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Abstract

The prevalence of abdominal aortic aneurysms is increasing with an ageing population.
Aneurysms present a major health risk; in the event of aneurysm rupture, patients ex-
hibit a mortality rate of 70-95% (Lindholt et al. 2005). Treatment of aneurysms involves
invasive surgery, which carries an inherent risk, therefore it is preferable to intervene
only when the aneurysm is close to rupture. Currently, the aneurysm initiation, growth
and rupture mechanisms are not fully understood and accurate predictions of aneurysm
growth-rate and rupture time cannot be made.

Research in this field has identified haemodynamic stimuli as the principal factor
in aneurysm growth. As such, in-depth fluid-dynamic investigations can contribute
greatly to developing appropriate models for patient prognosis and treatment. Previous
investigations into aneurysm haemodynamics have largely been focused on blood flows
with rigid-wall dynamics. To realistically model the flow, a moving boundary condition
must be applied to account for the elasticity of the aneurysm wall.

A fluid-structure interaction was studied in the context of abdominal aortic aneur-
ysms. The effects of an elastic wall were modelled using a numerical technique. To this
end, a new coupling scheme is proposed based around an Arbitrary Lagrangian—FEulerian
(ALE) algorithm. The monolithic ALE solver uses a modified iterative over unequal
time step coupling routine. The use of an ALE algorithm for modelling aneurysm flows
maximises the accuracy of flow field data in the near-wall region where the haemody-
namic environment is most pertinent.

The biological material that comprises the artery wall is highly complex in nature.
To accurately model the wall response, the wall is modelled as a multi-layered, hyper-
elastic and heterogeneous material. A novel time stepping algorithm was developed and
tested to model the wall response in the aneurysm. Spectral elements were used for the
spatial discretisation while a backward differencing time stepping scheme was proposed
for the temporal evolution. A two-step operator splitting scheme was proposed in order
to implicitly solve for the displacement at the next time step. This algorithm is capable
of modelling both the inertial and non-linear response of the wall, which is important

in the context of biological applications.

Once formulated, two fluid-structure interaction studies were conducted. The first

investigated the effects of heterogeneous wall properties, such as those formed around
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lesions and calcification, on the haemodynamics in arteries. It was found that previous
models based on a rigid-wall assumption misrepresent the flow conditions in aneurysms.

Furthermore, it was shown that local variations in wall elasticity can affect the
wall shear stress environment both locally and downstream of the lesion or calcifica-
tion. Weakening of the aneurysm wall was shown to increase the wall shear stress
downstream. This occurred as the greater wall motion led to higher variations in flow
rate.

In terms of the local effects, local variations in wall stiffness led to additional vari-
ations in aneurysm geometry and wall velocity. These changes led to a local change in
boundary layer thickness which in turn affected the local wall shear stress distribution.
In cases when the wall was weakened the wall shear stress decreased locally. Conversely

the stiffer wall case corresponded to an increase in local wall shear stress.

Finally an investigation into the effect of wall stiffness on established aneurysm
geometries was conducted. Using an elastic-wall model, the wall motion was shown to
cause significant flow reversal in the boundary layer. As a result, in addition to the
vortex ring shed from the proximal neck, a distal vortex ring formed. The proximity of
these vortices to the aneurysm wall affects the shear layer at the wall and consequently
the wall shear stresses.

In cases where there was large motion, the shear layer is drawn into a secondary
distal vortex ring. At intermediate levels of wall motion, the formation of this secondary
distal vortex ring is suppressed. The presence of the primary distal vortex ring protects
the wall from the impact of the strong proximal vortex ring.

Local variations in wall stiffness were investigated at three locations in the aneurysm
bulge. All weakened wall cases exhibited similar changes in wall dynamics compared to
the uniformly stiff case. However, it has been shown that a weakened region upstream of
the distal neck provided the greatest change in wall shear stress distribution. The case
of a weakened central region represents the least favourable haemodynamic conditions
for healthy endothelial wall function. In terms of the stiffened cases, the least protective
distribution was the stiffening at the distal neck.These results indicate that aneurysms
that feature a weakened wall region upstream of the distal neck present the greatest

risk of rupture.
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Nomenclature

A list of nomenclature used throughout the thesis is included here. Mathematical
symbols are presented, followed by Greek alphabet nomenclature and English alphabet

nomenclature.

Symbol Description

g Thesis section

i Integration

\Y Vector gradient operator (grad)

& Del squared (or div-grad) operator, also known as the Laplacian
()T The transpose of a matrix

(:) Matrix inner product
()7t The inverse of a matrix
tr () The trace of a tensor

o The tensor composition operator

I The identity matrix

% The total time derivative (material derivative)

i The imaginary number

T Shear stress

L Classical fluid viscosity

v Kinematic fluid viscosity

X Position vector in ALE referential coordinates
N1 The shear rate tensor for a fluid

Ys The shear rate scalar for a fluid

v The kinematic viscosity

0 Density

w Angular frequency

Continued on the next page.
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Continued from previous page.

Symbol

o
Q

Description

The Womersley number

A generic domain of interest (not necessarily an entire body)
Boundary of the domain 2

Elemental sub-domain of the domain (2

Standard element €2

The deformation mapping from material to spatial coordinates
The mapping from referential to spatial coordinates

The mapping from spatial to referential coordinates

The true strain also known as the infinitesimal strain in small strain
approximation

The Green strain

The shear strain in the i-j plane

The logarithmic strain tensor

The stretch ratio

The infinitesimal strain tensor

Stress

A Lamé coefficient

A Lamé coefficient

Poisson’s ratio

Is a generic extensive quantity of the Schottky system
Schottky system source term

Schottky system supply term

Schottky system flux term

Path along which work is done

Finite differencing coefficient for n — ¢ time step

Finite differencing coefficient for n + 1 time step
Polynomial extrapolation coefficient for n — ¢ time step
The vorticity vector

Solid solver finite differencing coefficient for n + 1 time step

Solid solver finite differencing coefficient for n — i time step

Continued on the next page.
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Continued from previous page.

Symbol Description
P, Set of trial functions in Rayleigh Ritz problem

0% Set of local element trial functions
Map from standard element coordinates to elemental coordinates

Standard element coordinate

The strain rate

X

3

A The diagonal matrix
5

S Courant condition

)

Boundary layer thickness

Characteristic length of elements in h-type finite element solvers

P Polynomial order of spectral solver
Rx Lagrangian coordinate system

R, Fulerian coordinate system

R, ALE referential coordinate system

x Position vector in spatial coordinates

X Position vector in material coordinates

u Displacement vector in spatial coordinates

U Displacement vector in material coordinates

v The velocity vector in spatial coordinates

Vv The velocity vector in material coordinates

a The acceleration vector in spatial coordinates

A The acceleration vector in material coordinates

T The i*" component of position @« in spatial coordinates

X; The i*" component of position X in material coordinates
U; The i*" component of displacement w in spatial coordinates
U; The i*" component of displacement U in material coordinates
v; The i*" component of velocity v in spatial coordinates

Vi The i*" component of velocity V' in material coordinates

a; The i*" component of acceleration a in spatial coordinates

Continued on the next page.
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Continued from previous page.

Symbol  Description

A; The i*" component of acceleration A in material coordinates
v Volume
dv Infinitesimal volume
Re The Reynolds number
Vin The mean velocity of a fluid
D Characteristic length scale,
Maximum diameter of aneurysm bulge
Q The volumetric efflux rate of distilled water from a tube
AP Pressure differential
L Length
d Pipe diameter
K’ Poiseuille’s constant
R The maximum radius of a pipe
Residual of finite approximation
r Radial position
Amplitude
Area
f Frequency
Jo A Bessel function
t Time
P Pressure,

A generic material particle
WS8Smeann, Mean wall shear stress
WSSG  Wall shear stress gradient
OSI Oscillating shear index
An arbitrary continuous body
The surface of the body B
The set of Real numbers
The deformation gradient
The Jacobian

R » B

Continued on the next page.
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Symbol Description

The engineering strain

The new length of the fibre

The right Cauchy-Green strain tensor

The left Cauchy-Green strain tensor

The Green-Lagrange strain tensor

Hencky strain tensor

Total force

The normal component of force

The tangential component of force

The body forces in a material reference frame
The body forces in a spatial reference frame
The Cauchy stress tensor

The First Piola-Kirchhoff stress tensor

The Second Piola-Kirchhoff stress tensor
The total energy

The Youngs modulus

The Youngs modulus of the medial layer

The Youngs modulus of the intimal layer

g‘jgjstqutmm"cq S TR v THcs [ T TR s TS R @ MR N

The Youngs modulus of the adventitia layer
Fmean  The average Youngs modulus of the arterial wall
tiotal The total wall thickness
tm The thickness of the medial layer
The thickness of the intimal layer
The thickness of the adventitia layer
Shear modulus
Mass

The linear momentum

=™ I Q8 s

Strain energy density

~
Q

An invariant of the tensor C

Continued on the next page.
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Symbol Description
Mesh velocity

A Linear operator
Particle velocity in the referential domain
Convective velocity

A linear operator

§4>h>ﬁgh>§>

The m™ linear component of a Linear operator

S
NG
3

Time step identifier

The order of integration (explicit)

The order of integration (implicit)

The order of integration (pressure boundary condition)
The order of integration (solid solver)

A nonlinear advection operator

An intermediate velocity field

An intermediate displacement field

Je
Ji
Jp
Js
N
v
U
v An intermediate velocity field
I} An intermediate displacement field
n The unit normal vector
t The unit tangent vector
F Quadratic functional
U; Set of trial functions coefficients in Rayleigh Ritz problem
w The test (or weight) function
Naof

The degrees of freedom in system

Nel Number of elements in solution domain €2

ud The approximate solution

Jo Constants for Dirichlet boundary conditions
['N% Constants for Neumann boundary conditions

The homogeneous boundary contributions
The Dirichlet boundary contributions

a Local to global assembly matrix

Continued on the next page.
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Symbol

Description

Lagrange polynomial

The mass matrix

Interpolant of an integration

Is the Legendre polynomials or order P
Derivative of the Legendre polynomials of order P
The Jacobi polynomials

The number of quadrature points

The weight matrix

The differentiation matrix

The Ly norm of a vector field

The set of real numbers
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Introduction

In the context of an ageing population the incidence of aneurysm has risen greatly, with
the prevalence of Abdominal Aortic Aneurysms (AAAs) alone reaching 8.8% in people
above 65 (Newman et al. 2001). In 44% of cases, the rupture of a cerebral aneurysm
will cause death within 30 days, with many more leading to permanent injury (Olafsson
et al. 1997). Due to the risks associated with invasive surgery, it is important to target
treatment by identifying aneurysms that are most likely to rupture. However, this
is made difficult by an inability to predict the growth rate and rupture time of an
aneurysim.

Aneurysms may be categorised as one of two types, dependent on their geometry
and location. Aneurysms may be fusiform or saccular, as depicted in figure I. Fusiform
aneurysms are characterised by a uniform dilation of the vessel wall along a longitudinal
section. Saccular aneurysms are spherical in shape and involve the localised ballooning
of just a small section of the artery wall. The fusiform type is predominantly found in
the abdominal aorta just above the iliac junction, but is also often located in the knee
joint and with a lower prevalence, in the circle of Willis (Lasheras 2007; Sforza et al.
2009). Saccular aneurysms are principally found in the circle of Willis, such aneurysms
are often termed cerebral aneurysms owing to their location.

The development of arterial aneurysms results from a variety of factors: haemody-

namics!

, wall biomechanics, mechanobiology?, and the perianeurysmal environment?
(Sforza et al. 2009). Once formed, an aneurysm will undergo gradual expansion under
the influence of repetitive pressure and shear stresses: these are exerted by the blood
on the weakened arterial wall. Wall geometry, composition and strength continue to

change throughout the expansion process, culminating in rupture when the wall is no

!The study of the fluid motion of blood.

2The interaction between physical forces and changes in cell or tissue mechanics throughout the
development of physiology, and disease.

3The surrounding tissue and supportive structures which support the exterior vessel wall of an
aneurysm.



Fusiform Saccular

FIGURE I: Aneurysm classification based on geometry.

longer able to support the haemodynamic stresses exerted by the blood (Sforza et al.
2009).

Complete computer modelling of wall dynamics may increase our ability to predict
this end-point. However, previous research in the area has not been able to show a
sufficient peak pressure to cause rupture on a mechanical basis (Sforza et al. 2009).
As such many researchers draw a comparison to the structural engineering problem of
flow in a bulging pipe, where fatigue may be a factor (Lasheras 2007). Haemodynamic
studies to date have focused on in vitro idealised models, and some Computational Fluid
Dynamics modelling (CFD) of both idealised cases and patient-specific models. Due
to the complexity of the artery-flow interaction and a lack of specific knowledge about
changing wall properties, the majority of models employ a rigid boundary condition,
Sforza et al. (2009) highlight this lack of knowledge about wall behaviour as a major

restriction in this field of research.

Arbitrary Lagrangian—Eulerian (ALE) modeling

The numerical simulation of multi-dimensional problems in fluid and solid mechanics
often results in large distortions of the continuum under consideration. Large or rapid
distortions may introduce numerical errors into the computed solution.

In solid mechanics, Lagrangian algorithms are typically employed. Lagrangian al-



Highly
distorted mesh

FIGURE II: A hyperelastic material impacting on a rigid wall (bottom of the mesh) with

deformed Lagrangian mesh shown.

gorithms associate each individual computational mesh node with a single material
particle throughout the motion. The Lagrangian description allows interfaces, such as
the the artery wall-blood interface, to be easily and accurately tracked. However, its
weakness lies in its inability to follow large distortions. See for example figure II in
which a hyperelastic material impacts on a wall at high speed. The Lagrangian ap-
proach begins to break down along the impact surface between the material and the
rigid-wall. The mesh in this region becomes highly distorted and will not yield accurate

results.

In fluid mechanics, Fulerian algorithms are typically employed. Here the computa-
tional mesh is fixed in space and the continuum moves with respect to the grid. In the
Eulerian description large deformations of the continuum can be handled with relative
ease. This advantage is derived at the expense of accurate knowledge of the continuum
interface locations. For example, if an artery wall moves to decrease the aneurysm
volume, information about the location of the wall is compromised. Figure III demon-

strates how such a movement introduces an uncertainty.

To overcome the shortcomings of the purely Lagrangian or Eulerian approaches a

technique has been developed to combine the best features of both the Lagrangian
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FIGURE III: An Eulerian mesh in undeformed state with interface defined by nodal positions

and deformed state in which interface lies between nodal locations.

and Eulerian methods. This technique is known as the Arbitrary Lagrangian—FEulerian
(ALE) description. In this formulation the nodes of the mesh may move with the
continuum in a Lagrangian fashion or be held fixed in an Eulerian manner, or, they
may behave in an arbitrary intermediate way to give a continuous rezoning capability.
The advantages of this become clearer when considering the aforementioned block-
impact example. Figure IV shows the result produced using an ALE mesh, the result is
a much more regular element shape than was achieved with the Lagrangian description
in figure II. Moving the interface or boundary nodes in a purely Lagrangian fashion
allows the extents of the domain to be well defined. Meanwhile, the continuous rezoning
capability of the ALE formulation maintains a regular grid for accurate computation.

Further details of this can be found in chapter 3.

Spectral-hp element methods

The ALE method was initially developed by Noh (1963), Franck & Lazarus (1964),
Trulio (1966), and Hirt et al. (1974) for finite element algorithms. Since then, a class
of solvers known as spectral-hp element methods have been developed and successfully
applied to fluid dynamic problems. First developed by Gottlieb & Orszag (1981) and
Patera (1984), spectral-hp solvers combine the high geometric flexibility of finite el-
ement solvers with the high numerical efficiency and exponential spatial convergence
characteristics of spectral solvers. Finite element solvers, of which spectral element

solvers are a subset, may be categorized by their expansion bases as either h-type or

p-type.



Smoothed
Mesh

FIGURE IV: A hyperelastic material impacting on a rigid wall with deformed ALE mesh

shown.

h-type solvers split the domain into a set of subdomains known as elements. The
sum of the set of elements forms the entire solution domain. A-type finite element
solvers use a fixed order polynomial in every element with convergence to the exact
solution attained by reducing the element size. This type of extension allows high

geometric flexibility.

p-type solvers use a fixed mesh which encompasses the entire solution domain. A
polynomial of variable order, p, is used to approximate the solution across the entire do-
main, fitting through fixed mesh points. Convergence to the exact solution is achieved
by increasing the polynomial order used to interpolate across the domain. This type
of expansion allows rapid convergence for smooth problems, but is complicated in ge-
ometrically difficult domains. For the special case where the entire solution domain is

modelled with only one element, then this kind of solver is a spectral method.

The spectral-hp element method, of which the algorithm developed in this thesis
is a type, combines attributes of both extensions. While widely used in fluid dynam-
ics, spectral-hp element methods have found limited use in solid mechanic problems.
Furthermore, spectral-hp methods are rarely combined with ALE in order to solve

fluid-structure interactions.



Thesis structure

While a statement of the hypotheses tested in this thesis and the justification for them is
given in the literature review of chapter 1, an outline of the structure of this document
is given here. First, the aforementioned literature review is presented. This review
attempts to present the state of knowledge in the field of fluid-structure interactions
in aneurysms, and to identify some of the key areas where knowledge is lacking. From
these areas, hypotheses have been formed to guide the present study.

Chapter 2 outlines the physics behind continuum mechanics and derives the system
of equations required to solve the fluid-structure interactions in aneurysms.

Having established the equations, chapter 3 goes on to describe the ALE method,
how it is implemented in this body of work, and what information is communicated
between each of the solver segments.

Building on the description of the respective continuum equations and the ALE
algorithm, chapter 4 and 5, describe in detail the temporal discretisation scheme for
the solid and fluid dynamics solvers and the spatial discretisation scheme associated
with the spectral element method. This forms a numerical framework for the fluid-
structure interaction algorithm.

Having described the new spectral element arbitrary Lagrangian—FEulerian algo-
rithm in detail, chapter 6 presents a validation of each aspect of the solver, testing the
consistency of each component of the solver as well as the sum of its parts.

Chapter 7 departs from the discussion of the numerical method developed in this
thesis. It describes in detail the justification of the parameter space to be studied in
the aneurysm investigations presented in chapters 8 and 9.

Chapter 8 presents the investigation into the effect of changing wall stiffness in a
straight pipe. The motivation for this investigation is to determine if changes in wall
stiffness may indicate the initiation of aneurysms.

In chapter 9 the fluid dynamics of established aneurysms is studied. The effects of
heterogeneous wall stiffness is discussed in a fluid-structure interaction context. These
results show the impact of the stiffened regions on aneurysm growth-rate.

Finally, the overall conclusions of the thesis are presented in chapter 10. These focus
on the most important findings, and how the results obtained relate to the hypotheses

posed in chapter 1.



Chapter 1

A review of the literature

The study of fluid-structure interactions in engineering systems is complicated, in and
of itself, by the interaction of two continua each with their own distinct fundamental
dynamics. The study of fluid-structure interactions in a biological system, such as an
aneurysm, adds another level of complexity to the model. Throughout the sections
to follow, the relevant biological and anatomical intricacies will be addressed and pre-
vious studies of flow through aneurysms with fixed walls and compliant walls will be
reviewed in turn. Despite the limitations of the scope of the present study to idealistic
fusiform geometries; a more complete overview of the haemodynamics for all geometries

is considered.

1.1 Vascular structure of healthy aorta

Blood is periodically pumped by the heart into a complex network of elastic arteries that
carry the oxygen and nutrient rich blood around the body to capillaries which irrigate
muscle tissue. A complex arrangement of veins then return the blood to the heart.
During each cardiac cycle the heart ejects 70 ml of blood at a pressure of 120 mmHg
into the aorta where the mean pressure is 80 mmHg (in a resting patient) (Nichols &
O’Rourke 1990).

The walls of the large arteries are comprised of three layers, the tunica intima,
tunica media and tunica adventitia (see figure 1.1). The thickness and composition of
each layer depends on multiple factors, including distance from the heart, geometry,
age, and function of the particular artery. The intima layer is made up of a single

layer of vascular endothelial cells! (VECs) that adhere to a basal laminar which covers

Vascular endothelial cells line the entire circulatory system. These cells have very distinct and
unique functions that are paramount to vascular biology. These functions include fluid filtration, blood
vessel tone, haemostasis (blood cell coagulation), nutrient recruitment, and hormone trafficking.
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FIGURE 1.1: Structure of a medium sized muscular artery. Reproduced with the permission
of Wiley and sons from Lorkowski & Cullen (2001).

a sub-endothelial layer composed of connective tissue, elastic fibrils, and collagenous
bundles?.

The median layer accounts for most of the mechanical properties of the wall and
consists primarily of layers of smooth muscle cells® (SMCs), a number of elastic sheets,
a complex network of elastic fibrils, and bundles of collagenous fibres embedded in
an extracellular matrix (ECM) (Lasheras 2007). The smooth muscle cells produces
enzymes and proteins that control cellular migration and cell death in the arterial wall,
which in turn control the walls elasticity (Lasheras 2007).

The tunica adventitia contributes little to the mechanical properties of the arterial
wall. It is composed of collagen and its function is to anchor the blood vessel to nearby
organs, lending stability.

Elastin fibres have a modulus of elasticity of 0.6 MPa (6 x 10° dynes/ ch) and can
stretch in excess of 250% of their original length. Collagen fibres are much stiffer with a
modulus of elasticity of 500 MPa (5 x 10° dynes/ cm2>, almost 1000 times larger than
elastin (Dorbin 1978).

Vascular endothelial cells of the tunica media as well as blood cells (platelets and
erythrocytes) are shear-sensitive (Lasheras 2007) . In particular, fluid shear forces from

94

blood flows regulate many VEC activities through “mechanotransduction”* (Davies

et al. 1984; Traub & Berk 1998; Blackman et al. 2002). Flow shear effects endothelial

2Bundles of protein which make up part of the inter-cellular connective tissue.

3Smooth muscle is an involuntary non-striated muscle.

4Mechanotransduction refers to the mechanisms by which cells convert mechanical stimulus into
chemical activity.



secretion of prostacyclin and nitric oxide, these act to inhibit platelet and leukocyte
adhesion and aggregation and change the contractile tone (and hence elasticity) of
SMCs (Ben Driss et al. 1997; Chiu et al. 2003, 2004). As such, the elasticity of the
wall constantly changes through a remodelling process. It is believed biological factors
coupled with a change in haemodynamic stimuli may destabilize the remodelling process
(Lasheras 2007). Unfortunately, due to the short time scales over which the wall may
adapt its material properties in response to haemodynamic stimuli (such as those found
when exercising) a comprehensive model for the wall has not yet been developed. The
longer-term remodelling that leads to the development of an aneurysm is also not
fully understood. This forms a key stumbling block precluding the prediction of both

expansion rate and risk of rupture of aneurysms (Lasheras 2007).

1.2 Haemodynamics of blood flow

It is clear that the haemodynamic conditions in the aorta are integral to healthy arterial
function. Lasheras (2007) describes how the haemodynamic conditions can destabilize
the wall remodelling process. This process, which ensures the health of the artery wall,
involves an interaction between the biological particles that make up blood and the
endothelial cells of the artery wall. Blood has a complex composition, it is comprised of
large cells suspended in plasma rather than the small molecules that other fluids such
as air or water consist of. This gives it some unique properties that are worth detailing
here.

Blood is composed of approximately 55% plasma and 45% blood cells. Plasma
consists of 90% water, 8% proteins, 1.1% organic substances and 0.9% inorganic salts.
Immersed in the plasma are the blood cells; red blood cells (Erythrocytes) make up
93.4% of the blood cells, platelets (Thrombocytes) make up 6.2%, with the remaining
0.4% consisting of a variety of white blood cells (Leukocytes). Red blood cells deliver
oxygen to the body while the white blood cells and platelets fight disease and deliver
vital nutrients to the cells to ensure arterial health.

The composition of blood affects its fluid properties. In a Newtonian fluid, the local
strain rate is proportional to the applied viscous stresses, the constant of proportionality
is the dynamic viscosity of the fluid, p. Physically this describes the resistance of the
fluid to flow. An example of a fluid with a high viscosity is honey, which reacts quite

slowly to pouring when compared to fluids with a low viscosity such as alcohol or



water. As the blood cells exist within the plasma, the viscosity of blood depends on
the viscosity of the plasma. While plasma may be considered a Newtonian fluid, i.e.
a fluid with a linear stress-strain relationship, blood in general cannot be due to the
cellular interactions of the large scale blood cells. A Newtonian fluid is described by

the stress strain relationship,
dvl-
dxi ’

where 7 is the shear stress, u is the viscosity and g};"_ is the velocity gradient perpendic-

T=—u (1.1)

ular to the direction of shear. A non-Newtonian fluid does not have a constant viscosity
and so a viscosity for blood cannot be specified. Rodkiewicz et al. (1990) showed that
if blood reaches a shear rate of approximately 100 s~! the shear rate reaches a linear or
Newtonian limit and a viscosity can be specified. At shear rates greater than 100 s—!
the viscosity of blood is approximately 5 times that of water at (3 —4) x 1073 Pa-s. In
the context of the present study Wootton & Ku (1999) found blood to behave largely
as a Newtonian fluid in larger vessels. Furthermore, in Rodkiewicz et al. (1990) the
non-Newtonian properties of arterial blood flow were considered, with variation from
Newtonian flow being isolated to the centreline of arteries, away from the walls where
the shear rate is high. The near-wall region where blood can be considered a Newtonian
fluid is of principal interest to the present study.

The density of blood is 1060 kg/ m® which is very close to that of water at 1000 kg/ m®
the extra density coming from the small amounts of protein and inorganic salts in the
plasma and blood cells.

Subsequent sections (§ 1.6.3) discuss the importance of the Wall Shear Stress (WSS)
parameter in maintaining healthy arterial wall function. Wall shear stress is commonly
referef to as the shear stress normal to the artery wall. Shear stress is mathematically
described in equation 1.1. Physically, at a boundary the no-slip condition requires that
the fluid have zero velocity relative to the boundary. The fluid near the boundary can
have a non-zero velocity, creating a velocity gradient at the wall. The shear stress is
imparted onto the boundary as a result of the velocity gradient.

