3 Pa to 3 Pa. Sub-plot (a) represents the expanded rigid pipe case, (b) represents

the straight rigid pipe case and (c) represents the healthy elastic-walled case. The figures

on the right show the velocity inlet (red) and wall velocity (blue) as a function of time. A

negative wall-normal velocity indicates the wall is expanding.

profile of the time-averaged wall shear stress distribution for the expanded rigid pipe

case is very similar to the distribution in the elastic arteries. With a rigid-wall and the

expanded geometry, the reduction in wall shear stress is more pronounced along the

length of the expanded region and the peak wall shear stress at the proximal neck is

greater. This occurs because the rigid-walled expanded case maintains the most ex-

treme wall geometry for the entire time cycle. As such, it is subject to the most adverse

wall gradients throughout the entire time period, and as a result the wall shear stress

pattern is more extreme (i.e. for the entire time period the spatial acceleration and

deceleration at the distal and proximal necks, respectively, is at their largest for the

entire time cycle). In the elastic-walled case these spatial gradients occur at this order

of magnitude only transiently. This is evidence that it is the change in geometry which
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(a)

(b) (c)

Figure 8.36: Comparison of (a) time-averaged wall shear stress, (b) time-averaged wall

shear stress magnitude, and (c) oscillating shear index, with varying wall shape. The black

line represents the rigid-walled reference case; red, green, and blue lines represent cases with

an elastic-wall with local wall stiffness of E = 0.2 MPa, 0.8 MPa (healthy) and 6.0 MPa

respectively. The orange line represents the case of a rigid-walled expanded artery. Note: for

the elastic-walled cases a stiffness of E = 0.8 MPa is applied outside of the region of stiffness

variation.
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is the leading factor in defining the wall shear stress distribution throughout the artery.

The wall shear stress magnitude in figure 8.36(b) exhibits a substantially different

trend for the rigid-walled expanded case. After the initial decrease in time-averaged wall

shear stress magnitude at the distal neck, it retraces 50% of the reduction in wall shear

stress before reaching the centre of the expanded region at z = 12. Around this central

point there is a brief plateau in the wall shear stress magnitude before the substantial

increase in wall shear stress magnitude at the distal neck. The increase and decrease

in the wall shear stress at the distal and proximal necks, respectively, matches the

results for an elastic-walled artery well as well as the analytical expressions described

in § 8.5.5.1. This indicates that in these regions where the change in wall geometry is

greatest, the spatial acceleration is the dominant cause of the change in wall shear stress.

As mentioned in the discussion of the rigid-wall expanded artery wall shear stress results

the greater time-averaged wall shear stress change in these locations can be attributed

to the expanded geometry remaining constant throughout the time period rather than

only forming transiently. In the central region after the flow has reattached to the wall,

the shape does not change significantly. In this relatively uniform diameter section the

flow is able to adopt a close approximation of the Womersley profile. As such it exhibits

periods of reverse flow in the boundary layer (see figure 8.12); such periods of reverse

flow are suppressed in the moving-wall cases (see figure 8.13). This leads to a greater

wall shear stress magnitude in the expanded rigid-walled case throughout the centre of

the expanded region. The suppression of the reverse flow in the moving-walled case is

most prominent in the centre of the arterial bulge, suggesting it is directly related to

the velocity of the wall which is greatest in the central region.

The results of the oscillating shear index presented in figure 8.36(c) support this

analysis of the wall shear stress magnitude, as it shows that the shear index is much

closer to 0.5 (completely oscillating flow about a mean of zero) near the centre of the

deformed region. Note the peak in OSI is highest near where the minima in wall shear

stress occurs. This location corresponds to the location where the wall displacement

gradient reaches its maximum.

8.6 Closure

It is well documented that the structural function of the intimal endothelial layer is

sensitive to local haemodynamic parameters. Experiments, in which the temporal dis-
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tribution of shear stresses applied to the endothelial cells could be carefully controlled,

have shown that the endothelial behaviour depends not only on the magnitude of the

shear stresses, but also on their spatial and temporal variations (Salsac et al. 2006).

Many have postulated that the endothelial response mechanisms play a key role in va-

soregulation and lesion mitigation in regions of adversely spatially varying wall shear

stresses (Nichols & O’Rourke 1990; Fung 1997; Lasheras 2007; Humphrey & Taylor

2008; Sforza et al. 2009). As such, the characterisation of the changes in wall shear

stress resulting from wall stiffness variations around lesions and sites of disease is es-

sential to understand the initiation process of abdominal aortic aneurysms.

This investigation has made simple comparative measurements of the spatial and

temporal distribution of the flow through an elastic artery. Furthermore, it has mea-

sured the wall shear stress distribution in the elastic artery and compared the results

against rigid-walled models and cases in which a localised variation in wall stiffness is

present. This study has shown that the flow inside an elastic artery is characterised by

the transient formation of regions of higher and lower wall shear stresses than are found

in a rigid-walled artery model. In fact the presence of an elastic wall creates a spatial

variation in the wall shear stress which is not present in rigid-walled approximations.

On this basis it is reasonable to conclude that rigid-walled models of the healthy aorta

are insufficient to accurately describe the wall shear stress environment in the aorta.

The presence of an elastic wall was found to delay the onset and reduce the strength

of flow reversal in the boundary layer during the diastolic phase in comparison to rigid-

walled models. This result was reflected in the measurements of wall shear stress which

exhibited shorter periods of negative wall shear stress in comparison to the rigid-walled

models. The motion of the boundary wall dominates the flow dynamics and temporal

wall shear stress distribution in elastic cases. This was evident in both the discussion

of flow dynamics and the wall shear stress distribution in which a phase shift of 0.1 was

detected for the peak values of wall shear stress and axial flow magnitude for the elastic

cases. This phase shift matches the phase lag between the velocity inlet and pressure

outlet boundary conditions.

In addition to the change in axial velocity, the wall motion was shown to have a

profound impact on the wall-normal velocity and boundary layer thickness. The spatial

variation of the wall shear stress was shown to develop as a result of the change in wall

profile as the elastic wall moved. The expansion of the artery wall caused a diverging
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nozzle geometry to form at the proximal neck and a converging nozzle to form at the

distal neck. The result of this geometry change was a dramatic decrease in the wall

shear stress at the proximal neck before an increase in wall shear stress at the distal

neck beyond what is encountered in a rigid-walled model. The diverging-converging

nozzle shape causes a spatial acceleration of the fluid in order to conserve mass flow

rate. This is associated with a change in local velocity and consequently a change in

the local Reynolds number and boundary layer thickness. A change in the boundary

layer thickness causes an increase in strain-rate in the case of boundary-layer thinning

and a decrease in strain-rate in the case of boundary-layer thickening. The change in

boundary layer thickness can therefore be directly attributed to the changes in wall

shear stress. The transient nature of the wall further compounds these effects as the

changing luminal volume causes an increase or decrease in the flow rate at the distal

neck.

It was found that local variations in the wall stiffness slightly affected the wall shear

stress distribution in the artery. On a global scale, a local increase in the wall stiffness

decreased the peak dilation of the wall, conversely a decrease in stiffness increased the

peak dilation. Global changes in the wall dilation affect the peak wall shear stress

at the distal neck as a smaller volume change occurs leading to lower peak flow rate

through the distal neck and consequently lower levels of wall shear stress. Local effects

were also associated with the local change in wall stiffness. A departure from the

uniform ballooning shape was clearly evident; stiffer sections caused a localised stenotic

geometry while weaker walls formed an exaggerated ballooning at the stiffness variation

location. Such changes in geometry led to similar wall shear stress changes as the locally

changed wall gradient caused flow to detach from the wall when the wall was diverging

and a thinning of the boundary layer when the wall gradient was converging.

This investigation aimed to address aim 2c and determine how a heterogeneous wall

stiffness affects the haemodynamics in the context of aneurysm initiation. The original

hypotheses outlined in § 1.8.3 are supported by the findings of this investigation. It

was shown that local variations in the wall stiffness caused local variations in the wall

shear stress distribution in the artery. A stiffer artery was shown to create a geometry

similar to a stenosis which caused a local variation in the wall shear stress distribution.

Similarly, the reduction in wall stiffness led to the extra ballooning of the artery in the

local region which was shown to reduce the local wall shear stress at that location. In
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terms of the final hypothesis relating to the width of the stiffened region, the results

showed that an increase in the width of the local stiffened region led to an exaggeration

of the haemodynamic changes. This is contrary to the initial hypothesis in which it was

believed a less adverse flow condition would result from the increased thickness. The

reason for this is that the increased width acts to exaggerate the geometry formed by the

artery wall under pressure rather than reducing the wall gradients as was hypothesised.

In terms of the initiation of aneurysms, these results show that the wall shear stress

distribution in an artery is very complex. Previous studies that have focused on rigid-

walled models are likely to have underestimated the maximum and minimum wall shear

stress in a healthy artery. Large variation in the wall shear stresses are present around

the proximal and distal neck of the artery where tethering causes large variation in wall

shapes. Localised lesion or stiffening in the centre of an artery can alter the wall shear

stress distribution both local to the lesion and throughout the artery. The variation in

wall shear stress does not exceed the healthy range described in Salsac et al. (2006),

however, the results do show that the local variation is substantial in comparison to the

local wall shear stress for a healthy elastic artery. The time-averaged wall shear stress

was 31% higher for the stiffest case tested and 47% lower for the least stiff case tested.

Such variation in wall shear stress may be sufficient to change the local endothelial

function of the wall and lead to aneurysm initiation.
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Chapter 9

Investigation 2: Haemodynamics
and wall shear stress in an
established aneurysm

9.1 Introduction

The investigation presented in chapter 8 studied the effect of localised wall stiffness on

the haemodynamics in an aorta. It demonstrated the possible link between the local

variation in wall stiffness and aneurysm initiation. In this chapter, the haemodynamics

of an established aneurysm is considered.

After the formation of an aneurysm the haemodynamics within the bulbous struc-

ture are significantly different to those found in a healthy artery. The new complex

haemodynamic environment drives the continued growth of the aneurysm through the

disruption of the shear sensitive mechanotransduction process. Haemodynamic studies

have not been able to show a sufficient peak pressure to cause rupture on a mechanical

basis (Steiger et al. 1988). Instead aneurysm growth may be understood by a passive

fatigue-based yielding to blood pressure and the associated reactive healing of the wall

(Sforza et al. 2009).

The disruption of the normal mechanotransduction process due to changed haemo-

dynamic stimuli may occur through both high and low wall shear stresses. High wall

shear stresses cause endothelial injury (Kondo et al. 1997), which initiates wall re-

modelling and possible degradation. Furthermore, high wall shear stress can cause the

over-production of nitric oxide (NO) upon which the endothelium is dependent. This

has a variety of effects including altering gene expression and altering the arterial tone

and stiffness (Sforza et al. 2009). Low wall shear stresses are associated with localised

blood stagnation. Stagnation causes a dysfunction in the production of nitric oxide that
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leads to a buildup of red blood cells and leukocytes. The aggregation of blood cells

can suffocate the arterial wall, starving it of important nutrients leading to cell death

and allowing white blood cells and fibrin into the arterial wall which locally degrades

the stiffness (Sforza et al. 2009). Changes in wall stiffness at regions of high and low

wall shear stress will subsequently alter the haemodynamics throughout the aneurysm

which may in turn cause a change in the wall remodelling process and wall stiffness in

these regions.

Presented in this chapter are the results of an investigation into the haemodynamics

in established aneurysms. This study analyses the effect of a non-uniform wall stiffness

on the haemodynamics in an aneurysm and subsequently the impact this has on the

health of the artery.

This study aims to address aim 2a and 2b from § 1.8: that is, to investigate the

effect of a heterogeneous wall stiffness on the haemodynamics in an aneurysm. To this

end, blood flow through a typical medium sized fusiform aneurysm is considered.

A wall comprised of three layers with different mechanical properties was simulated.

A hyperelastic neo-Hookean constitutive model is used to simulate the wall motion.

The effect of wall elasticity on the blood flow through the aneurysm was assessed. To

determine which non-uniform distribution of wall stiffness led to the most significant

changes in haemodynamics, the stiffness of the wall was varied locally in the distal neck,

proximal neck and central bulge region of the aneurysm.

The detailed set of hypotheses relating to this investigation can be found in § 1.8.2.

9.2 Geometry

Figure 9.1 shows the computational domain used for this investigation. It represents

blood flow through a medium-sized abdominal aortic aneurysm. A mathematical de-

scription of the fusiform bulge shape is provided in § 7.2.2. The aspect ratio is L/d = 3,

the dilation ratio is D/d = 2, and an aortic diameter of d = 20 mm was justified in

§ 7.2.2. Just as with the aneurysm initiation study of chapter 8, the length of the

elastic-wall region shown in figure 9.1 is 120 mm (or 6d). Figure 9.1 shows the macro

element mesh used in the meshing of the aneurysm. Gauss–Legendre–Lobatto quadra-

ture points are used to interpolate within each of the macro elements shown. By using

these quadrature points a highly accurate fine mesh is formed (see § 9.3 for details of

the accuracy).
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The elastic region only occupies the central region of the computational domain;

with the fluid domain computed both upstream (9d) and downstream (9d) of this region

(see figure 9.1). While this region does not represent anatomical vascular structure, it

is included to ensure that the inlet and outlet boundary conditions do not affect the

flow in the region of interest. Further details of the choice of inlet and outlet length

can be found in § 9.3.2.

Downstream of the elastic region is a flared section leading to the outlet. This

section has an inflow velocity boundary condition imposed through the wall. The flare

has a length of 3d and expands from the pipe diameter d to 1.5d at the exit. The

reader is referred to section 8.2 for an explanation of the numerical necessity of the

flared region.

Hexahedral mesh elements are used to discretise the three-dimensional flow domain.

To maximise accuracy in the elastic region where the moving arterial wall introduces

multi-dimensional flow dynamics, the mesh is much denser. In this region the mesh

elements are approximately 0.2d × 0.2d × 0.2d (i.e. aspect ratio of unity). Outside of

the elastic region, less resolution is required to describe the flow (see § 9.3.3), as such

the mesh is coarser.

Figure 9.1(c) shows the solid domain mesh used. This mesh consists of three macro

element layers. Each layer corresponds to a single layer in the arterial wall. Details of

the layer thicknesses can be found in § 7.4.1. The accuracy of the solid domain mesh

is discussed in § 9.3.4.

The established aneurysm investigation involves a local change in wall stiffness. The

results presented in § 9.5.4.1, 9.5.4.2 and 9.5.4.3 include a stiffer band of material in the

proximal, central, and distal regions respectively. In each case, a third of the aneurysm

bulge is stiffened i.e. the stiffened region is 1d wide. All three layers of the wall are

stiffened by the same amount.

9.2.1 Fluid and solid properties and boundary conditions

The fluid and solid properties and boundary conditions used in this investigation are

identical to those used in the aneurysm initiation study of chapter 8. A summary is pro-

vided in table 9.1. For further details on the boundary conditions and the justification

of the choice of material properties the reader is referred to § 8.2 and chapter 7.
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Summary

Fluid property

Dynamic viscosity µ 3.85× 10−3 Pa · s

Density ρ 1060 kg/m
3

Inlet velocity mean vmean 16.25 cm/s

Inlet velocity peak vpeak 30 cm/s

Outlet pressure systolic P sys 120 mmHg

Outlet pressure diastolic P dia 70 mmHg

Phase lag (velocity-pressure) 0.1 s

Heart rate (period) T 1 s

Time-averaged Reynolds number Remean 410

Peak Reynolds number Repeak 750

Womersley number α 9.67

Fluid boundary condition

Inlet Pouisseule profile (Finol et al. 2003b)

Outlet Time varying pressure (Mills et al. 1970)

Walls no-slip

FSI interface vf = vs

Flared inlet vt = 4− 2 cos (2πt)

Solid property

Stiffness (healthy) Emean 0.800 MPa

Aneurysm stiffness range 0.200-6.000 MPa

Density ρs 1160 kg/m
3

Solid boundary condition

Inlet and outlet Fixed, i.e. u = (0, 0, 0)

Perianeurysmal environment Pext = Pdia − 0.2
Ppeak−Pdia

2 cos
(
2π
T t
)

FSI interface σs · n = Pf .

Table 9.1: Summary of the properties and boundary conditions used in the aneurysm in-

vestigation.
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(a) Geometry

(b) Mesh detail (c) Solid mesh (d) Flared Outlet

Figure 9.1: Mesh detail used in aneurysm investigation, blood flows from left to right. (a)

shows macro elements in the entire computational domain. Red regions represent blood flow,

the blue region is the proximal region to be stiffened, green is the lumen region and yellow

is the distal region. (b) shows a detailed cross-section of the mesh, clearly visible is the

cube-shaped elements in the fluid region and the thinner layer of solid elements. (c) shows a

detailed cross-section of the solid mesh with its three macro element layers. The outlet flare

with vectors representing the inlet boundary conditions and outflow at the end is shown in

(d).

9.3 Solution validation

Rigorous validation of the numerical techniques, domain size, and mesh independence

were conducted as part of this research. The numerical techniques developed in this

thesis are validated in chapter 6. This section mimics the mesh optimisation and in-

dependence studies presented in § 8.3 for the aneurysm geometry shown in figure 9.1.

Subsection 9.3.1 describes the mesh optimisation analysis that determined the most

efficient meshing strategy. Any boundary condition effects were negated in the domain

analysis (see § 9.3.2), ensuring a physiologically accurate solution was simulated. Sec-

tions 9.3.3 and 9.3.4 establish the level of spatial accuracy of the mesh. Finally, the

accuracy of the temporal discretisation will be examined in § 9.4.As indicated in 8, an

error threshold of < 1% for global error measures and < 2% for local error measures

was used to direct the choice of spatial and temporal resolution; and domain size.

269



9.3.1 Mesh optimisation and p-type refinement

As discussed in § 8.3.1, the spectral-hp element method allows both h-type and p-type

refinement of a computational mesh. To determine the most time efficient mesh for a

prescribed level of accuracy, a mesh optimisation analysis was performed.

The four meshes created for the mesh optimisation study were based on the same

meshing strategies used in § 8.3.1. Each mesh shown in figure 9.2 employed a differ-

ent level of h-type refinement. Mesh 1 in figure 9.2(a) uses the strategy of very few

macro elements. Such a mesh requires a higher polynomial order, p, to attain spatial

convergence. Conversely, Mesh 4 employs a large number of macro elements; this al-

lows a smaller polynomial order to be used to attain spatial convergence. Meshes 2

(figure 9.2(b)) and 3 (figure 9.2(c)) employ intermediate levels h-type refinement.

The optimisation study involved completing a p-type grid independence study for

each mesh. This follows the methodology outlined in § 8.3.1. Global and local flow

measurements were taken to assess the spatial resolution of each mesh at each level of

p-type refinement. The L2-norm is used to measure the overall difference between the

solutions from different meshes and resolutions. Local variations in the solutions are

observed by monitoring vz, the z-component of velocity, and the strain-rate-magnitude

at a point within the global domain. The time taken for the simulation to run was also

recorded to give an indication of the computational cost associated with each meshing

strategy. In the results presented in figure 9.3, these parameters are sampled along the

centreline at the midpoint of the aneurysm bulge, (x, y, z) = (0, 0, 12D).