Given the difficulty in determining a fluid viscosity for blood due to its non-Newtonian
nature, some studies (Tolouei et al. 2011; Butler et al. 2012) use shear rate rather than
shear stress to measure the effect of shearing forces. These studies have typically focused

on thrombotic geometries. The shear rate tensor is
yr = Vo + (Vo) (1.2)
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where the shear rate tensor describes the shear rate in each plane, v is the velocity
vector and V is the gradient operator. The gradient field (Vv) describes the rate at
which the velocity changes at each point in any plane.

Most previous investigations using the shear rate have considered Poiseuille flow
in which the maximum shear rate occurs at the wall. However, Nesbitt et al. (2009)
and Tolouei et al. (2011) revealed flaws in this methodology; identifying that local
variations in shear are significant within realistic geometries. Their studies indicate
that in realistic flows, components of the velocity gradient in directions non-normal to
the boundary may be of sufficient size as to have a significant effect. As such a better
measure would be the shear rate scalar which accounts for the shear rate contributions
in all planes at each position. In this way it acts as a measure of the total rather than

maximum shear rate at a point. The shear rate scalar may be described by

¥s = V0.5 Xy 197 (1.3)

where 7 is the shear rate defined as a tensor and the (:) operator denotes a matrix
inner product.

Despite the advantages of shear rate and shear rate scalar in describing the shear
at the wall, most studies use wall shear stress alone to describe the shear environment
felt by the endothelial cells. In order to facilitate comparison of results with those
published in previous investigations, wall shear stress will be used in this thesis. For
simple flows such as those in a rigid walled pipe, equation 1.1 is sufficient to describe
the shear stress at the wall. However, with a non-zero wall-normal velocity this is no
longer the case. Instead a generalisation of the wall shear stress is required in order to
fully describe the shear stress exerted at the wall. With a non-zero wall velocity the
wall shear stress can be described by

(T11 — T22)Ny99 + (T11 — T33) i3z +

Ti2 (Mg — 2n911) + 713 (13 — 2n311) — 2723793

(To2 — T11)N91; + (T22 — T33) Ngss+
Twss = 2/ ; (1.4)
T12 (ﬂ1 - 2@122) + 723 (ﬂ?, - 2ﬂ322) — 2713193

(733 — T11)n311 + (733 — To2) Nggo+

713 (1 — 21133) + T3 (Ng — 2M933) — 2712793 |

11



where

Ny = N1y, (1.5)

and 7;; are the i'" and j"* component of the strain rate tensor.

Investigations that do not include these extra terms when calculating the wall shear
stress may well underestimate the wall shear stress in the wall plane. Many investiga-
tions into elastic-walled aneurysms have reported a reduction in the peak wall shear
stress achieved (Perktold & Rappitsch 1995; Dempere-Marco et al. 2006; Oubel et al.
2007). None of these papers indicate how they define the wall shear stress; failure to
use the full three-dimensional form of the wall shear stress may partially explain the
reduced wall shear stress observed in their investigations.

Equation 1.4 describes the wall shear stress in the plane normal to the wall. How-
ever, just as with shear rate and shear rate scalar this may not be the maximum shear
stress at the wall. The tensor nature of shear stress implies there may exist a different
plane in which the maximum wall shear stress could occur. This is certainly the case
when a non-zero wall velocity exists. To calculate the maximum wall shear stress in any
plane an eigenvalue problem can be solved. For a detailed discussion and derivation of
the eigenvalue approach and the generalised wall shear stress equations the reader is
referred to appendix A.

It is not clear from the literature whether it is the maximum shear stress (regardless
of the shearing direction) that is physiologically relevant or whether it is simply the wall
shear stress in the wall normal plane. Physiological studies of endothelial cell response
do not indicate which definition of shear stress is critical. As such, the physiological
merit of each shear stress definition cannot be determined. In order to facilitate an
accurate comparison of the current work with previous investigations the generalised

definition of wall shear stress (equation 1.4) is used herein.

1.3 Aneurysm sites

As discussed earlier aneurysms are primarily found in the abdominal aorta as fusiform
AAAs or in the circle of Willis as saccular cerebral aneurysms. Anatomically these lo-
cations are quite distinct, though they do present some similarities in terms of localised
flow conditions that may cause aneurysm formation. A non-uniform distribution of
WSS at bifurcations and sharp curves corresponds to regions where aneurysms nor-

mally form (Sheard et al. 2007; Sforza et al. 2009). Fusiform aneurysms are mostly
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found just upstream of bifurcations, most common in AAAs. Saccular aneurysms form
at the apex of the bifurcation where there is a thin or absent elastic lamina and the
median layer is absent leaving the wall weakened (figure I). Saccular aneurysms may
also occur on side walls at large curvatures (Foutrakis et al. 1999). At these locations
deviation from normal anatomy results in a redistribution of wall pressure and wall
shear stress at branch points (Sforza et al. 2009).

A further confounding factor may be the pressure pulse which travels with the blood
flow through the arterial wall. The pressure pulse is reflected at each branching point

which then constructively interferes with the incoming pressure waves (Lasheras 2007).

1.4 Aneurysm evolution

1.4.1 Initiation

The precise initiation process of aneurysms is currently unknown. However, many
physiological studies have identified a series of factors which contribute to aneurysm
formation as well as a set of risk factors that enhance the risk of aneurysm formation.
Risk factors include smoking, sex, alcohol, hypertension, atherosclerosis, disease or
infection (e.g. syphilis) (Lasheras 2007; Sforza et al. 2009).

Atherosclerosis is no longer considered as important as sites of concentrated plaque
rarely correlate with aneurysms location (Lasheras 2007). However, age is considered
to be the greatest risk factor, with aneurysms being most prevalent in the elderly.
Age makes arteries thicker and stiffer. The median layer thins and loses its orderly
arrangement of elastin changing to a disordered “patchwork” of elastin grain. The
elastin to collagen ratio becomes more collagenous which leads to a stiffening of the
arterial wall (Lasheras 2007). A stiffer wall means an increase in speed of the pulse wave
from 6.5 m/s in young patients to 11 m/s in patients over 66 yrs (Nichols & O’Rourke
1990). This may be connected to the location of aneurysms and their progression.

Histological studies have shown that in the early stages of aneurysm formation
there is a degeneration of endothelial cells and internal elastic lamina. A thinning of
the medial layer through apoptosis (programmed cell death) of smooth muscle cells
is also evident (Stehbens 1963, 1989). Furthermore, disruptions in the remodelling
process have been identified with increased levels of elastase (Chaytte & Lewis 1997)
and matrix metalloproteinase (Bruno et al. 1998). This could lead to a weakening of

the wall.
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Nichols & O’Rourke (1990) suggest that fatigue through cyclic stresses causes the
fracture of the load-bearing elastic sheets. Under the pulsatile haemodynamic forces,
the polymerised structure of elastin sheets and fibres reorganises, causing them to fail
at lower tensional stresses. The tearing of these sheets is associated with a loss in elastic
recoil which may cause a permanent dilation of the vessel. The permanent stretching of
the smooth muscle tissue is accompanied by a permanent remodelling process whereby
collagen content in the muscular layer increases. The end result of this irreversible

process is the creation of an aneurysm.

A genetic predisposition to endothelial degradation may also be a contributing factor
in the onset of aneurysm formation. A Japanese study by Onda et al. (2001) found a
genetic locus for cerebral aneurysms localised within or close to the elastin gene locus
on chromosome 7. Furthermore, endothelial gene expression is related to wall shear
stress. Therefore triggering of any genetic traits may be attributed to haemodynamic

conditions.

Haemodynamic factors play a key role due to the capacity of endothelial cells to
sense and react to wall shear stresses. Studies have shown that low wall shear stress
and high oscillatory patterns of wall shear stress correlate with intimal wall thickening
(Friedman et al. 1981; Ku et al. 1985; Dardik et al. 2005). A uniform shear stress field
tends to stretch and align endothelial cells. Furthermore, studies on animals show an
increase in WSS can fragment the internal elastic lamina or damage the endothelium

(Sforza et al. 2009).

The current medical standard for predicting risk of aneurysm rupture is based on
aneurysm diameter alone. A patient-specific study has previously demonstrated that
maximum wall stress was 12% more specific and 13% more sensitive in predicting
AAA rupture than maximum diameter (Fillinger et al. 2003). Sonesson et al. (1999)
conducted an epidemiological study assessing the efficacy of using wall stiffness as a
predictor of aneurysm rupture. Their study involved following 285 patients. They used
an echo tracking instrument interfaced with a real-time ultrasound scanner to mea-
sure the peak systolic and diastolic deflections of the aneurysm wall. The deflections,
combined with blood pressure measurements were used to give an indicator of wall stiff-
ness. Sonesson et al. (1999) found that there was no statistically significant correlation
between wall stiffness and incidence of rupture, nor could they find any statistically

significant correlation with aneurysm diameter and incidence of rupture. These results
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call into question the current practice for assessing aneurysm risk of rupture. While
the results of Sonesson et al. (1999) do not indicate wall stiffness should provide a
better risk indicator, they did not measure wall stiffness accurately and they did not
correlate the effects of wall stiffness in a heterogeneous manner, such effects may alter
the haemodynamics of the blood flow and affect the aneurysm growth-rate.

In summary, the primary cause is a coupling between changes in vessel structure

and the induced change in haemodynamics (Lasheras 2007).

1.4.2 Aneurysm growth

After the formation of an aneurysm the haemodynamics within the bulbous structure
are significantly different from that of a healthy artery. The new complex haemo-
dynamic environment drives the continued growth of the aneurysm. Haemodynamic
studies have not been able to show a sufficient peak pressure to cause rupture on a
mechanical basis (Steiger et al. 1988). The yield stress of aneurysms is found to be
slightly higher than the systolic peak stress. Aneurysm growth could be understood by
a passive fatigue based yielding to blood pressure and reactive healing and thickening
of the wall (Sforza et al. 2009).

Animal models suggest that increased wall shear stress can degenerate the vascular
endothelium and smooth muscle cells (Kondo et al. 1997). Low wall stress and high
oscillatory patterns of WSS cause intimal wall thickening in a disorganised way. If WSS
is increased locally then it may cause local enlargement and consequently damage to
the arterial wall (Sforza et al. 2009).

Sforza et al. (2009) summarise two theories on the continued growth of aneurysms
based on an interaction between haemodynamics and wall mechanotransduction. In
high flow theory, WSS elevation causes endothelial injury (Sheard et al. 2007), which
initiates wall remodelling and possible degradation. A high WSS can cause over pro-
duction of nitric oxide (NO) upon which the endothelium is dependent. This leads to
a lower non-physiological arterial tone, which disturbs the equilibrium between blood
pressure forces and internal wall forces and subsequently dilates the wall. The dis-
tension of the artery stretches collagen and ellastin leading to a stiffening of the wall
(Sforza et al. 2009). In low flow theory, localised blood flow stagnation causes a dys-
function of flow induced nitric oxide. This leads to a build up of red blood cells and

an accumulation of leukocytes and platelets. The build up may cause intimal damage
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which lets white blood cells and fibrin into the arterial wall and locally degrades the
wall. A lower pressure threshold is then present, increasing the susceptibility to rupture
of the aneurysm (Sforza et al. 2009).

For the case of fusiform aneurysms, regions of stagnant flow form. Stagnation of
blood flow leads to the aggregation of red blood cells and the adhesion of platelets
and leukocytes. The process is exacerbated by evolving endothelial injury which at-
tracts these substances. This can lead to thromboses (Salsac 2005; Sheard et al. 2007,
Lasheras 2007). Thrombus formation causes the destruction of the endothelial layer
by hypoxia. After thrombus formation the blood is no longer in contact with the ves-
sel wall (see figure 1.2), instead it is flowing through an internal lumen (Salsac 2005).
This renders the shear-VEC layer interaction redundant in the growth of the aneurysm.
Thus permanent remodelling may play a role, as the arterial wall distends and stiffens.
The permanently stretched SMCs are progressively deprived of the cyclic stimulation
required for synthesis of connective tissue and healthy proliferation (Lasheras 2007).
Alternately inside the thrombus chemical and enzyme interactions may further dam-
age the wall (Lasheras 2007). Di Martino et al. (1998) suggest that the presence of a
thrombus may act as a cushioning or protective layer against extreme haemodynamic
forces as wall thickness is uniform. In saccular cases the flow enters and forms one
or two 3D vortices and this flow pattern persists into the diastolic phase. There is a
constant flushing of blood and therefore no thrombus forms (Lasheras 2007).

Fluid dynamics may contribute to this field of study through a complete under-
standing of the haemodynamic stimuli. The capacity of endothelial cells to regulate
wall activity based on wall shear stress makes it the most important haemodynamic

parameter. WSS affects:

e Base set point of many genes via transcription regulation (Chien et al. 1998).

e Endothelial secretion of prostacylcin (a vasodilator which inhibits platelet adhe-

sion), and Nitric Oxide which reduces leukocyte adhesion (Qiu & Tarbell 2000a).
e Endothelial cell permeability; high WSS damages endothelial cells (Fry 1968).

e Endothelial cell shape. In the presence of low WSS or oscillating WSS stimuli,

endothelial cells become more round (Ku et al. 1985).

e Cell division rate. High Wall Shear Stress Gradient (WSSG) induces an increased
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FI1GURE 1.2: Fusiform aneurysm with intraluminal thrombus. The thrombus sits between the
arterial wall and the blood preventing delivery of nutrients to endothelial cells. The purple
region represents the arterial wall, the olive green section represents the thrombus, and the
red region represents the blood flowing through the artery. Reproduced with the permission
of Elsevier from Li et al. (2008).

net cell division rate (Davies et al. 1995; Nagel et al. 1999) and leads to a migration

of cells away from these areas.

Other factors that may contribute to aneurysm growth include non-uniform haemo-
dynamics and the perianeurysmal environment. Non-uniform haemodynamics trigger
an increase in local wall permeability allowing cross wall mass transfer of low density
lipoproteins (Buchanan et al. 1998), such proteins may be detrimental to the wall me-
chanics. The perianeurysmal environment is the structure surrounding the aneurysm.
The perianeurysmal environment supports sections of the aneurysm. However, this is
seldom uniform and therefore may lead to more complicated flow (Sforza et al. 2009).
Such effects are seen in studies of asymmetric and patient specific models of aneurysms

such as Shojima et al. (2004), Scotti et al. (2005), and Finol et al. (2003b).

1.5 Methods of investigation

1.5.1 Experimental

A variety of approaches have been employed to investigate haemodynamics in aneurysms.
Experimental techniques may be categorised as either in vitro or in surgically created

aneurysms (Sforza et al. 2009). These techniques take measurements using Doppler
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Ultrasound or tagged image velocimetry and DPIV (Sheard et al. 2007).
Research using these techniques can be limited in their ability to resolve fluid forces
such as shear near the walls. In vitro modelling is also restricted in that it enforces a

rigid boundary condition on the aneurysm wall which is non-physical.

1.5.2 Computational

Computational modelling has also been performed (Di Martino et al. 2001; Shojima
et al. 2004; Sforza et al. 2009; Sheard 2009). Computational fluid dynamic techniques
have provided better resolution of wall shear stresses as well as better temporal res-
olution. Finite element methods have proven more popular (Di Martino et al. 2001;
Shojima et al. 2004; Sforza et al. 2009) with spectral element codes (Sheard et al. 2007)

and finite volume codes (Buchanan et al. 1998) yielding equivalent results.

CFD models may be categorized as either idealised or patient specific. Idealised
models simplify the aneurysm geometry in order to systematically evaluate the effects
of different parameters on the flow. Patient specific models (Di Martino et al. 2001;
Shojima et al. 2004; Dempere-Marco et al. 2006; Sforza et al. 2009) are preferred by
clinicians who may use the flows to make a judgement on the risk to patients.

Patient specific models use angiogram or CT scanned (Shojima et al. 2004) two-
dimensional medical imagery and construct a three-dimensional model of the aneurysm.
Dempere-Marco et al. (2006) describes a typical method used to extract the data to
form a three-dimensional model that they used to measure the temporal distortion to
the vessel wall. Image registration is employed across the 2D slices which establish
correspondences between points in two different images. A 2D version of the non-rigid
registration algorithm, based on free form deformations proposed by Rueckert et al.
(1999) was applied by Dempere-Marco et al. (2006). By moving a set of control points
originally distributed into a regular lattice, a smooth and continuous transformation is
obtained that is subsequently used for deforming one image into the other. The control
points are moved in order to maximize the similarity between the two images. For
each series of sequential X-ray projection images, a set of landmarks can be manually
delineated in the first frame, and subsequently propagated by using the transformations
derived from the image registration procedure. The complete series was registered to the
initial reference frame. A combination of blurring and sharpening operations, followed

by a region growing segmentation and iso-surface extraction is finally used to create
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the 3D model. Such methods for extracting wall motions and geometry are limited
by the resolution of the medical imagery; experts must be employed to determine the
landmarks in each 2D slice. Furthermore often wall heterogeneity cannot be accurately

determined due to the presence of a thrombus (Di Martino et al. 2001)

1.5.3 Compliant models

A seemingly large downfall in the majority of CFD work is the assumption of rigid-
walls. This assumption is made due to a lack of information on mechanical properties
of the arterial layers (Dempere-Marco et al. 2006; Sforza et al. 2009). Furthermore
the complex wall remodelling processes in response to haemodynamic stimuli form a
non-isotropic material which is difficult to model. Lasheras (2007) and Sforza et al.
(2009) highlight a lack of knowledge of the wall mechanical properties and changing
environment as the limiting factor in forming a wall-fluid model.

The early works of Witzing (1914) and Womersley (1957a) pioneered research into
fluid-structure interactions in pipes. Witzing (1914) solved the equations of motion
for an inviscid fluid-filled elastic thin walled tube. Womersley (1957a), in solving the
linearised Navier—Stokes equations for a thin walled isotropic elastic cylinder containing
a Newtonian fluid, derived the analytic solution for the coupling of a viscous fluid and
wall motion in a deformable vessel.

Cox (1969) extended the work of Womersley to include the study of thick walled
tubes which included models for viscoelastic and anisotropic material behaviour despite
using a model which included only linear-wall motion. His study also incorporated the
non-linear terms in the Navier—Stokes equations.

Much of the work of Witzing (1914); Womersley (1957a) and Cox (1969) was sub-
sequently supported by experimental studies of flow in flexible vessels (see § 1.6.2). In
terms of computationally investigating these flows, development of methods for han-
dling moving boundaries was the first step. Reuderink (1991) and Pietrabissa & Inzoli
(1994) present the simplest examples of boundary motion handling in an aneurysmal en-
vironment. Their studies used a method which decoupled the fluid and solid solutions.
For a given flow, the pressure wave was computed using a linear wave propagation the-
ory. Then the predicted time evolution of the pressure field was applied independently
as a boundary condition of the solid domain and used to solve the solid equilibrium

equations. The mesh for the fluid domain was then deformed accordingly. Reuderink
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(1991) deformed the outermost elements only of their 3D carotid artery mesh, whereas
in their later publication on a 2D tube model, all elements were deformed (Reuderink
et al. 1993). The works of Reuderink et al. (1993) and Pietrabissa & Inzoli (1994)
neglect the velocity of interior nodal points relative to the stationary frame as a re-
sult of the mesh boundary movement. Their work also neglected the effects that the
instantaneous feedback of a changed geometry, velocity and pressure field will have on
the flow and the parameters being passed between the two solvers. In this way their

algorithm is described as very weakly coupled.

Perhaps the biggest obstacle impeding Reuderink et al. (1993) and Pietrabissa &
Inzoli (1994) was the lack of a suitable wave propagation model due to the complex
nature of the material and geometry. Hilbert (1986); Steinman & Ethier (1994) and
Perktold & Rappitsch (1995) partially negated the issue by solving the equations of
motion with a weakly coupled method. In each case the flow was prescribed at the inlet;
the experimentally tabulated pressures from Perktold & Rappitsch (1995) were used as
the outlet boundary condition while Hilbert (1986); Steinman & Ethier (1994) solved
for the outlet pressure dynamically using linear wave theory and a penalty method for

the fluid solver.

Qiu & Tarbell (2000b) used the free surface function of FIDAP[R]7.62 to simulate
the moving walls of coronary artery based on experimental measurements in dogs. Lee
& Xu (2002) coupled ABAQUS and CFX4.2 to simulate blood flow in elastic arteries.
De Hart et al. (2003a) used a fictitious domain technique and loose coupling method to
simulate 2D aortic valve motion in systolic phase, however their model neglected the
elasticity of the vessel wall and used a quasi-static model for the heart valve. They also
used implicit coupling methods to simulate 3D aortic valve motion to increase accuracy

and stability of the algorithm (De Hart et al. 2003b).

Rather than using the loose coupling method of De Hart et al. (2003a), Figueroa
et al. (2006) developed a strongly coupled method for simulating three-dimensional
blood flow in arteries. The method is proposed as a simpler solution to using arbitrary
Lagrangian—Eulerian methods for coupling the fluid and solid solution. The method
couples the equations for the deformation of the vessel wall at the variational level as a
boundary condition for the fluid domain. This is contrary to ALE methods which solve
the wall deformation equations separately and pass the results to the fluid domain as

a boundary condition. A linear membrane model is used for the vessel wall. While a
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robust and efficient scheme is presented using this momentum coupling method, it does
not account for the full effect that thick walls will have on the mechanics. As such,

schemes such as the ALE may be more accurate.

Many investigations into aneurysms have favoured the ALE technique for coupling
the fluid and solid solutions (Bazilevs et al. 2006). Applications of ALE to haemody-
namics are discussed in Di Martino et al. (2001); Formaggia et al. (2001) and Gerbeau
et al. (2005). This technique is widely used in haemodynamic simulations due to the
high degree of accuracy afforded by the technique, especially in regards to the level of
coupling and the position of fluid-structure interfaces. For further discussions of the

ALE technique the reader is referred to chapter 3.

1.5.4 Fluid-Solid-Growth (FSG)

In their review, Humphrey & Taylor (2008) highlight the need for a new class of mod-
els that can describe the evolving geometry, non-linear-wall properties, and haemody-
namics, which in turn dictate the evolving cell mechanobiology that is responsible for
matrix turnover and the possible rupture of aneurysms. They believe it is important to
go beyond the coupling of fluid and structural mechanics in FSI models to incorporate
long-term growth and remodelling models of the evolving arterial wall. This class of

coupled computational tools is referred to as Fluid-Solid-Growth (FSG) models.

Figueroa et al. (2009) present a computational framework for fluid-solid-growth
modelling in cardiovascular simulations. The framework is built primarily on four
separate advances in: Biomechanics of growth and remodelling (Baek et al. 2006),
momentum methods for fluid-solid interactions during a cardiac cycle (Figueroa et al.
2006), a theory for coupling biosolid and biofluid mechanical models (Baek et al. 2007),
and improved approaches for modeling fluid boundary conditions in complex vascular
systems (Vignon-Clementel et al. 2006). Figueroa et al. (2009) were able to show that
the inclusion of a growth and remodelling model allowed them to accurately model the
arterial remodelling and mechanical response to a lesion in an artery wall. Humphrey
& Taylor (2008) along with Figueroa et al. (2009) cite a need for more complicated
models of the remodelling process, more efficient and accurate FSI coupling methods
as well as improved computing facilities in order to advance studies in this field. The
work presented in this thesis seeks to advance the FSI coupling methods

and provide information about wall stiffening in aneurysm which may be
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useful in developing models of growth and remodelling.

1.6 Arterial flow investigations

Investigations into haemodynamic stimuli in aneurysmal environments have been con-
ducted using many different methods. Physiological studies have included imaging of
aneurysm geometries (e.g. Wilman et al. 1998; Potkin et al. 1990), biopsies of burst
arteries (e.g. Raghavan & Vorp 2000; Carmo et al. 2002), induced aneurysms in rabbit
and canine aorta (e.g. Jiang et al. 2009; Reinald et al. 2010; Mardal et al. 2010) and
epidemiological studies (Sonesson et al. 1999; Wanhainen 2008). Engineering investiga-
tions have focused more closely on the underlying physics of the flow moving through an
aneurysm, for reviews on this topic the reader is directed to Lasheras (2007), Humphrey
& Taylor (2008) and Sforza et al. (2009). The fluid flow studies may be categorised by
the choice of geometry, i.e. idealised or patient specific, the investigative technique, i.e.
CFED or experimental, the boundary and initial conditions applied, i.e. physiological,
idealised, steady state or oscillatory, and finally using either a rigid-wall assumption or
a compliant-wall.

Using a rigid-wall assumption simplifies the arterial model to that of a straight pipe:
as such, investigations into flows through straight pipes with steady and oscillatory flows

marks the starting point of fundamental study in this field.

1.6.1 Flow in a straight pipe

The earliest experiments investigating flow in a straight pipe were conducted by Reynolds
(1883). Reynolds (1883) described the motion of water through a section of straight
pipe as he changed three key parameters, namely the input velocity, the fluid viscosity
and the pipe diameter. He observed that “the general character of the motion of fluids
in contact with solid surfaces depends on the relation (1) between the dimensions of
the space occupied by the fluid and a linear physical constant of the fluid; (2) between
the velocity and a physical constant of the fluid”, namely its viscosity. Sommerfeld
(1908) coined the term Reynolds number to describe the relationship that Reynolds
had discovered,
Re = M, (1.6)

v
where Re is the Reynolds number, v is the kinematic viscosity, V,, is the mean velocity

and D is the diameter of the pipe. While demonstrating the relationship Reynolds
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found two critical values of the ratio. The critical ratios found by Reynolds correspond
to a lower critical Re of 2260 and an upper critical Re of 12000. Below 2260 the
flow was steady and laminar, above 2260 the flow was susceptible to different levels of
perturbation leading to a transition to turbulent flow, finally above 12000 the flow was
fully turbulent regardless of the level of perturbation. This series of experiments have
raised the maximum upper critical Re observed to a value in excess of 10° (Pfenninger
1961). However, the minimum lower critical value for transition to occur has remained
close to the value obtained by Reynolds. Studies by Binnie & Fowler (1947); Lindgren
(1958); Leite (1959) and Wygnanski et al. (1975) have placed it in the range 1800 <
Re < 2300.

Also of early significance is the work of Poiseuille. Poiseuille (1847) set out to find
a functional relationship among four variables: the volumetric efflux rate of distilled
water from a tube @, the driving pressure differential AP, the tube length L, and
the tube diameter d. His investigation was extended to study the relationship of these
parameters to changes in temperature and fluid. The result of this work was Poiseuille’s

equation for pipe flow, first written as

APd*
L )

Q=K (1.7)

where @ is the volumetric efflux rate, K’ is a function of the fluid and temperature, P
is the pressure drop, d is the pipe diameter, and L is the pipe length. Later Hagenbach
(1860) derived Poiseuille’s equation from the Navier—Stokes equation recognising the
relationship between viscosity and Poiseuille’s constant K’, and rewriting the relation

to the common form,

© APd*

Q:128u L’

(1.8)

where g is the viscosity of the fluid. The Hagen—Poiseuille law gives the pressure drop in
a fluid flowing through a long cylindrical pipe, assuming the flow is laminar, viscous and
incompressible. In 1960, Hagenbach (1860) and (although not published at the time)
Stokes (1967) derived the the Poiseuille equation from the Navier-Stokes equations.
One corollary of this derivation was the velocity profile for a circular pipe is parabolic
with the form,

1 0P

_ L9 e 2
vy = 1 02 (R* —1?%), (1.9)
oP

where v, is the velocity in the axial direction, p is the viscosity, G is the pressure

gradient along the pipe, R is the maximum radius of the pipe and r is the radial
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position.

While the works of Hagan, Poiseuille and others provides a comprehensive knowl-
edge of steady laminar flow along a straight pipe, the underlying physics is irrevocably
changed when the motion is oscillatory. Such knowledge is essential if correct hydro-
dynamic principals are to be applied to the circulatory system as blood flow in arteries
and the large veins is pulsatile in nature (Helps & McDonald 1954; Womersley 1955).
Womersley and collaborators were instrumental in developing an understanding of os-
cillatory flows in straight pipes.

In a landmark paper, Womersley (1955) derived an exact solution of the equations
of viscous flow in a circular tube under a pressure gradient that is a periodic function
of time. This work is analogous to the work completed by Poiseuille (1847) on steady
flows. Womersley showed the velocity profile for flow in a straight pipe is given by

A1 - Jo (ayi%)

v, = Red ——

. ety (1.10)
PR | I (af?)

where A is an amplitude, p is the fluid density, i = v/—1 is an imaginary number, w
is the angular frequency of the pressure wave form, Jy is a Bessel function of the first
kind and order 0, y is a measure of the radial distance defined by y = £, t is the time,
and « is the Womersley number. The Womersley number characterises the pulsatile

frequency, and is written as

o= Ry (L11)

v
where R is the radius of the pipe, f is the frequency of pressure oscillation, and v is
the kinematic viscosity.

Having derived the equations of motion for a time dependent pressure gradient,
Womersley (1955) showed that for the limit of the frequency approaches zero (i.e.
when the pressure gradient is constant), that the parabolic Hagen—Poiseuille profile is
achieved. He also showed that there is a phase-lag between the fluid motion and the
pressure gradient which causes it.

The Womersley number of the flow dictates the phase lag between the flow field
and pressure gradient. It is a dimensionless expression of the pulsatile flow frequency
in relation to viscous effects (i.e. the ratio of the transient or oscillatory inertia force to
the shear force). When « is small (1 or less), the frequency of pulsations is sufficiently

low that the Hagen—Poiseuille parabolic velocity profile has time to develop during
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FIGURE 1.3: The velocity profiles of the flow resulting from a sinusoidal pressure gradient
in a pipe (cosw;) at 90° intervals of the oscillating pressure gradient. Sub-plot (a) depicts
the nearly classic Hagen—Poiseuille velocity profile achieved at a low Womersley number of
a = 1.2. Sub-plot (b) shows the Womersley profile which forms at high Womersley numbers
a=13.1.

each cycle. The flow will be very nearly in phase with the pressure gradient. When
a is large (10 or more), the frequency of pulsations is sufficiently large that the rapid
acceleration-deceleration states of the pressure gradient causes flow reversal near to the
walls, and the velocity profile in the interior of the pipe is relatively flat or plug-like, the
mean flow may lag the pressure gradient by up to 90 degrees. Hale et al. (1955) showed
the effect that increasing Womersley number has on velocity profile. Figure 1.3 depicts
the departure from the classic Hagen—Poiseuille parabolic profile at large Womersley
numbers. The large Womersley number flattens the profile making it plug like. As
the pressure gradient reverses direction, the reversal of flow starts in the laminae near
the wall. The effects of the larger Womersley number is seen in figure 1.3(b), there
is a distinct flattening of the profile of the central region, a reduction of amplitude of
the flow and the rate of reversal of flow increases close to the wall. The greater the
Womersley number the further accentuated these affects are. For very high Womersley
numbers (figure 1.3(b)), the rapidly varying part of the flow lies between r = 0.35 and

r = 0.5, the central mass of the fluid reciprocates almost like a solid core.

25



1.6.2 Flow in flexible vessels

Blood flow through arteries is more complicated than simple flow through straight pipes.
The elastic nature of the walls plays an important role defining the haemodynamics.
When a flow is driven through a deformable tube, interactions between the fluid and
elastic forces lead to a variety of biologically significant phenomena. These include
wave propagation through both the fluid and walls, non-linear pressure-drop/flow rate
relations, and the generation of extra instability modes (Grotberg & Jensen 2004). In
understanding the complex flow through aneurysms it is important to know the physical
origins and nature of these phenomena.

The earliest works on flow in distensible tubes was completed by Euler in 1775 (Euler
1844). In this paper Euler set out the one-dimensional equations for the conservation of

mass and momentum in a distensible tube. In his notation these respective conservation

() (132 -

dP d- Vi, dVi,

equations are written as

and

where s is the cross-sectional area, V,, is the average velocity, P is the pressure, p is
the density, t is time and z is the axial distance. Since Euler, many theoretical works
have been devoted to this subject.

Luchini et al. (1991) identifies the most prominent feature of flow in distensible,
as opposed to rigid, tubes is the propagation of pressure waves with finite velocity.
Young (1808) provided the first estimate of the velocity of the pressure wave using
a one-dimensional model of an inviscid fluid. He used an effective compressibility of
the fluid in place of an elastic-wall. Later, Lamb (1898), improved on Young’s model
introducing the differential equations of motion of the tube walls replacing the effec-
tive compressibility model. Witzing (1914) built on the work of his predecessors and
expressed the complex wave velocity as a function of frequency for periodic solutions.
This solution was generalised by Womersley (1957b) to include viscous effects for the
fluid and viscoelastic properties for the wall. Womersley pointed out that both velocity
and the damping coefficient of the wave are increased by viscous effects in the wall.
All of these papers only deal with the one-dimensional evolution of the cross-section-

averaged fluid pressure. The problem of the complete theoretical determination of the
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fluid flow field in a distensible tube remains.

Atabek (1968) redefined the equations including the effect of pre-stressing the tube
with a hydrostatic load and considered the presence of external loading of in vivo
arteries through its contact with the surrounding tissue. Others have since modified
these results to include non-linear elastic models for the tube to more closely match
biological data, this has the result of making the wave disturbance dependent on the
state of pre-stressing in the wall. Anliker et al. (1968, 1969) observed this effect on
anaesthetized dogs. They found for a given transmural pressure, the phase velocity
increases with distance form the heart. They conclude the pressure pulse will exhibit a

steepening of its wave front as it propagates.

Krindel & Silberberg (1979) studied the flow of a Newtonian fluid in a gel-walled
tube, and observed that the transition Reynolds number and the drag law are very
different from those of rigid tubes. Kumaran (1995b) argued the flow near a flexible
surface is very different to flow near a rigid surface due to the non zero normal velocity,
this results in a breaking of Rayleigh theorem and leads to non-trivial solutions for
the temporal stability problem. The Reynolds number analysis of Kumaran (1995b,a)
revealed the possibility of unstable fluctuations when the fluid velocity is increased
beyond a critical value. Kumaran (1995a) performed an energy balance and showed
the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress
in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to
deformation work done at the interface and that there is no net transfer from the mean

flow to the fluctuations.

Pertinent to the healthy function of the artery is the wall shear stress. The one-
dimensional models based on continuity of mass and momentum and tube laws for the
wall require a flow-dependent WSS expression to solve the set of equations (Zagzoule
et al. 1991). Often it is the case (Rockwell 1969; Stettler et al. 1981) that the local
velocity profile is assumed to be parabolic, allowing the WSS to be deduced from
Poiseuille’s law. As shown by Womersley (1955) for unsteady pulsatile flows a parabolic
velocity profile does not develop, the WSS always has a phase lead on the mean and
centre line velocities. The use of the Poiseuille approximation ignores this feature of
the flow and as a consequence the WSS is underestimated from these one-dimensional
models (Zagzoule et al. 1991). Several attempts have been made to improve the WSS

model in one-dimensional equations. Streeter et al. (1964) used a turbulent type friction
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expression and showed that the Poiseuille approximation underestimates the WSS in
laminar and turbulent régimes. Olsen & Shapiro (1967) used the first harmonic in
a Womersley velocity profile in a rigid pipe to deduce the WSS in an elastic tube.
This approximation yielded good results in high or low Womersley number ranges but
provided inaccurate information at biologically realistic régimes. While this was a good
advancement they neglected the phase lag of the pressure and velocity solutions and

the variations in cross sectional area.

The one-dimensional models for fluid flow in an elastic tube over-simplifies the sys-
tem. Attempts to combine components of two-dimensional models and one-dimensional
models (Atabek 1980) have yielded inefficient techniques with marginal gains in accu-
racy. Accuracy in modelling these flows requires a full direct numerical simulation with

appropriate boundary conditions.

1.6.3 Haemodynamics of aneurysm geometries

Many different approaches have been taken to investigate aneurysmal flow conditions.
In vitro experiments have been used in conjunction with PIV techniques to visualise flow
through aneurysms. Computational Fluid Dynamics (CFD) models have proven more
useful in determining shear stresses near the wall. Another advantage of CFD models
is the ability to look at both idealised and patient specific models. Needless to say, the
complex nature of the fluid-structure interaction has made complete modelling of the
system difficult. Much of the research conducted has used a rigid-wall assumption to
simplify their models, let this form a starting point for our discussion of haemodynamics

in aneurysms.

1.6.3.1 Rigid-wall models

Salsac et al. (2006) completed a parametric study in symmetric glass models. The
models were characterised by their aspect ratio % and dilation ratio % as depicted in
figure 1.4. The maximum aneurysm diameter D was restricted to be less than 4.5 cm as
larger aneurysms may form thromboses. Water was used as the fluid in the investigation
and assumptions were made that blood is a Newtonian fluid which is reasonable in large

vessels (Attinger 1964; El-Khatib & Damiano 2003).
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FIGURE 1.4: Fusiform symmetric glass models used by Salsac et al. (2006) and defining
parameters. Reproduced with the permission of Cambridge University Press from Salsac
et al. (2006).

Salsac et al. (2006) found that in the healthy aorta during systole® a top hat flow
profile is formed with boundary layer increasing with Womersley number.

During diastoleS the bulk flow of the fluid motion is forward with backward move-
ment beginning at the boundaries. It is important to note that flow remains laminar
throughout the entire cycle. For a healthy aorta it was found that the W 5.S,,cqn = 0.27,
W S5Smag = 1.5 and the oscillating shear index, OSI = 0.4. The mean wall shear stress

is given by
1 (T
WS Smean = / WSS dt, (1.14)
T Jo
where T is the time period, the wall shear stress magnitude is given by
1 T
WSSmag = T/ ‘WSS‘ dt, (1.15)
0

and the oscillating shear index is given by

1 WSSmecm

Both Finol et al. (2003b) and Salsac et al. (2006) describe the flow evolution (see

figure 1.5 in detail:

1. Systolic acceleration involves downstream ejection of the residual vortices left

from the previous cycle, yielding an attached laminar flow pattern thanks to the

5Systole refers to the gathering and contraction of the heart, this is linked to the expulsion of blood
from the heart and is represented by a positive volumetric flow rate.

5Diastole is the period of time in which the heart refills with blood after systole, it is represented
by a negative or minimum in the volumetric flow rate.
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positive pressure gradient of systole. The temporal acceleration of the flow is
at this point larger than the convective deceleration resulting from the upstream

(proximal) diverging walls of the artery.

2. Systolic deceleration is characterized by flow separation at the proximal neck,
toroid-shaped single-vortex growth and its translation downstream, followed by
a free shear layer in which secondary vortices form due to the Kelvin—Helmholtz
instability. The vortex ring will eventually impact on the distal neck, causing a

region of higher shear stress.

3. Early diastole is characterized by partial shedding of the vortex left from systole
towards the main stream. Flow recirculation is reduced in size, as the centreline
velocity increases in accord with the pressure gradient imposed by the inlet flow

condition.

4. Late diastole is the phase where the most significant flow disturbance takes place.
It is largely influenced by the effect of secondary disorganized recirculation regions
that depart from the symmetric toroidal shape. These are present downstream
of the aneurysm midsection until the onset of systolic acceleration in the next

cardiac cycle.

In terms of the wall shear stresses, the presence of the primary vortex ring so close
to the distal wall at impact induces the boundary layer to roll up into a counter-
rotating vortex of smaller size. A strong WSSG is observed in the proximal and
distal necks where flow detaches from the wall and when the changes in WSS are
maximum. The formation of the vortex ring also creates regions of high WSSG up
and downstream of it. Regions of low W 5S,,,cqn correspond to Oscillating Shear Index
(OSI) of 0.5 (oscillatory), most of the wall experiences OSI greater than 0.5 indicating
a flow reversal. While the work of Salsac et al. (2006) comprehensively describes the
flow evolution in a fusiform aneurysm, they fail to capture the complete physics of flow
through an aneurysm. The rigid wall is not physiologically realistic and its exclusion
could lead to a change in flow dynamics as suggested by other studies such as Finol
et al. (2003b).

Geometry has a large impact on the distribution of wall stresses and flow evolution
(Buchanan et al. 1998; Finol et al. 2003b; Salsac et al. 2006; Sheard et al. 2007; Sforza

et al. 2009). A change in aspect ratio L/d, changes the distance along the axis that
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F1cURE 1.5: Flow in a fusiform aneurysm. Flow is left to right and the Meridional half plane
is plotted. Contours are of-out-of plane vorticity, with red positive and blue negative. Note
the large red primary vortex ring in the systolic acceleration phase and the blue secondary

vortices in the diastolic phase. Reproduced with the permisson of Sheard from (Sheard 2009).
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the vortex ring must travel. Aspect ratio may limit the evolution of the vortex ring
as the length scale is less than that defined by the Strouhal number. Higher aspect
ratios lead to a later separation and hence a weaker vortex (Salsac et al. 2006). A
change in aspect ratio alone has little effect on wall shear stress, in fact it typically acts
to reduce the intensity of WSS patterns, this is due to weaker vortex formation for
larger aspect ratios (Salsac et al. 2006). However, dilation factor D/d enhances WSS
patterns. As D/d increases the point of flow separation moves closer to the proximal
neck, the mean WSS increases, and recirculation regions increase in size. The time at

which flow separation occurs is not dependent on dilation factor (Salsac et al. 2006).

Sheard et al. (2007) investigated the effects of changing the radius of curvature of the
proximal and distal necks. A spectral element CFD technique was employed and results
were compared to a healthy aorta and Poiseuille’s laws for straight pipes. They found
that the rate at which fluid is flushed from the bulge is dependent on pulse frequency
and not geometry. The heart rate frequency, f, is defined by the non-dimensionalised
Womersley number. Optimal fluid removal was found at o = 20 (Sheard et al. 2007).
However, wall shear stress and pressure drop were dependent on geometry, with an

increased radius of curvature corresponding to lower W S'S.

It is unlikely that an aneurysm of medium or large size (D > 4.5 mm) be of fusiform
or axisymmetric shape (Finol et al. 2003b). Di Martino et al. (2001); Finol et al. (2003Db)
and Scotti et al. (2005) all analysed the effects of asymmetry using finite element CFD
techniques. Finol et al. (2003b) explains the effects of asymmetry on the flow through a
rigid-walled fusiform aneurysm. They explain that during systolic deceleration the effect
of asymmetry is to reduce the intensity of the vortex along the posterior wall, creating
an asymmetric annular structure. During early diastole aneurysm asymmetry yields
stronger velocity gradients along the anterior wall at the distal end. Finally, during
late diastole the geometric asymmetry creates secondary vortex structures which cause
disorganized recirculation regions that depart from the symmetric toroidal shape. In
terms of WSS as the asymmetry increases so too does the peak WSS in a non-linear

manner.

Like both Finol et al. (2003b) and Scotti et al. (2005), Vorp et al. (1998) investigated
the effect of geometric asymmetry on the wall shear stress experienced in a fusiform
aneurysm. Using a finite element technique and rigid-walls they found the magnitude

of the peak wall shear stress increased non-linearly with increasing maximum diameter
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(for constant asymmetry) and increasing the level of asymmetry (for constant maximum
diameter). In terms of the shear stress distribution, it was found that different levels
of asymmetry changed the location of the peak wall shear stress from the midsection
to the distal neck. Their findings were later corroborated by the works of Di Martino
et al. (2001); Finol et al. (2003b); Scotti et al. (2005).

The ultimate application of this research sees an integration of CFD software with
medical imagery in order to realistically measure the flow through patient specific
aneurysms. Shojima et al. (2004), investigated 20 such models, they concluded that
the average WSS in the vessel was significantly higher than in the aneurysm (Shojima
et al. 2004). Geometry had a profound effect on their results; small aneurysm with
low aspect ratio L/d = 0.56 had no decrease in intra-aneurysmal flow. But larger with
high aspect ratio of L/d = 1.58 saw the formation of a recirculation region leading to a
decrease in intra-aneurysmal flow and consequently a low average shear stress (Shojima
et al. 2004). There studies suggested that a WSS = 2 N/m? will maintain endothelial
cells while a WSS of 1.5 N/ m? begins to degrade them. This is contrary to the results
presented by Salsac et al. (2006) who suggested healthy WSS be 1.5 N/m?.

Other authors suggest other factors that could be important in terms of patient
specific haemodynamics. Egelhoff et al. (1999) indicate under medium exercise inflow
conditions a transitional stage exists that may see the vortex ring bursting into turbu-
lence at late diastole. However, Finol et al. (2003b) and Finol & Amon (2002) did not
capture any numerical instabilities or singularities for time dependent flow conditions
that would lead to turbulence. Buchanan et al. (1998), while working on rabbit aorto-
celiac junctions, indicated the significance of secondary spiral or helical flows. Sforza
et al. (2009) through work on cerebral aneurysms also stated that helical or swirling
secondary flows induced by the curving geometry of cerebral arteries are fundamentally

important as they govern the areas of local flow.

1.6.3.2 Compliant-wall models

The enlargement of aneurysms has been linked to a disruption in the mechanotrans-
duction process which keeps arterial walls healthy. This disruption is closely associated
with both the haemodynamic shear stresses exerted on the wall as well as the me-
chanical characteristics of the vessel wall. The arterial endothelial lining is exposed to

both wall shear stress caused by pulsatile blood flow and circumferential stress caused
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by pulsating arterial pressure. The interaction of these two stresses, and not the sole
contribution of each, plays an important role in determining a healthy mechanotrans-
duction process (Qiu & Tarbell 2000b). Given the importance of the stress interaction it
seems prudent to perform investigations which include a compliant wall model (Lasheras
2007). Lasheras (2007) and Sforza et al. (2009) highlight a lack of knowledge of the
wall mechanical properties and changing environment as the limiting factor in forming
a wall-fluid model. Simple models have however been tested to see the effects that a

fluid-structure interaction has on the fluid flows.

The nature of the interaction is complex. Arteries deform under pressure fluctuation
generated by the heart. The blood transmits the pressure wave as a result of energy
exchange between the artery wall and the blood itself; this makes modelling of the
arterial haemodynamics a fluid-solid interaction problem. Lasheras (2007) highlighted
the lack of knowledge of the arterial wall properties as one obstacle hindering research

in this area, as few such investigations had been attempted.

It is anticipated that a compliant wall model will have an effect on the haemody-
namic metrics we use to assess aneurysms. The reported findings seem inconsistent with
some studies (e.g. Scotti et al. 2005) reporting that compliant walls increase peak wall
shear stress, while others Perktold & Rappitsch (1995); Dempere-Marco et al. (2006);
Oubel et al. (2007) reported contradictory findings.

Dempere-Marco et al. (2006) and Oubel et al. (2007) applied the pulsation of the
artery wall to patient specific cases. To do this they measured the wall motion of
different regions in the aneurysm using medical imaging. They then made a first-order
approximation of the wave, including only the fundamental frequency of the wave form,
and scaled the amplitude of the oscillation with the observed wall movement. They used
this wave form as a velocity boundary condition on a fixed-wall patient specific fluid
model. Both Dempere-Marco et al. (2006) and Oubel et al. (2007) found that a purely
rigid model with no-slip boundary condition, over-estimates the peak wall shear stress,
while compliant models yielded slightly larger areas of elevated W.SS. While they did
account for the velocity of the fluid introduced as a result of the wall motion, they did
not account for the change in shape that the wall motion creates. The change in shape
is an important factor in resolving the temporal evolution of aneurysm haemodynamics,

particularly in the boundary layer.

Di Martino et al. (2001) and Scotti et al. (2005) modelled a full fluid-structure in-
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FIGURE 1.6: Stress-deformation curves from aneurysm specimens tested using a uni-axial
tensile test. The dashed line represents the stress-deformation curve of a healthy artery.

Reproduced with the permission of Elsevier from Di Martino et al. (2001).

teraction within AAAs. Contrary to the findings of both Dempere-Marco et al. (2006)
and Oubel et al. (2007), Scotti et al. (2005) found that non-compliant models drasti-
cally underestimated stresses in the wall. Perktold & Rappitsch (1995) reported a 25%
decrease in wall shear stress in an elastic model compared to a solid model. Both stud-
ies used a finite element solver in conjunction with an arbitrary Lagrangian—FEulerian
algorithm to solve the system. The ALE algorithm seeks at each time step the conver-
gence of three blocks of equations, fluid flow (Navier—Stokes), solid (CSD) and mesh
movements (CMD) which must then converge together before a new step is initiated.
The mechanical properties of the wall were measured using cadaver specimens. Their
stress-strain relationships are reproduced in figure 1.6. The code was limited to a linear
elastic homogeneous approximation of the non-linear behaviour shown in figure 1.6. A
linear elastic approximation is insufficient to describe this behaviour. At high stresses
the strain predicted by a linear model will be markedly different to the actual strain
shown from these uni-axial stress tests. Recently, Raghavan & Vorp (2000) showed that
the wall behaviour may be described successfully by means of a non-linear isotropic,

hyper-elastic material model defined through uni-axial tests.

Cebral et al. (2002) used magnetic resonance images to construct a model of an
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artery wall. They concluded that in rigid models, the regions with low shear stress

(< 10 dyn/cm?) were smaller compared to those in elastic models.

Scotti et al. (2005) found that the wall was displaced by an amplitude of 5 mm.
This is contradictory to the measurements from medical images which indicated a
wall movement only 2.5 mm (Dempere-Marco et al. 2006). With the fluid-structure
interaction, Scotti et al. (2005), showed at or just after peak systolic pressure there are
no vortices customary of systolic acceleration. This is contrary to results from rigid
models as energy stored by the expanding compliant vessel ejects the vortex downstream
shortly after peak flow. A phase delay is detected between the velocity inlet and
pressure outlet waveforms (Scotti et al. 2005). The same vortex dynamics are produced
regardless of asymmetry, but they remain in the midsection of the distal end in the
symmetric case and in the asymmetric case it moves toward the proximal end (Scotti
et al. 2005).

The effects of a diameter dependent wall thickness are much greater than asymmetry
for aneurysm models including a fluid-structure interaction. Scotti et al. (2005) showed
a uniform thickness in a symmetric fusiform aneurysm will yield smooth laminar flow;
however, heterogeneous wall causes vortex formation near the distal neck. Flow reversal
occurs twice as often in the variable wall thickness model. Assumptions of uniform wall
thickness gives an underestimation of stresses by 77% compared to a variable thickness
model (Scotti et al. 2005). The work of Scotti et al. (2005) provides a good description
of the effects of simple changes in wall thickness have on flow dynamics. However,
Lasheras (2007), among others, describes the stiffening or weakening of the arterial wall
that coincides with changes in wall thickness. The work of Scotti et al. does not account
for the changed stiffness conditions in the aneurysm wall that would correspond to the
imposed change in thickness. Furthermore, calcification, cell death and intraluminal
thrombus can all cause a very complex and heterogeneous wall thickness distribution.
Modelling the wall with more localised variations in wall thickness may exacerbate the

effect of a variable wall thickness.

1.6.3.3 Effect of wall mechanics on FSI

It has been widely accepted that arterial tissue has a non-linear elastic response. Many
constitutive material models have been developed to mimic the stress strain material

behaviour of the arterial wall (e.g. Lally et al. 2004; Fung et al. 1979). Largely, these
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models simplify the complex structures of the arterial wall using a single homogeneous
material. In reality the different material structures and properties of the media, in-
tima and adventitia contribute to the material response. Elastin in the media bears
most of the pressure load at low strains. The collagen fibre network limits the radial
deformability at higher blood pressure, and causes the steep rise in wall stiffness at
higher blood pressures, resulting in a material with non-linear elasticity (Oscuii et al.
2007). An alternative approach to modelling the wall as a homogenous material with
complex material model is to consider the wall as a multi-layered structure with dif-
fering material parameters for each layer of the wall reflecting the properties of the

biological structures that comprise each layer.

Schulze-Bauer et al. (2003) observed an average wall layer thickness ratio of in-
tima/media/adventitia of 13/56/31 for arteries. Driessen et al. (2004) used a thickness
ratio of 2/1 for media/adventitia. Gao et al. (2006) use a ratio of 1/6/3. The ratios
used in both Gao et al. (2006) and Driessen et al. (2004) are an approximation of that

measured in Schulze-Bauer et al. (2003).