The results presented in figure 9.3 show the p-type grid independence studies con-

ducted for each mesh. As expected, as the polynomial order is increased for each mesh

the solution converges to a consistent value. Meshes 1 and 3 exhibit some numerical

wiggle in the strain-rate-magnitude data. The sparse nature of these two meshes meant

they were run at higher polynomial orders compared with Mesh 4. Mesh 4 exhibits sta-

ble convergence behaviour in both global and local error cases. Table 9.2 provides a

numerical estimate of the error associated with each mesh. The error is calculated

relative to the most resolved case for each mesh. The assumption is made that each

mesh has reached a mesh independent state at the highest resolution case. The data

presented in table 9.2 supports the results shown in figure 9.3. As the polynomial order

is increased the error in each case decreases. In all cases the error is small (error< 2%)

for the more resolved cases. The smallest error is observed in the global L2-norm error
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(a) Mesh 1 (b) Mesh 2

(c) Mesh 3 (d) Mesh 4

Figure 9.2: Macro element meshes used in mesh optimisation investigation. Meshes 1-4 show

an increasing level of h-type refinement. The meshes were created by linking successive 2D

planes of elements. To ensure accuracy at the boundary element, depth (plane spacing) was

set to match the width of the element closest to the boundary. Note: a curvilinear mapping

of the element faces onto the circular pipe is used - the flat faces depicted on the pipe walls

here is a product of the plotting package used, which accentuates the poor representation of

the geometry at the limit of small p-type resolution.

estimate, with error converging to less than 10−3%. The greatest error was observed in

the strain-rate-magnitude as is expected with the use of C0-continuous elements.

A dominant feature of figures 9.3(a) and 9.3(b) is Mesh 4 converging to a different

value than the other meshes. The maximum difference between Meshes 1-3 and Mesh 4

was 0.75% in L2-norm, 0.51% in vz and up to 12.7% in strain-rate-magnitude. The

larger difference in strain-rate-magnitude data is a result of the higher number of C0-

continuous elements in Mesh 4, producing a smoother first-order vector field. In the

mesh optimisation study for the aneurysm initiation study such a difference was not

271



(a)

600000 1200000

2.72

2.73

2.74

2.75

(b) (c)

Figure 9.3: Results of the p-type grid independence study for each mesh 1-4 shown in

figure 9.2. In each sub-plot red, green, blue and gray lines and symbols represent meshes 1,

2, 3 and 4 respectively. For all sub-plots and meshes as the number of degrees of freedom

(polynomial order) is increased the mesh solution converges to a stable value. (a) shows the

L2-norm, a global measure of energy in the solution. (b) shows the vz velocity component

at a point along the centre line of the pipe and (c) shows the magnitude of strain rate at a

point on the pipe centreline. All values were taken at time of peak energy.
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% error

p Mesh 1 Mesh 2

L2 vz |ε̇| L2 vz |ε̇|

5 1.23 0.45 7.23 14.11 21.21 40.94

6 0.12 0.156 0.66 0.86 0.01 10.76

7 6.5× 10−6 12.94 0.69 0.12 0.14 1.52

8 5.3× 10−3 12.68 1.35 2.3× 10−3 0.07 0.67

9 8.6× 10−3 3.02 6.6× 10−3 6.6× 10−3 0.08 0.44

10 3.6× 10−3 2.19 1.98 5.7× 10−3 0.02 1.59

12 0.0 0.0 0.0 0.0 0.0 0.0

p Mesh 3 Mesh 4

L2 vz |ε̇| L2 vz |ε̇|

4 1.27 0.29 14.3 2.11 0.63 11.54

5 0.11 0.17 0.77 0.46 0.01 0.17

6 0.02 0.08 1.02 0.08 0.07 1.38

7 5.8× 10−3 0.58 0.24 9.8× 10−3 0.03 1.53

8 5.7× 10−3 1.45 0.28 0.0 0.0 0.0

9 0.0 0.0 0.0 - - -

Table 9.2: Percentage error in each mesh when compared to the most resolved case. Error

is shown for global measures (L2-norm) and local measures (vz and |ε̇|).

featured. The bulge in the aneurysm geometry causes a more complicated flow pattern

that is not completely dominated by flow in the axial direction; as such resolution in

the x-y plane is paramount. While the percentage difference between the meshes is

small (for L2-norm and vz) justification for the difference is required.

The numerical solver used in this investigation is capable of solving flow through non

cube-shaped elements through the use of a curvature routine that applies a smooth curve

passing through the macro element nodes on a specified curved boundary. The routine

then places the Gauss–Legendre–Lobatto quadrature nodes at appropriate locations on

the curved boundaries so as to preserve the third-order accuracy. The algorithm used

to predict the curvature fits a circle to subsequent sets of three macro element nodes. It

fits this circular curvature to each set of neighbouring nodes on the curved boundary in

all three directions. The routine then applies a blending operation to provide a smooth

curve across the entire boundary.
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(a) Mesh2 (b) Mesh4

Figure 9.4: Curvature at the proximal neck generated using the two different meshing strate-

gies.

The spacing of the macro nodes is paramount to the accuracy of the curvature

routine. If macro nodes are spaced differently between meshes the curve approximated

will also differ. This numerical artefact is prevalent in this mesh optimisation study.

Figure 9.4 shows a slice through the proximal neck region for Mesh 2 and Mesh 4. These

images demonstrate that the curvature of the neck region is different in each case. It

is clear from this figure that a smaller region is affected in Mesh 4 as a result of the

smaller macro element mesh size in the axial direction.

The different geometry will affect the way the characteristic aneurysm vortex is

shed, and hence the flow structures in general (Sheard et al. 2007). This is one reason

for the difference observed between meshes. This concept is supported by Mesh 2

and 4 which have identical axial element sizes and therefore curvatures. These two

meshes produce very similar grid independent results. A further confounding factor is

the dependence of the L2-norm on domain size. Figure 9.5 shows the volume of each

mesh at each polynomial order. The variation in mesh volume with each mesh is clear.

Mesh 4 has a 0.11% smaller volume than that of the analytical volume, and Mesh 1 has

a 0.91% smaller volume than the analytical volume. This correlates well with figure 9.4.

This figure shows that Mesh 4 reproduces the analytically prescribed curve with much

greater accuracy and as a result it is the best candidate for the aneurysm study.

Despite the superiority in Mesh 4 in relation to reproducing the analytical geometry,

an attempt is made to reconcile the solution produced by each mesh. To account for
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Figure 9.5: Volume of each mesh plotted as a function of increasing polynomial order. red,

green, blue and grey symbols represent meshes 1, 2, 3 and 4 respectively. The volume that

should be achieved using the analytical expression for the curve is 9.67 (show using the dashed

black line). The volume of meshes 1 and 2 is near identical which is to be expected as they

have the same spacing between element planes i.e. axial element length. The smaller macro

elements in Mesh 4 allow for a more accurate curvature and hence larger volume.

the difference in volume between the meshes the data from figure 9.3 is re-scaled by

the volume of each mesh (figure 9.6). The maximum difference in each case is now

only 0.35% in L2-norm, 0.27% in vz and up to 8.7% in strain-rate-magnitude down

from 0.75%, 0.51% and 12.7% respectively. As expected the greatest improvement

came in the volume dependent L2-norm. The remaining difference in these results is

a product of the different geometry at the proximal and distal necks affecting the flow

characteristics.

The most appropriate mesh for the aneurysm study provides a grid independent

solution at the lowest computational cost. Figure 9.6 and table 9.2 showed each meshing

strategy is capable of producing a spatially resolved mesh. Figure 9.7 shows the physical

time taken to complete 100 time steps (t100) in the solver for each mesh at each level

of resolution. This clearly shows that Mesh 4 which is based on more macro elements

and a relatively low polynomial order is more efficient than the other meshes.
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Figure 9.6: Results of the p-type grid independence study for each mesh 1-4 shown in

figure 9.2 with volume adjustment. In each sub-plot red, green, blue and gray lines and

symbols represent meshes 1, 2, 3 and 4 respectively. For all sub-plots and meshes as the

number of degrees of freedom (polynomial order) is increased the mesh solution converges

to a stable value. (a) shows the L2-norm a global measure of energy in the solution. (b)

shows the vz velocity component at a point along the centre line of the pipe and (c) shows

the magnitude of strain rate at a point on the pipe centreline. All values were taken at time

of peak energy.
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Figure 9.7: Simulation time required to complete 100 time steps, t100, is plotted with respect

to the number of degrees of freedom for each simulation. As in figure 9.3, red, green, blue

and grey lines and symbols represent meshes 1, 2, 3 and 4 respectively. A more efficient

simulation has a shorter run time at higher resolution. Mesh 4 is the most efficient mesh.

Figure 9.6 and table 9.2 present a clear case that using all of the meshes a grid

independent solution can be achieved. Mesh 4 with the use of relatively low poly-

nomial orders provides the most stable, accurate and efficient solution. Furthermore,

figures 9.4 and 9.5 demonstrate that of all the meshes, Mesh 4 is least affected by

the curvature routine. As such, this mesh is used throughout the aneurysm study. In

order to minimise the computational cost of this study a polynomial order of p = 5

(DoF = 622080) is chosen. This level of resolution ensures the mesh is within its mesh

independent convergence region, provides less than 0.5% error across both global and

local error measurements and limits the computational cost of each simulation.

9.3.2 Domain size

Following the grid-independence methodology outlined in chapter 8, a domain size

analysis is conducted for the aneurysm geometry case. To ensure that the blood flow

through the region of interest is physiologically accurate it is imperative that the prox-

imity of the boundary conditions do not affect the results. As in §8.3.2, five inlet and
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(a) (b)

Figure 9.8: Velocity profile at the start of aneurysm bulge, velocity is normalised using the

period of oscillation and diamter of the vessel. Black squares �, red diamonds �, blue circles
•, green triangles N, and orange inverted triangles H represent the profile for an inlet length

0d, 3d, 6d, 9d and 24d upstream respectively. (a) shows the velocity profile across the pipe

diameter and (b) shows the percentage error of each velocity profile relative to the longest

inlet case in (a). As the inlet length is increased, the difference in velocity profiles becomes

negligible.

outlet lengths were simulated in each case, 0d, 3d, 6d, 9d and 24d.

9.3.2.1 Upstream

Simulations were conducted using a constant outlet length and varying the upstream

length. The flow was monitored at a series of points throughout the aneurysm bulge.

Figure 9.8(a) shows the velocity profile at the entrance to the aneurysm at t = 0.5 s for

each of the inlet length cases. For the case of 0D upstream the velocity distribution is

that of the perfect Poiseuille profile that is described at the inlet. As the inlet length is

increased the flow has time to adopt the Womersley profile which is the natural state

for oscillating flow. Figure 9.8(b) demonstrates that increasing the inlet length beyond

6d yields a negligible change in the velocity profile.

To illustrate precisely the effect of changing the inlet length, figure 9.8(b) plots

the error-norm of the axial velocity across the diameter of the pipe at the entrance

to the aneurysm. As the inlet length is increased, the change in velocity diminishes

dramatically. This correlates well with the velocity profile plots of figure 9.8. The

percentage change of flow as a result of varying the inlet length is listed in table 9.3. The

inlet length has a greater effect on the peak velocity than in the near-wall region. These
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% error

Inlet length r = 0 r = 0.35d

0 50.37 14.67

3 15.96 4.25

6 1.3× 10−4 1.5× 10−4

9 9.9× 10−5 1.2× 10−4

24 0.0 0.0

Table 9.3: Percentage error of the axial velocity at the centreline and near-wall locations.

The error decreases as the inlet length increases.

results show that with an inlet length of 9d or greater, the effect of the inlet boundary

condition is less than 0.01%. This is sufficiently accurate for this investigation, an inlet

length of 9d is used hereafter.

9.3.2.2 Downstream

Having established an inlet length of 9d, a series of simulations were conducted to

determine the appropriate outlet length. The inlet length was fixed at 9d, while the

outlet length (including flared region) was varied between 0d and 24d. The flow was

monitored at identical locations to the upstream domain study. Figure 9.9(a) shows

the velocity profile at the aneurysm bulge outlet at t = 0.5 s for each of the outlet

length cases. The presence of the aneurysm bulge dramatically changes the flow when

compared with the inlet flow and indeed the flow through a straight pipe discussed

in chapter 8. Figure 9.9(b) demonstrates that increasing the outlet length beyond 6d

yields a negligible change in the velocity profile.

Once more, to illustrate the effect of changing the outlet length, figure 9.9(b) shows

the error-norm of the axial velocity across the diameter of the pipe at the exit of

the elastic region. As the inlet length is increased, the change in velocity diminishes.

Table 9.4 shows the percentage error for each outlet length. The impact of the outlet

length on the flow is small enough that an outlet length of only 3d was chosen for all

simulations.
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(a) (b)

Figure 9.9: Velocity profile at end of aneurysm bulge, velocity is normalised using the

period of oscillation and diamter of the vessel. Black squares �, red diamonds �, blue circles
•, green triangles N, and orange inverted triangles H represent the profile for an outlet length

0d, 3d, 6d, 9d and 24d downstream respectively. (a) shows the velocity profile across the pipe

diameter and (b) shows the percentage error of each velocity profile relative to the longest

inlet case in (a). As the outlet length is increased, the difference in velocity profiles becomes

negligible.

% error

Outlet length r = 0 r = 0.35d

0 1.46 7.67

3 5.1× 10−2 0.40

6 3.6× 10−2 0.29

9 2.9× 10−2 0.23

24 0.0 0.0

Table 9.4: Percentage error of the axial velocity at the centreline and near-wall locations.

The error decreases as the outlet length increases.
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hz % error

1.0d 0.482

0.5d 0.217

0.33d 0.137

0.25d 0.109

0.2d 0.101

0.167d 0.103

Table 9.5: Percentage error in the L2-norm with reference to a theoretical 100% accurate

case defined using a Richardson extrapolation. The error decreases as the element length

decreases.

9.3.3 hz-type refinement

Having completed the p-type grid resolution study, a further hz-type analysis was con-

ducted in an effort to reduce the computational cost (see similar study conducted in

§ 8.3.3). Efficincy gains may be made by reducing the resolution of the mesh in regions

where the flow is relatively constant.

This hz-type analysis endeavoured to determine the minimum required resolution

in the axial direction (hz). Using fewer macro elements reduces computation time;

consequently it is desirable to have a longer axial element length. In the hz-type refine-

ment study axial element length was varied between 0.167d, 0.2d (giving approximately

cube-shaped elements with a unit aspect ratio), 0.25d, 0.33d, 0.5d and 1.0d.

Figure 9.10 shows the effect that changing hz-type refinement has on the L2-norm.

The L2-norm is sampled at the time of peak flow through the aneurysm (i.e. 0.4 s),

this corresponds to the time of peak energy in the system. As the axial element length

is reduced, the solution exhibits stable convergence properties. Such convergence is

to be expected as the spatial resolution is increased. Table 9.5 shows the percentage

error of each element length. Error was calculated relative to an estimate of the mesh

independent value. This value was calculated using a Richardson-type extrapolation.

Table 9.5 shows extra h-type refinement in the axial direction has a significant effect

on the solution. The effect was beyond the changes observed for the straight pipe case

shown in table 8.4. This investigation focuses on the flow through the aneurysm bulge

with a moving wall. In order to attain highly accurate results the hz refinement in
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Figure 9.10: Results of the h-type refinement study. The L2-norm is measured at t = 0.4 s

for each level of refinement. Note: only the axial length of the elements was changed.

this region is kept at 0.2d. This forms an aspect ratio of unity for the wall elements

that provides the most numerically stable elemental matrices (poor aspect ratios can

lead to poorly conditioned matrices). This ensures that the highest level of accuracy

is maintained in this region. Outside this region, in the inlet and outlet sections where

the flow is less critical, the element size in the axial direction is set to hz = 0.75. The

results presented in § 8.3.3 suggest that in straight pipe sections the refinement in the

z-direction is less critical than in the aneurysm geometry by an order of magnitude.

9.3.4 Solid domain p-type refinement

In this section, the spatial resolution of the solid domain is analysed. To simplify

the meshing process, the solid mesh is created with macro elements which completely

coincide with the exterior fluid elements. In this way the h-type refinement for the solid

is fixed. A p-type refinement study was conducted in which the polynomial order was

increased from p = 2 to p = 6.

Each end of the elastic region was fixed in space. The pressure boundary condition

described in equation 7.10 was applied to the perianeurysmal interface. As a forcing

function, the outlet pressure boundary condition for the fluid was applied to the inner
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Figure 9.11: Results of the p-type mesh refinement study for the solid domain. The maxi-

mum lateral displacement, umax, is measured at t = 0.5 s for each level of refinement.

surface of the solid. The neo-Hookean wall model was used with a mean Young’s

modulus of 0.8 MPa (that of a healthy artery).

The maximum displacement in the lateral direction was monitored as the polynomial

order was increased. The maximum lateral displacement occurred at t = 0.5 s and at a

position exactly half way along the elastic region for all levels of resolution. Figure 9.11

shows the maximum lateral displacement, umax, as a function of increasing polynomial

order. The solid solution converges to a mesh independent value at a much lower

polynomial order, p = 3, than in the fluid cases.

Table 9.6 shows the percentage error in the solution compared to the most refined

case. Here, the most resolved case is assumed to contain no error. These results

correlate well with the convergence behaviour shown in figure 9.11. Using a polynomial

order of 3 or greater gives a mesh independent solution (error < 0.02%). These results

suggest that for a neo-Hookean solid continuum fewer elements are required to spatially

resolve the system than for similar fluid elements.

While using a polynomial order p = 3 provides a sufficiently resolved solution for

this investigation, a polynomial order of p = 5 is chosen. Using a polynomial order that
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p % error

2 1.986

3 0.018

4 0.023

5 0.014

6 0.000

Table 9.6: Percentage error in the maximum lateral displacement umax. The error decreases

rapidly as the polynomial order is increased.

matches that of the fluid domain provides an efficient and accurate method for passing

information between the fluid and solid meshes. Matching the polynomial order ensures

both macro and quadrature nodes are coincident at the fluid-structure interface. As

such vector fields do not require interpolation between the two regions, a direct copy

of information can be made. This is both highly efficient and more accurate than

interpolating. The polynomial order of p = 5 is well resolved spatially and will produce

a solution with only 0.014% error.

9.3.5 Fluid-solid coupling p-type refinement

In the preceding sections the spatial resolution of both the fluid and solid mesh com-

ponents were analysed. It was concluded that a polynomial order of p = 5 and p = 3

for fluid and solid, respectively was required to sufficiently resolve the solution. Before

proceeding, the spatial resolution is tested once more for a fully coupled fluid-structure

interaction. This determines whether the use of the arbitrary Lagrangian–Eulerian

solver affects the spatial resolution of the mesh.

For this investigation, the full computational domain was solved with physiologically

accurate fluid and solid boundary conditions (see chapter 7 and § 9.2). A healthy artery

wall was simulated with a stiffness of 0.8 MPa. A p-type grid resolution study was

conducted in which the polynomial order was increased from p = 3 to p = 6.

As was anticipated given the results of the preceding sections, figure 9.12 shows a

mesh independent solution is achived. Figure 9.12(a) and 9.12(b), respectively, show

the L2-norm and z-velocity component for the fluid region. After an initial variance,

each plot begins to converge to a single value. A polynomial order of p = 5 initiates
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% error

p L2 vz umax

3 1.7915 6.1535 0.0185

4 0.0664 2.1695 0.0701

5 0.0359 0.4323 0.0149

6 0.0000 0.0000 0.0000

Table 9.7: Percentage error in fluid parameters L2-norm and z-velocity component vz as

well as the solid domain parameter umax relative to the most resolved case.

the converged section and exhibits a low percentage error. Table 9.7 records the error

relative to the most resolved case for each metric. For each fluid measurement the error

at p = 5 is less than 0.5%, which is well within the desired level of accuracy for the

simulations. This correlates well with the p-type study conducted in § 9.3.1 in which

the polynomial that delivered the desired level of accuracy for a fluid solve alone was

p = 5.

Similarly, for the solid, figure 9.12(c) shows the variation in maximum radial dis-

placement, umax, as a function of polynomial order. Just as the fluid components

correlated well with previous results, the solid solver too exhibits analogous conver-

gence behaviour. Table 9.7 shows that the error associated with the solid region is less

substantial than the fluid region. Using a polynomial order of p = 4 the error for the

solid domain is merely 0.07%.

This fluid-structure interaction spatial resolution study confirms the findings of

§ 9.3.1. For both fluids and solids the solution reaches a mesh independent state at a

polynomial order of p = 5. This mesh and this level of resolution can now be used with

confidence in the proceeding aneurysm study.

9.4 Temporal resolution

In following the mesh validation of chapter 8, a temporal resolution study was con-

ducted. The following investigation determines the appropriate time step required to

resolve the flow in a distensible aneurysm and determine how many boundary condition

cycles are necessary to capture the natural fluid-structure interaction.
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(a) L2 (b) vz

(c) umax

Figure 9.12: Results of the spatial resolution study using the fully coupled FSI algorithm.

In each plot the polynomial order was used to change the spatial resolution of the mesh. (a)

shows the L2-norm of the fluid domain, measured at t = 1.4 s at the time of peak velocity

inlet. (b) shows the maximum fluid velocity along the centreline at t = 1.4 s. (c) shows the

peak displacement of the wall at t = 1.5 s.

9.4.1 Time step

Firstly the temporal resolution is assessed and the appropriate time step is selected

that captures the physics of the aneurysm problem. As an Eulerian reference frame is

used for the fluid domain, large time steps may cause the solution to diverge as fluid

moves fast enough to pass through an entire element within a time step.

A number of time steps were tested ranging from 0.0001 s, to 0.05 s. As with

the spatial resolution study, the L2-norm and vz (component of the velocity in the

z-direction) were used to assess the global and local error in the solution. The z-

component of velocity was measured at the centre of the aneurysm bulge. Measurements
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(a) (b)

Figure 9.13: Results of the time step independence study are presented. Closed symbols (�)

represent simulations that run in a stable fashion, open symbols (2) represent simulations

that diverge later in the simulation. (a) shows the change in L2-norm and (b) shows the

change in the velocity component in the z-direction at the centre of the aneurysm bulge. All

measurements were made at t = 0.05 s.

were taken at t = 0.05 s, and while some simulations ultimately diverged, all were

capable of running to this point in time. Figure 9.13 shows the results of the time

step independence study. As the time step is reduced the solution converges to a single

value. The closed symbols on each sub-plot represents simulations that were stable,

while open circles represent those that ultimately diverged.

Table 9.8 shows the percentage error for each time step. The error is measured

relative to a theoretical fully resolved case at ∆t = 0, calculated using a Richardson

extrapolation. These results show that once a time step small enough to satisfy the

stability criterion is used the effect the time step has on the results is small. In order

to reduce the computational cost of each simulation the largest stable time step ∆t =

0.0006 s is chosen for all further aneurysm investigations. At this time step the error

is only 0.241% in L2-norm and 0.17% in vz.

9.4.2 Time period

As in chapter 8, a final validation case was conducted to determine if the fluid-solid

coupling caused any interactions to occur over a longer time scale than the boundary

condition period. This is more likely in an aneurysm bulge given the complex flow

structures that can form compared to the flow through a straight pipe. A fully coupled
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% error

∆t L2 vz

0.05 20.486 16.482

0.01 14.182 7.817

0.005 3.451 3.235

0.001 0.420 0.181

0.0006 0.241 0.173

0.0005 0.197 0.160

0.0002 0.075 0.283

0.0001 0.031 0.384

Table 9.8: Percentage error in the L2-norm and z-velocity component vz relative to a the-

oretical resolved value (calculated using a Richardson extrapolation). Time steps below the

double horizontal line are stable, those above diverge.

fluid-structure interaction simulation was conducted using the boundary conditions and

geometry described in § 9.2.

Figure 9.14 shows the results of the time period analysis. Two parameters were

monitored throughout the time period, the L2-norm (in sub-plots 9.14(a) and 9.14(b))

and vz the z-component of velocity (in sub-plots 9.14(c) and 9.14(d)). As was observed

for straight pipes in § 8.4.2, these plots indicate that the first time period produces

very different results to subsequent cycles. This is caused by transient conditions in the

aneurysm created by the initial imposition of a Poiseuille velocity profile throughout.

Subsequent cycles exhibit very small deviation from the asymptotic solution state.

Figure 9.14(b) and 9.14(d) plot the percentage error in each parameter compared to

the asymptotic periodic solution. The periodic solution was calculated by averaging the

last three time periods of the time saturated simulation. Data is plotted with respect

to a scaled time

t∗ = t− (n− 1)T, (9.1)

where t is the physical time, T is the boundary condition period (in this case T = 1 s)

and n indicates the nth period. Plotting relative to the scaled time t∗ allows each time

period to be compared with ease. The first time period exhibits errors in excess of 20%,

while subsequent cycles are subject to less than 1.1% error.
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(a) L2 (b) L2 error

(c) vz (d) vz error

Figure 9.14: Results of the time period study. In each sub-plot red, green, blue and grey

lines and symbols represent the first, second, third and fourth boundary condition time

periods respectively. (a) shows the time evolution of the L2-norm, a global measure of energy

in the solution. (b) shows the percentage error in L2-norm relative to the time saturated

value. (c) shows the time history of vz velocity component at a point along the centre line of

the pipe. (d) shows the percentage error in vz relative to the time saturated value. In each

case the error in the latter periods is minimal.

These results are very similar to those presented in § 8.4.2 for straight pipes. As

such similar conclusions can be drawn. Firstly, there are no long-timescale phenomena

observed in the FSI in an aneurysm. Measurement of the L2-norm and vz showed

no discernible variation as more time periods were simulated. Secondly, the initial

conditions in the pipe are inaccurate and take at least a full cycle to be flushed from

the computational domain. This was observed in the large error in the L2-norm and vz

for the first period when compared to the asymptotic data (see figure 9.14).

As a result of this investigation simulations will be evolved for 4 inlet waveform
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cycles to eliminate transient startup errors from the reported results.

9.5 Results

Having determined the spatial and temporal accuracy of the mesh, the effect of local

variations in wall stiffness is investigated. First, § 9.5.1 describes the flow through an

abdominal aortic aneurysm with rigid-walls. Section 9.5.2 discusses the effect of the

fluid-structure interaction on the aneurysm haemodynamic environment. Section 9.5.4

describes how a local variation in the wall stiffness can affect the flow dynamics and the

consequential change in the wall shear stress distribution as a result of this. Finally,

§ 9.5.6 discusses how the perianeurysmal environment affects the flow in an aneurysm.

9.5.1 Flow in a rigid-walled aneurysm

Before analysing the effect of an elastic arterial wall on the flow topology in aneurysms,

the spatial and temporal evolution of the flow is characterised in a typical rigid-walled

abdominal aortic aneurysm model. Figure 9.15 depicts the flow through an aneurysm

throughout the cardiac cycle. Similarly, figure 9.16 uses negative λ2 field iso-contours

to give a three-dimensional representation of where vortex rings are present. Time

progresses with the sequential numbering of the frames as shown on the velocity wave-

form in figure 9.15(m) and 9.16(m). Analysis of these flow fields reveals the important

features of haemodynamics in fusiform aneurysms. The flow is dominated by the for-

mation of separated flow regions in the aneurysm bulge. The internal shear layer is

composed of an array of coherent vortex rings that traverse the length of the aneurysm.

These findings support the observations made by Salsac et al. (2006) and Finol et al.

(2003b).

During the acceleration portion of the systole, the flow remains laminar and is pre-

dominantly attached to the bulging walls (figures 9.15(a) and 9.15(b)). The exception

is a very small recirculation region at the proximal neck (the result of the dramatic

change in wall geometry) and a weak vortex close to the distal neck which is an arte-

fact from the previous cardiac cycle. Salsac et al. (2006) explains that the flow remains

attached in the divergent section of the pipe as a result of the positive pressure gradient

generated at the beginning of systole: temporal acceleration of the flow at this point is

greater than the convective deceleration.

Figure 9.15(b) shows that, during the acceleration portion of the cardiac cycle, the
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(a) t∗ = 0.03 (b) t∗ = 0.12 (c) t∗ = 0.20

(d) t∗ = 0.28 (e) t∗ = 0.37 (f) t∗ = 0.45

(g) t∗ = 0.53 (h) t∗ = 0.61 (i) t∗ = 0.70

(j) t∗ = 0.78 (k) t∗ = 0.87 (l) t∗ = 0.95

(m)

Figure 9.15: Flow through an aneurysm with a rigid-wall model. Contours show vorticity

in the y-z plane and range between -50 and 50. Positive vorticity (anticlockwise whorl) is

represented by red contours and negative vorticity (clockwise whorl) is represented by blue

contours. Line contours show the regions of flow with axial velocity component of +1 and -1

(dashed lines are negative).
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(a) t∗ = 0.03 (b) t∗ = 0.12 (c) t∗ = 0.20

(d) t∗ = 0.28 (e) t∗ = 0.37 (f) t∗ = 0.45

(g) t∗ = 0.53 (h) t∗ = 0.61 (i) t∗ = 0.70

(j) t∗ = 0.78 (k) t∗ = 0.87 (l) t∗ = 0.95

(m)

Figure 9.16: Flow through an aneurysm with a rigid-wall model throughout the cardiac

cycle. An iso-surface of an arbitrary small negative value of the λ2 field is plotted to reveal

vortex structures in the flow.
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high vorticity (and as a result strain-rate) is confined to a very thin boundary layer.

Salsac et al. (2006) found that the flow remains attached to the entire wall during the

entire acceleration of the cardiac cycle. In contrast to this, figure 9.15 shows small areas

of recirculation at the proximal and distal necks. These effects are small and are likely

the result of the different inlet flow conditions. The flow profile used by Salsac et al.

(2006) has a greater systolic acceleration which promotes a positive pressure gradient

and reduces the recirculation region at the proximal neck. Furthermore, the Salsac

et al. (2006) profile reaches peak diastole much earlier in the cycle and allows a flushing

time which limits the residual recirculation from the previous cardiac cycle at the distal

neck.

After peak systole is reached, the flow begins a deceleration phase (figures 9.15(c)

to 9.15(i)). During this time, while the bulk of the flow (near the centreline) is still

moving forward the flow reverses close to the wall inside the aneurysms bulge. This

velocity profile encourages the flow to detach from the proximal neck as the temporal

acceleration no longer dominates the convective acceleration. The result is a recircu-

lating flow region in the proximal half of the aneurysm, which slowly moves down the

length of the aneurysm. The iso-surface plots of the λ2 field in figures 9.16(c) to 9.16(i)

confirm that this is a large-scale vortex ring that is ejected from the proximal neck. As

a result of the presence of the large-scale intense vortex ring, the shear layer adjacent to

the vortex ring exhibits a region of vorticity opposite in sign to that of the local vortex.

Salsac et al. (2006) postulate that this is a result of the Kelvin–Helmholtz instability

causing small-scale vortices to form. Further downstream the converging nozzle shape

of the wall causes a positive pressure gradient near the wall keeping the flow attached

with vorticity limited to a thin boundary layer.

Post ejection, the proximal vortex ring travels through the aneurysm and slowly

grows in both ring and vortex diameter (see figures 9.16(c) to 9.16(i)). At time t∗ = 0.45

(figures 9.15(j) and 9.16(j)) the vortex ring starts to impinge on the distal neck of the

abdominal aortic aneurysm. This corresponds to a sharp increase in the wall shear

stress at this location (see § 9.5.3). The shear layer trailing the vortex ring extends the

full length of the aneurysm bulge and is localised around the central region within the

diameter of the healthy pipe. At the point of impact, the boundary layer is characterized

by vorticity and shear stresses of the opposite sign. Furthermore, the large velocities

near the wall associated with the whorl of the vortex causes a very thin boundary layer
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to form. Elsewhere the flow is largely detached from the walls and the corresponding

vorticity in the shear layer is weak.

The close proximity of the vortex ring to the wall after t∗ = 0.45 in figures 9.16(k)

and 9.16(l) causes the shear layer to be drawn into a secondary vortex ring behind

the large vortex ring with opposite sign. This secondary vortex ring interacts with the

primary vortex ring inducing a mutual strain which forces the pair of vortex rings to

drift back into the aneurysm bulge. This process is helped by the reducing flow rate at

this time which causes a negative mean flow velocity in the near-wall region. A result

of this is that the vortex ring is drawn upstream back into the aneurysm bulge despite

the bulk flow remaining in the forward direction. The reduction in flow velocity also

corresponds to a reduction in the intensity (observed by a reduction in vorticity of 34%)

of the primary vortex and subsequently the induced secondary vortex ring.

Salsac et al. (2006) identified a loss in two-fold symmetry in the instantaneous

velocity field behind the primary vortex core after the primary vortex impacted with

the distal neck. This symmetry breaking was not observed in this investigation. Salsac

et al. (2006) found that the vortex ring was tilted slightly, though this could well have

been an artefact of the experimental set up used in their investigation. After the

initial impact of the primary vortex ring on the distal neck the secondary vortex does

break axisymmetry as it is destroyed by the much stronger primary vortex ring; this is

observed in figures 9.16(k) to 9.16(l).

Toward the end of the cardiac cycle the flow disturbances weaken owing to vortex

entanglement (energy cascade) and viscous dissipation. At the onset of the next cardiac

cycle the weakened pair of vortex rings remain close to the distal neck before they are

flushed from the aneurysm altogether with the onset of the systolic acceleration phase.

9.5.2 Flow conditions with a healthy arterial wall stiffness

In section 9.5.1 the flow in a rigid-walled abdominal aortic aneurysm model was con-

sidered. As suggested by Lasheras (2007) and Humphrey & Taylor (2008) the flow in

an aneurysm may be adversely affected by the motion of the wall. The results pre-

sented in figures 9.17 and 9.18 show the temporal evolution of the flow in a typical

abdominal aortic aneurysm with a uniformly elastic wall. Time progresses with the se-

quential numbering of the frames as shown on the velocity waveform in figure 9.17(m)

and 9.18(m). Analysis of these flow fields reveals the striking difference between rigid-
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walled models and elastic-walled models for simulating flow through an aneurysm. In

the elastic-walled case, the flow is dominated by the formation of separated flow regions

in the aneurysm bulge. The formation of vortex rings occurs at both the proximal neck

and the distal neck, which proceed to interact in a complex manner as the cardiac cycle

progresses.

Throughout the cardiac cycle the flow field varies dramatically from that seen in

a rigid-walled aortic aneurysm. Initially, in figure 9.17(a) the flow is similar to the

rigid-walled simulations. It consists of a very thin shear layer, a small recirculation

region forming locally at the proximal neck and the remnants of a vortex ring structure

at the distal neck (figure 9.18(a)). Unlike the rigid-walled case, the shear layer in the

elastic-walled case does not extend over the full length of the aneurysm bulge. At this

time, the flow far from the central axis in the aneurysm bulge is reasonably stagnant,

and as a result, the initial movement of the wall provides sufficient velocity to alter the

local shear layer at the centre of the aneurysm bulge.

During the systolic acceleration phase, a very different evolution in flow occurs. As

the sequence over figures 9.17(a) to 9.17(c) and 9.18(a) to 9.18(c) show, two vortex

rings form and begin to increase in strength (described herein as the local peak of the

absolute value of vorticity in a recirculation region). Firstly, a vortex ring forms at the

proximal neck just as in the rigid-walled case. This is a result of the large change in

geometry causing a spatial acceleration. At the distal neck, a dual vortex structure is

present. This double distal vortex structure consists of a wall shear layer vortex and

an inner strong distal-vortex structure. The evolution of these vortices is schematically

depicted in figure 9.19. The wall shear layer vortex (vortex C′ in figure 9.19) is formed

as a result of the reverse flow in the boundary layer caused by the expanding motion

of the wall (see dashed contour lines in figure 9.17 depicting negative axial velocity).

During this time the pressure acting on the wall causes it to accelerate outwards, in turn

increasing the volume of the aneurysm. Reynolds transport theorem (equation 8.39)

shows, in order to conserve mass, the flow rate through the outlet must reduce. As

this is a high Womersley number flow, the change in transient inertia occurs first in the

boundary layer causing a large flow reversal in the near-wall region. This local reverse

flow undergoes a spatial deceleration similar to that which occurs at the proximal neck

as the flow moves over the distal neck into the aneurysm bulge. This causes the flow

to curl toward the wall causing a region of positive vorticity at the distal neck. The
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(a) t∗ = 0.03 (b) t∗ = 0.12 (c) t∗ = 0.20

(d) t∗ = 0.28 (e) t∗ = 0.37 (f) t∗ = 0.45

(g) t∗ = 0.53 (h) t∗ = 0.61 (i) t∗ = 0.70

(j) t∗ = 0.78 (k) t∗ = 0.87 (l) t∗ = 0.95

(m)

Figure 9.17: Flow through an aneurysm with elastic-walls throughout the cardiac cycle.

The wall has a uniform stiffness of E = 0.8 MPa. Contours show vorticity in the y-z plane

and range between -50 and 50. Positive vorticity (anticlockwise whorl) is represented by

red contours and negative vorticity (clockwise whorl) is represented by blue contours. Line

contours show the regions of flow with axial velocity component of +1 and -1 (dashed lines

are negative).
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(a) t∗ = 0.03 (b) t∗ = 0.12 (c) t∗ = 0.20

(d) t∗ = 0.28 (e) t∗ = 0.37 (f) t∗ = 0.45

(g) t∗ = 0.53 (h) t∗ = 0.61 (i) t∗ = 0.70

(j) t∗ = 0.78 (k) t∗ = 0.87 (l) t∗ = 0.95

(m)

Figure 9.18: Flow through an aneurysm with elastic-walls throughout the cardiac cycle.

The wall has a uniform stiffness of E = 0.8 MPa. An iso-surface of an arbitrary small

negative value of the λ2 field is plotted to reveal vortex structures in the flow.
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(a)

(b)

Figure 9.19: Schematic representation of the formation of the proximal vortex A and the

inner distal vortex B. In sub-plot (b) the shear layer C′ is drawn up into the secondary vortex

ring vortex C.

inner strong distal vortex (vortex B in figure 9.19) forms around the shear layer which

forms between the positive-velocity (downstream) flow coming from the inlet and the

negative velocity (upstream) in the distal neck shear layer (a result of the wall motion).

The long interface of forward and reverse flow causes the elongation of this vortex core.

After peak systole is reached, the inlet flow begins a deceleration phase and similarly

the outward velocity of the wall begins to decelerate (see figures 9.17(c) to 9.17(f)).

During this time the wall velocity is still in the outward normal direction, causing the

aneurysm bulge to continue to expand. However, the inlet velocity begins to decrease.

Figures 9.17(c) to 9.17(f) and figures 9.18(c) to 9.18(f) show that the recirculation region

which formed during the systolic acceleration phase at the proximal neck (vortex A in

figure 9.19) detaches from the proximal neck forming a vortex ring which begins to

travel down the length of the aneurysm. The wall motion continues to draw fluid from

the distal neck during this phase: in fact the effect it has on the flow is increased as the

inlet velocity decreases. This causes the inner distal vortex B to extend farther into
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the domain as a large portion of the aneurysm bulge is subject to reverse flow in the

boundary layer. Similarly the wall shear layer vortex C′ increases in strength (by 37%)

and extends further upstream into the aneurysm bulge, in fact the shear layer extends

the full length of the aneurysm bulge.

At time t∗ = 0.37, shown in figure 9.17(e), the aneurysm has reached its full ex-

pansion and begins to collapse back toward its original position. At this point in the

cardiac cycle, the flow rate from the boundary is insignificant when compared to the

inlet velocity flow rate (< 10%) , and as such the inflow jet dominates the flow. This

is observed in figure 9.17(e) by the reattachment of forward flow through the distal

neck, with the recirculation region of negative flow being isolated in the extrema of the

aneurysm bulge. This isolation causes the vortex core to reduce in length and increase

in strength of 16% as circulation is conserved. As the systolic deceleration continues,

figures 9.17(e) and 9.18(e) show the shear layer being drawn up into a secondary vortex

ring of opposite sign to the primary distal neck vortex. This process is aided as the

wall begins to collapse inwards adding extra curl to inner shear layer. The velocity of

the wall is greatest at the centre of the aneurysm bulge and decreases slowly across the

length of the bulge. This causes a velocity gradient which encourages the shear layer

roll up observed in these figures. Through the mutually induced strain exerted by the

vortex ring pair and the reversed flow in the outer regions of the aneurysm, the distal

vortex ring pair (vortex B and C) moves back into the aneurysm bulge in the direction

of the proximal neck vortex ring (vortex A).