In terms of wall stiffness, Mosora et al. (1993) used a Young’s modulus range of
2 MPa to 6.5 Mpa. In their bending experiments, Xie et al. (1995) showed the Young’s
modulus of the inner layer (intima and media) was three to four times larger than that
of the outer layer (adventitia), and it can be deduced from the experimental data in
Cabrera-Fischer et al. (2002) that the Young’s modulus of the intima is smaller than
that of the media. Gao et al. (2006) uses a Young’s modulus of the media three times
that of the adventitia and intima. Since the mean Young’s modulus of the vessel wall
across the whole wall volume is invariable, the Young’s modulus of each layer is in

inverse proportion to the area of the layer in the cross section (Gao et al. 2006).

Gao et al. (2006) presented the effects of fluid-structure interaction on the aortic
arch using a multi-layered wall model. They showed that variations of circumferential
stress are very similar to variations of pressure. The composite stress in the aortic wall
plane was shown to be much higher in the media than in the intima and adventitia
across the wall thickness. These results indicate that a single layered homogeneous

material model may underestimate wall stresses in the aneurysm.

Leung et al. (2006) directly compared using a rigid-wall model and a fluid-structure
interaction model for three patient specific aneurysms. The aneurysm was given a uni-

form thickness (1.5 mm) and stiffness (2.7 MPa) for the aneurysm wall. The aneurysm
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wall was modelled using a hyperelastic material defined by Raghavan & Vorp (2000).
The arbitrary Lagrangian—Eulerian formulation was used to couple the fluid and solid
solution. They demonstrated that including fluid flow can change the wall stress dis-
tribution slightly. However, as far as the peak wall stress is concerned, this effect is
negligible as the difference between rigid-wall and FSI models is less than 1%. While
presenting plots of peak wall shear stress in the aneurysm for the FSI simulations, they
do not comment on how this distribution is affected by an FSI model compared to a
rigid-wall model, nor do they comment on the effect these parameters may have to the

future health of the aneurysm.

Oscuii et al. (2007) investigated the effects of varying wall stiffness on the flow in
a fusiform brachial aneurysm. They used the arbitrary Lagrangian—Eulerian formula-
tion to loosely couple the incompressible Navier—Stokes equations for the fluid region
with an incompressible elastic material undergoing large deformations. Pressure and
velocity waveforms were applied specifically to the brachial artery. Resultant flow, wall
displacement, wall shear stress, wall circumferential strain waves and their phase differ-
ences were determined. Oscuii et al. (2007) showed a significant decrease in flow rate
and axial velocity profile for stiffer walled models. A ten-fold increase in wall stiffness
caused maximum wall shear stress values to decrease 51%, leading to negative mini-
mum shear that lasted almost one quarter of the pressure pulse duration. An analysis
also showed the stress phase angle was altered by stiffening of the arterial wall. It was
concluded that for elastic moduli corresponding to wall displacements less than 1%, the

blood flow and wall shear stress were not sensitive to wall stiffness.

Torii et al. (2008) compared the effect of using a linear elastic small strain model,
a neo-Hookean model and a hyperelastic Fung-type model for the material wall. A
patient specific cerebral aneurysm geometry previously shown to have flow patterns
that developed in compliant wall simulations but not in rigid-wall simulations was used
to demonstrate the effect of each wall model. They found that the neo-Hookean material
had the largest displacement at 0.346 mm compared to 0.333 mm for the Hookean and
0.222 mm for the Fung material. The larger displacement in the neo-Hookean material
compared to the Hookean material was expected due to the change in thickness of
the artery wall throughout the large displacements. The neo-Hookean model takes
this change in volume into account while the Hookean material does not. Regardless

of material model the flow patterns observed in the aneurysm lumen were consistent,
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characterised by large wall shear stress areas compared to solid state models and the
shedding of a secondary vortex. Torii et al. (2008) conclude that both linearly elastic
and hyper-elastic models can be useful to investigate aneurysm FSI. The displacements
of the aneurysm walls described in Torii et al. (2008) are small compared with the
1.2 — 2.5 mm wall dilation measured in abdominal aortic aneurysm (Stefanadis et al.
1995). Possible reasons for the underestimation of wall motion could be the choice of
material properties in each material model, the difference in the mechanical properties
in cerebral aneurysms compared to aortic aneurysms or a failure to model the effect of

a perianeurysmal environment.

1.6.3.4 Further medical complications: Calcification and thrombus

Commonly associated with AAAs is calcification and Intraluminal Thrombus (ILT).
These are generally associated with a dimmer cardiovascular prognosis. The effect of
calcification on biomechanical wall shear stress in AAAs has not been fully studied
(Detrano et al. 1999; Schmermund et al. 1999). ILT has been heavily investigated in
an aortic aneurysm context; however, a conclusive finding on their effects has not been
determined. Some believe ILT increases the risk of rupture (Satta et al. 1996; Vorp
et al. 2001), others believe ILT may significantly reduce wall stress and therefore pro-
tect from rupture (Inzoli et al. 1993; Mower et al. 1997), still others suggest ILT has
no effect on rupture risk (Dobrin 1989). Li et al. (2008) studied the effect of both ILT
and calcification on AAAs. Their study conducted a finite element analysis on some
patient specific aneurysm geometries with varying degrees of thrombus formation and
calcification. For the artery wall and ILT they used the hyperelastic model, which was
described in Raghavan & Vorp (2000). They used a Mooney—Rivlin type material for
the calcification deposits. A finite element structural analysis with large deformations
was conducted independent of blood flow information. Their findings indicated no cor-
relation between the peak values of wall stress in each case and the median values. They
found that the peak wall stress was not correlated with the percentage of calcification
in the AAA, and was negatively correlated with the percentage of ILT. Results showed
calcification led to a median 14% increase in maximum stress and that ILT led to a
24% increase in median peak wall stress. The effect of ILT and calcification is clearly
significant to AAA wall mechanics. In order to remove the effect of thrombus from this

investigation the geometry is limited to aneurysms with Diameter D < 4.5 ¢m which
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have been clinically shown to be typically devoid of an endoluminal thrombus (Harter

et al. 1982).

1.7 Restrictions of previous work

Due to the large parameter space involved in modelling aneurysms, many assumptions
and simplifications have been made in previous investigations. Experimental meth-
ods for measuring haemodynamic forces are restricted in their resolution of wall shear
stresses. Theoretical models of flexible vessels use assumptions that underestimate the
wall shear stresses. Conversely, while in vivo studies are possible, current methods for
measuring flow conditions are primitive compared to the accuracy achieved outside of
the body. This is also true of methods for assessing wall stresses and wall stiffnesses of
the aneurysm in situ. This leads to a basic lack of data in this field.

Of the computational studies conducted to date, many consider vessel compliance
to be only of secondary importance and neglect it (Sforza et al. 2009). As such, most
CFD modelling is conducted with a rigid-wall condition. As highlighted in this litera-
ture review this can lead to an underestimation of the mechanical wall stresses and a
variation in the wall shear stress distribution in the fluid. Furthermore, non-Newtonian
behaviour is ignored and the blood is assumed incompressible. What little work that has
been done with fluid-structure interactions has been fraught with simplified models that
lead to contradictory results. Largely, these simplifications have been driven by either
inefficient numerical methods which have made accurate modelling of the system too
expensive a task, or a lack of basic information about the aneurysmal environment. In
aneurysm investigations the most advanced simulations use a fluid-solid-growth model
FSG, these are largely limited by the lack of knowledge about the wall remodelling
processes (Sforza et al. 2009).

In order for FSG models to be viable it is vital that the fundamental aspects of the
flow through aneurysms is mastered. As such, a comprehensive understanding of the
underlying physics of the flow is necessary and therefore accurate modelling techniques
for modelling fluid-structure interactions are essential. Current fluid-structure models

are limited by one or several of the following points.

e They do not fully couple the fluid and solid solutions. The momentum method
of Figueroa et al. (2006) only loosely couples the fluid and solid solutions. Some

works have used the varying pressure gradient in the aneurysm as a pressure

40



boundary condition on the solid and solved for its motion separately. This is
then applied this as a wall velocity to the fluid (Di Martino et al. 1998). Others
have used medical imaging of the aneurysm to determine the wall motion of the
solid and imposed this as a velocity boundary condition on the fluid (Oubel et al.
2007). Each of these methods fails to account for local variations in the pressure
as a result of fluid-structures such as vortices that change the local pressure on
the wall. Currently the ALE method is the best method for coupling the two

solutions.

They do not account for large deformations in the solid domain. Linear elastic
models of the arterial wall assume that the strain is small and as such the dif-
ference in undeformed and deformed coordinate systems is small. In aneurysm
simulations this is simply not the case with wall motion being as large as 15%
of the wall thickness. Some non-linear models are also constructed using a small

strain approximation.

They do not accurately maintain information of the location of the fluid-solid
interface. Methods that do not use an ALE method, or those that employ an
Eulerian reference frame only, cannot accurately define the position of the artery
wall. This occurs in the Eulerian formulation when the wall passes through an

element as opposed to being mapped out by its edge.

They do not include inertial terms in the solid structural mechanics. The majority
of studies (Di Martino et al. 1998; Scotti et al. 2005; Finol et al. 2003b) use a quasi-
static approximation for the boundary. This means the boundary conditions are
time dependent but the structural response is instantaneous. Such simplifications
means pressure waves which travel in the solid are not resolved (Lasheras 2007).
Some investigations (Li & Kleinstreuer 2005) have solved the wave equation in

conjunction with thin membrane models to partially overcome this problem.

They do not account for forces being spread from inner wall to medial and outer
walls (Scotti et al. 2005). Most investigations have modelled the wall using either
a thick or thin membrane theory or as a single layered homogeneous material.
Gao et al. (2006) showed that single layered models underestimate wall stresses.
While non-linear material models do come close to approximating the overall

mechanical response of the wall it is a simplification of the multi-layered aneurysm
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environment. Elastin in the media bears most of the pressure load at low strains.
The collagen fibre network limits the radial deformability at higher blood pressure,
and causes the steep rise in wall stiffness at higher blood pressures. This results

in a material with non-linear elasticity (Oscuii et al. 2007).

They do not account for highly heterogeneous wall thicknesses and stiffnesses.
While some investigations (Di Martino et al. 2001; Scotti et al. 2005) have in-
vestigated the effect of changing wall thickness in an aneurysm they have done
so in a very uniform fashion, i.e. a function of wall diameter. In reality the wall
thickness and stiffness will change as a result of haemodynamic stimuli and as

aneurysm imaging has shown the wall thickness is highly heterogeneous.

They do not account for non-linear elastic material properties of the wall (Scotti
et al. 2005). While many investigations of aneurysm walls themselves have
been modelled using highly complex anisotropic, hyperelastic material models
(Holzapfel & Weizséicker 1998), investigations that include fluid-structure inter-
actions rarely use complex material models for the wall in order to conserve
computational efficiency. Furthermore if a non-linear elastic material is solved a

single layer model is invariably used.

They do not account for the effects of a thrombus (Scotti et al. 2005). In large
aneurysms, formation of thrombus drastically changes the lumen shape. large

sections become occluded due to the build up of platelets in low WSS areas.

They do not account for the forces from the perianeurysmal environment (Sforza
et al. 2009). The boundary conditions applied to the solid region are of the utmost
importance. Having the outer edge of the arterial wall free to move with no force
upon it or fixed in place is unrealistic. Humphrey & Taylor (2008) highlight the
importance of using a force feedback model on the outer surface of the arterial
wall to model the effect of the aneurysm pushing against the perianeurysmal
environment. The treatment of the perianeurysmal environment in this research

is discussed in § 7.4.4.

They do not account for the effects of bifurcations and inlet flow conditions.
Humphrey & Taylor (2008) highlight the importance of using appropriate bound-

ary conditions in modelling the flow through an aneurysm. Currently many stud-
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ies use simplified models for the inflow and outflow conditions, not allowing phys-
iologically accurate flows to evolve. Impedance models based on the downstream
pressure in the venous branches are recommended, as is modelling outflow through

the renal branches upstream and the femoral artery bifurcation downstream.

Research that seeks to contribute to this field must strive to rectify these short-
comings. The work of this thesis looks to improve on the current numerical simulation
methods as well as performing investigations on aneurysms with physiologically appro-

priate boundary conditions.

1.8 Research aims

Lasheras (2007) and Sforza et al. (2009) both emphasized a lack of knowledge regarding
aneurysm wall properties and models. They also indicated the importance of such
models in forming a predictive model for aneurysm growth and rupture. Scotti et al.
(2005) showed that modelling of a fluid-structure interaction alters the evolution of flow
in the aneurysm compared to rigid-wall models. Following this, the present research

aims to:

1. Create a spectral element CFD algorithm facilitating the accurate modeling of the

fluid-structure interaction in an aneurysm. The FSI model should incorporate:
(a) A wall constructed of multiple layers each with different material properties,
(b) The heterogeneous nature of the wall, and,
(c) Non-linear elastic material properties of the wall.

2. Implement this fluid-structure modelling tool to assess the flow through a fusiform

abdominal aortic aneurysm and assess the effects of:

(a) Wall mechanical properties. Previous models have not accounted for the
different mechanical properties associated with the different layers of the

wall,

(b) Heterogeneous wall stiffness. Scotti et al. (2005) investigated the effect of
diameter-dependent wall thickness on an aneurysm. They showed a uniform
thickness underestimates wall stresses by up to 77%; as such a heterogeneous

wall will have significant effects on the fluid forces. The thickness of the wall
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is also linked to its deformation and stiffness; heterogeneous stiffness should
drastically change the onset of vortex shedding as well as altering the wave

speed of the pressure pulse travelling along the walls.

(c) Heterogeneous wall stiffness in the context of aneurysm initiation.

1.8.1 Developing a new method for investigating FSI in aneurysm

This phase of the project proposes to address research aims la-lc. In this stage a
non-linear solid solver is developed and integrated into an existing fluid solver. The
arbitrary Lagrangian—Eulerian method will be used to couple the fluid and solid solvers.
This method permits accurate determination of the boundary interface while providing
a strong coupling of the fluid and solid dynamics equations, therefore improving on
current computational practices.

Humphrey & Taylor (2008) cite the work of Wolters et al. (2005) as being the
most advanced FSI solver currently being used in aneurysm research. Wolters et al.
(2005) uses a neo-Hookean model for the artery wall material with large strain capabil-
ities, an incompressible Newtonian fluid solver and physiologically accurate boundary
conditions. The methodology implemented in this thesis intends to make a similar im-
plementation but using the highly efficient spectral element method for both the fluid
and the solid discretisations, as well as including the inertial term in the solid mechan-
ics thus improving on the current investigative tools. Spectral elements have rarely
been used in solid mechanics and are less common in non-linear solid mechanics. A
2-step operator splitting method with penalty function for enforcing incompressibility
is proposed for solving the constitutive equations for a neo-Hookean solid. Through-
out the development phase a series of validation tests will be performed to ensure the

algorithms performance.

1.8.2 Investigation: Heterogeneous wall stiffness effects on established
aneurysms
This investigation proposes to address the research aim 2a and 2b by answering the
following questions:
How will the perianeurysmal environment affect the flow through the
aneurysm?
Hypothesis: An increase in the force feedback from the perianeurysmal environment

will have the same affect as a global decrease in wall stiffness. It will reduce the
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FIGURE 1.7: Aneurysm geometry for investigation. D =2 cm,d =1 cm and L = 3 cm, ¢

may change as required.

size of areas with positive normalised wall shear stress. A stronger perianeurysmal
response will mean less elastic-wall motion. Therefore the effects of the elastic-wall on
the flow dynamics should be decreased. The less wall motion, the closer to the rigid-wall

approximation which has been shown to underestimate wall stresses.
How will local wall stiffness affect the flow through the aneurysm?

Hypothesis: A local increase in wall stiffness will introduce secondary regions of flow
separations and potentially the development of a secondary vortex ring system. A local
difference in wall stiffness could lead to a localised differential in displacements causing
a less smooth geometry which could act like a “backward facing step” leading to flow
separation.

Is a Hookean material model for the aneurysm wall sufficient to model

the wall response in Aneurysms?

Hypothesis: A hyper-elastic material law will cause the model to exhibit higher
wall stress at points of greatest deformation. Conversely, subject to a given pressure, a
hyper-elastic material model will predict a smaller strain or wall motion than a linear-
Hookean elastic material model. This hypothesis will be addressed in chapter 6 when

comparing the relative strain in a Hookean and neo-Hookean material.

For the established aneurysm investigations, the geometry modelled is a fusiform
aneurysm with dimensions shown in figure 1.7.

The wall mechanical properties are chosen as per Fung (1993) to describe the mean
mechanical properties of each layer in the artery wall (for detailed discussion of the

choice of parameter space see chapter 7). To assess the effect of changed material
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properties, the material properties of each layer are altered locally in locations at the

proximal neck, distal neck and extrema of the arterial bulge.

1.8.3 Investigation: The effect of heterogeneous wall stiffness on aneurysm
initiation

This investigation proposes to address the research aim 2c¢ by answering the following
questions:

How will a stiffer (or less stiff) band of arterial wall affect the flow
through a straight pipe?

Hypothesis: A local stiffening of the artery wall will reduce the wall motion in that
local region creating a geometry similar to a stenosis. This will cause flow recircula-
tion and a change in the WSS patterns that could initiate aneurysm growth. A local

stiffening of the material wall should physiologically mimic three scenarios:
e the effect of cell death in the arterial wall,
e the formation of plaque build up, or,

e the tethering of artery by upstream branches such as the femoral and renal artery

bifurcations

Hypothesis: A local reduction in wall stiffness will lead to extra ballooning of the
arterial wall. This extra bulge will change the flow dynamics and WSS distributions
which could create a cascade affect.

Hypothesis: Wider stiffened regions will lead to less adverse flow conditions as the

gradient of the nozzle effect or ballooning effect will be reduced.

1.9 Closure

Previous research into haemodynamics in aneurysms has largely been focused on rigid-
wall dynamics. To realistically model the flow, a moving boundary condition must be
applied to account for the elasticity of the aneurysm wall. A fluid-structure interaction
problem will be studied in the context of an abdominal aortic aneurysm, with the effects
of an elastic-wall modelled using a numerical analysis. An ALE algorithm will be em-
ployed to solve fluid-mechanics, solid-mechanics, and mesh-mechanics equations, thus
allowing both fluid flows and mechanical structures to be modelled concurrently. Once

formulated, the fluid-structure model will be employed to measure the haemodynamics
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of flow through an aortic aneurysm with variable wall stiffness. An investigation will

also be undertaken to assess the effect wall stiffness may play on aneurysm initiation.
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Chapter 2

A review of continuum mechanics

In modelling the mechanical response of the arterial wall and the dynamics of blood
flow a comprehensive understanding of continuum mechanics is essential. This chapter
briefly summarizes the fundamental relations of the kinematics of large deformations,
it outlines the balance laws that govern both fluid, and solid mechanics and alludes to
the subtle differences which differentiate the Hookean, neo-Hookean and fluid dynamics
constitutive models. The similarity of the governing equations presented herein provides
the background that motivates the development of the time stepping algorithm for
a neo-Hookean solid. This class of algorithms has previously been applied to fluid
dynamics simulations. The material revised in this chapter closely follows Miiller &

Ferber (2008) and Bower (2009).

2.1 Introduction to continuum mechanics

All matter is inherently discontinuous. Regardless of its classification it may be decom-
posed and shown to comprise of distinct building blocks. Biological materials can be
broken down into cells, the cells into molecules and so on. Similarly, metals and com-
posites too can be deconstructed into a finite number of atoms, which in turn consist
of finite numbers of nucleons and electrons.

Many important physical phenomena involve matter on large length and time scales.
This is the case when considering fluid flows in the human body or the response of the
artery wall to pressure. In these cases matter is being considered at a length scale
much larger than the characteristic length of atomic spacings (1 -5 A) and similarly
at time scales significantly larger than phonons (1 — 10 fs). If the physical problem of
interest occurs at length and time scales of several orders of magnitude higher that these

limiting scales, it is possible to ignore these small-scale heterogeneities and to consider
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FIGURE 2.1: Arbitrary solid body B.

matter as a continuous medium. A continuous medium may be conceptually defined as
a finite amount of matter whose physical properties are independent of its actual size
or the time over which they are measured. In terms of computational simulations of
a continuous medium, the assumption of a continuum holds until the resolution of the
mesh reaches length scales on the order of the atomic spacing and the solver reaches
temporal resolution equivalent to phonon sizes. If one were able to resolve past this
point a sudden change in the physical properties would be observed.

Mathematical theories developed for continuous media, such as the Navier—Stokes
equations for fluids and the Hookean relations for solids, are phenomenological in the
sense that they capture the observed physics response without directly accounting for
the discrete structure of matter. The subsequent sections look at developing a mathe-

matical equation set for which modelling both solid and fluid continua is based.

2.2 Kinematics of deformation

Let us consider a continuous body (e.g. figure 2.1), whether it be a fluid or solid,
whose particles at a particular point in time occupy the region B C R3. This body at
this time, tg, may be considered to be in a certain reference placement. Each of the
material particles, P € B are defined by their position vectors X (P), which may be
described without loss of generality by their components { X1, X2, X3}, relative to an

orthonormal-based (E7, E3, E3) coordinate system centred at some convenient origin
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FIGURE 2.2: A representation of a deformation in the Lagrangian point of view. The defor-

mation occurs from original coordinates X to deformed coordinates x through the mapping

x = ¢ (X).

O, so that in this reference configuration
X = X;E,;.

This reference system will herein be referred to as the material reference frame. The
reference placement of the body is arbitrarily represented in figure 2.2.

Subject to an external load, the body B subsequently deforms over a period of
time 6¢. A deformation of the body B is a mapping ¢ : B — R3 that preserves the
distinctness of all points in the body; that is to say it is injective and one-to-one.

After an external force has caused a deformation to the material over time dt, the
body sits in the current or deformed position described mathematically by ¢ (B) and
shown in figure 2.3. Each material particle P € ¢ (B) is now defined by its new position
vector « (P). The components {z1,x2,23}p are relative to an orthonormal coordinate

system (ej, ez, e3) centred at o (in the deformed coordinates), in which,
I = T;€;.

This position is referred to as the spatial reference frame.

For an arbitrary point P the deformation mapping is defined as

7= ¢, (X). (2.1)
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FIGURE 2.3: A representation of a deformation in the Eulerian reference frame. In this case
the reference frame is in the original position z and the descriptions of the deformations must

be mapped back onto it using: X = ¢~ (z).

This deformation mapping describes for each component how the position vector changes
from material to spatial coordinates through this particular deformation over this given
time. Since by definition the mapping ¢ is one-to-one, the inverse of the deformation

map is well defined:
Xi=¢; ' (z). (2:2)

As indicated earlier the motion of the body B during a time interval [¢, t3] may be
described by the deformation mapping ¢ (x,t). In other words a motion is defined as a
single set of parametric mappings indexed by time, describing a path or trajectory for

all particles in a body,
z = ¢ (X).

In describing the motion of a particle the initial and final positions of the particle
may be used. Given the definitions of position described in equations 2.1 and 2.2
the spatial (or direct) motion and material (or inverse) motion of a particle must be
distinguished in order to describe its displacement.

A Lagrangian reference frame is used in the case of direct motion. The position
of material particles are followed from the fixed material position X along the path
of motion to their spatial or deformed position. If the coordinate system follows the

particle, this point of view is known as the Lagrangian reference frame. In contrast to
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this, the Eulerian reference frame is used if the inverse motion description is adopted.
The motion of physical particles are followed through the ambient material at fixed
spatial positions @. In this case the coordinate system is fixed in space and the material
particles are defined by their relative motion to this fixed point.

The displacement field, U, for a particle relates its current (deformed) position at
time, ¢, to its original (reference) position at time, tyg. Using a Lagrangian reference

frame the displacement field may be written
UX,t)=z(X,t)— X, (2.3)

where x (X, t) denotes the final deformed position of the particle (in material coordi-
nates) and X denotes its original position (in material coordinates). The Eulerian form

of the displacement field is given by,
u(x,t) =x— X (x,1), (2.4)

where @ denotes the final deformed position of the particle (in spatial coordinates)
and X (x,t) denotes its original position (in spatial coordinates). The two definitions
in equations 2.3 and 2.4 are equally valid in their respective reference frames and are

shown to be related through the inverse deformation mapping,
U(X,t)=U(¢ ' (z,t) =u(z,t). (2.5)

In formulating a mathematical model for continuum mechanics, definitions may also be
required for the velocity and acceleration of the body B. The instantaneous velocity of
a material point in the material (Lagrangian) reference frame is

99,
ot

V (X, t)= 20X, 1). (2.6)

The analogous velocity field in the Eulerian reference frame may be written

v(z,t) =V (p(X,t),t) = %‘f (7 (z,t),t) = (Voo ') (z,t), (2.7)

where () o () denotes the tensor composition.
Listing the instantaneous acceleration, A, of a material point at position X at time

t in Lagrangian coordinates,

oV
ot

AX, 1) =201, (2.8)
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and in the Eulerian reference frame, the acceleration, a, of the material occupying the

spatial location x at time t is,

%

alw,t) = A($(X,0),0) = S0 (07 (@,0),1) = (Ao g™ ) (w,0).  (29)

Given a smooth spatial velocity field v (x,t), the material time derivative of equa-

tion 2.9 simplifies to

a(x,t) = ?;t) (z,t)+v(x,t) Vo(z,t). (2.10)

The first term of equation 2.10 describes the local acceleration of the material incident
at point @, the second term describes a convective acceleration field. This form of the
acceleration term is particularly useful in fluid mechanics as the spatial acceleration can
be determined without knowing the motion of the particles explicitly, i.e. the position
vector is never determined.

The Eulerian descriptions will be used in solving the fluid mechanics equations due
to the advantages described earlier. In keeping with convention the model for solid
continua will be formulated using a Lagrangian reference frame.