Due to the location of the shear layer around which the inner strong distal vortex

B forms, it is forced to follow close to the aneurysm wall. The proximal vortex (vortex

A) having formed close to the central axis is subject to smaller wall forces acting to

expand its radius. As such, when the proximal and distal vortices meets, the proximal

vortex (vortex A) has a smaller radius than the strong inner distal vortex B. Under an

inviscid flow assumption a three-vortex-ring system may undergo a leap frogging phe-

nomenon, in which the inner vortex ring is drawn through the outer distal vortex ring.

However, as this is a low Reynolds number flow, the viscous forces are non-negligible.

As the proximal and distal neck vortex pairs collide they undergo a vortex merging

process which causes a very large recirculation region to form extending throughout

the aneurysm bulge.

After the coalescence of the proximal and distal vortex pair, the inlet velocity con-
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tinues to decelerate while the wall, having reached its maximum expansion, continues

to accelerate back towards the unstressed state. Figures 9.17(f) to 9.17(i) depict this

period. Despite the decelerating inlet velocity, the diminishing volume contributes for-

ward momentum to the flow (see equation 8.39). Figure 9.20 shows the contributions

from the velocity inlet and from the wall motion to the total flow rate. During this

time (t∗ = 0.5 to 0.70) the flow rate produced as a result of the wall motion is much

greater than the flow rate through the velocity inlet, indicating the flow conditions will

be driven primarily by the motion of the wall. The increasing flow rate produced by

the collapse of the wall in figures 9.17(f) to 9.17(i) causes a flushing of the flow struc-

tures developed in the previous phase. As the flow returns to the forward direction

throughout the aneurysm geometry the shear layer changes direction and increases in

intensity.

Also of interest is the shear layer near the proximal neck. During systolic acceler-

ation, the expanded wall geometry causes a region of negative vorticity to occur. The

expanding vessel contributes flow with velocity gradients in the same direction as the

recirculation region formed by the change in geometry. As the wall begins to collapse,

the contribution to the velocity gradients changes direction and causes a separation of

the recirculation region from the wall and a shear layer with opposing velocity gradients

to form.

The final stages of the cardiac cycle coincide with an increasing velocity at the inlet

and a decreasing wall velocity. At time t∗ = 0.78 in figure 9.17(j), the flushing initiated

in the previous phase is enhanced as the temporal acceleration at the velocity inlet

contributes to the flushing of the flow structures from the aneurysm bulge. As the inlet

flow rate increases and the wall velocity decreases the shear layer near the proximal

neck returns to its original sign as the flow becomes laminar in the forward direction

along the wall. Finally, figures 9.17(k) and 9.17(l) show the onset of the wall expansion

and the revere flow in the boundary layer at the distal neck, this initiates the roll up of

the shear layer into a pair of vortex rings which remain at the start of the next cardiac

cycle.

Figures 9.17 and 9.18 highlight the significant difference in the flow dynamics when

considering an elastic-walled aneurysm model compared to a rigid-walled model. Un-

like their rigid-walled counterparts, realistic elastic-walled models are subject to com-

plicated multi-vortex-ring interactions with much more dynamic boundary layer flows.
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Figure 9.20: Flow rate through the inlet (red curve) and as a result of the wall motion

(blue curve) across a single cardiac cycle. A positive flow rate, Q, indicates flow is exiting

the domain, a negative flow rate indicates flow is entering the domain.

In § 9.5.3 the ramifications of the complex haemodynamics is considered in terms of its

effect on the wall shear stress.

9.5.3 The effect of wall elasticity on wall shear stress in an aneurysm

The results presented in § 9.5.1 and 9.5.2 describe in detail the flow in an aneurysm

using a rigid and elastic-wall model. The large displacement of the wall in the elastic-

wall model drastically affects the effective flow rate in the aneurysm bulge and as a

result causes dramatic changes to the flow dynamics. In this section the effect that the

altered flow conditions have on the wall shear stress is realised both in space and time.

Figure 9.21 shows the wall shear stress distribution in the elastic region throughout

the cardiac cycle. Figure 9.21(a) depicts the wall shear stress distribution in a rigid-

walled aneurysm model. Upstream and downstream of the aneurysm bulge, the banded

wall shear stress distribution described in chapter 8 is evident. In these sections the

pipe diameter is constant and a Womersley velocity profile forms. As shown in § 8.5.4,

the Womersley profile formed is predominantly forward flowing with a short period of

flow reversal in the transient boundary layer. This is reflected in the wall shear stress
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distribution in the regions outside of the aneurysm bulge by the spatially invariant

wall shear stress distribution. The shear stress distribution is predominantly positive

as a function of time with only a short period of negative wall shear stress (with a

corresponding smaller wall shear stress magnitude).

Inside the aneurysm bulge, the wall shear stress distribution is substantially dif-

ferent. Initially, the systolic acceleration causes the flow to remain fairly laminar and

attached along the entire length of the bulge. As time progresses, the recirculation

region seen forming in figure 9.15(b) begins to move down the length of the aneurysm.

The recirculation region causes the local velocity near the boundary wall to reverse.

The result of this is a negative velocity gradient and a corresponding negative wall

shear stress. The motion of the proximal vortex core along the length of the aneurysm

bulge may be tracked by the peak in negative wall shear stress indicated by the white

dashed line on figure 9.21(a).

Once the proximal neck vortex reaches the distal neck, the size and strength of the

negative wall shear stress region increases. This is a result of two factors. Firstly at this

time; the inlet flow rate is at its smallest which corresponds to a period of reversed flow

in the transient boundary layer. The reverse flow in the transient boundary layer causes

a negative strain-rate and consequently a negative wall shear stress. The close proximity

of the vortex to the wall causes a local increase in the velocity and corresponding local

Reynolds number. Secondly, this flow reversal on the transient boundary layer also

contributes to the swirl of the vortex increasing its strength and pushing it further into

the aneurysm bulge. These two factors increase the strength of the negative wall shear

stress region and enlarge its size.

After t∗ = 0.5 a region of positive wall shear stress develops at z = 12.5. This

is upstream of the large negative wall shear stress region developed by the proximal

vortex ring. Comparison of these results with figure 9.15(h) indicates that this region

of positive wall shear stress is associated with the local change in shear layer which

occurs as the secondary vortex ring C detaches from the wall. The primary vortex ring

draws the shear layer into a secondary vortex ring of opposite rotation. The proximity

of this vortex ring to the wall induces a local strain-rate at the wall in the opposite

direction. As the vortex core moves closer to the axis and begins to move out of the

aneurysm under the action of the increasing inlet flow rate, the region of positive wall

shear stress increases.
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(a) rigid (b) E = 0.8

Figure 9.21: The variation of wall shear stress (WSS) in an aneurysm as a function of time

and space. Contours show WSS with high WSS represented by red and low WSS represented

by blue, negative values are depicted using dashed contour lines. The contour levels are

equispaced and vary from -3.35 Pa to 3.35 Pa. Sub-plots (a) and (b) represent the WSS in

an aneurysm with rigid-walls and elastic-walls respectively. The figures on the right show the

velocity inlet (red) and wall velocity (blue).

Finally, figure 9.21(a) depicts a significant decrease in wall shear stress at the prox-

imal neck and increase at the distal neck. From the analysis conducted in § 8.5.5.1, it

is understood that this occurs as a result of the aneurysm geometry. At the proximal

neck, the diameter is locally increasing which through the spatial deceleration causes a

local reduction in the flow rate. Equation 8.32 shows that a decrease in the local flow

rate decreases the local Reynolds number and consequently increases the boundary

layer thickness. A larger boundary layer thickness results in lower wall shear stresses.

Similarly at the distal neck, the diameter is decreasing, by a similar argument this leads

to an increase in the local flow rate and consequently a thinner boundary layer with

high wall shear stresses.

Figure 9.21(b) shows, in stark contrast to figure 9.21(a), the impact that the altered

flow dynamics discussed in § 9.5.2 has on the wall shear stress distribution in an elastic-

walled aneurysm. The most significant change is the phase shift in wall shear stress,

which is evidently driven by the wall motion rather than the inlet velocity. Other

changes include the non-uniform shear stress distribution in the “straight” sections of

the aneurysm bulge, the length and time scale of the effect of the proximal vortex

(vortex A in figure 9.19), and the complex shear environment at the distal neck.
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Firstly, consider the regions of “straight” elastic-wall from z = 9 − 10.5 and z =

13.5 − 15. As in the aneurysm initiation cases discussed in chapter 8 these sections

undergo a slight distension to form a diverging nozzle shape at the proximal neck and a

converging nozzle at the distal neck. This causes a spatial acceleration or deceleration

of the flow and affects the local Reynolds number which in turn affects the boundary

layer thickness (equation 8.32). This causes the wall shear stress to decrease spatially in

the proximal neck region and increase spatially in the distal neck region. This finding is

supported by the time-averaged wall shear stress results presented in figure 9.22, which

shows that in these regions, the wall shear stress is constant for the rigid pipe cases.

Inside the aneurysm bulge the differences in the wall shear stress distribution is

a result of the complex vortex structures. Initially, the wall motion causes reverse

flow along the length of the aneurysm wall. This creates a negative strain rate and a

negative wall shear stress distribution. The proximal neck vortex is shed at an identical

time to the rigid-wall case; at the point when the inlet velocity starts its deceleration

phase. The proximal vortex position may be tracked by following the region of elevated

negative wall shear stress highlighted in figure 9.21(b) by the dashed white line. The

rotation of this shed vortex ring causes a local increase in the negative velocity at the

wall which causes a thinning of the boundary layer (as described in equation 8.32). At

the same time as the proximal vortex is developing and being shed at the proximal neck,

the inner strong distal-vortex ring (vortex B) and wall shear layer vortex (vortex C′)

are formed at the distal neck. The spatial deceleration of the reverse flow at the distal

neck in combination with the increase in local reverse flow causes a highly negative

shear-rate to form near the distal neck. This is coupled with the close proximity of the

strong inner distal-vortex to the wall locally thinning the boundary layer and resulting

in an increased wall shear stress.

As the wall starts to collapse back toward its initial state at time t∗ = 0.35, a

local increase in the wall shear stress distribution occurs at around z = 12.5. This

coincides with the rollup of the wall shear layer C′ into the vortex ring C. This forms

a vortex-ring pair with the strong inner distal vortex B. The motion of the wall and

strength of the inner distal vortex ring pulls the shear layer into a vortex ring which

detaches from the wall. The local shear layer adjacent to the wall shear layer vortex

(vortex C) has a local forward velocity and consequently positive wall shear stress. As

the reverse flow in the aneurysm diminishes (with collapsing wall), the flow becomes
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laminar along the length of the aneurysm bulge in the forward direction. Unlike the

rigid-walled case, figure 9.21(b) does not show the proximal vortex core traversing the

full length of the aneurysm before it collides with the distal neck. Instead, it travels

only half way through the aneurysm before it interacts with the distal vortex pair and is

enveloped. As the relative size of the proximal vortex pair causes it to leapfrog through

the middle of the distal vortex pair, the wall shear stress dynamics at the distal neck

are dominated throughout time by the distal vortex pair.

As in the rigid pipe case, the distal neck is dominated by the extrema in wall shear

stresses. As the distal neck is downstream of the elastic region, it is subject to changes in

flow rate resulting from both the inlet velocity and the wall motion (see equation 8.39).

This amplifies any changes in the wall shear stress at this location. The large amount

of reverse flow in the boundary layer causes the negative wall shear stress region at

the distal neck during the peak systolic acceleration (t∗ = 0.0− 0.25). In contrast, the

rigid-walled case is dominated by forward flow during this time and is subject to positive

wall shear stresses. The opposite reversal occurs later in the cycle. The collapsing wall

and the presence of the vortex rings combine to induce a positive wall shear stress

at the wall. At this time, the flow in the boundary layer is positive and undergoing

a spatial acceleration due to the wall geometry. As this is a high-Womersley-number

flow, changes in flow rate occur initially in the inertial boundary layer. As such, the

wall shear stress changes very quickly in response to the wall motion which provides a

much greater flow rate range (see figure 9.20).

The time-averaged wall shear stress distributions shown in figure 9.22 complement

the findings presented in figure 9.21. In the region outside the aneurysm bulge, the wall

shear stress is constant for the rigid pipe case. In the elastic case the wall shear stress

dramatically decreases at the proximal end (z = 9 − 10.5) and increases at the distal

neck (z = 13.5−15). As previously discussed, this is a result of the changing wall diam-

eter leading to a spatial acceleration which alters the local velocity and consequently

boundary layer thickness. The boundary layer thickness is linked to the wall shear

stress via a change in strain rate. In both the rigid-walled model and the elastic-walled

model the time-averaged wall shear stress is reasonably consistent in the upstream half

of the aneurysm bulge (from z = 10.5 − 12.5). As the input velocity profile is never

negative, and the expansion of the aneurysm is quite rapid, the flow detaches along

this upstream section and is subject to low wall shear stresses (τWSS ' 0). At z = 13 a
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Figure 9.22: Comparison of the time-averaged wall shear stresses with rigid and elastic-

walls. The grey line represents the rigid-walled reference case, while the green lines represent

the elastic-walled case with a wall stiffness of E =0.8 MPa (healthy).

very low wall shear stress is observed in the rigid-walled case which is not present in the

elastic-walled case. This negative wall shear stress in the rigid-walled case corresponds

to where the proximal vortex reaches the distal neck. As a result of the reversed flow at

this time in the rigid-wall cycle, the proximal vortex stays for a significant time at this

location and interacts with the shear layer causing the large decrease in time-averaged

wall shear stress. The elastic-walled case does not exhibit this minimum in wall shear

stress at z = 13. In elastic-walled cases the local shear layer is predominantly driven

by the wall motion. With a substantial section of elastic-wall upstream, the flow rate

at the distal neck is driven primarily by the motion of the wall. The result of this is

the formation of the distal vortex pair (vortices B and C in figure 9.19) which form

as a result of the reverse flow in the boundary layer and the forward flow through the

centre of the bulge. These vortices interact with the proximal vortex before it reaches
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the distal neck preventing it from having an impact on the boundary layer or the wall

shear stress. There is a small reduction in the wall shear stress at z = 13 as a result

of the thinning of the boundary layer as the vortex is flushed from the aneurysm. The

regions of high and low wall shear stresses seen above the distal neck in figure 9.22 are

predominantly driven by the motion of the wall. As such, these average through time

to zero.

Finally, both the rigid-wall case and the elastic-wall case exhibit a spike in time

averaged wall shear stress at the distal neck. The large change in geometry causes an

increase in the local flow rate before the neck that thins the boundary layer (equa-

tion 8.32) and increases the wall shear stress. This occurs temporarily as the flow

re-adjusts to the new pipe diameter. As was found in the incipient aneurysm case, the

elastic-wall model causes a much higher wall shear stress downstream at the end of

the elastic region due to the larger flow rates achieved in the elastic-walled case (see

equation 8.39).

Figure 9.23 shows the time-averaged wall shear stress magnitude in both the elastic

and rigid-walled aneurysm models. This plot shows many of the features observed in

figure 9.22. It highlights the effect of the wall motion on the peak wall shear stress

downstream of the elastic region. The peak wall shear stress at both the major changes

in geometry (the distal neck z = 13.5 and the end of the elastic region z = 15) experience

elevated wall shear stress magnitudes. At the end of the distal region the elastic-wall

region has a time averaged wall shear stress 69% higher than the wall shear stress in

the rigid-walled aneurysm.

The Oscillating Shear Index (OSI) quantifies the pulsatility and primary direction

of the flow. It ranges from 0 (forward flow throughout the cardiac cycle) to 1 (fully

reversed flow). An OSI of 0.5 corresponds to a pure oscillating flow with a WSSmean

of 0. Figure 8.31 shows the oscillating shear index distribution along the length of

the aneurysm. The average OSI across the entire elastic region is 0.4 for the rigid-

walled case and is slightly elevated to 0.437 for the elastic-walled case. Primarily this is

seen in the extended section with increased oscillating shear index between z = 9 and

z = 12. This includes a section which experiences flow which is predominantly negative

(OSI > 0.5). Salsac et al. (2006) found the OSI of a rigid-walled healthy aorta to be 0.4,

while others have calculated the OSI in a healthy artery to be 0.32 (Oyre et al. 1997).

These results show elevated levels of oscillating shear index above the healthy norm,
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Figure 9.23: Comparison of the time-averaged wall shear stress magnitude with rigid and

elastic-walls. The grey line represents the rigid-walled reference case, while the green lines

represent the elastic-walled case with a wall stiffness of E =0.8 MPa (healthy).

this is most significant when compared to the healthy elastic artery results discussed in

chapter 8 which found the healthy OSI = 0.22. This indicates that the near-wall flow

dynamics experience substantially different flow conditions to a healthy artery. Such

differences in the OSI may affect endothelial function and exacerbate the growth of the

aneurysm.

The results presented in this section show that the wall shear stress distribution in an

elastic-walled aneurysm is very different to the distribution produced from the rigid-wall

model. The differences in wall shear stress are caused by the large impact that the wall

motion has on the flow near the wall in an aneurysm. The wall motion causes complex

vortex interactions that affect the flow in the centre of the aneurysm and drives changes

in flow direction in the wall shear layer. In terms of time-averaged measurements

the wall shear stress at the distal neck has a much greater magnitude in the elastic-
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Figure 9.24: Comparison of the time-averaged oscillating shear index with rigid and elastic-

walls. The grey line represents the rigid-walled reference case, while the green lines represent

the elastic-walled case with a wall stiffness of E =0.8 MPa (healthy).

walled case. Despite this, the elastic-walled case is subject to smaller wall shear stress

gradients just upstream of the distal neck as the proximal vortex does not interact

directly with the shear layer. This occurs as the effect of the proximal neck vortex is

suppressed by the distal neck vortices. In any case, the dramatic differences in wall

shear stress observed between the elastic-walled case and the rigid-walled case suggest

that rigid-walled models are insufficient in describing the haemodynamic environment

in an aneurysm.

9.5.4 The effect of heterogeneous wall properties

In section 9.5.3 the different haemodynamics in elastic and rigid-walled aneurysm mod-

els was identified. The impacts of these results were discussed in the context of the

wall shear stress to assess the efficacy of using a rigid-wall model to assess the risk of

rupture in an aneurysm. In the following sections, the wall stiffness at various locations
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along the aneurysm bulge is altered to determine if a non-uniform stiffness distribution

may cause an adverse haemodynamic environment. The wall stiffness was changed in

the proximal, central and distal thirds of the aneurysm. The stiffness was varied from

0.6 MPa to 6.0 MPa with a healthy 0.8 MPa stiffness applied elsewhere in the elastic

region.

9.5.4.1 Proximal region

Figures 9.25 and 9.26 show the temporal evolution of the flow for the cases when

the proximal neck was weakened to 0.6 MPa and stiffened to 6.0 MPa, respectively.

In comparison to the healthy case shown in figure 9.17, the weakened case shown

in figure 9.25 features many of the same flow structures. Both involve the shedding

of a vortex ring from the proximal neck and the development of a vortex ring pair

at the distal neck. As time progresses, the proximal vortex ring travels through the

aneurysm bulge to interact with the distal vortex pair and eventually gets flushed

downstream. Subtle differences are evident: The flow features associated with the wall

motion, namely the distal vortex ring pair, are of a greater strength (the vorticity is 39%

greater for the inner distal vortex ring) in the reduced-stiffness proximal case and extend

further upstream toward the proximal neck than in the simply healthy case. This is

likely caused by the additional wall motion at the proximal neck causing an increase in

the reverse flow in the boundary layer. A greater strain rate in the boundary layer leads

to stronger shear layers and vortices forming. Furthermore, the location of additional

wall motion (and increased wall velocity) also contributes to the distribution of the

vortices. The strength of the reverse flow extends further upstream to the proximal

neck as the peak wall motion is shifted toward the proximal neck (see figure 9.29). This

results in the distal vortex ring pair forming and moving further upstream than in the

healthy case.