Finally, a note on sequential deformations or transient deformations: If one chose
to consider a small strain approximation then the total deformation of a body subject
to subsequent deformations or analogously deformations over a series of time steps,
0t, is simply the sum of the deformation maps, or alternatively a superposition of the

displacement vector fields u,

¢ (X, 1) = ¢ (X, 1) + @1 (X, 1) = (o1 + b2) (X 1) (2.11)

This is only possible because under a small strain assumption the difference between
the spatial and material coordinate systems is negligible. When considering successive

large deformations, e.g. figure 2.4, the total or combined deformation of the body is

¢(X,t):¢2(¢1(X,t),t)E¢20¢1(X,t). (2'12)

The composition of deformation mappings has a multiplicative group structure in con-

trast with the additive structure in the superposition of small strain assumptions.

2.2.1 Kinematics of local deformations

Having defined the Lagrangian and Eulerian reference frames and their respective dis-

placements, velocities and accelerations; attention is now paid to more fully defining the
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FIGURE 2.4: Composition of deformations.
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FIGURE 2.5: Local deformation of an infinitesimal material Volume dV.

basis for each of these vector fields, i.e. the deformation map ¢. In measuring the local
deformation for a particular point, ¢;, the principle of local action is presumed valid.
This principle states that the local energy density of a material point, X, depends only
on the state of the infinitely small volume within which the point exists.

Let dVy C B define the infinitely small volume containing the point X in the
Lagrangian material reference frame and dV be the corresponding deformed volume
in the spatial coordinate. A neighbouring point must also be considered located at
X + dX but still located within the volume dVj. The location in the deformed spatial
volume of point X can be defined as x similarly, a point located an infinitesimally
small distance from the original point, X + dX, is located at  + dx in the spatial
coordinates (see figure 2.5).  These two states may be linked with the definition of a
deformation described in equation 2.1. This permits the components of 4+ dx to be

defined as,

While equation 2.13 fully describes the components of the deformation for the point

x + dx, it does not give any further insight into the form the deformation ¢. In fact
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the deformation may be non-linear and highly complex. In an effort to simplify the
description and determine a more tangible form of the deformation, a Taylor series
expansion of 2.13 at the position X is used:

0o;
X,

m‘i—i-dafz‘Z(ﬁi(X—i-dX,t):(bi(X,t)-i- (X,t)de+O<dX). (2.14)

Here, X is the 4t component of the position vector X in material coordinates, dX;
is similarly the change in the j** component of X, and O (dX) denotes the higher
order terms in the expansion. It is important to recognise that with sufficient spatial
resolution, i.e. if the volume dVy is sufficiently small as to make dX small, these
higher order terms will approach zero faster than d X and therefore these higher order
terms become negligible. By neglecting these terms equation 2.14 forms a linearised

differential relation which will have a unique solution,

zi +doy ~ i + g;’; (X,t)dX; = da; = gj; (X,t)dX;. (2.15)
The deformation gradient, F', is now defined as
Fyj (X, 1) = gj? (X,t) = dz; = Fy (X, 1) dX;, (2.16)
j
which may be written as
Fij (X,t) = j;y (2.17)

The deformation gradient is fundamental to non-linear continuum mechanics as it fully
describes the deformation mapping at time ¢ on an infinitesimal material region dX
of . The final form of the deformation gradient, equation 2.17, is a two-point ten-
sor which describes the change in the coordinate direction dz; relative to the original
coordinate system dX ;. In this way it fully describes the deformation mapping. If
the original position in three-dimensional space (X1, X2, X3) is considered, and the

deformed position at (z1,z2,z3) the expanded form of 2.17 is

dzy  dzr dzg
dX, dXo dX3

Fii (Xt)=| % % |- (2.18)

dzg  drz  dzs
dX, dX» dXz
The kinematics described in § 2.2 suggests that in terms of making use of this defor-

mation gradient map between initial and deformed coordinate space it may be more

prudent to describe the deformation gradient in terms of displacements u; over the time
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interval rather than original positions X; and final positions x;. To make this change,
equation 2.4 is substituted into the deformation gradient giving

duq + Xm duq + dXy d'U«l + dX3

dX; T dX; dX,; T dX, dXs T dx;

> _ dug | dXs dug | dXs dup , dX3
127 (X ’ t) dx, + dx, dXs + dX, dXs + dXs
dus |, dX3 dus , dX3 dug , dX3

dXq + dX; dXs + dXo dX3 + dXs

Given X = X; - F;, where FE; is an orthonormal base, the terms

dX;

ax, =%

where 6;; is the Kronecker delta function. Thus Fj; (X, t) may be simplified to

dug dug dug
L+ 4% aXs dXs
. — dugo duo dus
F;; (X,t) oE 14+ e e . (2.19)
dug dug duz
dXy dXo 1 + dXs

Finally, before using the deformation gradient to define strain, some properties of the
deformation gradient are considered. Firstly an infinitesimal material volume dVq of

finite extent X +d X is considered. This volume is given by the parallelepipedic product
AV, = (dX(1> X dX(2)> Ldx®)

where X are position vectors defining the extents of the volume. Similarly the cor-

responding volume may be defined in the deformed coordinate by,
av = (deV x dz?) - da®

= (FlidXi(l) X ngdXi(Q)) . ngdXi(B)

(2.20)
— det (F) (dX“) X dX<2>) AX®
= det (F') dVy.
Consequently the following relation holds
c?VVO =J(X,t), (2.21)
where
J(X,t) =det (F (X,t)) (2.22)

is the Jacobian of the deformation. Equation 2.21 states that the ratio of the volume in
the final and initial states is equal to the Jacobian and in turn the determinant of the
deformation gradient. This is an important property for continuum mechanics as the
enforcement of incompressibility requires the Jacobian J = 1. Because the deformation

mappings are one-to-one and injective, it follows that the Jacobian J (X ,t) > 1.
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2.3 Strain measures

Strain is a normalised measure of deformation, which represents the displacement of
particles in the deformed configuration relative to some reference length (this is nor-
mally a length in the undeformed configuration). Different measures of strain are used
throughout the literature depending on the amount of strain, the local deformation
and whether large (general) strain theory or small strain theory is being applied. The

engineering strain is defined as

. (-L
&= —, (2.23)

where £ is the new length of a fibre and L is the original length. This is the most
common definition for materials subject to very small deformations. It represents the
total deformation of the body to which forces are being applied. Materials that are
subject to large deformations such as rubbers, elastomers, and biological materials do
not exhibit a simple linear relationship between stress and strain; rather the strain may
vary locally through a material. This renders the engineering strain inapplicable. More
complex definitions of strain such as stretch, logarithmic strain, or the Green strain are
required.

The stretch ratio is a measure of normal strain of a differential line element. The
fact that it is a differential line element rather than the entire length of the body implies
that this is a localised strain measure. The stretch ratio may be defined in either the

deformed or undeformed configuration by

A= (2.24)

Sl

For the special case when strains are not localised the stretch ratio maybe related to

the engineering strain by

=y
=——=x-1 2.2
A (2.25)

Q]

This implies that the normal strain is zero so there is no deformation when the stretch
ratio is equal to unity.

Other commonly used strain measures include the true strain, also known as loga-
rithmic strain, Hencky strain or incremental strain. The true strain proves to be the

correct measure of strain when the deformation takes place in a series of increments.
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FIGURE 2.6: Differential cube of material with normal stresses o; and shear stresses 7;;

shown.

The true strain is defined as

e=In (ﬁ) =In()\)

=1In(1 + ) (2.26)
=e—ée*j2+e& /3.
Important to the analysis of rubber-like materials such as those found in the arterial
wall is the capacity to describe large deformations of the material. The correct strain

measure to use to describe the total strain over a body (not localised like the stretch

ratio) for a material undergoing large deformations is the Green strain. The Green

1 /02— L2 1,5

strain is defined as

Finally, the difference between normal strains and shear strains is defined. Consider
a three-dimensional differential material element that undergoes an arbitrary deforma-
tion as shown in figure 2.6. Normal strains are those which act perpendicular to an
element face. In a linearly elastic material they are the result of normal stresses and
result in dilations. Shear strains act in the plane along a face of the differential element.

While normal strains are measured by a dilation or change in length, shear strain may
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be conceptualised as the change in angle between two line elements (e.g. the edge of
the plane in the differential element) as a result of a given deformation. So referring
to figure 2.7, for a normal strain (an engineering strain acting in the same direction of
the applied force),

_ extension  length(ab) — length(AB)  OJu,

= = = 2.28
original length length(AB) ox’ (2:28)

where u, is the displacement in the z-direction. Defining a shear strain (v,,) is con-
siderably more complex. Consider a single plane of the differential element shown in
figure 2.6, which is redrawn in figure 2.7. The shear strain is defined as the change in

angle between the lines ﬁ and fﬁ , l.e.

'ny:a+ﬂ

where « is the resulting angle between the initial and deformed configurations of the line
segment E and [ is the resulting angle between the initial and deformed configurations
of the line segment 1@ . This is shown in figure 2.7; using a small angle approximation

it can be shown that the shear stress becomes

Ouy  Ouy

’Yacy:oﬁ'ﬁza‘i‘ oy

(2.29)

where the subscripts u, and u, represent the component of the displacement vector u

in the x and y directions, respectively.

2.3.1 Tensor representations of strain measures

For a multidimensional strain, the strain measures outlined in § 2.3, which describe
the strain in one dimension only cannot be relied upon. A two-point tensor is required
to fully describe the strain in an infinitesimal body. It is critical that all tensor strain
measures represent strain but vanish for rigid body rotations. This requirement imposes
a symmetry on the strain tensor. With this in mind the tensor representations of the
aforementioned strain measures are outlined. These include the right Cauchy—Green
tensor,

C=F'F=U"U=U? (2.30)
the left Cauchy—Green strain tensor
b=FFT, (2.31)

60



>

FIGURE 2.7: A shear deformation of a plane of the differential element.

and the Green—Lagrange strain tensor

E=_(F'F-1), (2.32)

N | =

where I is the identity matrix. The Green—Lagrange strain tensor has the additional
property of being zero for the case of zero deformation. Each of these strain tensors
are equally valid for large deformations and local strains: the choice of strain tensor
generally depends on the convention used in a particular branch of mechanics. The

logarithmic strain for incremental applications of strain is

1
Eloy = 5 1n(C). (2.33)

As an example the right Cauchy—Green strain tensor is expanded using the definition

of F' in equation 2.19

duy dua dusg duy duy duy
L+ dX; dX; dX; L+ dX; dXs dX3
— dug dug dug . dusg dusg dug
C dXo 1 + dXo dXo dX; 1 + dXo dX3 (234)
duy dus dusg dusg dus dus
dXs dX3 1+ dX3 dX; dXs L+ dXs

which after some expansion leaves a highly non-linear description of strain. To complete
this section note that under the assumption of small strains the non-linear terms in

equation 2.34 approach zero, leaving the infinitesimal strain tensor

(Vu+ Vul), (2.35)

N

g =
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where wu is the displacement vector. In matrix form this strain tensor is,

1 1
Erx Ezy Exz €xzx  3Vzy 3Vzz

e (2.36)

1 1
Cyx  Cyy Eyz| T |2Vyz  Eyy  Vyz

1 1
Ezx Ezy Ezz 5Yzx 372y €zz

This shows the components of the strain tensor. e represents the normal strains

described in § 2.3 and y;; the shear strains.

2.4 Stress measures

Stress is defined as a measure of the internal forces acting within a deformable body, B,
in response to some external loading. The external loading may be body forces such as
gravity or electric fields which act at a distance and affect the entire material body, or,
tractions which act as a result of contact with the body. Quantitatively the stress is the
average force acting per unit area of a surface within the body on which internal forces
act. The internal forces are distributed continuously throughout the body as a result of
the material deformation. If the surface is coincident with an external interface upon
which an external force is acting, this external force is equal to the “internal force” at
this surface. The stress in a solid body is critical to failure in aneurysms. As with any
solid the artery wall has a material strength represented by a yield stress. If the applied
loads lead to a deformation which causes an internal stress exceeding this yield stress,
permanent deformation of the material or even material rupture will occur.

By definition, the stress in deformable continua is a function of the strain. As such
there are multiple definitions of the stress tensor. Broadly there are two main categories
of stress, normal stresses and shear stresses. Normal forces are analogous to normal
strains, (see figure 2.6), a normal stress relates the force normal to the strain plane
which causes a deformation or displacement in the normal plane direction. Similarly,
shear stresses are related to shear strains. A shear stress is the component of the force
acting at a tangent to a strain plane which causes a shear strain. For a simple linearly
elastic material for which small strains are assumed, the normal stress is simply,

Oavg = %7 (2.37)
where 04,4 is the average normal stress across the surface, F,, is the normal force at the

surface and A is the area of the surface element. Similarly, for a simple linearly elastic
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material under small deformations the shear stress may be defined as

Tavg = %7 (2.38)
where 7,,4 is the average shear stress acting across the surface and F; is the component
of the force acting on the surface element which is acting at a tangent to the surface.
These two definitions of stress (equations 2.37 and 2.38) give the average or total stress
in a body, B. Generally, the composition and geometry of the material body causes
a non-uniform stress distribution. Consequently the stress at a given point differs for
each infinitesimal volume within the material. Cauchy developed a stress tensor, that
relates the internal force felt after the deformation at a material point to the area in
the deformed configuration. Under the small strain approximation this is easy as the
difference between the deformed and undeformed configurations is negligible. Cauchy’s
theory states that the stress at any point of a body may be described by nine stress
components, three orthogonal normal stresses and 6 orthogonal shear stresses: these

form the Cauchy stress tensor

011 012 013 Oxx Ozxy Oxz Ox Tazy Txz
O = |021 022 023 = |Oyx Oyy Oyz| = |Tyz Oy Tyz| - (239)
031 032 033 Ozx Ozy Ozz Tzx Tzy Oz

The similarities between equation 2.39 and equation 2.36 are evident. In each tensor,
the normal stresses and strains and the shear stresses and strains are coincident. Certain
invariants are associated with the stress tensor whose values do not depend upon the
coordinate system chosen or the area element upon which the stress tensor operates.
These are the three eigenvalues of the stress tensor, which are known as the principal
stresses.

While the Cauchy stress tensor is valid for small strains, when the initial and de-
formed configurations are essentially the same, it does not hold when deformations are
large. When a small strain approximation is not assumed, other measures of stress
are required that take into account the change in configuration, in this case the First
and Second Piola—Kirchhoff stress tensors must be used. The Piola—Kirchhoff tensors
account for the difference in configuration by expressing the stress relative to the unde-
formed or initial configuration rather than the deformed configuration like the Cauchy
stress. To preserve generality the Piola—Kirchhoff tensors are identical to the Cauchy

stress tensor for vanishingly small deformations.
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Whereas the Cauchy stress tensor, o, relates stresses in the deformed configuration,
the deformation gradient and strain tensors are described by relating the motion to the
undeformed configuration; thus not all tensors describing the state of the material are
in either the undeformed or deformed configuration. The First Piola-Kirchhoff stress
tensor, P, relates forces in the deformed configuration with areas in the undeformed
(“material”) configuration.

P=Jo F T (2.40)

where F' is the deformation gradient and J = det (F') is the Jacobian of the defor-
mation gradient. The Second Piola-Kirchhoff stress tensor, S, relates forces in the
undeformed configuration to areas in the undeformed configuration. The force in the
undeformed configuration is obtained via the deformation gradient mapping that pre-
serves the relationship between the force direction and the area normal in the deformed
configuration.

S=JF ' o FT (2.41)

The advantage the Second Piola—Kirchhoff has over the First is it remains constant
irrespective of material orientation, this allows it to deal with rigid body rotations.
One may easily transform from one stress tensor to the other using the deformation

gradient. The following relationships hold:
o=J'FSF",

and

2.5 Balance laws

The set of balance laws for mass, linear and angular momentum, energy and entropy,
form the fundamental laws of continuum mechanics. These laws form the state equa-
tions of matter, and in conjunction with a constitutive model for the stress, fully de-
scribe the continuous system. The conservation of these three primary physical quanti-
ties results in a set of equations that must be obeyed for all continua. The balance laws
are generally cast in integral form derived from the consideration of the conservation
of each property. The integral acts to assess that quantity over the entire body B. By
obeying these laws the physical quantity contained in the system may not be created

or destroyed. However, it may be transferred from one part of the system to another,
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or in the case of energy, from one form to another. Once formed, the global balance
equations may be used to develop a specific set of field equations that are valid for the
particular reference frame being used and the type of continua whether it be fluid or
solid. These field equations will prove valid at all points within the body and on its
boundary.

In the following sections the conservation laws for mass and momentum are out-
lined. The system is assumed to be at constant temperature and as such is not subject
to thermodynamic effects. This allows the omission from this discussion of the con-
servation of entropy. Furthermore the discussion is limited to incompressible continua.
With this assumption conservation of energy may be ignored as energy can only be
stored in the system as kinetic energy (not potential energy). This means the energy

is fully described by
_ 1
B(t)=, [ o de,
2
where E (t) is the total energy in the system at time ¢, and v is the velocity field. Given

linear momentum is loosely described as
p=m-v, (2.42)

where p is the linear momentum, m is the mass and v is the velocity field, the conserva-
tion of mass in conjunction with the conservation of momentum implies the conservation

of energy (Cheskidov et al. 2008).

2.5.1 Conservation of mass

In the undeformed configuration the mass density per unit undeformed volume is rep-
resented by pp (X,t). In the deformed configuration the corresponding mass density
per unit deformed volume is p (x,t). Consider an infinitesimal volume d'V, containing
the point X at time ¢y which is subject to a deformation to form the new volume dV
at time t. Given both volumes completely correspond due to the injective nature of the
deformation mapping, the total mass contained in each volume dVy and dV must be
the same, i.e.

dm = po (X,t)dVo = p(x,t)dV. (2.43)

Combining this relation with equation 2.21 gives the Lagrangian form of the mass
balance

po = Jp. (2.44)
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The Eulerian form of the mass balance is given by

dpo _ i

a  Pan

(2.45)

where v; are the velocity field components and z; is the position of the deformed con-
figuration.

When considering an incompressible continuum the density of the continuum re-
mains constant at all times. This means that the conservation of mass is equivalent
to a conservation of volume. Under these conditions the conservation of mass, some-
times referred to as the incompressibility condition, is mathematically described by the
divergence of the vector field.

V-v=0. (2.46)

Note: This holds true for both the divergence of the displacement field and the velocity

field as it is independent of time.
2.5.2 Conservation of momentum

The total linear momentum, p, of a body in the deformed configuration is

p= / poVdV, (2.47)
B

where V' denotes the material velocity, V denotes the material volume and pg the initial
material density.

In an isolated system (one in which external forces are absent) the total momentum
will be constant; this is implied by Newton’s first law of motion. Newton’s third law of
motion is the law of reciprocal actions, which dictates that the forces acting between
systems are equal in magnitude, but opposite in sign. This law is a product of the
conservation of momentum. The applied forces,F, may be broken down into body

forces B and tractions on the surface so that

F—/prdV—i—/poP-ndS, (2.48)
B 8

where 8 is the surface of the body B, P is the First Piola—Kirchhoff stress tensor and

n is the surface outward unit normal. By applying Newton’s second law of motion

p -
L _F
a7

and using equation 2.42, the force balance equations are
/ p()A dV = / poB dVv + /pQP -n dS, (2.49)
B B 8
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where A is the material acceleration defined in equation 2.8. As in the conservation
of mass discussion, the assumption of an incompressible continuum is enforced. Gauss’

divergence theorem is then used to express 2.49 as
/ (po(A—B)—V.P)dv=0. (2.50)
B

This balance equation applies for all subsets of the body B. Thus the integrand must

also equal zero, and therefore the Lagrangian form of the linear momentum balance is
poA =poB +V - P. (2.51)

In the Eulerian reference frame
pa=pb+V- o, (2.52)

where a is the Eulerian acceleration defined in equation 2.9, b are the body forces in

the Eulerian frame of reference and o is the Cauchy stress tensor.
2.5.3 General balance equations

In this section a Schottky system is considered. A Schottky system such as the one
depicted in figure 2.8 is a generic material domain €2 () which exchanges heat, power
and material with its surrounding environment. The Schottky system can be consid-
ered an extension of the previously defined body, B, of constant mass. By considering
the generic Schottky system a set of general balance equations may be derived. These
balance equations may be applied to any continua regardless of the principal quan-
tity (displacement for solids and velocity for fluids) that is specific to each continuum
category.

Let T (z,t) be the generic extensive quantity of the Schottky system. Again, it must
be reiterated that this may be a displacement, velocity or some other scalar quantity
which forms the basis for describing the deformation of that system. A change in T
may occur in three ways. YT may change due to addition from a source within the
volume, which will be denoted as HT. It may change change through a supply ZT
from outside the system, or via an outward flux, J T over the boundaries of the volume

Q. These are used to construct the generic form of a global balance equations
ar _d
At dt Jou

T T (2.53)
= — T xr n £r £r
_ /dQ(t)J (. 1) ds+/9(t) <H( BEDN ,t)) av,
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FIGURE 2.8: Generic Schottky system Q with boundary 0%, velocity ¥ and particle velocity

v.

where n is the unit vector normal to the boundary 02, S = 02 and pY are the quantity
Y (x,t) per unit volume.

If the entire body, B, is chosen as the system, €2, so no particle transfer occurs over
the boundary, 912, then the mass in the system is conserved and the general balance

equation 2.53 becomes
4 p(x,t)dV =0. (2.54)
dt Jog
This special case of the general balance equation is found by modelling the Schottky
system as closed and setting T =1, J¥ = HT = ZT = (. If alternately the system
is considered to be open and a constant volume which is moving through space (e.g.

figure 2.8) with velocity © and material particles move through the control volume with

speed v then
d

4 pT(m,t)d\?:—/ I (2,1)dS,

dQ(t)
where the flux of the quantity T is given by the relative velocity for the particles to the

system

JY =pv—1).

Note that if the domain 2 and the body B are fully coincident then v = ©. The
consideration of such a system becomes important later in this thesis for consideration
of an arbitrary Lagrangian—Fulerian reference frame.

Using the Reynolds transport theorem and Gauss’ divergence theorem the generic

local form of the balance equations is obtained (i.e. true at any material point not just
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over the entire domain),

2pT 8 T
. T
S TV @+ =[]+ (2.55)

To close this discussion the values of T, JT, HT and ET are outlined that give the
mass and momentum balance equations.

For the conservation of mass, the principal quantity is ¥ = 0, J' = (v —17), Hl =0
and Zl = 0, resulting in equation 2.54.

For the conservation of momentum, the principal quantity is

T

v,

where v is the particle velocity,

where o is the stress tensor in the relevant coordinate system,

I

0

and
v

D =rb
where b is any body forces being applied to the system in an Eulerian reference frame.

Substitution of these quantities into equation 2.55 yields

ov

N +V-(v?)=V- ol + pb. (2.56)

Expanding the V - v? term gives

ov -
p§+vT(V-v)+(’u-V)vT:V-UT+pb.
If an incompressible material is considered the incompressibility condition can be en-

forced by substituting equation 2.46 into the second term, giving

ov

pa—{—('v-V)vT:V-o'T—l—pI_) (2.57)

The left hand side of equation 2.57 is easily recognisable as the acceleration in the
Eulerian reference frame from equation 2.9. Equations 2.57 and 2.46 are the general

governing equations for an incompressible continuum in an Eulerian reference frame.
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Eulerian reference frames are typically used in fluid mechanics; conversely, solid me-
chanics typically use a Lagrangian reference frame. Rewriting equations 2.57 and 2.46
in a Lagrangian reference frame is as simple as changing the Eulerian description of the
acceleration to the Lagrangian and replacing body forces in the Eulerian frame with
those in the Lagrangian. In this case the governing equations for an incompressible

material in the Lagrangian reference frame are

ov =

—— =V -0 +pB,

P ot P (2.58)
V-V =0

The set of equations 2.46, 2.57 and 2.58 form the equations of state for a continuous
system. These relations must be obeyed both globally and locally within a continuous
body B. To form the set of governing equations for a particular type of continuum (e.g.
a fluid, elastic solid or hyperelastic solid), one needs only to determine which frame of
reference, Lagrangian or Eulerian, to solve the system in and to define the stress tensor
o. The definition of the stress tensor for a particular continuum is determined by its

constitutive equations: this is the subject of the next section.

2.6 Constitutive Equations

Section 2.2 developed the kinematic equations necessary to describe the motion and
deformation of a body. Section 2.5 used these relations to build the differential equations
of state that determine the time evolution of the primary vector fields. Combined these
mathematical constructs do not form a closed system of equations because they fail
to distinguish one material from another. This section outlines the constitutive laws
required to specify the material behaviour by forming a definition of the stress, o, in
terms of a strain measure in the material.

A constitutive model is a relation between two physical quantities that is specific
to a material or substance and approximates the response of that material to external
forces. Some constitutive models are derived from first principles but largely they are
phenomenological, being based on observations and generalizations. Given the material
dependence of the constitutive relations and the plethora of material categories that
exist this discussion is limited to an incompressible fluid, an elastic Hookean solid and
a hyperelastic neo-Hookean solid. At the conclusion of this section a relationship for
the stress, o, for each material type will be formed to complete the set of governing

equations.
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2.6.1 Strain energy density, W

The strain energy density function W (F') is a function that relates the energy formed
by a strain on the material, i.e. the result of a deformation, to the deformation gradient.
It is analogous to the work done on the material to cause the deformation. The work
done by a particular deformation described by the deformation gradient F along a
certain path I is .

2

Work = P(t)-F(t)dt (2.59)

t1
where P is the First Piola—Kirchhoff stress. A material is said to be elastic if the work

done to cause the deformation is path independent. All materials considered herein will
be considered elastic, isotropic and isothermal. The definition of elasticity implies for

any deformation path the strain energy density W is of the form
W (F) :/PdF. (2.60)
r

This definition clearly states the strain energy density is a function of the deformation
only. Equation 2.60 may be rearranged to give an expression for the First Piola—

Kirchhoff stress tensor,
oW
= oF;

To complete this section definitions of the Cauchy stress tensor and Second Piola-

Py (F) (F). (2.61)

Kirchhoff stress tensors are provided in terms of the strain energy function, as well as
some alternate identities based on the use of a strain measure rather than the defor-
mation gradient. Note, that these are completely analogous with equation 2.61. The

Cauchy stress tensor, o, is
1 ow
= _FT— 2.62

where J is the Jacobian of the deformation gradient. The Second Piola—Kirchhoff stress

tensor, S, is

ow oW ow
= 5FT ~ 9E 280’ (2.63)

where F is the Green—Lagrange strain tensor and C is the right Cauchy—Green tensor.