The flow evolution depicted in figure 9.26 for the stiffened proximal wall case

presents a very different flow field to that of the weakened and healthy cases. The

wall motion is substantially less in the proximal region and this causes a reduction in

the reverse flow in the boundary layer downstream at the distal neck. This suppresses

the formation of a strong distal-vortex pair. Greater similarity is found between the

evolution of the proximal vortex in the rigid-walled model in figure 9.15. The proximal

vortex ring traverses the length of the aneurysm bulge and contributes to the reverse
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(a) t∗ = 0.03 (b) t∗ = 0.12 (c) t∗ = 0.20

(d) t∗ = 0.28 (e) t∗ = 0.37 (f) t∗ = 0.45

(g) t∗ = 0.53 (h) t∗ = 0.61 (i) t∗ = 0.70

(j) t∗ = 0.78 (k) t∗ = 0.87 (l) t∗ = 0.95

(m)

Figure 9.25: Flow through an elastic aneurysm throughout the cardiac cycle. The wall in

the proximal third of the aneurysm bulge is weakened from E = 0.8 MPa to E = 0.6 MPa.

Contours show vorticity in the y-z plane and range between -50 and 50. Positive vorticity

(anticlockwise whorl) is represented by red contours and negative vorticity (clockwise whorl)

is represented by blue contours. Line contours show the regions of flow with an axial velocity

component of +1 and -1 (dashed lines are negative).
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flow at the distal neck. However, as some wall motion is present, the shear layer at

the distal neck is still subject to flow reversal. This causes a weak recirculation region

to form which prevents the proximal vortex from impacting directly on the wall at the

distal neck.

The effect of the change in wall stiffness is easily seen in terms of the wall shear

stress in figure 9.27. For the case of the less stiff proximal region (figure 9.27(c)) the

extra flow at the upstream proximal end of the aneurysm manifests itself in multiple

ways. Firstly the proximal vortex is shed with greater vortex strength and is drawn

closer to the wall due to the additional wall normal velocity. This creates a region of

lower negative wall shear stress as the proximal vortex is shed at t∗ = 0.2 and z = 10.8.

The trajectory of this vortex A is indicated in figure 9.27. The additional reverse flow at

the proximal neck also causes the fluid to be reversed further along the aneurysm bulge.

This was shown in figure 9.25(e) and is reflected in the wall shear stress distribution

in figure 9.27(c) by the extended period of lower wall shear stress which extends from

the distal neck to meet the shear layer created by the proximal vortex. The increased

reverse flow closer to the proximal neck also increases the strength and axial position

of the strong inner vortex core (vortex B in figure 9.19) which forms in the shear layer

between the reverse flow in the boundary layer and the forward flow through the centre

of the aneurysm. The position of this vortex draws the shear layer into the secondary

vortex ring (vortex C in figure 9.19) closer to the proximal neck than in the uniform

elastic case. The strength of vortex C is also increased as a direct consequence of

the strength of the inner-distal vortex B, this is reflected in the wall shear stress by an

increase in the peak wall shear stress at t∗ = 0.5 at z = 12.5. The effect of the secondary

vortex is seen in the wall shear stress as it is flushed from the aneurysm bulge. The

white lines on figure 9.27(c) indicate its trajectory. This is matched by the flushing

observed in figure 9.25(g) to 9.25(i). Finally, the distal neck experiences a larger range

of wall shear stresses compared to the healthy case as the greater flow rate generated

by the wall motion causes steeper velocity gradients near the wall through a thinning

of the boundary layer (equation 8.32). In conclusion, the increase in wall motion at

the proximal neck causes a greater amount of reverse flow over a larger section of the

aneurysm bulge which leads to more extreme values of wall shear stress both spatially

and temporally.

The wall shear stress distribution in the stiffened proximal region is shown in fig-
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(a) t∗ = 0.03 (b) t∗ = 0.12 (c) t∗ = 0.20

(d) t∗ = 0.28 (e) t∗ = 0.37 (f) t∗ = 0.45

(g) t∗ = 0.53 (h) t∗ = 0.61 (i) t∗ = 0.70

(j) t∗ = 0.78 (k) t∗ = 0.87 (l) t∗ = 0.95

(m)

Figure 9.26: Flow through an elastic aneurysm throughout the cardiac cycle. The wall in

the proximal third of the aneurysm bulge is stiffened from E = 0.8 MPa to E = 6.0 MPa.

Contours show vorticity in the y-z plane and range between -50 and 50. Positive vorticity

(anticlockwise whorl) is represented by red contours and negative vorticity (clockwise whorl)

is represented by blue contours. Line contours show the regions of flow with an axial velocity

component of +1 and -1 (dashed lines are negative).
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(a) rigid (b) E = 0.8

(c) E = 0.6 (d) E = 6.0

Figure 9.27: The variation of wall shear stress (WSS) in an aneurysm as a function of time

and space. Contours show WSS with high low levels represented by red and blue, respectively.

Negative values are represented by dashed contour lines. The contour levels are equispaced

and vary from -3.35 Pa to 3.35 Pa. Sub-plots (a)-(d) represent the WSS in an aneurysm

with rigid-walls, uniformly elastic-walls of stiffness E = 0.8 MPa, a local weakening of the

proximal wall to E = 0.6 MPa and a local stiffening of the proximal wall to E = 6.0 MPa

respectively. The figures on the right show the velocity inlet (red) and wall velocity (blue).

ure 9.27(d). In this case an overall reduction in the wall shear stress magnitude is

seen. Figure 9.28(b) confirms that this is the case. The reduced wall motion reduces

the maximum and minimum volume rate of change of the aneurysm. At lower flow

rates the local Reynolds number is reduced causing a thicker boundary layer to form

(see equation 8.32). A thicker boundary layer will cause a reduction in the wall shear

stress magnitude. Furthermore, the strength of all vortices produced is diminished,

consequently reducing the strength of any shear layer interactions that occur. The

distal vortices are weaker due to the smaller flow rate contribution from the wall. The

weakness of the vortices is reflected in the velocity gradients in the boundary layer,

which leads to a reduction in the local wall shear stress magnitude. The strength of the
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proximal vortex is also reduced as the stiffer wall causes a smaller wall displacement

at the proximal neck. The smaller wall displacement limits the spatial acceleration

experienced by the fluid as it rolls off the proximal neck. The limited vortex strength

and reduced flow reversal in the boundary layer towards the proximal neck causes the

detachment of the vortex C to be delayed and occur closer to the distal neck, this is

reflected in the wall shear stress by a reduction in the size of the positive wall shear

stress area at t∗ = 0.5 and z = 12.5. In conclusion, the decrease in wall motion at

the proximal neck causes a decrease in the amount of reverse flow over a larger section

of the aneurysm which leads to a smaller range of wall shear stress both spatially and

temporally.

The time-averaged results presented in figure 9.28 support the findings described

herein. An increase in wall motion at the upstream proximal end leads to an increase

in the wall shear stress magnitude both in terms of peak values (as the velocities are

greater and therefore boundary layer is thinner) and in terms of regions with elevated

wall shear stress. Conversely a stiffer proximal neck corresponds to a reduction in the

wall shear stress magnitude throughout the aneurysm bulge both in terms of peak values

and spatial distribution. The stiffened wall case does exhibit a larger time-averaged wall

shear stress at the proximal neck due to the smaller displacement at this location. This

allows the flow to remain attached to the wall: equation 8.49 indicates that if the

gradient of the wall is less (i.e. the convective acceleration is less) the resultant wall

shear stress will be greater.

Figure 9.28(c) shows that as expected with the increase in wall motion and flow

reversal, the oscillating shear index increases. Of particular interest is the increase

in the oscillating shear index for the stiffened wall case around z = 11.5 − 13. This

indicates an increase in the time spent with reverse flow in the distal portion of the

aneurysm bulge. Physically this may be described by considering the wall motion shown

in figure 9.29(b). The reduced wall motion at the proximal neck causes a decrease in the

total flow rate caused by the change in geometry. This has already been shown to cause

a reduction in the relative strength of the proximal and distal vortex structure. From

t∗ = 0.35− 0.85 when the wall is collapsing back towards the unstressed state, the flow

rate generated as a result of the collapsing wall volume in the distal section is greater

than that produced upstream. The local wall geometry of the distal neck being that of

a converging nozzle causes the mean wall velocity to be directed upstream. As the flow
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(a)

(b) (c)

Figure 9.28: Comparison of the axial distributions of the (a) time-averaged wall shear stress,

(b) the time-averaged wall shear stress magnitude, and (c) the oscillating shear index, with

varying stiffness in the proximal region. The grey line represents the rigid-walled reference

case, red, green and blue lines represent the cases with a local variation in proximal wall

stiffness of E = 0.6 MPa, E = 0.8 MPa (uniformly healthy) and E = 6.0 MPa respectively.

Note for the elastic-walled cases a stiffness of E = 0.8 MPa is applied outside beyond the

altered stiffness region.
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produced at the wall upstream is smaller than that produced at the distal neck the net

flow is preferentially in the reverse flow direction. This causes the increase in OSI seen

in figure 9.28(c). The same logic may be applied to the less stiff proximal region case.

In this scenario the upstream flow is greater than the downstream flow causing a mean

wall flow direction in the positive direction. This is observed by the reduction in OSI

(below 0.5 indicating predominantly forward flow) for the less stiff case. Contributing

to the forward flow in the boundary layer in the less stiff and uniformly elastic cases is

the roll up of the shear layer into the secondary distal vortex ring C. When this vortex

ring detaches from the wall it causes the local boundary layer flow to be in the forward

direction. This roll up is present in the rigid-walled, uniformly elastic and weakened

proximal wall case but not present in the stiffened elastic-wall case. As the wall motion

is reduced at the proximal section the strength of the inner distal vortex B and proximal

vortex A is reduced to the point that it does not cause the roll up of the shear layer into

vortex C until the flushing of the vortices occurs. As a result, this does not contribute

forward flow in the boundary layer which in turn results in a high OSI.

In this section the effect of a variable stiffness in the proximal third of a typical

fusiform abdominal aortic aneurysm has been considered. It was shown that changes in

the stiffness in the proximal region can have a dramatic effect on the flow through an

aneurysm as the changes in flow propagate downstream. A decrease in wall stiffness,

which causes an increase in wall motion, increases the strength of the vortex structures

generated in the aneurysm. Consequently, the wall shear stress magnitude is increased

in downstream sections as it is predominantly related to the boundary layer flow rate

and the strength of vortices in the near-wall region. An increase in wall stiffness re-

sulted in the weakening of vortex structures. This was primarily noted in the absence

of the secondary vortex ring C in the middle part of the aneurysm. Instead, the shear

layer remains attached until much of the flushing process has occurred and the shear

layer is shed from the aneurysm. The resultant wall shear stresses were of lesser mag-

nitude and the oscillating shear index was increased locally as a result of the vortex C

suppression. In terms of the healthy function of the endothelial cells the stiffened wall

had a significantly different OSI profile which may cause endothelial injury. However,

the greater wall shear stress magnitudes throughout the aneurysm bulge which formed

in the weakened proximal wall case suggest this is the less desirable scenario.
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(a) E = 0.6 (b) E = 6.0

(c) E = 0.6 (d) E = 6.0

(e) E = 0.6 (f) E = 6.0

(g) E = 0.8

Figure 9.29: The velocity of the wall under various stiffness conditions taken at an arbitrary

point during the systolic expansion. The red dashed line in each case indicates the location

of maximum net wall velocity. Figures (a) and (b) show the cases of altered stiffness in the

proximal section; (c) and (d) show the cases of altered stiffness in the central section; and

(d) and (e) show the cases of altered stiffness in the distal section. plot (f) is the case when

a uniform stiffness is prescribed throughout the aneurysm.

9.5.4.2 Central region

Figures 9.30 and 9.31 show the temporal evolution of the flow field for the cases when

the central bulge region was weakened to 0.6 MPa and stiffened to 6.0 MPa, respectively.

In figure 9.30 many of the flow features depicted in the healthy case (figure 9.17) and the

less stiff proximal case (figure 9.25) are evident. Just as in the Proximal less stiff case:

The flow features associated with the wall motion, namely the distal vortex ring pair are

of a greater strength in the reduced central stiffness case and extend further upstream

toward the proximal neck than in the simply healthy case. The greater freedom of the

wall at this central location allows the wall displacement both globally and locally to

be increased. Reynolds transport theorem (equation 8.39) suggests that in order to

conserve mass, the reverse flow in the boundary layer increases as the pressure in the
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aneurysm bulge increases. This leads to a larger strain-rate in the shear layers between

both the wall and flow (vortex C′ in figure 9.19) and the reverse flow in the boundary

layer and forward flow through the lumen (vortex B in figure 9.19). This leads to the

stronger vorticity fields in each of the shear layers as well as the formation of strong

vortex rings.

Furthermore, the location of additional wall motion (and increased wall velocity)

contributes to the distribution of the vortices. Figure 9.29 shows the wall velocity

distribution in each of the heterogeneous wall stiffness cases. In the case of a less stiff

central region the region of maximum wall motion is at the centre of the aneurysm

bulge. This is in contrast to the less stiff proximal case, the flow reversal is less strong

at the proximal neck in the weakened central region case. This is reflected in the

location of the vortex structures developed in the aneurysm bulge. The distal vortex

pair extends further toward the proximal neck in the proximal weakened case than in

the central weakened case. Similarly, in the central weakened case the vortices move

further into the domain than the simple uniformly stiff case.

The flow evolution depicted in figure 9.31 for the stiffened central wall case presents

a very different flow field to that of the weakened and healthy cases. As with the

stiffened proximal case, the wall motion is substantially less and this causes a reduction

in the reverse flow in the boundary layer downstream at the distal neck. This prevents

the formation of a strong distal-vortex pair.

Consistent with the results from the weakened proximal case, the weakened central

region exhibits a stronger promximal vorttex being shed and drawn closer to the wall

due to the additional wall normal velocity (figure 9.32(c)). A lower negative wall shear

stress is observed as the proximal vortex is shed at t∗ = 0.2 and z = 10.8. The additional

reverse flow in the central region causes the fluid to be reversed in the boundary layer for

a greater length of the aneurysm bulge compared to the unifromly elastic case which

is reflected in the wall shear stress distribution (figure 9.32(c)). The position of the

strong distal vortex draws the shear layer into the secondary vortex ring (Vortex C in

figure 9.19) closer to the proximal neck than in the uniform elastic case but less than

the proximal case.

Interestingly, the strength of vortex C is greater in the central stiffened case as a

result of the greater wall normal velocity at the central location at which the vortex

forms, causing a greater curling velocity gradient. The strength of vortex C is also
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(a) t∗ = 0.03 (b) t∗ = 0.12 (c) t∗ = 0.20

(d) t∗ = 0.28 (e) t∗ = 0.37 (f) t∗ = 0.45

(g) t∗ = 0.53 (h) t∗ = 0.61 (i) t∗ = 0.70

(j) t∗ = 0.78 (k) t∗ = 0.87 (l) t∗ = 0.95

(m)

Figure 9.30: Flow through an elastic aneurysm throughout the cardiac cycle. The wall in

the central third of the aneurysm bulge is weakened from E = 0.8 MPa to E = 0.6 MPa.

Contours show vorticity in the y-z plane and range between -50 and 50. Positive vorticity

(anticlockwise whorl) is represented by red contours and negative vorticity (clockwise whorl)

is represented by blue contours. Line contours show the regions of flow with an axial velocity

component of +1 and -1 (dashed lines are negative).
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(a) t∗ = 0.03 (b) t∗ = 0.12 (c) t∗ = 0.20

(d) t∗ = 0.28 (e) t∗ = 0.37 (f) t∗ = 0.45

(g) t∗ = 0.53 (h) t∗ = 0.61 (i) t∗ = 0.70

(j) t∗ = 0.78 (k) t∗ = 0.87 (l) t∗ = 0.95

(m)

Figure 9.31: Flow through an elastic aneurysm throughout the cardiac cycle. The wall in

the central third of the aneurysm bulge is stiffened from E = 0.8 MPa to E = 6.0 MPa.

Contours show vorticity in the y-z plane and range between -50 and 50. Positive vorticity

(anticlockwise whorl) is represented by red contours and negative vorticity (clockwise whorl)

is represented by blue contours. Line contours show the regions of flow with an axial velocity

component of +1 and -1 (dashed lines are negative).
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(a) rigid (b) E = 0.8

(c) E = 0.6 (d) E = 6.0

Figure 9.32: The variation of wall shear stress (WSS) in an aneurysm as a function of

both time and space. Contours show WSS with high low levels represented by red and blue,

respectively. Negative values are represented by dashed contour lines. The contour levels are

equispaced and vary from -3.35 Pa to 3.35 Pa. Sub-plots (a)-(d) represent the WSS in an

aneurysm with rigid-walls, uniformly elastic-walls of stiffness E = 0.8 MPa, a local weakening

of the central wall to E = 0.6 MPa and a local stiffening of the central wall to E = 6.0 MPa

respectively. The figures on the right show the velocity inlet (red) and wall velocity (blue).

increased as a direct consequence of the strength of the inner-distal vortex B. The white

lines on figure 9.32(c) indicate the trajectories of vortices A, B and C. This is matched

by the flushing observed in figure 9.31(g) to 9.31(i). Finally, as with the proximal neck

case the distal neck experiences a larger range of wall shear stresses compared to the

healthy case.

The stiffened case (figure 9.32(d)) shows an overall reduction in the wall shear stress

magnitude. Figure 9.33(b) confirms this is the case. As was observed for the stiffer

proximal case in § 9.5.4.1, the strength of all vortices produced is diminished, reducing

the strength of any shear layer interactions that occur. The distal vortices are weaker

(by 68% than the healthy case and 23% than the proximally stiffened case) due to the
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smaller flow rate contribution from the wall. Similarly vortex C is suppressed due to

the limited vortex strength and reduced flow reversal in the boundary layer. A region

of slightly positive wall shear stress is observed at the centre of the aneurysm bulge

at t∗ = 0.55. This is caused by the motion of the aneurysm wall at this time causing

forward flow in the boundary layer over the flattened central region. The formation of

secondary vortex structures is suppressed further than the stiffened proximal case due

to the more uniform wall profile throughout the domain (see figure 9.34).

The time-averaged results presented in figure 9.33 support the findings described

herein. The increace and decrease of wall stiffness has an identical impact on the peak

wall shear stress and wall shear stress distribution as for the proximal stiffened case.

Figure 9.33(c) shows that as expected with the increase in wall motion and flow

reversal, the oscillating shear index increases. As with the proximal wall case thre is an

elevation in the oscillating shear index for the stiffened wall case around z = 11.5− 13.

Physically this may be described by considering the wall motion shown in figure 9.29(d).

The reduced wall motion in the central location causes a decrease in the total flow rate

caused by the change in geometry. From t∗ = 0.35 − 0.85 when the wall is collapsing

back towards its initial state, the flow rate generated as a result of the collapsing wall

volume in the distal section is greater than that produced immediately upstream in

the central stiffened zone. The local wall geometry being that of a converging nozzle

causes the mean wall velocity to be directed upstream at the wall. As the flow produced

immediately upstream at the stiffened central location is smaller than that produced at

the distal neck, the net flow is preferentially in the reverse flow direction. This causes

the increase in OSI seen in figure 9.28(c). The reverse flow in the stiffened central

region case is greater that the reverse flow in the stiffened proximal case. This may be

the result of the wall geometry formed, depicted in figure 9.34. The wall geometry in

the proximal stiffened case shows a much more gradual wall gradient from the proximal

neck. This may allow the fluid to remain attached to the wall allowing a less steep

velocity gradient and consequently reduced reverse flow.