S

2.6.2 Hookean materials

A Hookean material is a special case of elastic isotropic materials which has a simple
linear relationship between stress and strain. If a uni-axial tensile test is conducted
on almost any material, and the stress levels are kept sufficiently low, the following

behaviour will be observed (Bower 2009):
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e The specimen deforms reversibly: If you remove the loads, the solid returns to its

original shape.

e The strain in the specimen depends only on the stress applied to it. It does not

depend on the rate of loading, or the history of loading.

e For most materials, the stress is a linear function of strain. Because the strains
are small, this is true whatever stress measure is adopted (Cauchy stress or nom-
inal stress), and is true whatever strain measure is adopted (Lagrange strain or

infinitesimal strain).

e For most, but not all, materials, the material has no characteristic orientation.
Thus, if you cut a tensile specimen out of a block of material, the stress-strain
curve will be independent of the orientation of the specimen relative to the block

of material. Such materials are said to be isotropic.

e If you heat a specimen of the material, increasing its temperature uniformly, it
will generally change its shape slightly. If the material is isotropic (no preferred
material orientation) and homogeneous, then the specimen will simply increase

in size, without shape change.

Such a material is referred to as a Hookean material, it obeys Hooke’s law,
o =<* Ce, (2.64)

where ¢ is the infinitesimal strain measure, o is the Cauchy stress and <*>C is a linear
four-point tensor relating the two. One of the major assumptions in Hooke’s law is that
the deformation is small, which is why the infinitesimal strain tensor and the Cauchy
stress are used. The deformed configuration is assumed to be the same (within error)

as the initial configuration. The strain energy density for the Hookean material is

W(e) = )\?L [tr (€)]? + puptr (e%), (2.65)

where tr (-) denotes the trace of a tensor, py, and Ay, are Lamé coefficients defined by

FEv E

AL = =— 2.
L= v a—20 "~ 20+ (2.66)
and F is a measure of the material stiffness, the Young’s modulus, and
v=2 (2.67)
€L
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is the Poisson ratio in which ¢; is the transverse component of strain and ey, is the
longitudinal component of strain.

By applying the differential in equation 2.62 the Cauchy stress can be determined.
The derivative of a function with respect to a tensor is conducted relative to the prin-
cipal invariants of the tensor, for a detailed description of this the reader is directed to

Synge et al. (1978). The Cauchy stress for a Hookean solid becomes,

o= Mtr(e) I +2uye, (2.68)

where I is the identity matrix. Using the definition of the infinitesimal strain tensor €

given in equation 2.35, the Cauchy stress tensor in extended form is,

o1 012 013
0= | 021 022 023 |- (2.69)

031 032 033

where
= (ot e ) 2
o= (G dx3> 2 jzz
ow = (Gt G2 ) o

2.70
du1 dUQ ( )
012 = 021 = UL divz dxl
du1 dU3
013 = 031 = UL de d$1
dug  dus

023 = 032 = ML (
With an expression for the Cauchy stress in terms of the primary variables, and
the displacement w, equation 2.69 can be substituted into equation 2.58 to form the
final form of the governing equations for a Hookean material. The Lagrangian reference
frame is used widely in solid mechanics, and in keeping with convention it is chosen here.
Note that the time derivative on the left hand side of 2.58 becomes a second derivative
because the primary variable is a displacement, not a velocity. The governing equation
for a Hookean material is
0*u

PoE = V- (Artr(e) T+ 2,LLL€T) + pB

(2.71)
L (u) 4 pB,
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where L (u) is a linear derivative operator, which contains a combination of derivatives.
Equation 2.71 fully describes the state of any point within a Hookean material subject to
an external load. A Hookean material does not require a conservation of mass equation
as this is inherent in the Hookean constitutive model through the Poisson ratio. A

Poisson ratio of v = 0.5 gives a completely incompressible material.

2.6.3 Neo-Hookean materials

Organic materials and rubber-like materials require a more sophisticated constitutive
model than the Hookean model. Features of the behaviour of a solid rubber or biological

material include (Bower 2009):

e The material is close to ideally elastic. i.e. (i) when deformed at constant temper-
ature or adiabatically, stress is a function only of current strain and independent
of history or rate of loading, (ii) the behaviour is reversible: no net work is done on
the solid when subjected to a closed cycle of strain under adiabatic or isothermal

conditions.

e The material strongly resists volume changes. The bulk modulus (the ratio of
volume change to hydrostatic component of stress) is comparable to that of metals

or covalently bonded solids;

e The material is very compliant in shear. Shear modulus is in the order of 107>

times that of most metals;

e The material is isotropic, its stress-strain response is independent of material

orientation.

e The shear modulus is temperature dependent. The material becomes stiffer as it

is heated, in sharp contrast to metals.

The structure of these materials allows very large strains, up to 400% in some
materials. Experimental stress testing has shown that they exhibit a non-linear stress-
strain relationship (Di Martino et al. 2001). Examples of this can be seen in figure 1.6.
The non-linearity of the material is due to both the complex structure of the material
absorbing stresses at different strain levels and the large deformations which it is un-

dertaking. The neo-Hookean material model captures the non-linearity which results
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from the large deformations experienced by the material. To assure incompressibility

the strain energy function takes the form,
wimeompressible — W (C) + P (det (F) — 1), (2.72)

where C' is the right Cauchy—Green strain tensor and P is a Lagrange multiplier intro-

duced to enforce the incompressibility condition,
det (F') = 1.

The physical interpretation of this pressure is a hydrostatic pressure in the solid. The
strain energy density for a neo-Hookean material is given by

pyincompressitie (¢ _ g (1€ = 3) + p(det (F) — 1), (2.73)

where G is the shear modulus of the material and I{ is the first invariant of the right
Cauchy—Green strain tensor. As a neo-Hookean material takes into account the finite
strains, the First Piola—Kirchhoff stress tensor is required to describe the relations. By
substituting equation 2.73 into equation 2.61 and again utilising tensor calculus, the

stress term for a neo-Hookean material is
P =FTpI + GV?u, (2.74)

Again, this relation is substituted into equation 2.58 to form the governing equations

for an incompressible neo-Hookean material in the Lagrangian reference frame,

62—“—Gv2u+F—TI+ B
P ~ pETPEs (2.75)
V-u=0.

Equation 2.75 holds many similarities to the Hookean governing equation 2.71. Both
are cast in the Lagrangian reference frame, both have displacement, u, as their primary
variable and as such a second-order temporal term for the right hand side acceleration
and both have a linear operator acting on w on the left hand side. For the neo-
Hookean material, L(-) = V2. The incompressible neo-Hookean also requires the
hydrostatic pressure term and the mass conservation term to enforce incompressibility

and to complete the set of equations.

2.6.4 Fluids

A fluid is a continuum that continually deforms under an applied shear stress. Fluids

are a subset of matter that include liquids, gases, plasmas and, to some extent, plastic
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solids. In this thesis, an incompressible Newtonian fluid is modelled. A Newtonian fluid
implies a linear relationship between shear stress and strain rate. The shear stress is
given by

T =p(Vo+ Vol), (2.76)

where 7 is the shear stress, v is the velocity field, and w is the fluid viscosity. This
is analogous to the time derivative of the infinitesimal strain tensor. The total stress

tensor for a fluid includes a pressure term to enforce incompressibility and is given by,
o =—PI+pu(Vo+ Vo) (2.77)

where P is the pressure.

Due to the large deformations common in fluid mechanics, an Eulerian reference
frame is used. By substituting the stress (equation 2.77) into the Eulerian form of the
generalised balance equation 2.57, the Navier—Stokes equations are recovered. These

govern time-dependent fluid flows,
g: +(v-V)v=-VP+vV?v + pB, (2.78)
V-v=0
where v is the kinematic viscosity, P is the total kinematic pressure and v is the velocity.
The %’t’ term is known as the inertial term and represents the local temporal acceleration
of the material.

The (v - V) v term is known as the advection term and describes a convective accel-
eration field. Convective acceleration is the effect of time-independent acceleration of
a fluid with respect to space. The convective acceleration of the flow field is a spatial
effect, one example is a fluid speeding up in a contracting nozzle.

The —V P term is known as the pressure term and accounts for the isotropic com-
ponents of stress arising from normal stresses. When modelled with the conservation
of mass equation 2.46, the pressure term enforces the incompressibility of the system.

The vV2u term is known as the diffusion term. This term arises from the anisotropic
terms in the stress tensor. Diffusion describes the spread of particles through random
motion from regions of higher velocity to regions of lower velocity.

Finally, the pB term accounts for any body forces experienced by the material.
Such forces may include gravity or the action of magnetic fields in charged fluids.

To close this section the similarity between the Navier—Stokes equations 2.78 and

the incompressible neo-Hookean governing equation 2.75 is considered. In each equation
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there is a pressure gradient term, a Laplacian diffusion term, a body forces term and
an inertial term. The only difference between these sets of equation is the convective
acceleration term which arises from the use of an Eulerian reference frame rather than
a Lagrangian reference frame. The similarity is hardly surprising given both materials
are continua. The similarity stimulates the notion of using a similar computational
method to solve for the mechanics of each kind of material. Such a method will be

outlined in chapter 4.

2.7 Closure

In this chapter, a review is presented describing how the governing equations for con-
tinuum mechanics are derived from first principles. For any continuum the change in a
body is fully described by a deformation mapping. This deformation mapping can be
used in either the Lagrangian or the Eulerian reference frame to describe displacements,
velocities, accelerations and measures of strain such as the Green-Lagrange strain ten-
sor. These form the fundamental basis through which a change in a system can be
described.

Considering a continuous body as part of a system that interacts with its surround-
ing environment the conservation of mass and conservation of momentum equations in
general form were derived. These equations form the equations of state for a continuous
system and describe how the system changes in time.

Finally a description of the constitutive models for various materials were formed
and substituted into the state equations to fully describe different continuous systems
such as the Hookean and neo-Hookean solids and the incompressible Navier—Stokes
equations for fluids.

Moving forward, the significance of the similarity in the Navier—Stokes and neo-
Hookean equations is recognised. Many of the terms are identical, which should permit
a similar numerical algorithm to be used to solve both the fluid and solid equations.
Perhaps the reason for the similarity comes down to the initial premise of this chapter,
i.e. both fluids and solids are examples of continua, for which the equations of state
are identical. Different constitutive models (and in turn a different primary variable,

displacement rather than velocity), is all that separates the two systems.
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Chapter 3

The arbitrary
Lagrangian—Eulerian method

This chapter serves to introduce the background mathematics of an Arbitrary Lagrangian—
Eulerian (ALE) method (§ 3.1-3.4), describe the different types of ALE implementations
that have previously been used (§ 3.5) and present the new implementation that has
been developed in this thesis (§ 3.5.1). The mathematical framework reviewed in this

chapter closely follows the works of both Hirt et al. (1974) and Donea et al. (2004).

3.1 Introduction

Large deformations of continua pose a significant problem for numerical simulations.
Lagrangian descriptions subject to large deformations suffer from element skew which
can reduce the accuracy of a solver. Eulerian reference frames are bound by tight time
step restrictions when modeling large deformations. Accurate numerical investigations
of fluid-structure interactions and non-linear solid mechanics often requires coping with
strong distortions of the continua while maintaining precise information of the free
surface or the fluid-structure interface.

In chapter 2 the two classical descriptions of motion, the Lagrangian and Eulerian,
were described. Algorithms of continuum mechanics usually make use of one of these
descriptions by solving the governing equations for the continuum with respect to a ref-
erence frame or mesh which is either Lagrangian or Eulerian (see, for instance Malvern
1969). The ALE description was developed in order to combine the advantages of each
classical frame of reference while minimizing their weaknesses.

Original developers included Noh (1963), Franck & Lazarus (1964), and Trulio
(1966), but perhaps the greatest contribution came from Hirt et al. (1974); this last
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FIGURE 3.1: Lagrangian description of motion. The Lagrangian reference frame (depicted

by the dashed mesh) is fixed to the deforming material and deforms with it.

contribution was reprinted in 1997. Subsequent to the development of the ALE method
was its implementation. It was adopted in finite element codes in work by Donea et al.
(1977), Belytschko & Kennedy (1978), Belytschko et al. (1980), and Hughes et al.
(1981). Since then it has been widely used in many applications, including free surface
flows, fluid-structure interactions, and non-linear solid mechanics.

In solid mechanics, the Lagrangian reference frame is most commonly used. La-
grangian algorithms force each individual node of the computational mesh to follow the
material particle it is associated with during the deformation (see Figure 3.1).  The
benefits of using a Lagrangian description is it allows convenient tracking of the free
surface; or in structural interactions, the interface between fluids and structures. While
accurate boundary tracking is critical to the accuracy of fluid-structure interactions in
aneurysms, the Lagrangian reference frame is not without its limitations. It is unable
to follow large distortions of the material as this results in high levels of skew in the
computational mesh. Numerically, skew introduces large errors into the solution. This
occurs because the accuracy of the mapping from a regular shaped standard domain
to the realistic element shape is compromised. The accuracy of the quadrature used
to solve the equations over the elemental domain rely on accurately placed quadrature
nodes. Skew reduces the accuracy of the solver and eventually leads to divergence
because of invalidated elements (singularities in the mapping functions) or extreme
Courant—Friedrichs-Lewy conditions.

In fluid dynamics, the Eulerian reference frame is almost exclusively used. Eulerian

algorithms separate the computational mesh from the continuum; the mesh is fixed in
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FIGURE 3.2: Eulerian description of motion. The Eulerian reference frame (depicted by the

dashed mesh) is fixed in space and the material deforms independently of the mesh.

space and the continuum is free to move with respect to the grid (see Figure 3.2).

The advantages of an Eulerian description is it can handle large deformations of
the continuum with ease, simply restricting the time step allows arbitrary deformations
to be computed. However, the Eulerian reference frame has its drawbacks: figure 3.3
shows the interface between two continuous media on a finite element mesh. When
mesh nodes are coincident with the interface the position of the interface is accurately
determined. However, when the interface lies within an element, the exact location of
the interface is not known, it is located with some uncertainty between grid points.

The ALE technique was developed as a compromise whereby the best features of
the Lagrangian and Eulerian descriptions are combined so that an algorithm can handle
large deformations while still maintaining accurate information about the location of
boundaries and interfaces. In the ALE description, the nodes of the computational
mesh are permitted to move with the continuum in the normal Lagrangian fashion
(allowing accurate interface information), or be held fixed in an Eulerian manner (to
handle large deformations). Later implementations allowed the mesh to be moved in
an arbitrary fashion which gives a continuous rezoning capability.

The freedom to move the computational mesh allows greater distortions of the
continuum to be modelled while accurately resolving free surfaces or material interfaces.
To demonstrate the advantages of an ALE formulation, Donea et al. (2004) offer the
example of using a coarse finite element mesh to model the detonation of an explosive
charge in an extremely strong cylindrical vessel partially filled with water. A comparison

is made between the mesh configuration after ¢ = 1.0 ms using an ALE description,
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FIGURE 3.3: The interface of a two continua solved on an Eulerian mesh. The location of

the interface cannot be accurately determined as it lies within an element.

and a purely Lagrangian description. Figure 3.4 demonstrates that a Lagrangian mesh
becomes highly degraded with skewed and inverted elements. The ALE mesh in contrast
preserves a regular mesh configuration of the charge-water interface.

In this chapter, a referential domain upon which the ALE technique is based is
introduced and the relevant changes to the governing equations are derived based on
the new frame of reference. A description of the ALE time stepping algorithm for fluid-
structure interactions is outlined in § 3.5, which will include a discussion of relevant

details for implementation.

3.2 Lagrangian and Eulerian viewpoints

The Lagrangian and Eulerian reference frames have been extensively covered in chap-
ter 2. Here a summary of the salient points is presented before moving on to a descrip-
tion of the kinematics of the ALE-referential coordinate system. The review presented

herein follows closely the work of Donea et al. (2004).

3.2.1 Lagrangian

A Lagrangian reference system denoted by Rx is fixed to the material as it deforms
(figure 3.2). The material points in the Lagrangian reference frame are denoted by
X while the spatial coordinates are denoted by x. The map ¢ denotes the injective
deformation mapping from the material coordinates X to the spatial coordinates x,
ie.,

z; = ¢ (X).
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(a) (b) (c)

F1GURE 3.4: An illustration of a detonation of an explosive charge in an extremely strong
cylindrical vessel partially filled with water. Lagrangian versus ALE descriptions are shown.
(a) shows the initial FE mesh; (b) shows the Lagrangian mesh at ¢ = 1 ms; and (c) shows
ALE mesh at ¢t = 1 ms. The ability of the ALE description to accommodate significant dis-
tortions of the computational mesh is shown. The Lagrangian approach suffers from a severe
degradation of the computational mesh, exhibiting highly skewed and inverted elements, in
contrast the ALE approach is able to maintain a quite regular mesh configuration of the
chargewater interface. Reproduce with the permission of Wiley and sons from Donea et al.
(2004).

The mapping ¢ is time dependent and describes the motion over an interval dt. As
such a velocity and acceleration may also be described. Let the material velocity be

defined as

oz
v(X,t) = R (3.1)

where |, signifies that the derivative is relative to a fixed material coordinate X.

Since the material points coincide with the same grid points during the whole mo-
tion, there are no convective effects in Lagrangian calculations and the total mate-
rial derivative reduces to a simple time derivative. The fact that each element of a
Lagrangian mesh always contains the same material particles represents a significant
advantage from the computational viewpoint, especially in cases such as modeling an
arterial wall where different layers have different mechanical properties.

When large material deformations do occur, Lagrangian algorithms undergo a loss in

accuracy due to excessive distortions of the computational mesh linked to the material.
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3.2.2 Eulerian

An Eulerian reference system denoted by R, is fixed in the spatial coordinates x and the
continuum moves with respect to the mesh. The conservation equations are formulated
in terms of the spatial coordinates & and time ¢t. The deformation ¢ in this case can

be interpreted as the inverse of the Lagrangian description,
Xi=¢i(x).

The Eulerian description of motion only involves variables which have instantaneous
significance in a fixed region of space. The material velocity v at a given mesh node
corresponds to the velocity of the material at the node at the given time, t. The velocity,
v, is consequently expressed with respect to the fixed spatial mesh and requires no
reference to an initial configuration of the material coordinates X, i.e. v = v (x,1).

As the material points convect past the Eulerian reference frame, convective effects
are required to describe the time derivative of the material vector field. Convective
effects appear because of the relative motion between the deforming material and the
computational grid. That is, both a spatial and temporal term appear in the time

derivative of the vector field.

3.3 ALE referential frame

Having reviewed the classical Lagrangian and Eulerian descriptions of motion, a clear
understanding of the advantages and disadvantages of each reference frame is under-
stood. Furthermore, the potential benefits of combining aspects of the classical de-
scriptions of motion are clear. In order to implement the ALE description of motion
we recognise that neither the material (Lagrangian) configuration (Rx) or the spatial
configuration (R,) provide a sufficiently general reference frame such that an applica-
tion is not shielded from their disadvantages. As such, Donea et al. (2004) describe a
third reference frame which is needed: the referential configuration R, , where x are the
reference coordinates which are introduced to identify the grid points. Figure 3.5 shows
these configurations and the injective transformations relating each of the domains. Let
the mappings ® and ¥ describe the maps from the referential coordinate system to
the material and spatial configurations respectively. The particle motion ¢ described

at length in § 2.2 may be expressed though the alternate path,
p=U"1od. (3.2)
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ALE Referentia
coordinates

FIGURE 3.5: The motion of the ALE computational mesh is independent of the motion of
the material. The maps ¢ represents the mapping from material to spatial coordinates, i.e. a
Lagrangian map whose inverse mapping is an Eulerian map, ¥ is a map from the referential
reference frame to the material configuration, and ® is a map from the referential reference

frame to the spatial coordinates.

Each of the mappings may be interpreted physically. As discussed, the map ¢
describes the motion of the particles with respect to the spatial coordinates. The map
& from the referential domain to the spatial domain can be understood as the motion
of the grid points in the spatial domain. The map ¥~! from the material configuration
to the referential domain can be interpreted as the particle movement relative to the
referential domain.

Just as in the Eulerian and the Lagrangian reference frames where the time deriva-
tive of the deformation ¢ gave rise to a velocity and acceleration, the time derivative
of the maps ® and ¥ also yield a velocity. From the time derivative of the map ® we

derive the velocity of the referential mesh in the spatial domain as the mesh velocity,

ox
ot

D=

(3.3)

X
Similarly, from the temporal derivative of the map ¥ !, we derive the particle velocity
in the referential domain,

w—al
AN

In equation 3.2 an alternate description of the deformation ¢ was described using

(3.4)

the referential coordinate system. That relation demonstrates the link between the
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coordinate systems which allows us to define a relationship between each of the velocities

described previously, i.e. v, v, and w. This relationship is

U:fJ—I——w'w, (3.5)
X

where g—; relates the spatial and referential coordinate system and is analogous to the

convective velocity terms in the governing equations in § 2.5. Note this arises from
the arbitrary motion of the referential coordinate system, its motion is not inextricably
linked to the motion of the material, nor is it fixed in space. This equation may be

rewritten as

cC:=v—-0=_— w, (3.6)

thus defining the convective velocity ¢ (that is, the relative velocity between the material
and the mesh). To clarify precisely, w is the particle velocity as seen from the referential
domain R,, whereas c is the particle velocity relative to the mesh as observed from the
spatial domain R,.

To emphasize the fact that the referential description of the ALE is a generalisation
of both the Lagrangian and Eulerian reference frames, it can be demonstrated that both
the Lagrangian and Eulerian descriptions of motion can be obtained from equation 3.2.
With the choice that ¥ = I (the identity matrix), the referential system is the material
coordinate system, i.e. X = x, which results in a Lagrangian description of motion. In
this instance the material and mesh velocities, (equations 3.1 and 3.3) coincide, and the
convective velocity ¢ vanishes, i.e. there are no convective terms in the conservation
laws (see § 2.5). Conversely, with the choice that ® = I, the referential system is
the spatial coordinate system, i.e. & = ), thus implying an Eulerian description. In
this case the mesh velocity © = 0 and the convective velocity ¢ is simply the material

velocity v.

3.4 Fundamental ALE equations

Fundamental to the balance equations developed in § 2.5 is an expression for the total

time derivative %. It was shown that in an Eulerian reference frame



which includes both a temporal derivative and a spatial convective derivative term. In

the Lagrangian reference frame the total derivative consists of only a time derivative,

D 9
E = a. (3-8)

To express the governing equations in an ALE framework an expression for the total

derivative is required.

3.4.1 Time derivatives

Before deriving the total derivative for the ALE framework (following the work in Donea
et al. (2004)), an expression for the total derivative expressed in equations 3.7 and 3.8
is required. Let us consider a physical scalar quantity f (x,t) in the spatial domain,
f*(x,t) in the referential domain, and f**(X,¢) in the material domain. The star
superscripts emphasize that the functional form of the scalar field is different in each
of the domains.

Figure 3.5 shows that the deformation can be described by the mapping ¢ and
so the spatial description f (x,t) of the scalar quantity and the material description,

(X, t), may be related as

[ =fog, (3.9)
with gradients expressed by
of** _of 0o
8(X,t) (th)_ (CC,t) (mvt) (X,t) (th)' (310)

The (-) o () operation implies a multiplicative structure of the relationship, as such a

matrix form of the relation in equation 3.10 can be written

ox
[W** af**}:{af W} ax " (3.11)
X ot oz ot || or 1 '

which after block manipulation yields
ox ) \ox)\ox)’

12
o1y (o0, (21, o
or )~ \ o ox) ¥

The second term in this expression is the well-known total derivative for an Eulerian

reference frame, in 3-space this equation is recast as

bf _of

Di —at%—v'Vf, (3.13)
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which is the generic expression for any field f of the total derivative in equation 3.7.
This may be interpreted in the usual way as the variation of a physical quantity for a
given particle at position X. This variation consists of the local variation in time plus
a convective term taking into account the relative motion between the material and
spatial reference frame. Of course, if a Lagrangian algorithm is employed the relative
velocity between the material and spatial domains is zero (i.e. v = 0), thus recovering
the Lagrangian expression for the total derivative (equation 3.8).

Having derived the total derivative for an Eulerian and Lagrangian reference frame,
the discussion is extended to include the ALE-referential configuration R,. As such the
mapping ¥~ is used to transform the referential description of the physical quantity

f* (x,t) to the material description f**(X,t¢) through
f*=frow L (3.14)

Just as before, through describing the gradient of this field in matrix form and applying

some block manipulation, the expressions
0x ) \ox 0X )’
= + . w7
ot ot ox
are obtained. The second of these two equations relates the material and referential

time derivatives. Again a convective term (%J: ) -w appears, with the velocity w being

(3.15)

the relative velocity between the material and the referential domain. Unfortunately
equation 3.15 requires the evaluation of the considered quantity in the referential do-
main. While possible, in implementation it is easier to work in either the material or
spatial domains. To facilitate this the expression for w developed in equation 3.4 is
used to remove any spatial derivatives in the referential domain in the total derivative.
The fundamental ALE relationship is finally cast as

af**
ot

_or

+c-Vf. (3.16)
X

This shows that the time derivative for a physical quantity f at a given position X is
its local derivative plus a convective term taking into account the relative velocity, ¢,
between the material and reference system. Note that this is equivalent to equation 3.13,
but instead of the spatial frame being the laboratory frame, the referential frame is the

laboratory, which may move independently of the deformation.
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The total derivative defined in this section for the ALE referential domain may now
be used to augment the governing equations for fluid and solid mechanics, thus allowing

an ALE implementation to be solved.