In this section the effect of a variable stiffness in the central third of a typical

fusiform abdominal aortic aneurysm has been considered. It was shown that changes

in the stiffness in the central region can have a similar effect both globally and locally,

to the proximal case. While the OSI was significantly different in the stiffened central

region case compared to the uniformly stiff case, the increased wall shear stress and
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(a)

(b) (c)

Figure 9.33: Comparison of the axial distributions of the (a) time-averaged wall shear stress,

(b) the time-averaged wall shear stress magnitude, and (c) the oscillating shear index, with

varying stiffness in the central region. The grey line represents the rigid-walled reference case,

red, green and blue lines represent the cases with a local variation in central wall stiffness of

E = 0.6 MPa, E = 0.8 MPa (uniformly healthy) and E = 6.0 MPa respectively. Note for the

elastic-walled cases a stiffness of E = 0.8 MPa is applied beyond the stiffened region.
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(a) E = 0.6 (b) E = 6.0

(c) E = 0.6 (d) E = 6.0

(e) E = 0.6 (f) E = 6.0

Figure 9.34: The displacement of the wall formed at peak distension under various stiffness

conditions. The displacement is amplified by a factor of 4 for visualization purposes. Red lines

represent the case with an altered stiffness, black lines represent the case of uniform stiffness

(E = 0.8) MPa. Figures (a) and (b) show the cases of altered stiffness in the proximal section;

(c) and (d) show the cases of altered stiffness in the central section; and (d) and (e) show the

cases of altered stiffness in the distal section.

wall shear stress gradients in the less stiff central region case indicates that this is the

less desirable haemodynamic scenario for the healthy function of endothelial cells and

aneurysm rupture prognosis.

9.5.4.3 Distal region

Having considered the effect of an altered stiffness region in both the proximal and

central thirds of an aneurysm, the effect of wall stiffness in the distal third is finally

considered. Figures 9.35 and 9.36 show the temporal evolution of the flow field for the

cases when the distal region was weakened to 0.6 MPa and stiffened to 6.0 MPa, respec-

tively. The less stiff distal neck case shares many features with the less stiff proximal

and central region cases and indeed with the uniform stiffness case of figure 9.17. The

primary differences are observed in figure 9.35(f) in which some complex interactions

are observed during the breakup and flushing of the distal vortex pair. The complex

interaction is likely caused by the large wall normal velocity in the distal region at this

time. Figure 9.29(e) shows how the greater wall motion at the distal neck causes a

shift of the peak wall velocity into the distal neck region. The additional wall normal
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velocity forces the wall shear layer away from the wall. Once separated, this vortex

interacts with the strong distal vortex pair at the distal neck. Furthermore the steep

wall gradients in this location mean the flow is subject to strong spatial accelerations at

the distal neck which strains the flow further. Similar vortex distribution phenomena

are observed elsewhere in the aneurysm bulge with strong vortices forming as a result

of the increased wall motion.

The location of additional wall motion (and increased wall velocity) also contributes

to the distribution of the vortices. Figure 9.29 shows the wall velocity distribution in

each of the heterogeneous wall stiffness cases. As the maximum wall motion (and wall

velocity) occurs at the distal neck, the distal neck vortex pair is pulled further from the

centreline of the aneurysm and restricted to the distal region of the bulge.

The flow evolution depicted in figure 9.36 for the stiffened distal wall section presents

a very different flow field to that of the weakened and healthy cases. Like the previous

stiffened cases, the wall motion is substantially reduced, causing a reduction in the

reverse flow in the boundary layer at the distal neck. This prevents the formation of

a strong distal-vortex pair. In the stiffened distal neck case the lack of sufficient wall

motion upstream of the weakened distal vortex precludes the shear layer from rolling

up into a secondary vortex ring. Instead, the shear layer is simply detached by the

motion of the wall as it begins to move back towards its initial state in figure 9.36(f).

The change in flow dynamics induced by the change in wall stiffness affects the

wall shear stress. For the weaker distal neck case (figure 9.37(c)) the extra flow at the

distal neck affects the wall shear stress in multiple ways consistent with the weakened

proximal and central region cases. The presence of the proximal vortex creates a lower

negative wall shear stress as it is shed at t∗ = 0.2 and z = 10.8. The presence of

vortex B and C (in figure 9.19 is reflected in the wall sherar stress distribution by the

positive wall shear stress which forms at t∗ = 0.5 and z = 12.5. As the maximum

wall velocity occurs at the distal neck, the strong forward shear layer associated with

the secondary vortex ring does not extend as far into the aneurysm bulge and remains

localised around the distal neck. The distal neck experiences a larger range of wall

shear stresses compared to the healthy case. The greater flow rate generated by the

wall motion causes steeper velocity gradients near the wall which results in a thinner

boundary layer (equation 8.32). Despite this, the peak wall shear stress magnitude is

less than in the weakened proximal and central region cases as the wall gradient (shown
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(a) t∗ = 0.03 (b) t∗ = 0.12 (c) t∗ = 0.20

(d) t∗ = 0.28 (e) t∗ = 0.37 (f) t∗ = 0.45

(g) t∗ = 0.53 (h) t∗ = 0.61 (i) t∗ = 0.70

(j) t∗ = 0.78 (k) t∗ = 0.87 (l) t∗ = 0.95

(m)

Figure 9.35: Flow through an elastic aneurysm throughout the cardiac cycle. The wall in

the distal third of the aneurysm bulge is weakened from E = 0.8 MPa to E = 0.6 MPa.

Contours show vorticity in the y-z plane and range between -50 and 50. Positive vorticity

(anticlockwise whorl) is represented by red contours and negative vorticity (clockwise whorl)

is represented by blue contours. Line contours show the regions of flow with an axial velocity

component of +1 and -1 (dashed lines are negative).
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(a) t∗ = 0.03 (b) t∗ = 0.12 (c) t∗ = 0.20

(d) t∗ = 0.28 (e) t∗ = 0.37 (f) t∗ = 0.45

(g) t∗ = 0.53 (h) t∗ = 0.61 (i) t∗ = 0.70

(j) t∗ = 0.78 (k) t∗ = 0.87 (l) t∗ = 0.95

(m)

Figure 9.36: Flow through an elastic aneurysm throughout the cardiac cycle. The wall in

the distal third of the aneurysm bulge is stiffened from E = 0.8 MPa to E = 6.0 MPa.

Contours show vorticity in the y-z plane and range between -50 and 50. Positive vorticity

(anticlockwise whorl) is represented by red contours and negative vorticity (clockwise whorl)

is represented by blue contours. Line contours show the regions of flow with an axial velocity

component of +1 and -1 (dashed lines are negative).

328



(a) rigid (b) E = 0.8

(c) E = 0.6 (d) E = 6.0

Figure 9.37: The variation of wall shear stress (WSS) in an aneurysm as a function of

both time and space. Contours show WSS with high WSS represented by red and low WSS

represented by blue, negative values are represented by dashed contour lines. The contour

levels are equispaced and vary from -3.35 Pa to 3.35 Pa. Sub-plots (a)-(d) represent the

WSS in an aneurysm with rigid-walls, uniformly elastic-walls of stiffness E = 0.8 MPa, a

local weakening of the distal wall to E = 0.6 MPa and a local stiffening of the distal wall to

E = 6.0 MPa respectively. The figures on the right show the velocity inlet (red) and wall

velocity (blue).

in figure 9.34) is less for the weakened distal case. Smaller wall gradients cause less

severe spatial accelerations and consequently less thinning of the boundary layer.

The stiffened case (figure 9.37(d)) shows an overall reduction in the wall shear stress

magnitude. Figure 9.38(b) confirms this is the case. This is in line with the findings

for the proximal and central region stiffened cases and is a result of the reduced wall

motion see equations 8.32 and 8.39. Locally, the strength of the shear layer at the

distal neck is greater than both the proximal and central region cases as a result of the

local increase in wall velocity. As was found in the previous stiffened cases, the limited

vortex strength and reduced flow reversal in the boundary layer completely suppresses
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the formation of vortex C. Despite the suppression of vortex C, a region of positive

wall shear stress is observed at the centre of the aneurysm bulge at t∗ = 0.55. For

this case the stiffened distal region causes a greater flow rate contribution from the

proximal third of the aneurysm (see figure 9.29). This causes a net forward flow in the

boundary layer over the flattened central region which corresponds to the positive shear

layer (and shear stress) in this region at this time. In conclusion, the decrease in wall

motion at the distal neck of the aneurysm decreases the amount of flow in the aneurysm

and reduces the wall shear stress in the aneurysm. The formation of secondary vortex

structures is suppressed as a result of the reduced distal vortex strength.

The time-averaged results presented in figure 9.38 support these findings. An in-

crease in wall motion in the distal region leads to an increase in the wall shear stress

magnitude and distribution. The stiffened wall case does exhibit a larger time-averaged

wall shear stress at the proximal neck due to the smaller displacement at this location.

This allows the flow to remain attached to the wall, equation 8.49 indicates that if the

gradient of the wall is less (i.e. the convective acceleration is less) the resultant wall

shear stress will be greater.

Figure 9.38(c) confirms that as the wall motion and flow reversal is increased, the

oscillating shear index increases. The region of increased reverse flow, z = 11.5 − 13,

found in the stiff proximal region and stiff central region cases is also evident in the

distal neck case, albeit of lesser significance. Because it is the distal wall region which

has the greatest motion and velocity (see figure 9.29), the flow upstream is not subject

to the local changes in flow conditions caused by the change in stiffness (some effects

are felt from the altered wall geometry e.g. see figure 9.34). As such, the wall from

z = 11.5 − 13 is not subject to large changes in flow rate which occur due to the wall

motion as this region sits predominantly upstream of where the increased flow rate is

occurring. The OSI does increase in the region z = 12.5− 13 in which the wall stiffness

has been altered and the wall motion is greater.

In this section the effect of a variable stiffness in the distal third of a medium sized

fusiform abdominal aortic aneurysm has been considered. It was shown that changes in

the stiffness in the distal region can affect the wall shear stress distribution. Changes

in the wall shear stress distribution as a result of the heterogeneous wall stiffness in the

distal region were less substantial than for changes in stiffness in other locations. The

increased wall shear stress and wall shear stress gradients in the less-stiff distal region
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(a)

(b) (c)

Figure 9.38: Comparison of the axial distributions of the (a) time-averaged wall shear stress,

(b) the time-averaged wall shear stress magnitude, and (c) the oscillating shear index, with

varying stiffness in the distal region. The grey line represents the rigid-walled reference case,

red, green and blue lines represent the cases with a local variation in distal wall stiffness

ofE = 0.6 MPa, E = 0.8 MPa (uniformly healthy) and E = 6.0 MPa respectively. Note for

the elastic-walled cases a stiffness of E = 0.8 MPa is applied beyond the stiffened region.
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indicates that this is the less desirable haemodynamic scenario for the healthy function

of endothelial cells and aneurysm rupture prognosis.

9.5.5 Comparison of heterogeneous wall stiffness scenarios

In this section the wall shear stress distribution in each of the wall stiffness cases is

compared to assess which wall stiffness scenario represents the least favourable haemo-

dynamic environment for healthy endothelial cell function. Figures 9.39 and 9.40 com-

pare the time-averaged wall shear stress and oscillating shear stress distributions when

the wall stiffness is made less-stiff and more-stiff respectively. In each case (stiffened

or weakened) variations in the wall shear stress distribution pattern is minimal, this is

a result of the comparable flow dynamics in each of the stiffened or weakened cases.

Despite the similarity in the wall shear stress distribution, the magnitude of wall shear

stress experienced with differing wall stiffness distributions does vary in a significant

manner.

For the weakened wall cases shown in figure 9.39, a weakening of the central region

of the aneurysm causes the greatest increase in the wall shear stress magnitude. All

cases exhibit a greater wall shear stress magnitude than the uniformly elastic case. As

discussed in the previous sections, this is a result of the extra flow induced by the

additional wall motion. At the distal neck of the aneurysm, the wall shear stress is

21.4% higher in the central weakened case than in the distal weakened case. Negligible

differences are seen in the wall shear stress magnitude at the distal neck for central and

proximally stiffened cases. Variations in the OSI distribution for the weakened wall

cases are negligible.

For the stiffened wall cases shown in figure 9.40, a stiffening of the central region of

the aneurysm also causes the change in the wall shear stress magnitude. However, in

the case of stiffening, the wall shear stress is reduced. Following high wall shear stress

theory (Lasheras 2007), the least favourable haemodynamic scenario at the distal neck

(z = 13.5) corresponds to the stiffened distal neck case. At the distal neck of the

aneurysm the wall shear stress is 30.1% higher in the stiffened distal case than in the

stiffened central case. In terms of the OSI, significant differences are observed in the

OSI distribution as the location of the stiffened region is varied. The least favourable

of these is the centrally stiffened case. The OSI distribution is heavily dependent on

the wall gradient formed and wall velocity distribution in the aneurysm.
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(a)

(b) (c)

Figure 9.39: Comparison of the time-averaged wall shear stress (a), the time-averaged wall

shear stress magnitude (b), and the oscillating shear index (c). The grey line represents the

uniformly stiff reference case, red, green and blue lines represent the cases with a local varia-

tion in wall stiffness of E = 0.6 MPa in the distal, central and proximal regions respectively.

Note: a stiffness of E = 0.8 MPa is applied beyond the stiffened region.
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(a)

(b) (c)

Figure 9.40: Comparison of the time-averaged wall shear stress (a), the time-averaged wall

shear stress magnitude (b), and the oscillating shear index (c). The grey line represents the

uniformly stiff reference case, red, green and blue lines represent the cases with a local varia-

tion in wall stiffness of E = 6.0 MPa in the distal, central and proximal regions respectively.

Note: a stiffness of E = 0.8 MPa is applied beyond the stiffened region.

334



From these results it is evident that a weakening of the aneurysm wall presents a

greater risk to rupture than a stiffening of the wall. In their review, Lasheras (2007)

describes the possibility of both high and low wall shear stress distributions causing

an undesirable haemodynamic environment which may propagate the growth of an

aneurysm. In both the weakened and stiffened cases, the wall shear stress in the prox-

imal section of the bulge is dominated by a very low wall shear stress region. Salsac

et al. (2006) reported values of wall shear stress in a rigid-wall aneurysm ranging from

-0.09–0.35 Pa in this region, for which these results correlate well. Salsac et al. (2006)

also detailed the healthy flow in an aneurysm corresponds to a time-averaged wall shear

stress mean of 0.27 Pa, a time-averaged wall shear stress magnitude of 1.5 Pa and an

OSI of 0.4. The results presented in this thesis show a large deviation from the healthy

time-averaged values expected in the aorta. The regions of high wall shear stress at the

distal neck are of significant concern as they exceed the healthy artery values predicted

in section 8.5.5 by over 430%.

Interestingly, the wall stiffness surveys conducted by Claridge (2010) among others,

indicates that aneurysms are predominantly found with stiffer walls. These results

suggest that as an aneurysm forms, the undesirable haemodynamics environment is

partially mitigated, or the propagation of the aneurysm is hindered by the stiffening of

the wall. This may be caused by the active mechanotransduction process responding

to reduce the adverse haemodynamic conditions.

In conclusion, a weakened aneurysm wall at the central location presents the least

desirable wall shear stress distribution in the aneurysm. It is characterised by an

increase in the wall shear stress at the distal neck above all other heterogeneous wall

stiffness arrangements tested.

9.5.6 Effects of the perianeurysmal environment

The flow dynamics described in § 9.5.2 detail the complex flow evolution in an elastic-

walled aneurysm with large wall motion. The elasticity of the wall dominates the flow

mechanics in the near-wall region as its motion alters the flow rate throughout the

aneurysm (see equation 8.39). The total wall movement and consequently the degree

to which the wall motion affects the flow will also be dependent on the perianeurysmal

environment, which depending on the force feedback response will limit the wall motion

to differing degrees.
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Stefanadis et al. (1995) measured the dilation of a healthy artery wall in two patients

throughout the cardiac cycle. They reported a change in vessel diameter of ∆D =

1.2 − 2.5 mm (i.e. a 10% change in diameter). The results presented in chapter 8

found that using an external pressure which matched the diastolic pressure at diastole

and varied by 20% of the change in luminal pressure throughout the cycle, the healthy

artery response was a dilation of ∆d = 1.54 mm. This is well within the range of values

quoted in Stefanadis et al. (1995). In the aneurysm simulations with a healthy wall

stiffness, the dilation of the artery wall was ∆D = 6.4 mm, and given that the diameter

of the aneurysm bulge is D = 40 mm, this represents a 16% increase in diameter. The

large dilation is a consequence of the undeformed shape of the aneurysm. It allows a

larger wall motion in response to an equivalent stress as the wall aneurysm shape can

flatten without addition of extra internal stress to the aneurysm wall.

It is expected that as the aneurysm bulge increases in size, the resistance of the

perianeurysmal environment to movement should also increase. This is a result of

the compression and effective stiffening of the perianeurysmal environment upon the

formation of an aneurysm in conjunction with the proximity of internal organs and

vertebral structures. As such, the results presented in § 9.5.2 may under-estimate the

perianeurysmal response causing a wall motion greater than is physiologically reason-

able to occur. This is not to say that these results are not valid. The results clearly

indicate that in an elastic artery the flow dynamics are complicated by the motion of

the wall; flow dynamics that are not observed when using a rigid-walled model.

To determine the effect of the perianeurysmal environment (and the effect of an

overall reduction in wall motion), a study was undertaken in which the force exerted

by the perianeurysmal environment was varied for a healthy aneurysm (E = 0.8 MPa).

The external pressure boundary condition was varied according to

Pext = Pdia − f
Ppeak − Pdia

2
cos

(
2π

T
t

)
, (9.2)

where Pext is the pressure applied to the external surface of the artery wall, Pdia is

the diastolic pressure in the lumen, Ppeak is the peak systolic pressure in the lumen,

T is the period of the heart beat and f is a multiplicative factor which increases the

perianeurysmal response. The factor, f , was varied from 0.2-0.9, a factor of f = 0.2

was used in all previous aneurysm studies reported in this thesis and was used to give

a physiologically accurate wall distortion for the healthy arterial case. A factor f = 1.0

corresponds to the case of a perfectly rigid outer wall.

336



Figure 9.41 shows snapshots of the flow at a series of times throughout the cardiac

cycle using various values of the perianeurysmal pressure factor, f . As the perianeurys-

mal pressure factor is increased and the subsequent wall motion is decreased, the flow

exhibits a weaker distal vortex (vortex B in figure 9.19) this is best observed at time

t∗ = 0.28 in figure 9.41. Initially as the wall motion is decreased, the reduced reverse

flow in the boundary layer and consequentially the reduced strength of vortex B results

in the suppression of vortex C. The reduced strength of vortex B means it does not

draw the shear layer C′ into the secondary distal vortex ring. As the perianeurysmal

pressure factor is increased further, the effect of the wall motion is further reduced.

This causes the weakening of the distal vortex to the point where the proximal vor-

tex A begins to dominate the flow field in the distal region at times t∗ > 0.6. As this

occurs, the strength of the shear layer at t∗ = 0.7 increases again (see f = 0.8) until the

proximal vortex A draws the shear layer into the secondary vortex ring C. This shows a

clear progression from the uniformly elastic case with a weak perianeurysmal pressure

response to the rigid-walled case.

The change in flow dynamics with variation in the perianeurysmal pressure factor

is reflected in a transition in the wall shear stress distribution. Figure 9.42 shows the

spatial and temporal distribution of wall shear stress throughout the elastic region of

the aneurysm. These results reflect the change in flow dynamics observed in figure 9.41

which involves a reduction in the strength of the distal vortex and corresponding shear

layer C′, a suppression of the creation of vortex C, and finally the domination of the

proximal vortex A (as the perianeurysmal pressure factor is increased). The precedence

of the proximal vortex is denoted in figure 9.42 by the transition from a wall shear

stress pattern that has peaks which match the phase of the wall motion to that which

matches the phase of the inlet velocity conditions (as the perianeurysmal pressure factor

is increased). The trajectories of the vortices A, B and C from figure 9.19 are tracked

on figure 9.42 by the dashed white lines.

In conclusion the perianeurysmal environment plays a key role in determining the

flow dynamics in the aneurysm. Large wall motions lead to the formation of secondary

vortex rings at the distal neck which have been shown to interact with vortices shed

from the proximal neck. At intermediate levels of wall motion the flow exhibits a

weaker shear layer at the distal neck and the suppression of the secondary vortex ring.

Similar vortex C suppression was observed in the heterogeneous wall stiffening cases
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t∗ = 0.03 t∗ = 0.28 t∗ = 0.70

f = 0.2

f = 0.3

f = 0.6

f = 0.8

f = 1.0

Figure 9.41: The effect of the perianeurysmal environment on the flow through an elastic

aneurysm. The wall has a uniform stiffness of E = 0.8 MPa and the perianeurysmal pressure

factor f is varied from the standard case of 0.2 to the completely rigid case of 1.0. Contours

show vorticity in the y-z plane. Positive vorticity (anticlockwise whorl) is represented by

red contours and negative vorticity (clockwise whorl) is represented by blue contours. Line

contours show the regions of flow with an axial velocity component of +1 and -1 (dashed

lines are negative).
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(a) f = 0.2 (b) f = 0.3

(c) f = 0.5 (d) f = 0.7

(e) f = 0.8 (f) f = 1.0-rigid

Figure 9.42: The variation of wall shear stress (WSS) in an aneurysm as a function of time

and space. Contours show WSS with high WSS represented by red and low WSS represented

by blue, negative values are represented by dashed contour lines. The contour levels are

equispaced and vary from -3.35 Pa to 3.35 Pa. Sub-plots (a) - (f) represent the WSS in

an aneurysm with uniformly elastic-walls of stiffness E = 0.8 MPa with a perianeurysmal

pressure factor, f = 0.2− 1.0. The figures on the right show the velocity inlet (red) and wall

velocity (blue).
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in which a stiffer wall section precluded the distal vortex from achieving sufficient

strength to draw the shear layer C′ into a secondary vortex ring. At high levels of the

perianeurysmal response, the flow is akin to the flow in a rigid-walled aneurysm. Under

these circumstances the proximal vortex ring dominates the flow in the aneurysm and

its strength is sufficient to induce the shear layer roll up into vortex C.

9.6 Closure

It is well documented that the formation and growth of an aneurysm is linked to an

irregular haemodynamic environment (Finol et al. 2003b; Salsac et al. 2006; Lasheras

2007; Humphrey & Taylor 2008; Sforza et al. 2009). Many studies analyse the effect

of the irregular geometry on the flow dynamics. Specifically, wall shear stress and wall

shear stress gradients are considered as the healthy function of the intimal endothelial

layer is shear sensitive. The results presented in this chapter describe a complex vortex

structure interaction which occurs as a result of additional vortices created in response

to the motion of the elastic-wall. The results highlight the significant difference in the

flow dynamics when considering an elastic-walled aneurysm model compared to a rigid-

walled model. Unlike their rigid-walled counterparts, realistic elastic-walled models

are subject to complicated multi-vortex ring interactions with much more dynamic

boundary layer flows. Rigid-wall models fail to capture the distal vortex pair created

in an aneurysm and can therefore not accurately assess the impact the flow has on the

wall shear stress distribution in an aneurysm.

This investigation has made simple comparative measurements of the spatial and

temporal distribution of the flow through an aortic aneurysm. Furthermore, it has mea-

sured the wall shear stress distribution in an elastic aneurysm and compared the results

against rigid-walled models and cases in which a localised variation in wall stiffness is

present. This study has shown the flow inside an elastic aneurysm is characterised by

the transient formation of a proximal vortex ring and distal vortex ring pair; and the

presence of altered boundary layer flow conditions as a result the wall motion. In fact,

the presence of an elastic wall creates a spatial variation in the wall shear stress which

is not present in rigid-walled approximations. On this basis it is reasonable to conclude

that rigid-walled models of the aorta are insufficient to accurately describe the wall

shear stress environment in an aneurysm.

The differences in wall shear stress are caused by the large impact that the wall
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motion has on the flow near the wall in an aneurysm. The wall motion causes complex

vortex interactions to affect the flow in the centre of the aneurysm and drives changes

in flow direction in the wall shear layer. In terms of time-averaged measurements the

wall shear stress at the distal neck has a much greater magnitude than in the rigid-

walled case. Despite this, the elastic-walled case is subject to smaller wall shear stress

gradients just upstream of the distal neck as the proximal vortex does not interact

directly with the shear layer. This occurs as the proximal neck vortex interacts with

the wider distal neck vortices. In any case, the dramatic differences in wall shear

stress observed between the elastic-walled case and the rigid-walled case suggest that

rigid-walled models are insufficient in describing the haemodynamic environment in an

aneurysm.

The effect of local variations in wall stiffness was determined at a variety of locations

throughout the aneurysm bulge. Weakening of the aneurysm wall led to large wall

displacements and an increase in the wall shear stress magnitude at the distal neck.

The increase in wall motion caused the induced flow rate to exceed the fluctuations in

flow rate at the velocity inlet. This in turn caused the flow in the boundary layer to be

dominated by the wall action in conjunction with the proximity of vortices. A greater

wall motion invariably led to an increase in the strength of both the proximal and distal

vortex rings. The increase in vortex strength was directly linked to an increase in the

wall shear stress in the vicinity of the vortex structures. The weaker wall cases also led

to the roll up of a secondary vortex ring in the distal third of the bulge. The formation of

the secondary vortex ring was not observed in the stiffer wall cases. While all weakened

walled cases exhibited similar changes in wall dynamics compared to the uniformly stiff

case, a weakened region upstream of the distal neck provided the greatest change in

wall shear stress distribution. Both the weakened proximal neck and central region

studies revealed a similar wall response and wall shear stress distribution. The case of

a weakened central region represents the least favourable haemodynamic conditions for

healthy endothelial wall function.

In contrast to the heterogeneous weakened wall distributions, the stiffened wall

cases exhibited a wall shear stress distribution which was protective (relatively) of

endothelial response. A stiffening of the wall reduced the wall motion and consequently

the strength of the distal vortices. The reduced strength of the inner distal vortex led to

the suppression of the secondary distal vortex ring. A combination of the reduced vortex
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strength and the reduced volume rate of change of the aneurysm led to a reduction in

the shear stresses that endothelial cells would be subjected to. The least protective

distribution was the stiffening at the distal neck. At the distal neck the wall shear

stress is 30.1% higher in the distal stiffened case than in the central stiffened case or

proximal stiffened case. In terms of the OSI, significant differences are observed in the

OSI distribution as the location of the stiffened region is varied. The least favourable

of these is the centrally stiffened case. The OSI distribution is heavily dependent on

the wall gradient formed and wall velocity distribution in the aneurysm.

From these results it is evident that a weakening of the aneurysm wall presents a

greater risk to rupture than a stiffening of the wall. In their review, Lasheras (2007)

describes the possibility of both low and high wall shear stress distributions causing

an undesirable haemodynamic environment which may propagate the growth of an

aneurysm. In both the weakened and stiffened cases, the wall shear stress in the prox-

imal section of the bulge was dominated by a very low wall shear stress region. Salsac

et al. (2006) reported values of wall shear stress in a fixed-walled aneurysm model

ranging from −0.09 – 0.35 Pa in this region, for which these results correlate quite

well. Salsac et al. (2006) also detailed the healthy flow in an aneurysm corresponds to

a time-averaged wall shear stress mean of 0.27 Pa, a time-averaged wall shear stress

magnitude of 1.5 Pa and an OSI of 0.4. The results presented in this thesis show a

large deviation from the healthy time-averaged values expected in an aneurysm. The

regions of high wall shear stress at the distal neck are of significant concern as they

exceed the healthy artery values by over 430%.

Finally, a study was conducted to determine the effect of the perianeurysmal envi-

ronment on the haemodynamics in an aneurysm. It was shown that an increase in the

perianeurysmal response leads to the reduction in wall motion. As the wall motion was

decreased, the strength of the distal vortex was diminished and the roll up of the shear

layer into the secondary vortex was suppressed. As the perianeurysmal response was

increased further, the distal vortex became very weak and the proximal vortex began to

dominate the flow dynamics. With a sufficiently stiff wall, the distal vortex no longer

protected the distal neck from the impact of the proximal vortex ring. The strength

of this vortex was sufficient to draw the shear layer into a secondary vortex ring. This

study describes the transition of flow régimes from one dominated by the motion of the

wall to one in which the wall geometry and inlet velocity profile are dominant. Very
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different wall shear stress distributions occur in each case.

This investigation set out to address aims 2a and 2b by assessing the impact of

varying wall mechanical properties on the haemodynamics in a fusiform abdominal

aortic geometry. The original hypotheses outlined in § 1.8.3 have been supported in this

investigation. Evidence was found to support the first hypothesis relating to the effect

of the perianeurysmal environment. As the force feedback from the perianeurysmal

environment was increased the wall motion reduced in magnitude across the domain.

The interaction of proximal and distal vortex structures which is prevalent with large

wall motion was suppressed and the flow dynamics approached that seen in a rigid-

walled aneurysm model. The second question in § 1.8.3 asked what effect local wall

stiffness will have on the haemodynamics in an aneurysm. It was postulated that a

local increase in wall stiffness would introduce secondary regions of flow separations and

potentially the development of a secondary vortex ring system as a result of the local

variations in wall geometry. While this study did identify the formation of a secondary

vortex ring pair at the distal neck; it was concluded that this was not the result of the

local variation in wall stiffness. Rather, the large wall motion caused significant flow

reversal in the boundary layer at the distal neck which formed a strong vortex system at

this location. The location of the change in wall stiffness did affect the distribution of

the vortices and affected how far into the domain the vortices travelled. Furthermore,

in terms of wall shear stress it was shown that changes in wall motion upstream had a

greater impact on the wall shear stress at the distal neck. The secondary distal vortex

pair was most prevalent in cases when the wall was weakened and suppressed when

the wall was stiffened. These flow dynamics were driven by the global change in wall

motion which occurred as a result of the stiffening and weakening rather than any local

effects.
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Chapter 10

Conclusions

The prevalence of abdominal aortic aneurysms is increasing with an ageing population.

Aneurysms present a major health risk; in the event of aneurysm rupture, patients

exhibit a mortality rate of 70-95% (Lindholt et al. 2005). Treatment of aneurysms

involves invasive surgery, which carries an inherent risk, therefore it is preferable to

intervene only when an aneurysm is close to rupture. Currently, the aneurysm initiation,

growth and rupture mechanisms are not fully understood and accurate predictions of

aneurysm growth-rate and rupture time frame cannot be made. Research in this field

has identified haemodynamic stimuli as the principal factor leading to aneurysm growth.

As such, in-depth fluid-dynamic investigations can contribute greatly to developing

appropriate models for patient prognosis and treatment. Previous investigations into

aneurysm haemodynamics have largely been focused on blood flows with rigid-wall

dynamics. To realistically model the flow, a moving boundary condition must be applied

to account for the elasticity of the aneurysm wall.

This research aimed to address the current shortcomings in the literature by de-

veloping a complex fluid-structure solver and utilising it to determine the effects of an

elastic-wall model on aneurysm haemodynamics. As such the outcomes presented in this

thesis are twofold. Firstly, a computational tool was developed capable of accurately

modelling the non-linear solid mechanics and coupled fluid-structure interactions. The

algorithms used in this computational tool were described at length and verified against

a series of benchmark test cases. Subsequently, the new solver was utilised to simulate

blood flow through idealised artery and aneurysm models. The results presented in this

thesis improve on the current standard of artery wall modelling by incorporating the

effects of heterogeneous wall mechanical properties in a multi-layered wall.
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10.1 FSI algorithm

In order to accurately model the fluid-structure interactions in an aneurysm a compu-

tational tool was developed. Previous studies into aneurysm FSI have failed to:

1. fully couple the wall response to the motion of the fluid,

2. accurately model the location of the artery wall, or,

3. account for the complex nature of the wall in terms of mechanical properties,

inertial effects, and non-linear constitutive models.

To overcome these shortfalls a novel approach to numerically modeling non-linear

solid mechanics was developed in conjunction with an adaptation of the ALE coupling

scheme. A monolithic ALE solver was suggested with a modified iterative over unequal

time step coupling routine. The unequal time stepping algorithm ensures information is

updated in the fluid solver at each fluid time step using an extrapolation/interpolation

method on intermediate time steps and a full iterative feedback method during time

steps when both the fluid and the solid are being updated. To preserve the relative

spacing of mesh nodes in the fluid region as the domain size changes, a Hookean solid

model is used to regulate the mesh movement.

The arbitrary Lagrangian–Eulerian time stepping scheme developed in this thesis

allows the coupling of the fluid and solid mechanics solvers. This enables the solver

to handle the complex fluid-structure interactions found in arterial flows. This work

is integral to aim 1 defined in chapter 1. While the mathematical background of the

ALE technique is well defined, this algorithm represents a novel contribution to the

field with its new information transfer scheme.

In order to model the non-linear wall response, an algorithm which solved a neo-

Hookean constitutive model was developed. Spectral elements were used for the spatial

discretisation while a backward differencing time stepping scheme was proposed for the

temporal evolution. A two-step operator splitting scheme was proposed in order to

implicitly solve for the displacement at the next time step. As such this algorithm is

capable of modelling both the inertial and non-linear response of the wall, which is

important in biological applications.

The combination of a two-step operator splitting scheme, the inclusion of the inertial

term and the use of a spectral element spatial discretisation makes this a new technique
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for solving the governing equations for an incompressible neo-Hookean solid. When

simulating the response of the arterial wall in an aneurysm, a hyperelastic material

model such as the neo-Hookean model is essential. This algorithm in conjunction with

the new fluid-structure interaction coupling scheme described in § 3.5.1 represents a

new and highly accurate tool for investigating FSI in aneurysms. A series of verification

simulations were presented to test the accuracy and stability of the algorithm. In each

case high levels of accuracy were achieved.

10.2 Aneurysm initiation

It is well documented that the healthy function of an arterial wall is reliant on a balance

of haemodynamic parameters to which intimal endothelial cells are sensitive. As such,

the characterisation of the changes in wall shear stress resulting from wall stiffness

variations around lesions and sites of disease is essential to understand the initiation

process of abdominal aortic aneurysms.

This investigation has made simple comparative measurements of the spatial and

temporal distribution of the flow through an elastic artery. Furthermore, it has mea-

sured the wall shear stress distribution in the elastic artery and compared the results

against rigid-walled models and cases in which a localised variation in wall stiffness is

present. This study has shown that the flow inside an elastic artery is characterised

by the transient formation of regions with higher and lower wall shear stresses which

are not predicted using a rigid-walled artery model. In fact the presence of an elastic

wall creates a spatial variation in the wall shear stress which is not detected in rigid-

walled approximations. On this basis it is reasonable to conclude that rigid-walled

models of the healthy aorta are insufficient to accurately describe the wall shear stress

environment in the aorta.

The presence of an elastic wall was found to delay the onset and reduce the strength

of flow reversal in the boundary layer during the diastolic phase in comparison to rigid-

walled models. In addition, the wall motion was shown to have a profound impact on

the wall normal velocity and boundary layer thickness. The spatial variation of the wall

shear stress was shown to develop as a result of the change in wall profile as the elastic

wall moved. The result of this geometry change was a dramatic decrease in the wall

shear stress at the proximal neck before an increase in wall shear stress at the distal

neck beyond what is encountered in a rigid-walled model. The shape adopted during
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systole causes a spatial acceleration of the fluid, which is associated with a change

in local velocity and consequently a change in the local Reynolds number, boundary

layer thickness and wall shear stress. The transient nature of the wall motion further

compounds these effects as the changing luminal volume causes an increase or decrease

in the flow rate at the distal neck.

Local variations in the wall stiffness caused only slight variations in the wall shear

stress distribution in the artery. On a global scale, a local increase in the wall stiffness

decreased the peak dilation of the wall which altered the peak wall shear stress in

regions downstream (predominantly the distal neck). Local variations in wall stiffness

were also associated with the local change in wall shear stress. The locally altered wall

gradient caused flow to detach from the boundary when the wall was diverging and a

thinning of the boundary layer when the wall gradient was converging.

This investigation aimed to address aim 2c and determine how a heterogeneous wall

stiffness affects the haemodynamics in the context of aneurysm initiation. The original

hypotheses outlined in § 1.8.3 have been supported in this investigation. In terms of

the initiation of aneurysms these results show that the wall shear stress distribution in

an artery is very complex. Previous studies that have used a rigid wall assumption are

likely to have underestimated the maximum and minimum wall shear stress in a healthy

artery. Large variation in the wall shear stresses are present around the proximal and

distal neck of the artery where tethering causes large variation in wall shapes. Localised

lesion or stiffening in the centre of an artery can alter the wall shear stress distribution

both local to the lesion and throughout the artery. The variation in wall shear stress

does not exceed the healthy range described in Salsac et al. (2006), however the results

do show that the local variation is substantial in comparison to the local wall shear

stress for a healthy elastic artery. The time averaged wall shear stress was 31% higher

for the stiffest case tested and 47% lower for the least stiff case tested. Whether lower

or higher wall shear stresses present a greater risk of endothelial injury is beyond the

scope of this work. However, such variation of wall shear stress in either direction may

be sufficient to change the local endothelial function of the wall and lead to aneurysm

initiation.
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10.3 Haemodynamics in established aneurysms

It is well documented that the formation and growth of an aneurysm is linked to an

irregular haemodynamic environment (Finol et al. 2003b; Salsac et al. 2006; Lasheras

2007; Humphrey & Taylor 2008; Sforza et al. 2009). Many studies have analysed the

effect of the irregular geometry on the flow dynamics. This study described the complex

vortex structure interaction which occurs as a result of additional vortices created at

the distal neck in response to the motion of the elastic wall. The results highlight the

significant difference in the flow dynamics when considering an elastic-walled aneurysm

model compared to a rigid-walled model.

This investigation has made simple comparative measurements of the spatial and

temporal distribution of the flow and wall shear stress distribution through an aortic

aneurysm. The differences in wall shear stress are caused by the large impact that the

wall motion has on the flow near the wall. In addition to the vortex ring shed from the

proximal neck, the wall motion causes significant flow reversal in the boundary layer

which cases the formation of a distal vortex. The proximity of these vortices to the

aneurysm wall affects the shear layer at the wall and consequently the wall shear stress.

A secondary distal vortex ring was found to develop in cases when the wall motion

was high. At intermediate levels of wall motion the secondary distal vortex ring was

suppressed. The wall was protected from the presence of the strong proximal vortex

ring by its interaction with the primary distal vortex ring.

The effect of local variations in wall stiffness was determined at a variety of locations

throughout the aneurysm bulge. Weakening of the aneurysm wall led to large wall

motions, an increase in vortex strength and a corresponding increase in the wall shear

stress magnitude at the distal neck. Conversely stiffening of the wall led to a reduction

in the wall shear stresses and vortex strengths. The weaker wall cases also led to the

roll up of a secondary vortex ring at the distal neck, as the wall began to collapse back

to its initial position. The formation of the secondary vortex ring was not observed in

the stiffer-wall cases.

While all weakened-wall cases exhibited similar changes in wall dynamics compared

to the uniformly stiff case, a weakened region upstream of the distal neck provided

the greatest change in wall shear stress distribution. The case of a weakened central

region represents the least favourable haemodynamic conditions for healthy endothelial

wall function. In terms of the stiffened cases, the least protective distribution was the
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stiffening at the distal neck. In terms of the OSI, significant differences were observed in

the OSI distribution as the location of the stiffened region is varied. The least favourable

of these is the centrally stiffened case. The OSI distribution is heavily dependent on

the wall gradient and wall velocity distribution in the aneurysm. A weakening of the

aneurysm wall presents a greater risk to rupture than a stiffening of the wall.