3.4.2 Conservation equations in the ALE formulation

The ALE differential form of the conservation equations for mass and momentum are
readily obtained from the corresponding Eulerian descriptions outlined in equations 2.57

and 2.46. These are rewritten here in their general form:

Dp
Mass: — = —pV - 3.17a
ass: o pV - v, ( )
Dp
Momentum: PDr = V.o +pb, (3.17b)

where b is the net body force, p is the material density, o is the stress tensor, and v
is the Eulerian velocity in the spatial domain. Equations 3.17a and 3.17b differ from
equations 2.57 and 2.46 only in that the general form of the total derivative is used on
the left hand side of the equation. This is done for generality purposes as the desired
form of the total derivative, Lagrangian (3.8), Eulerian (3.7) or ALE (3.16) may be
substituted as desired.

Substituting the ALE description of the total derivative given in equation 3.16 gives

the ALE form of the governing equations,

0
Mass: —| +c- Vp=—pV- v, (3.184a)
ot |,
ov
Momentum: p 5 +(c-V)v | =V-0+pb. (3.18b)
X

When comparing equation 3.18 to the Eulerian balance equation we note that the only
difference is that instead of the convective term on the LHS including the relative
velocity between the material and spatial reference frames v, it now uses the convective
velocity ¢ = v — © which is the relative velocity between the material and the mesh. Of
course in the Eulerian reference frame the velocity of the mesh v is zero so this relative
velocity is the velocity between the material and the spatial (fixed) configuration. This
shows that they are completely analogous.

It is also important to note that the right hand side of equation 3.18 is written in
classical Eulerian form. This reflects that these terms vary only spatially and so are

consistent regardless of the reference frame chosen.
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3.5 ALE algorithms for FSI

A combination of convention, numerical accuracy, efficiency and application, has led to
a raft of different fluid-structure interaction solvers. In most applications the fluid and
solid solver components are modelled using different techniques with different levels of
complexity. As an example, some solvers employ a full three-dimensional fluid dynamics
solver which is highly accurate, yet they may use a one-dimensional thin shell model
for wall dynamics (Formaggia et al. 2001). In addition to the choice of accuracy in each
component of the solver, solvers may also differ in the way they transfer information
across the physical interface. For the case of information transfer, the choices are
somewhat more limited as they must be transferred at the interface and at the beginning
or end of each time step (or sub-step). A summary of these coupling techniques may
be found in Giannopapa (2006), which is reproduced herein figure 3.6. Giannopapa
(2006) identified five methods of data transfer: non iterative over all time, iterative over
all time, non-iterative over time step, iterative over time step and the single solution
method. Figure 3.6 shows the information flow for each of these methods. Solid lines
represent solution solves in the fluid (F) or solid (S) solvers while dashed lines represent
an information transfer between the solvers. The core elements of each of these methods

are as follows:

e Method 1 is the most basic approach: non iterative over all time, the system
is completely uncoupled. Each equation of state (for fluid and solid) is solved
separately for the entire simulation time. Typically the fluid is solved first to
gather the time history of pressure along the boundary and this is specified as
a time varying boundary condition on the solid. There is no feedback in this

method at all.

e Method 2 is iterative over all time. This method is similar to the non-iterative
over all time approach in that information is not passed at each time step, it is
instead passed at the end of the solution. In the iterative over all time method,
the fluid solver is typically solved first and the pressure history that is determined
is then passed as a boundary condition to the solid. The motion of the solid in
response to the pressure boundary condition is then passed back to the fluid solver
as a time varying velocity boundary condition and the fluid is recomputed. In

this way, feedback between the solvers is achieved. This process is repeated until
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FIGURE 3.6: A summary of fluid-structure interaction coupling methods. The numbers in

italics are counters of the computational time step. The straight dashed arrow represents

the transfer of the denoted variable from one medium to the other. The curved dashed

arrow represents an iterative procedure. Reproduced with the permission of Giannopapa

from Giannopapa (2006).
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the solution reaches a predetermined convergence limit.

Method 3 is non-iterative over each time step. The boundary conditions are
passed between fluid and solid at the end of each individual time step. This has
advantages over Method 1 as it provides some feedback from the solid to the fluid

at regular intervals.

Method 3a non-iterative over each time step with equal time steps. This
means that at every time step the fluid and solid solvers pass boundary informa-

tion to each other.

Method 3b is identical to Method 3a except that it relaxes the requirement
that both the fluid and solid algorithms have the same time step. It is known
as the non-iterative over unequal time steps method. This variant is useful in
physical problems in which temporal changes occur much faster in one continuum.
A small downside in this case is the exchange of boundary data cannot occur after

every time step, it only occurs at the beginning and end of the largest time step.

Method 4 is iterative over each time step. This method is similar to Method 2
in that the fluid equations are solved in a continuous feedback loop with the
solid solver. However, instead of being iterated over the total time domain, the
iterations occur over each sub-step. Typically, the fluid solver is solved for a single
time step and the pressure solution becomes the boundary condition for the solid
equations. The solid equations are then solved for the same time step and the
solution is returned to the fluid as a velocity boundary condition. This process
is repeated until convergence is achieved at each time step. This is the most
highly coupled solution approach and as a result gives the most accurate answers.
However, it has an associated computational cost as the number of iterations
within each time step is high. Despite this, it may reach equivalent convergence
levels faster than Method 2 due to the smaller time scale over which change may

occur in each iteration.

Method 5 is a special kind of fluid-structure solver referred to as a single solution
solver. In this, the governing equations for fluids and solids are constructed to be
based on the same primary variables, which are solved simultaneously in the one
matrix solve. The two domains may be separated by a coefficient only. This is

highly efficient, though the method does have its drawbacks. These include the
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complexity of the fluid and solid mechanic models being used, the order of the
boundary conditions being shared, and depending on the time-stepping scheme

the stability of the solver.

For Methods 1, 3a and 3b, information is only passed one way from the fluid to the
solid solver. Physically, this does not make sense as the response of each component will
have an effect on the other. When a fluid-structure interaction is being solved, a fully
coupled algorithm (Method 2 or Method 4) should be used, in which a two-way transfer
of information occurs. Furthermore, data exchange should occur at small intervals to
get the most realistic simulation (Giannopapa 2006).

Fluid-structure interaction solvers can be categorised more broadly by their treat-
ment of time discretisation. According to the conventional terminology in the literature,
current numerical methods can be categorised as either partitioned, monolithic or single
solution (figure 3.7).

Partitioned methods are based on the separation of the fluid and the solid solu-
tion. Each equation set is solved alternately and the interface conditions are exchanged
asynchronously. Typically this kind of algorithm involves two separate methods for
solving the fluid and solid components, while merging the different software packages
is possible it is a complex task and the computational overhead of running such a code

is restrictive (Belytschko et al. 1986). The data transfer between the solvers usually
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requires a third programme, this also has its drawbacks in file-input/file-output bottle-
necks. Finally, partitioning can lead inherently to degradation of the conservation of

properties of the continua (fluid and structure).

Alternately coupled methods can be used, coupled methods offer advantageous in
terms of accuracy by ensuring both the fluid and solid are satisfied in a two-way fash-
ion at each time step. Despite the accuracy considerations, partitioned methods offer

computational efficiency benefits that may make them attractive in some applications.

Monolithic approaches use separate sets of equations (fluid and solid) and couple the
fluid and solid dynamics implicitly. They solve the dynamics of the interface through an
iterative procedure as suggested in Method 4 at each time step: examples of this include
Blom (1998) and Le Tallec & Mouro (2001). Van Brummelen et al. (2003) showed that
if an Osher scheme (an algorithm capable of capturing shocks in fluid dynamics) is used
for the fluid elements these methods are unconditionally stable. Despite the obvious
advantages over partitioned methods, the sub-step iterations can make them quite

computationally expensive.

Single solution methods have been proposed by Giannopapa (2006). The single
solution method treats both the fluid and solid as a single continuum, thus the whole
computational domain, both fluid and solid, is a single entity in a single grid. The
behaviour of this continuum is described by a single set of equations rather than a
pair of equations. There is no explicit exchange of information between the fluid and
solid interface as it is inherently implicit. As such the computational expense of the
sub-iterations can be avoided.

So far, fluid-structure interaction algorithms have been categorised based on the
level of coupling in the time stepping scheme. Along with this point of difference there
is also an enormous range of solvers that use different algorithms to solve either the
fluid or solid mechanic equations. Furthermore, in the context of aneurysm simulations
many investigations differ further on the types of boundary conditions applied to the
computational domain. For a full discussion of different methods in an aneurysm con-
text the reader is directed to chapter 1 and the reviews of Humphrey & Taylor (2008)
and Lasheras (2007).

The following sections in this chapter detail the newly developed coupling algorithm
used herein. This method is an implicit fully coupled iterative scheme with unequal

time steps: in essence it is a combination of Method 3b and Method 4 outlined in
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figure 3.6. To the authors knowledge, such a time stepping scheme for a fluid-structure
interaction has not been previously developed. The iterative nature of Method 4 over
each time step ensures convergence to the correct solution over each increment in time.
Iterating at each time step is more computationally efficient and accurate than doing so
over an entire time period as small changes in the solution are immediately accounted
for. The unequal time steps for the fluid and solid (Method 3b) are used to improve
the stability characteristics of the solver. The time marching scheme developed in this
thesis improves on the combination of these two methods by interpolating the boundary
condition values for each fluid sub-step in order to continuously pass information be-
tween the two solvers and to remove step changes in the solution which may introduce

numerical errors.

3.5.1 ALE time marching algorithm

The arbitrary Lagrangian—FEulerian time stepping scheme developed in this thesis is a
new formulation. The time marching scheme uses a monolithic approach. An existing
in-house fluid dynamics package, Viper, which solves the time dependent incompressible
Navier—Stokes equations is used as a basis for the new solver. A spectral-element solid
mechanics solver for neo-Hookean materials was developed and fully integrated into
the existing Viper code. Details of the spectral discretisation schemes and the time
stepping algorithm for each of these individual solvers can be found in chapter 4. This
section focuses on the implementation of the arbitrary Lagrangian—Eulerian algorithm,
in particular the coupling of the two components and the impact it has on the governing

equations.

3.5.1.1 Coupling: The information flow

Broadly, the algorithm is inspired by the method used by Bodard & Deville (2006). It
is an iterative over each time step method, described schematically in figure 3.8. In

their algorithm, the following steps are completed:

Step 1: Initialise the fluid and solid solvers. Based on the initial positions of the
solvers, the matrices for each solver are created. At this stage the referential
domain is the initial configuration so the mesh has no velocity (v = 0) associated
with it. As such, the fluid solver is simply a classical Eulerian solver, and the

solid a Lagrangian solver.
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FIGURE 3.8: The ALE algorithm inspired by Bodard & Deville (2006). This time stepping
algorithm is used for simulations where the motion of the solid body is well defined such as

the forced oscillation of a cylinder.

Step 2: Calculate the first fluid time step. This is done based on the fluid dynamics
boundary conditions only. The walls of the domain are assumed to be rigid with
a no-slip wall boundary condition. This is a purely Eulerian solve. It is also
implicit so the resulting fields at the completion of this step are the field values

corresponding to the next time step.

Step 3: Complete a solid mechanics solve using as boundary conditions the pressure

determined in the previous pressure solve. As the solid solver is also implicit the
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pressure that is passed by the fluid solver is the pressure at the end of the solid

time step.

Step 4: Having solved the solid mechanics equation the position of the fluid and solid
meshes must be updated. This is known as the mesh regularisation phase: the
strategy for this is discussed in § 3.5.1.2. Vectors holding the mesh position are
updated. The movement of the mesh also has associated with it a mesh velocity

©: this velocity is calculated and made available to the fluid solver.

Step 5: At this stage, because the mesh has moved, the Jacobians and matrix oper-

ators must be reinitialised based on the new mesh position.

Step 6: Finally, the fluid is re-updated using the new mesh position and mesh velocity,
i.e. the fluid is solved for using an ALE referential domain. The velocity of the
wall determined in Step 4 is used as a velocity boundary condition in the fluid

step.

Step 7: Update the time step. If the new pressure, velocity and mesh position are
within a predetermined convergence criterion update the time to the next time

step. If not, iterate by repeating Steps 3 to 6.

In this thesis a variation on this algorithm is proposed. Figure 3.9 shows schemat-
ically the new algorithm, it follows a similar stepping and iterative procedure as just
described except a different-sized time step is used for the fluid and solid in order to
improve stability. It was found for fluid-structure interactions where there was direct
feedback between fluid and solid, there was some stability concerns when using the
fluid and solid time stepping algorithms outlined in chapter 4. It was found for some
problems that a larger time step for the solid domain delivered a more stable algorithm.
Information exchange still occurs at each time step and each sub-step in at least one
direction. To illustrate how this solver works, consider a solid time step that is five
times bigger than the fluid time step, Aty = 5 x Aty. Let it also be assumed that
the fluid time step Aty = 1. The following time step headings describe what steps are
being completed when the fluid solver is at £y and the solid solver is at ¢;. The solution

starts at t; = t; = 0 and one complete step is completed at ty = t5 = 5.

ty =0t; =0 The first time through, the algorithm outlined in Bodard & Deville

(2006) (figure 3.8) is used until convergence is reached. Pressures are passed to
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FIGURE 3.9: Schematic representation of information flow in the fluid-structure interaction
solver developed in this thesis. It consists of different fluid and solid time step to allow better
stability of the algorithm. At each solid step the solid and mesh positions are extrapolated
to the next time step. Intermediate values are interpolated and passed to the fluid at each
fluid time step. When fluid and solid time steps occur together a correction is made to the

extrapolated value.

the solid; position and velocities are passed back to the fluid, and the referential
mesh positions (and velocities) are updated within each iteration. To complete
an iterative solve of the fluid dynamic equations given in chapter 4, the updated
mesh velocity at the boundary and fluid velocity in the domain is used as the new
guess of the velocity field in the first sub-step. The previous time history remains

the same.

ty =1—4t;, =0 At this point the previous history of solid movement is used to
extrapolate forward in time to the end of the next solid time step; this gives a
prediction of the solid displacement at the end of the time next solid time step.
This is done using a third order accurate polynomial extrapolation. Once the
prediction has been made, a third order accurate Aitken’s interpolation scheme
is used to determine what the solid position and velocity will be at the next fluid
time step (which is between the current time step and the next solid step). These
predicted velocities and positions are used to reposition the mesh and define the
mesh velocity, ©, for the next fluid time step. This extrapolation/interpolation
routine replaces the solid stepping algorithm for these intermediate fluid time

steps. Note: mesh regularization and reforming the Jacobians must still occur
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based on the interpolated values.

The fluid solver is then computed for the next fluid time step using the extrapo-
lated /interpolated values for the mesh velocity in the ALE equations and as the

appropriate boundary conditions.

Next the time is progressed by one fluid time step and the interpolation is com-
pleted once more to determine the mesh velocity, position, and boundary con-
ditions for the fluid region at the end of the next time step. The fluid is again
updated as per the previous step. This is continued a total of five times until the
point when the fluid and the solid solvers are next evaluating for the same time.
Note: For these intermediate fluid time steps the pressure is not passed back to

the solid solver.

ty =5t; =5 Whent, =t once more, the time step is updated in the same manner
as the algorithm of figure 3.8 using an iterative procedure. This corrects any
discrepancy between the extrapolated value and the real value.

For cases where the deformation of the solid body is known, e.g. a forced oscillation
of a cylinder, the different time stepping is not required and the algorithm shown in
figure 3.8 is used. This is simply achieved in the algorithm by setting the different
time steps to the same size. Despite not passing the pressure back to the solid for
reconsideration at every time step (this is only done when t¢ = ¢) the use of a consistent
third-order accurate polynomial extrapolation is sufficient to accurately predict the
updated positions with a high degree of accuracy. The results presented in chapter 6

will demonstrate that the scale of the error introduced by this technique is small.
3.5.1.2 Mesh movement scheme

The advantage of using an arbitrary Lagrangian—Eulerian technique is the ability to
have a moving reference frame. The movement of this referential frame is arbitrary.
The type of problem being looked at has some impact on how the mesh will be moved,
the desire to conserve the accuracy of a mesh is another consideration.

In the context of a fluid-structure interaction, the location of the interface is paramount
to the accuracy of the simulation. As such, the mesh is chosen to move with the solid
phase in a Lagrangian manner in order to accurately map out the location of the inter-
face. This will in turn change the position of the fluid mesh. In this way, the problem

being investigated has driven the way in which the mesh will move: it must follow the
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FiGURE 3.10: Flow through a flexible pipe undergoing a large localised dilation. Sub-plot
(a) shows the case when only the boundary nodes are moved; this leads to large distortion
of elements along the wall and under resolution. Sub-plot (b) shows the case of using the
Hookean solid model for the mesh regularisation scheme, which leads to conservation of the

mesh quality.

interface. However, this only defines the movement of the boundary of the fluid region,
not the interior mesh nodes.

For accuracy purposes it is advantageous to maintain equal, non-deformed mesh
elements. If for example, flow through a distensible pipe was being simulated and the
pipe underwent a large dilation, simply moving the mesh nodes on the boundary inter-
face would cause large stretching of the elements nearest the wall (see figure 3.10(a))
resulting in undesirable aspect ratios and reduced resolution in this area. If instead a
technique to cause all of the nodes in the mesh to move is used, such that they each
absorb some of the dilation, the accuracy of the elements can be conserved. An example
of this type of mesh regularization can be seen in figure 3.10(b).

In this implementation the mesh regularisation scheme used considers the fluid mesh
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region as a solid body. Similar strategies have been used in Winslow (1963); Benson
(1989) and Le Tallec & Martin (1996), this strategy is a natural choice in fluid-structure
interactions in which a solid mechanics code already exists and is readily adaptable to
the mesh regularization. The displacement of the interface is applied as the boundary
conditions. All other boundaries are taken to be fixed. The mesh region is modelled as

a steady-state Hookean solid. This requires the solution of the elliptic problem
Vo =0, (3.19)

where o is the Cauchy stress. Details of how the solver handles Hookean materials can
be found in chapter 4. By using a high material stiffness in the Cauchy stress tensor
(in equation 3.19), an even distribution of the dilation throughout the mesh region is

ensured, which allows the relative spacing of mesh nodes to be conserved.

3.6 Closure

The kinematic relations for the arbitrary Lagrangian—Eulerian formulation are not too
dissimilar from those of an Eulerian formulation. In fact the Arbitrary Lagrangian—
Eulerian formulation represents a generalisation of both the classical domains. The
referential domain introduced for the Arbitrary Lagrangian—FEulerian formulation allows
continuous rezoning capability as the laboratory frame moves independently of the
material. Careful choice of the mesh regularisation scheme, which may be interpreted
as the motion of the laboratory frame, allows for accurate knowledge of the interface
while allowing large deformations of the fluid region and a changing geometry of the
fluid domain. Such capability is not possible with either classical reference frame.

The governing equations for the ALE formulation are only changed in the total
derivative term. The convective velocity is used in the convective acceleration term in
place of the velocity in the spatial coordinates. The right hand side of the governing
equation 3.18 is written in classical Eulerian form. This is because these terms vary
only spatially and so are consistent regardless of the reference frame chosen.

A monolithic solver is used with a modified iterative over unequal time step coupling
routine. The unequal time stepping algorithm ensures information is updated in the
fluid solver at each fluid time step using an extrapolation/interpolation method on
intermediate time steps and a full iterative feedback method during time steps when

both the fluid and the solid are being updated. To preserve the relative spacing of mesh
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nodes in the fluid region as the domain size changes, a Hookean solid model is used to
regulate the mesh movement.

The arbitrary Lagrangian—FEulerian time stepping scheme developed in this thesis
allows the coupling of the fluid and solid mechanics solvers. This enables the solver
to handle the complex fluid-structure interactions found in arterial flows. This work is
integral to aim 1 defined in chapter 1. While the mathematical background of the ALE
technique is well defined, this algorithm represents a novel contribution to the field with
its new information transfer scheme. Having defined the full set of governing equations
for solids and fluids and outlining the time stepping algorithm for the ALE method the
following chapter clarifies the details of the temporal and spatial discretisation of each

of the individual solver components.

102



Chapter 4

Numerical methods for fluids and
solids

Presented in this chapter are the numerical methods used to solve the governing fluid
and solid dynamics equations. The mathematical framework relating to the spectral
element method described herein follows closely the work of Karniadakis & Sherwin
(1999). While the temporal discretisation of the Navier-Stokes equations in § 4.2.2 is
based on Karniadakis et al. (1991), here a new method is developed for the temporal

discretisation of the neo-Hookean and Hookean governing equations.

4.1 Introduction

A variety of techniques are available to discretise a set of governing mathematical
equations both in space and time. Within the class of mesh-based methods, where the
domain is discretised into a grid of elements, three discretisation paradigms are popular:
the Finite Element Method, Finite Difference Method, and Finite Volume Method.
The Finite Element Method was developed primarily to solve problems in the area of
structural mechanics. The Finite Volume Method, which was developed from the Finite
Difference Method, has been applied with great success in fluid mechanics and heat
transfer applications. The Spectral Element Method (SEM) is a highly efficient subset
of the Finite Element Method, that has recently been applied largely to Computational
Fluid Dynamics (CFD) problems with limited use in structural mechanics. Spectral
element methods use adaptive high-order basis functions to discretise the spatial domain
which provides them with exponential convergence properties compared with the linear
or low order polynomial basis functions used in traditional finite element methods.

In chapter 3 the governing equations for fluid flows (the Navier-Stokes equations)

103



and those of a neo-Hookean hyperelastic solid were shown to contain very similar terms.
The similarity of the two equation sets suggests a similar discretisation scheme could
reasonably be adapted for both the solid and fluid domains. Such an approach would
have some obvious efficiency benefits when it comes to coupling a fluid-solid solver.
The emerging need to simulate multi-physics processes such as Fluid Structure Inter-
actions (FSI) that are governed by a number of interactive physical phenomena, drives
the construction of integrated solvers that improve efficiency by reducing input and
output (Giannopapa 2006). This chapter provides both the time stepping algorithm
and outlines the existing mathematical framework that underpins the algorithm used
to solve the fluid and solid domains described in chapter 3.

This chapter will present the algorithm for the solution of fluid and solid mechanic
problems. For fluid mechanics the time dependent incompressible Navier—Stokes equa-

tions are solved for Newtonian fluids, comprising the momentum equation

% +(v-V)v=-VP + V3, (4.1)

where v is the velocity vector v = (v1, va,v3) = (%’ %, d(%) where u; are components

of the displacement vector, P is the kinematic pressure, v is the kinematic viscosity

and ¢ is time. The incompressibility condition requires
V-v=0. (4.2)
For solid mechanics problems a similar momentum equation is solved,
7Y b+ V.o, (4.3)

where u = (u1, u2, us3) is the displacement vector, p is the solid material density, o is a
stress tensor, and b are the body forces. The stress tensor o will take a different form
depending on the constitutive model being used, for further discussion on this refer to
chapter 3.

Equations 4.1 and 4.3 must be discretised in both space and time. Section 4.2
describes the numerical algorithm used to evolve the solution in time. Sections 4.3 to
4.5 will then outline the mathematical framework used by the numerical algorithm to
spatially discretise the governing partial differential equations and recast them into a
set of ordinary differential equations and subsequently algebraic expressions that may

be efficiently solved numerically.
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4.2 Time stepping algorithm

In continuum mechanics (fluid or solid) the governing equations are formed under the
basis of a series of conservation laws. These are commonly referred to as the con-
servation of mass, momentum and energy. Their conservative nature implies a time
dependent aspect such that as time progresses, changes in the quantity in question can
only occur in balance with fluxes in and out of the domain and subject to any sources
or sinks inside the domain (see chapter 3).

Given the time dependent nature of the continuum mechanics governing equations
the presence of the time derivative is recognised in both the fluid and solid governing
equations (4.1 and 4.3) respectively. This implies a dynamic system in which boundary
conditions may be transient and an environment in which the conserved quantities may
propagate through the domain. This captures important physics; indeed neglecting
this term implies that mass, momentum and energy transfer throughout the domain
instantaneously, which in many systems is physically inaccurate. This is particularly
important in fluid dynamics in which convective transfer is the principal mechanism of
energy and mass transfer.

Unlike many fluid-structure interaction solvers, the algorithm developed in this
project includes a time stepping scheme for both the fluid and the solid, thus accounting
for the inertial term. The following section details the time stepping scheme employed
for each continuum.

Many different formulations have been developed to handle the temporal discretisa-
tion of conservative equations. For a detailed description of fluid dynamic formulations
see Quartapelle (1993), Gunzburger et al. (1993), and Karniadakis & Sherwin (1999);
and in solid mechanics Glowinski & Tallec (1989), and Glowinski (2008). The time
stepping algorithm described herein applies an operator-splitting approach described
by Karniadakis et al. (1991) for incompressible fluid flows. This scheme is then adapted

for the temporal discretisation of the solid domain equations.

4.2.1 Operator splitting schemes

To evolve the Navier—Stokes equations forward in time, Karniadakis et al. (1991) pro-
pose a stiffly-stable operator-splitting scheme for high-order accurate Navier—Stokes
solvers. This high-order stiffly-stable splitting algorithm builds directly on Adams type

operator-splitting schemes for fluid dynamics also described in Karniadakis et al. (1991).
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These stiffly-stable schemes have since been recognised as a class of backwards-multistep
schemes by Blackburn & Sherwin (2004). The stiffly-stable algorithm was chosen for
its improved stability characteristics at high-orders of accuracy.

Operator splitting schemes (Yanenko 1971) were first applied to Navier—Stokes prob-
lems by Issa (1986). The basis of generic splitting schemes may be explained by con-

sidering a general equation of the form

ou .
i L (u) (4.4)

where L is a linear operator that advances the vector u in time (Press 2007). Assuming

the operator can be written as a linear sum of m pieces,

Lu=Liu+Lou+... + imu, (4.5)
the solution that eventually updates the variable w to the next time step (n+ 1) can
be derived simply by summing the contribution of each L, operating on u separately

(Press 2007).