In their review, Lasheras (2007) describes the possibility of both high and low wall

shear stress distributions causing an undesirable haemodynamic environment which

may propagate the growth of an aneurysm. In both the weakened and stiffened cases,

the wall shear stress in the proximal section of the bulge is dominated by a very low

wall shear stress region. Salsac et al. (2006) reported values of wall shear stress in

a fixed wall aneurysm ranging from −0.09 to 0.35 Pa in this region, for which these

results correlate well. Salsac et al. (2006) also detailed the healthy flow in an aneurysm

corresponds to a time averaged wall shear stress mean of 0.27 Pa, time averaged wall

shear stress magnitude of 1.5 Pa and an OSI of 0.4. The results presented in this thesis

show a large deviation from the healthy time averaged values expected in an aneurysm.

The regions of high wall shear stress at the distal neck are of significant concern as they

exceed the healthy artery values by over 430%.

Finally, a study was conducted to determine the effect of the perianeurysmal en-

vironment on the haemodynamics in an aneurysm. It was shown that an increase in

the perianeurysmal response led to a reduction in wall motion. As the wall motion was

decreased the strength of the distal vortex was diminished and the roll up of the shear

layer into the secondary vortex was suppressed. As the perianeurysmal response was

increased further, the distal vortex became very weak and the proximal vortex began to

dominate the flow dynamics. With a sufficiently stiff wall, the distal vortex no longer

protected the distal neck form the impact of the proximal vortex ring. The strength

of this vortex was sufficient to draw the shear layer into a secondary vortex ring. This

study describes the transition of flow régimes from that being dominated by the motion

of the wall to one in which the wall geometry and inlet velocity profile are dominant.

Very different wall shear stress distributions occur in each case.

This investigation aimed to address aims 2a and 2b in assessing the impact of

varying wall mechanical properties on the haemodynamics in a fusiform abdominal

aortic geometry.
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10.4 Directions for future work

The fluid-structure interactions in abdominal aortic aneurysms have been investigated

in detail in this study. Even so, some further advancements in the model remain. Future

work should focus on a number of key areas: the effect of the perianeurysmal environ-

ment, geometry considerations, physiological boundary conditions pressure pulse wave

velocities, and long-term modelling of the aneurysm life cycle.

The perianeurysmal environment was shown to have a profound affect on the wall

motion and consequently the haemodynamic structures that formed in the aneurysm

bulge. Greater understanding of the perianeurysmal force response is required. Further

investigations could be conducted into a non axisymmetric perianeurysmal response

which would simulate the presence of vertebral structures and organs. Such asymmetry

should dramatically affect the flow evolution.

In order to isolate the effect of the wall motion on the flow structures in an aneurysm

an idealised fusiform model was used. Many investigations have been conducted on

patient-specific models citing the complexity of the aneurysm shape as having a pro-

found impact on the flow structures that form (e.g. Leung et al. 2006). Having identified

the role of the fluid structure interaction in aneurysms, more complex geometries should

be considered. Of particular interest would be models which include upstream and

downstream branches which have been reported to influence wall motion and correlate

with the location of aneurysms (see Lasheras 2007).

Furthermore, to increase the physiological relevance of the simulations impedance

boundary conditions such as Windkessel models should be applied. Such boundary

conditions would allow investigations into the effect of velocity-pressure phase lag on

the flow in the aneurysms. This could highlight ways of altering the stiffness of the wall

to improve the haemodynamic environment in the aneurysm.

Once the appropriate physiological conditions have been implemented, an interest-

ing study might be to analyse the effect of the wall stiffness on the pulse wave velocity.

Quantification of a range of frequencies and speeds which cause constructive interfer-

ence of the waves as they reflect off bifurcations could be a useful tool in determining

healthy haemodynamic conditions. Correlations of this range with various stiffnesses

could highlight different distributions which would act to exacerbate the negative effects

of this interaction.

Low flow has been suggested as a possible factor in the growth of aneurysms. An
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interesting study might be to assess how flushing-time and low wall shear stresses are

affected by varying wall stiffnesses. Analysis of the correlation between low wall shear

stresses and flushing time in this context could provide some insight into low flow

theories for aneurysm growth.

Finally, in terms of the computational model, fluid structure growth models repre-

sent the most complete analysis tool in assessing the life cycle of an aneurysm. These

models incorporate not only the temporal evolution of the geometry, the non-linear

wall properties, and the haemodynamics, but also the cell mechanobiology in response

to the haemodynamic stimuli. Humphrey & Taylor (2008) believe it is important to

go beyond the coupling of fluid and structural mechanics in FSI models to incorporate

long-term growth and remodelling processes of the evolving arterial wall. The work

conducted in this thesis forms an important role in feeding into fluid-structure growth

models by providing an accurate tool for assessing the fluid-structure interaction. What

remains is an accurate model for determining the biological impact (in terms of wall

stiffness and thickness) of haemodynamic stimuli.
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Appendix A

Wall shear stress

Of particular significance to the healthy function of the artery wall is wall shear stress.

The endothelial cells in the intimal layer respond to the fluid shear stress at the wall by

secreting chemicals vital to the mechanotransduction process (Lasheras 2007). Further-

more, an amenable wall shear stress environment is vital to platelet adhesion and the

leukocyte extravasation processes in which blood cells first roll along the wall before

stopping and transmigrating through the endothelial wall layer (Sforza et al. 2009).

The significance of the wall shear stress makes it the primary flow quantity considered

in the haemodynamics literature.

Physically, the wall shear stress is simply the shear force per unit area felt at the

wall location. As described in chapter 3, a shear stress is a stress which causes a

shear strain. A shear strain acts in the plane along a face of a differential element.

While normal strains are measured by a dilation or change in length, shear strain may

be conceptualised as the change in angle between two line elements. In fluids, shear

stresses cause a spatial variation in the velocity field. A fundamental example of this

is in a boundary layer near a wall (figure A.1). The no-slip boundary condition at the

wall dictates that the speed of the fluid at the boundary (relative to the boundary) is

zero, but at some height from the wall the flow speed reaches the free stream velocity.

The region between these two points is aptly named the boundary layer. Figure A.1

shows for a simple 2D case the boundary layer consists of a spatially varying velocity.

For Newtonian fluids (which this discussion is limited to), the two-dimensional shear

stress parallel to a flat plate, such as is depicted in figure A.1 is given by

τ (x2) = −µ
∂v1
∂x2

. (A.1)

where τ is the shear stress, µ is the dynamic viscosity, v1 is the x1-component of the

375



Figure A.1: A shear stress τy causes the velocity to change in the wall-normal direction, y,

to enforce the non-slip boundary condition at the wall.

velocity vector v and x2 is the component of the position vector normal to the wall.

However for the case of flow in an aneurysm, the wall is no longer a flat plate and

the flow is three-dimensional rather than two-dimensional. For such cases a broader

definition of the shear stress is required. In three dimensions the shear stress is a tensor

defined as (Pozrikidis 2011)

τ = µγT ,

= µ
(
∇v +∇vT

)
,

= µ


τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

 ,

(A.2)
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Figure A.2: Components of the shear stress tensor in three dimensions. The total force on

any particular surface corresponds to the columns in the shear stress tensor.

where

τ11 =

(
dv1
dx1

+
dv2
dx2

+
dv3
dx3

)
+

dv1
dx1

,

τ22 =

(
dv1
dx1

+
dv2
dx2

+
dv3
dx3

)
+

dv2
dx2

,

τ33 =

(
dv1
dx1

+
dv2
dx2

+
dv3
dx3

)
+

dv2
dx2

,

τ12 = τ21 =

(
dv1
dx2

+
dv2
dx1

)
,

τ13 = τ31 =

(
dv1
dx3

+
dv3
dx1

)
,

τ23 = τ32 =

(
dv3
dx2

+
dv2
dx3

)
.

(A.3)

Figure A.2 shows a means by which the shear stress tensor of equation A.2 may be

interpreted. It shows a 3D differential element and the corresponding stresses acting

on its faces. This shows that rows of the shear stress tensor describe the contribution

from each face to the shear stress in a particular principal direction. The columns of

the shear stress tensor describe the shear stress on a particular face of the differential

element. It is important to note that the shear stress components τ11, τ22 and τ33 are

not hydrostatic normal stresses. The shear rate tensor is the deviatoric component of
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the the total fluid stress tensor

σij = −PIδij + τij , (A.4)

where δ is the Kronecker-delta function and P is the hydrostatic pressure. The hydro-

static pressure term PIδij is sometimes described as the volumetric stress tensor or

mean normal stress tensor (Pozrikidis 2011). For an incompressible Newtonian fluid,

in order to conserve continuity, the pressure

P =
1

3
tr (τ ) , (A.5)

which is the mean normal stress. This term is responsible for the change in volume of

the stressed body. The shear stress tensor τ is the deviatoric component of the stress

that acts to change the spatial relationships within a differential element. While the

shear stress components τ11, τ22, and τ33 may act in the face-normal direction of the

differential element, they may still contribute to the deviatoric (or spatial) change and

hence the shear stress.

The wall shear stress is simply defined as the shear stress felt at the wall, i.e. the

components of the shear stress tensor effective on a differential element with a face that

coincides with the boundary. Firstly it is recognised that a simple definition of the wall

shear stress could be given by

τWSS = τ · n, (A.6)

where n is the unit normal vector to the plane of interest. Note: these being tensor

quantities the order of operations is important. If the local coordinates of the differential

element and the global (wall coordinates) align then the wall shear stress on the face

with normal n = (n1, n2, n3) = (1, 0, 0) becomes

τ
(1,0,0)
WSS =


τ11

τ21

τ31

 , (A.7)

which is the stress components on the wall depicted in figure A.2. Mathematically it is

clear that the wall shear stress at any point is a vector having components in each of

the principal coordinate directions.

It becomes quickly apparent that for the case of flow through an aneurysm the

description of the wall shear stress given in equation A.1 is inadequate. The aneurysm-

focused literature presents a variety of definitions for the wall shear stress based on
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differing assumptions. The first is equation A.1. This model assumes that at the

infinitesimal limit the curvature of the wall is insignificant, as such flow may be ap-

proximated as the local variation in flow in a radial direction.

Some papers use the definition for the wall shear stress derived from the Hagen–

Poiseuille equation

τ =
8µ · vz

d
, (A.8)

where d is the diameter of the vessel and vz is the axial velocity component. While

this definition incorporates the curvature of the wall into its derivation it assumes that

the vessel is of constant diameter, i.e. a straight pipe and that the velocity profile is

parabolic and symmetric i.e. the Hagen–Poiseuille solution. For the case of blood flow

through aneurysms this is insufficient to describe the wall shear stress as the dilation

of the vessel causes d to vary, and the pulsatile flow will invoke a Womersley profile,

not a Hagen–Poiseuille profile.

To accurately describe the wall shear stress in an aneurysm, a generic method is

required, for describing the shear stress on a wall with arbitrary wall profile and flow

characteristics. Salsac et al. (2006) defines the wall shear stress as

τWSS = 2µ (τ · n) · t, (A.9)

with n representing the unit normal vector to the plane in which the shear stress is

acting, t being a tangent vector in the direction of maximum shear in the shearing

plane, and τ the deviatoric stress tensor described in equation A.2. Equation A.9

is a generalization of equation A.6 which is capable of determining the shear stress

components on any plane.

In terms of endothelial health, the maximum wall shear stress is more significant

than the wall shear stress in a single direction t. As such, in defining the wall shear

stress it makes sense to define the shear stress as a vector acting in the wall-normal

plane and determine its magnitude. Note: this is not typical of wall shear stress analysis

which often takes only the component of the dominant direction of shear (e.g. Finol

et al. 2003b; Salsac et al. 2006).

Rather than specifying the direction of shear, the shear stress in a particular plane

with unit normal vector n can be determined by projecting the deviatoric component

of the stress tensor onto the plane with unit normal vector n,

τ (n) = 2µn · τ · (I − n⊗ n) , (A.10)
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where (I − n⊗ n) is the projection matrix, τ (n) is the shear stress in the plane with

normal vector n. When the plane is located at the wall and the normal vector n of the

plane is identical to that of the wall

τ (n) = τWSS . (A.11)

For a Newtonian fluid flowing in Cartesian two-dimensional coordinates, above an

infinite flat plate, such as the case in figure A.1, the normal vector is

n =

 n1

n2

 =

 0

1

 , (A.12)

the deviatoric stress tensor is

τ = 2µ

 τ11 τ12

τ21 τ22

 =2µ

 ∂v1
∂x1

1
2

(
∂v1
∂x2

+ ∂v2
∂x1

)
1
2

(
∂v1
∂x2

+ ∂v2
∂x1

)
∂v2
∂x2


=2µ

 0 1
2
∂v1
∂x2

1
2
∂v1
∂x2

0

 ,

(A.13)

and the wall shear stress vector becomes

τWSS = 2µ

 n2

[
τ12
(
n2
1 − n2

2

)
+ (τ22 − τ11)n1n2

]
−n1

[
τ12
(
n2
1 − n2

2

)
+ (τ22 − τ11)n1n2

]
 , (A.14)

To determine the principal wall shear stress in the wall plane, the magnitude of τWSS

is taken and the property of the unit normal vector
(
n2
1 + n2

2 = 1
)
is employed

|τWSS | = 2µ

√(
n2
1 + n2

2

) [
τ12
(
n2
1 − n2

2

)
+ (τ22 − τ11)n1n2

]2
= 2µ

[
τ12
(
n2
1 − n2

2

)
+ (τ22 − τ11)n1n2

] (A.15)

Substituting the stress tensor and normal vectors from equations A.12 and A.13 recovers

equation A.1.

Salsac et al. (2006) use the relationship for the wall shear stress presented in equa-

tion A.15. Unlike equation A.8, equation A.15 is sufficiently general to consider both

a generic boundary layer velocity profile, and at the infinitesimal limit the normal vec-

tors account for the wall structure. Despite these improvements equation A.15 is not

without its pitfalls. Firstly it assumes the flow is two-dimensional. For laminar flows in

rigid pipes this is a reasonable assumption to make as the flow is well bounded, leading

to negligible fluid motion in the wall-normal direction. For the case of an aneurysm,

however, vortex formation and impingements at the proximal and distal necks will cause
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a small velocity gradient in the wall-normal direction. Large aneurysm flows typically

have non-axisymmetric flow patterns which require a full three-dimensional analysis of

the flow to accurately determine the wall shear stress. Furthermore, if the assumption

of a rigid-wall is relaxed, as is the case for both this investigation and in vivo flows, the

velocity of the fluid at the wall may have a significant component in the wall-normal

direction. Under these conditions it is essential that the definition for the wall shear

stress include the contribution from all three velocity components. Performing the

same projection onto a plane normal to the vessel wall, the wall shear stress in three

dimensions may be written

τWSS = 2µ



(τ11 − τ22)n122 + (τ11 − τ33)n133+

τ12 (n2 − 2n211) + τ13 (n3 − 2n311)− 2τ23n123

(τ22 − τ11)n211 + (τ22 − τ33)n233+

τ12 (n1 − 2n122) + τ23 (n3 − 2n322)− 2τ13n123

(τ33 − τ11)n311 + (τ33 − τ22)n322+

τ13 (n1 − 2n133) + τ23 (n2 − 2n233)− 2τ12n123



, (A.16)

where

nijk = ninjnk. (A.17)

Investigations that do not include these extra terms when calculating the wall shear

stress may well underestimate the wall shear stress in the wall plane. Many investiga-

tions into elastic-walled aneurysms have reported a reduction in the peak wall shear

stress achieved (Perktold & Rappitsch 1995; Dempere-Marco et al. 2006; Oubel et al.

2007). None of these papers indicate how they define the wall shear stress; failure to

use the full three-dimensional form of the wall shear stress may partially explain the

reduced wall shear stress observed in their investigations (the resulting motion of the

arterial wall is expected to slightly reduce the local axial velocity component and there-

fore simplistic wall shear stress calculations fail to capture the full shearing forces on

the flow).

The definitions in equations A.15 and A.16 provide the wall shear stress in a partic-

ular plane with unit normal vector n. For the simple flow case shown in figure A.1 the

plane in which the shear stress is a maximum is the wall plane. With a moving wall, the

381



Figure A.3: A non-zero wall-normal component of velocity causes the maximum shear stress

τmax to occur in the blue-dashed plane rather than the plane of the wall.

wall-normal velocity component makes it possible to have a shear stress greater than

the shear in the wall-normal plane (e.g. figure A.3). To determine the shear stress at

the wall location in the plane which provides maximum shearing involves solving the

eigenvalue problem,

|τ − λI| =


τ11 − λ τ12 τ13

τ21 τ22 − λ τ23

τ31 τ32 τ33 − λ

 = 0, (A.18)

where λ is the eigenvalue which maximises the stress tensor. In two dimensions the

eigenvalues are given by

λ =
τ11 + τ22

2
±
√[

1
2(τ11 − τ22)

]2
+ τ212 (A.19)

Each eigenvalue λ corresponds to the principal normal stress in a particular direction.

The direction in which each of the principal normal stresses act is described by the

corresponding eigenvector. Each eigenvector describes the unit normal vector to the

plane in which the normal stress is maximised. In this plane, the shear stress is equal

to zero. The plane in which the shear stress is maximised is 45 degrees out of phase

with the maximum normal stress plane; the value of the maximum shear stress is

τmax =
1

2
|λ1 − λ2| , (A.20)
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where λ1 > λ2. For an in-depth discussion and derivation of the properties of these

eigenvalues and equation A.20 the reader is referred to texts such as Atanackovic &

Guran (2000) and Pozrikidis (2011).

Again due to the motion of the wall, the full three-dimensional stress tensor must

be used to determine the maximum shear stress. In this case finding the characteristic

equation for the stress matrix is a third-order polynomial

|τij − λδij | = −λ3 + I1λ
2 − I2λ+ I3 = 0 (A.21)

where I1, I2 and I3 are the invariants of the deviatoric stress which may be written

I1 = τ11 + τ22 + τ33

= τkk,

I2 =

∣∣∣∣∣∣τ22 τ23

τ32 τ33

∣∣∣∣∣∣+
∣∣∣∣∣∣τ11 τ13

τ31 τ33

∣∣∣∣∣∣+
∣∣∣∣∣∣τ11 τ12

τ21 τ22

∣∣∣∣∣∣
= τ11τ22 + τ22τ33 + τ11τ33 − τ212 − τ223 − τ231

=
1

2
(τiiτjj − τijτji) ,

I3 = det(τij)

= τ11τ22τ33 + 2τ12τ23τ31 − τ212τ33 − τ223τ11 − τ231τ22.

(A.22)

The eigenvalues λ are determined using the standard cubic equation (Korn & Korn

2000), and once determined they can be used to determine the maximum shear stress

using

τmax =
1

2
|λ1 − λ3| (A.23)

where λ1 > λ2 > λ3.

For simple flows such as those depicted in figure A.1, equations A.15 and A.20 are

analogous. This is because the nature of the flow makes the wall shear stress in the wall-

normal plane naturally correspond to the plane of maximum shear stress. However, with

a non-zero wall-normal velocity this is no longer the case; if the maximum shear stress

(regardless of the shearing direction) is physiologically important then the wall shear

stress should be calculated using the eigenvalue approach described herein. If it is only

shear tangent to the wall which is physiologically relevant then the stress projection

technique should be employed. Physiological studies of endothelial cell response do

not indicate which definition of shear stress is most important to the endothelial cell

response. As such, the physiological merit of each shear stress definition cannot be
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determined and the resolution of this question is beyond the scope of this work. This

thesis merely provides the techniques required in either case.

In this thesis the wall tangent shearing approach (equation A.16) is employed rather

than the maximum shearing in any plane (equation A.20). This approach assumes that

shear forces at a tangent to the wall surface are the only ones pertinent to the healthy

function of the artery wall.
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