4.2.2 Time evolution of the Navier—Stokes equations

In applying the operator-splitting scheme to the Navier—Stokes equations (4.1) the type
of differencing scheme is first chosen for the temporal derivative term. Blackburn &
Sherwin (2004) identified the stiffly-stable scheme of Karniadakis et al. (1991) as a
class of backward multi-step methods which employ backward differencing to evolve
the solution in time.

Backward differencing evaluates the time derivative at the next time step (n + 1)
using a weighted sum of values at previous time steps, the number of previous time
steps required and the value of the weights are determined by the level of accuracy
required of the approximation. Weights (and hence the combination of previous time
steps) are determined through combining Taylor series expansions at antecedent time
steps in order to have the leading error term of the Taylor series at the desired accuracy
level for the solution (Ames 1965). It is noted that increasing the order of the solver
does affect its stability.

For the incompressible Navier—Stokes equations, Karniadakis et al. (1991) propose
an implicit three-step (m = 3) time splitting scheme

ov 9
a:—('MV)v—VP—FVVU, (4.6)
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becomes S
b= Yk agv" ! S

qzt D BN (v"79), (4.7)
q=0
v— D

=-vprt! 4.8
At Y < )

n+l _ A
% = Vv2vn+1, (49)
where © and  are intermediate velocity fields, N = que:BI Bqgl(v-V)v]" 7 is the

non-linear advection operator and J, and J; represents the order of integration: for
third-order accuracy in time J, = J; = 3. We note here that this is analogous to the

operator-splitting form of equation 4.5, i.e.

Je—1
(v-V)v=Li=>Y BN (v, (4.10)
q=0
VP =Ly, =-VP"t (4.11)
vV = Ly = vV (4.12)

by back substitution of each sub-step the Navier-Stokes equations (equation 4.6) are
recovered with a backwards differencing approximation to the inertial term and a stiffly-
stable polynomial approximation of the advection term.

The first sub-step, equation 4.7, involves an explicit solve for the advection term.
The contribution of the non-linear advection term at the (n + 1)St time step is approx-
imated using an appropriate-order polynomial extrapolation. In this implementation,
third-order accuracy is achieved using J. = 3 and the coefficients 5y = 3,51 = —3 and
B2 = 1, where 3, applies to the (n — q)th time-step. To maintain third-order temporal
accuracy the coefficients for the inertial terms are k = 11/6, 9 = 3,017 = —3/2 and
ap = 1/3, where again «, applies to the (n — q)th time-step (Karniadakis & Sherwin
1999).

In the second sub-step, equation 4.8, the intermediate velocity field v is corrected
to account for the contribution of the pressure term; finding the second intermediate
velocity field ©. This first requires evaluation of the kinematic pressure, P. In this
sub-step the incompressibility condition, V- v = 0, is also enforced. The first step is to

take the divergence of both sides of equation 4.8,

. %}_'{} _ s n+1
\Y (At )_v (-VvPrH), (4.13)
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which becomes

L ) (4.14)

and by enforcing the incompressibility constraint on the second intermediate velocity
field 15, this becomes a Poisson problem

V-

2 pn+l1 __
P = .
v At

(4.15)

The intermediate velocity field © is calculated during the first sub-step, so the right-
hand side of equation 4.15 is known and this equation can be solved as a Poisson
equation for the kinematic pressure P at time ¢"*1. Once found, the kinematic pressure
P can be substituted back into equation 4.8 to find the second intermediate velocity
field, ©. The Galerkin formulation (described in detail in § 4.3.2) provides a course
for implementing the appropriate high-order Neumann pressure boundary conditions
imposed on homogenous boundaries. The pressure boundary condition imposed at the

(n + 1) time step written in rotational form is

oprtt ool gy e Jem1 e
on - ot +v Z; By (V X w) 7+ ZO BqIN (v q) -n, (4.16)
B q= q=

where n is the unit normal vector, and w is the vorticity. This is simply the Navier—
Stokes equations rearranged in terms of P in the direction of the unit normal vector
on homogenous boundaries. To ensure it provides the boundary conditions at the next
time step (n + 1) the non-linear advection term is again determined using a polyno-
mial extrapolation method based on past velocity fields v~ ¢, a third-order accurate
approximation of this term, J. = 3 is maintained. However, for the pressure term a
second-order integration J, = 2 is used. Karniadakis et al. (1991) show that using a
rotational formulation with a second-order extrapolation Jj, = 2, maintains third-order
accuracy and improves stability conditions. The §; coefficients for J, = 2 are Sy = 2
and 1 = —1 (Karniadakis et al. 1991).

The pressure boundary condition is written in rotational form to reinforce the in-
compressibility condition on the boundaries. This allows the time step to directly
control the divergence at the boundary (Petersson 2001, see) and to preserve the el-
lipticity of the Laplacian diffusion term. Leriche & Labrosse (2001) demonstrate this
characteristic and the importance of maintaining ellipticity in preserving the stability

of the algorithm.
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The third sub-step, equation 4.9, involves solving a Helmholtz equation for the final
velocity field v" 1. The intermediate velocity field, 'f), is known and provides contribu-
tions from the pressure and advection terms as well as the enforced incompressibility
condition. Velocity boundary conditions are prescribed during this sub-step. Dirich-
let boundary conditions are strongly enforced in the familiar fashion, while again the
Galerkin formulation allows Neumann velocity boundary conditions to be imposed on

the velocity field with ease.

4.2.3 Time evolution of the solid mechanics equations

The underlying physics that governs both fluid and solid mechanics is summarised
by the conservation of mass and momentum. These are the basis for the Navier—
Stokes equations (4.1) and also the solid mechanics equations (4.3). Given this common
basis many analogous terms can be found in each set of equations. For instance, both
equations have an inertial term of the same form. For the Hookean solid governing
equations the Cauchy stress term (at least in terms of a computational implementation)
can be seen to be analogous to the diffusion term in the Navier—Stokes equations. For
a neo-Hookean solid the Cauchy stress term has components analogous to the diffusion
term and and a penalty pressure term is introduced to maintain incompressibility just
as in the Navier—Stokes equations. Given the similarity in the equations a very similar
time-stepping algorithm is presented to evolve the solution in time. The time stepping
scheme outlined in the forthcoming sections is novel in solid mechanics and, along with
the new implementation of the ALE in § 3.5.1 represent the contribution of a new

methodology for solving fluid-structure interactions in aneurysms.

4.2.3.1 Time evolution of a Hookean solid

Given the relatively simple linear structure of the Cauchy stress tensor in the Hookean
solid, a splitting scheme is not required. The algorithm uses a second-order accurate
implicit scheme to solve for the updated displacement field, U™"!. A second-order
accurate backwards difference approximation is used for the second-order derivative in
the inertial term, and a high-order linear operator is formed from the Cauchy stress
term which is analogous to the diffusion term in the Navier—Stokes equations. Because
a Lagrangian reference system is used for the solid mechanics the displacement in the

material frame U is used rather than the displacement in the spatial (Eulerian) reference
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frame, u. Rewriting 4.3 with the approximations gives

syrn+l Js sTTN—q
UM+ 3 020 aqU

p T =L.-U", (4.17)
where for second-order accuracy Js = 2, k° = —2,05 = 5,af = —4 and o5 = 1. To
form the Helmholtz equation 4.17 is recast as

Js —
{pﬁs _ i,] .Ut = M. (4.18)
(At)? (At)?

The forces applied to a solid cause the deformations that are described by this
equation. These forces are described in terms of a pressure on a boundary and appear in
the stress tensor for the boundary nodal positions. The Galerkin formulation described
in § 4.3.2 again allows explicit prescription of the boundary conditions as they appear in
a separate surface integral term in which the boundary forces may be inserted. Dirichlet
displacement boundary conditions are handled in the standard manner using the static

condensation technique described in § 4.6.
4.2.3.2 Time evolution of a neo-Hookean solid

The neo-Hookean solid has a more complex structure for the Cauchy stress tensor, i.e.

T
oc=PI+F (?;) : (4.19)

where W is the (non-linear) neo-Hookean strain energy function, F is the deformation
gradient (a function of U), P is the pressure arising to maintain incompressibility, and

I is the identity matrix. When substituted into equation 4.3 this yields

Pom = pb+V - PI+V*(U), (4.20)

where V2 () is the linear component of the divergence of the stress tensor term, the
Laplacian. The similarity of this equation and the Navier—Stokes momentum equation
is remarkable. Both contain an inertial term (one is Lagrangian, the other Eulerian
which contains a non-linear convective term). They both have a V - P term, and
a high-order linear operator (i/ in the Navier—Stokes equations and the Laplacian in
the neo-Hookean equation). These similarities inspire the use of an operator-splitting
scheme similar to that of the Navier—Stokes solver to evolve the solid domain. A two-
step splitting scheme is proposed that is implicit, second-order accurate, and utilises
backwards differencing for the temporal discretisation as described in § 4.2.3.1,
U — 3% asun—i

(‘Z:)zq = —vprtt, (4.21)

p
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kS Un+1 _ 0
At

In the first sub-step, equation 4.21, the contributions of the previous displacement

= LUt (4.22)

field Zg;o a,U" ™1 are used to account for the contribution of the pressure term finding
the intermediate displacement field U. This first requires evaluation of the kinematic
pressure, P. Taking the divergence of both sides of 4.21,

8 Ji S
V- <U _ Z(ZE)QqU ) =V (-vpPrt, (4.23)

and rearranging gives

VU~ asun
Zq—;’ a = —v2prtl, (4.24)
(At)

The pressure P introduced in the neo-Hookean Cauchy stress is introduced as a penalty
function to enforce incompressibility. As such it is recognised that the vector field should
satisfy an incompressibility constraint. In fluid mechanics this constraint is described
by

V-v=0 (4.25)

where v is a velocity vector. In the solid equations the principal variable is displace-
ment. Because velocity is simply the time derivative of displacement we see that if

equation 4.25 holds then so to must
vV-U=0. (4.26)

Therefore the incompressibility constraint is enforced on the intermediate displacement

field U, leaving
—V.-S asuna
20 - =V (=vpril). (4.27)
(At)

The inertial contribution to the displacement field Egizo U1 is calculated explicitly,

so this equation can be solved as a Poisson equation for the kinematic pressure P. Once
found, the kinematic pressure, P, is substituted back into equation 4.21 to find the inter-
mediate displacement field U. The Galerkin formulation detailed in § 4.3.2 provides a
method for implementing the appropriate high-order Neumann pressure boundary con-
ditions imposed on homogenous boundaries. The pressure boundary condition imposed

at the (n + 1)* time step is

gpntl 22U+ Jp—1

m = | o TP AYVIO)
n i

(4.28)

E
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where n is the unit normal vector. Just as with the Navier—Stokes pressure bound-
ary condition, this is simply the governing equations rearranged in terms of P and
dotted with the unit normal vector on homogenous boundaries. To ensure it provides
the boundary conditions at the next time step (n+ 1) the non-linear stress term is
determined using a polynomial extrapolation method based on past displacement fields
U"~ % where second-order accuracy (Je = 2) is maintained for this term. The coeffi-
cients for the polynomial extrapolation in the boundary condition of the pressure step
(Jp =2) are fp = 2 and 1 = —1 (Karniadakis & Sherwin 1999).

The second sub-step, equation 4.22, involves solving a Helmholtz equation for the
final displacement field U™*!. The intermediate displacement field, U, is known and
provides contributions from the pressure and inertial terms as well as the enforced
incompressibility condition. Displacement boundary conditions can be prescribed at
this point. Dirichlet boundary conditions may be prescribed in the familiar fashion
while the Galerkin formulation allows high-order displacement boundary conditions to

be imposed with ease.

4.3 Fundamental concepts in one-dimension

Having described the numerical algorithm used for temporal discretisation of equa-
tions 4.1 for fluid dynamics and 4.3 for solid mechanics the mathematical framework of
the spatial discretisation used to construct the matrix operators used in the governing
equations is presented. The spectral element spatial discretisation presented herein is
well documented in texts such as Karniadakis & Sherwin (1999) and is presented only
to demonstrate understanding of the computational methods employed in developing

the FSI solver.

Modelling of continuum mechanics has primarily been driven by finite element mod-
elling of solid structures. The finite element model can be shown to be a case of the
Rayleigh-Ritz problem (Courant & Hilbert 1989). In these modelling techniques a
variational form of the problem is considered, which can be shown to approximate the

original differential equation.

For example, following Karniadakis & Sherwin (1999), the quadratic functional

! 2
Tw= [ b W@ i@ @@ -2 @u@]a @)
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has a minimum with respect to a variation in u (z) given by the Euler equation

_% (p (x) dzg)) +q(x)u(z) = f (). (4.30)

So rather than solving the partial differential equation 4.30 to determine wu (z), an
alternate and, importantly, equivalent solution is to find the value u () which minimises

equation 4.29.

Using the Rayleigh-Ritz approach, the solution w (x) is approximated by a finite

number of functions ®;,
N
u(x) = Z 7%, (4.31)
i

and the weights ¢; are determined in order to minimise the functional-variational form

of equation 4.29.

The finite element method is analogous to the Rayleigh-Ritz problem (Courant &
Hilbert 1989). In the finite element method the solution domain is typically broken
into smaller local segments over which the solution approximation is enforced. In addi-
tion to the global-local difference, the finite element method would use the differential
equation 4.30 recast in the integral-Galerkin form as the mathematical basis for the
discretisation scheme. The Galerkin form of the differential equation is mathematically
equivalent to the variational functional form of 4.29, which provides the connection be-
tween the Rayleigh—Ritz problem and the finite element technique. Once in this form
the method aims to reduce the system to a series of algebraic expressions which can be

solved numerically.

It has since been shown that a functional form is not required to reach the Galerkin
form of the problem. A more general formulation is possible using the method of

weighted residuals which leads to the standard Galerkin formulation.

4.3.1 The method of weighted residuals

In describing the method of weighted residuals consider first a linear differential equa-
tion arbitrarily denoted by equation 4.32 which is subject to appropriate initial bound-

ary conditions,

L(u)=0. (4.32)



The solution, u (x,t), is assumed to be accurately represented by an infinite expansion,

which is approximated with the finite sum

Naoy

u® (x,) = ug (x,t) + Y _ i (t) By (x) (4.33)
=1

where ®; (x) are known as trial functions, @ are the unknown trial function coefficients
and wug satisfies the initial and boundary conditions. By definition ®;(x) satisfies
homogeneous boundary conditions allowing ug to account for all Dirichlet values on
the boundary. Given this is only a finite approximation of an infinite solution when
substituting equation 4.33 into 4.32 a residual R (u‘s) remains. In order to solve for the
exact solution a restriction is placed on the residual, which has the added advantage of
reducing the system of equations to a linear first-order system.

Defining the restriction enforced on the residual first requires definition of the Leg-

endre inner product
(F.9) = [ 1@)g (@), (4.34)
Q

where f and g are arbitrary functions.
The desired restriction of the residual is that the inner product (equation 4.34) with
respect to a weight function (sometimes referred to as a test function) is equal to zero,

that is

(wj (x),R) =0, j=1,.., Naoy, (4.35)

where w; is the weight function: the weighted residual is then said to be zero.

As the number of degrees of freedom, Ng,r, approaches infinity, the residual tends
to zero and the approximation u® approaches the exact solution u. The type of compu-
tational method is determined by the choice of the trial and test functions. To obtain
the standard Galerkin formulation the same analytical function is used for both the

test and trial function (Finlayson 1972).

4.3.2 The Galerkin method

The Rayleigh—Ritz problem and equivalently the method of weighted residuals forms a
mathematical basis for finite element and spectral-hp element solvers. In this section,the
Galerkin formulation is introduced and used to manipulate a series of Partial Differential
Equations (PDEs) into a set of Ordinary Differential Equations (ODEs) which may be

solved using numerical techniques.
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Consider for example the one-dimensional Poisson equation

A 0%u
L(u)= 92 T f=0, (4.36)

with domain
Q={z|0<z<1}

and boundary conditions

ou

where gp and g 4 are given constants for the Dirichlet and Neumann boundary con-
ditions, respectively. In a variational formulation, Dirichlet type boundary conditions
can be expressed explicitly using equation 4.33. However, Neumann boundary condi-
tions prove difficult to enforce. Inherent in the Galerkin formulation is a method in
which Neumann boundary conditions are explicitly expressed. However, the method
for handling Dirichlet conditions is dependent on the choice of trail and test functions.
To complete the Galerkin formulation and manage the Neumann boundary conditions
the equations must be recast in “weak form”.

Finding the weak form is analogous to taking the Legendre inner product of the
ODE with a weight or test function®, w (x). It is important for the implementation
of the Dirichlet boundary conditions that the test function by definition is zero on all

boundaries. The inner product of equation 4.36 is

(w, L (1)) = /01 w <gi§‘> +wfdz=0. (4.37)

Remember that equation 4.37 is equivalent to setting the weighted residual to zero and
as such the approximation, u’, will approximate u as Ng, ¢ tends to infinity.

In forming the Galerkin formulation, the next step is to apply Gauss’ Divergence

1 8w 8U 1 8’U, !
——dr = fdr+ [—| . 4.

theorem to obtain

Using the fact that the test function is zero on the boundaries allows the enforcement
of the Neumann boundary condition ‘g—g = g4 via a direct substitution into the final
term (see equation 4.39). The ease with which the Neumann boundary conditions are

implemented is a direct result of the integral in the weak formulation. This operation

LA test function, is a functional space against which the subject is checked. It attributes different
weight (or importance) to the value of the subject across its domain and is used to check it meets the
prescribed criteria (Karniadakis & Sherwin 1999)

115



implements Neumann boundary conditions, reduces the maximum order of derivatives

in the discrete problem, and makes the resulting matrix equation symmetric, giving

L ow du

1
; &r@xdm:/o vfde+w(1)gs. (4.39)

In order to solve equation 4.39 the Galerkin approximation must be completed by
substituting the exact solution u (z) with a finite expansion u% and the continuous test

function w (z) with a finite test function w? such as

L ow’ oufl 1 5 5
- — 1 . 4
| or ox dz /wadx—i-w()g/ (4.40)

By casting the equations in their weak form, the Neumann boundary conditions are
intrinsically handled. Dirichlet boundary conditions require further treatment through
a process known as “lifting the solution”. To lift a boundary condition the approximate
solution u° is split into a known lifted-Dirichlet function «? which satisfies the Dirichlet
boundary conditions and an unknown homogenous function u”* which has a zero value

on the boundaries, i.e.,

u = v’ 4 u? (4.41)
By substituting 4.41 into 4.40,
19,8 9, 1 149,68 9,D
ow? ou ow° Ou
——dz = o fd (1 - === da. 4.42
GGt [t g - [ T ()

Since u? is a known function satisfying the boundary condition, the right hand side
of equation 4.42 contains only known quantities. Note: the gradient of the Dirichlet
boundary condition is known because u? is approximated by the weighted sum of a set
of trial functions (see equation 4.50) which has a generic shape which is scaled using
u? and the shape of the element, both of which are known. The left hand side contains
only u” and w® which are a finite number of functions. Essentially, the Galerkin
formulation has taken a continuous partial differential equation and converted it to a

matrix problem which can be solved computationally.

4.4 Spatial discretisation scheme

Due to the historical use of Taylor expansions to form approximate solutions to complex
functions, polynomials are by far the most dominant form of expansion bases for finite

element solvers (Karniadakis & Sherwin 1999). Finite element solvers, of which spectral

116



element solvers are a subset, may be categorized by their expansion bases as either h-
type or p-type.

h-type solvers split the domain, Q, into a set of N elements, Q¢. The sum of the
set of elements forms the entire solution domain. h-type solvers use a fixed-order poly-
nomial in every element with convergence to the exact solution attained by reducing the
size of elements; this is true of classical finite element solvers (Karniadakis & Sherwin
1999). The h represents the characteristic size of an element. This type of extension
allows high geometric flexibility (Karniadakis & Sherwin 1999).

p-type solvers use a fixed mesh that encompasses the entire solution domain. A
polynomial of order p is used as the test function across the entire domain fitting
through a set of fixed mesh points. Convergence to the exact solution is achieved
by increasing the polynomial order used to interpolate across the domain. Here, p
represents the order of the polynomial function used to interpolate across the solution
domain. This type of expansion allows rapid convergence in smooth problems, but is
complicated in geometrically difficult domains. For the case where the whole solution
domain is modelled with only one element then this kind of solver is a spectral method
(Karniadakis & Sherwin 1999).

The spectral-hp element method, of which the algorithm developed in this thesis is
a type, combines attributes of both extensions.

The following sections discuss the required components to form numerical opera-
tors that are capable of performing integration and differentiation. In the context of
spectral-hp elements, the contribution of the h-type and p-type refinement in forming
a global solution is recognised. This type of refinement dictates the procedure in which
integration and differentiation operators are formed.An integral or differential operator
may be formed over a standard element using a p-type discretisation, this can then be
mapped to any local element coordinates before the h-type refinement maps this onto

the global solution domain.

4.4.1 Forming the discrete system h-type decomposition

h-type methods subdivide the solution domain into non-overlapping sub-domains termed
elements, within which the polynomial expansion basis is expressed.
Consider the domain €, which is partitioned into the arbitrarily sized N¢ elements,

each of spatial extent 2¢, such that the domain is fully expressed by the union of the
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QZ QS Qst
FIGURE 4.1: Elemental decomposition of the solution domain €2 into three elements Q', 02
and Q3. Above the domain the global expansion modes ®( (z), ®; (x), ® (x) and @3 (z)
are shown for a linear finite element expansion over the domain 2. On the right are local
expansion bases ¢g (£) and ¢y (€) defined in the standard region Q' which can be used
to define the global expansion modes. Reproduced with the permission of Karniadakis &

Sherwin and oxford university press from Karniadakis & Sherwin (1999).

individual elements. As an example consider the domain shown in figure 4.1 describing
the 1-Dimensional domain Q = {z |0 <z < 1}.

Figure 4.1 depicts the global expansion modes for a linear finite element expansion.
Each mode has a value of one at the end of one of the elemental domains with a linear
decay to zero at the other. Figure 4.1 also shows the four global degrees of freedom in
this expansion ®¢ (z), ®; (z), ®2 () and ®3 (x). The global modes are non-zero in no
more than two neighbouring elements.

On an elemental level each global mode consists of two linearly varying functions.
If a one-dimensional standard element, Q% = {£ | — 1 < £ < 1}, is considered then an

equivalent linear function can be defined over the standard element described by:
1-— 1
LS ceas, e ceq
o (§) = 2 P1(§) = 2 (4.43)
07 5 ¢ Qsta 07 E ¢ Qst-

This is the standard form of a linear expansion basis for a one-dimensional element.
To move from the standard element to any local elemental domain the mapping function
X¢ (&) is used where

2= () = %xe_l + 1%% e, (4.44)
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and for mathematical completeness the inverse mapping is

To%eml q ceqe (4.45)

Te — Te1
This mapping function can be used to express the global modes ®; (h-type discretisa-
tion) in terms of the local elemental expansions ¢, (p-type discretisation).

The final step is to move from the elemental sub-space to the global domain through

a process called the direct stiffness summation, or global assembly. In terms of global

modes the finite element expansion u° is
Ndof—l
u ()= ) 4 (x). (4.46)
=0

This is expressed in terms of local-elemental modes as

Naor—1 Net p
W)= Y wdi(x) =Y > asd; (€), (4.47)
=0 e=1 p=0

where p is the polynomial order of the expansion (spectral methods are not restricted
to the linear expansion mode of equation 4.43), ®; (x) is the global expansion modes,
and ¢, the local expansion modes. Note that ¢; (§) = ¢, <[Xe]_1 (:c)), where the
superscript, e, denotes the element in which the function is non-zero.

As a result of the division of the domain into sub-domain regions there exists a
necessary bordering of elements in order to account for the entire solution region. As
such, in this discretisation there exists more local expansion coefficients 4;, than global
expansion coefficients ;. As such, further conditions are required to relate the local
and global definitions of the solution. Therefore, a constraint is enforced at element
boundary edges in which u® must have the same value in each element expansion. In

the example of Figure 4.2, the constraint may be expressed by

U

>

)

(4.48)

R e
I
ow ow

)

>

In this way C°-continuity is enforced across the domain.
To facilitate the implementation of the local to global mapping the global boundary

mapping matrix also known as the assembly matrix, 4, is introduced.
U = Alyg, (4.49)

where 1, denotes the vector of all global coefficients and #; denotes the vector of all
local coefficients within an element. A4 is simply a mapping between global and local

coordinates.
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F1GURE 4.2: Global and local expansion coefficients and bases in a three-element decomposi-

tion of the domain 2. Reproduced with the permission of Karniadakis & Sherwin and Oxford

University Press from Karniadakis & Sherwin (1999).

In the Galerkin formulation it is advantageous to consider the inverse of the map-

ping, which can be mathematically shown to be the transpose of the assembly matrix

The integral structure of the Galerkin formulation implies the summation of

the elemental contributions of each test function in order to find the global solution.

As such, operations may be performed on a local level before assembly into the global

solution. This can be quite advantageous in terms of computational efficiency as matrix

inverse problems are very expensive in large degree-of-freedom systems. Furthermore,
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the mapping from standard element to local element coordinate x¢ (&), can also be
exploited to perform all integrals on a standard elemental level, thus minimising the
number of degrees of freedom in each matrix system solve.

In closing this discussion on the h-type expansion, it is recognised that in practice
the global assembly matrix 4 is never explicitly formed. The matrix is extremely sparse

and so for implementation it is easier to represent the matrix as a mapping array.

4.4.2 Interpolating within an element: The p-type decomposition

While complex geometries, different scaling and localised structures necessitate h-type
decomposition of a solution domain, it can be very numerically efficient and accurate
at lower levels of h-type refinement to then use p-type extensions within elements
to approximate the solution. In all that follows the p-type extension is interpreted
as increasing the polynomial order of the polynomial expansion within the elemental
region.

There are many types of polynomial expansions acceptable to spectral-hp element
implementations, these can be classified in two groups as either modal or nodal ex-
pansions. The fluid and solid continuum algorithms used in this investigation are of
nodal type; as such, modal expansion bases will not be discussed here. For further
information on modal type expansion bases see Karniadakis & Sherwin (1999). Nodal
expansion sets are based on a set of predetermined nodal points x,. As an example

consider a Lagrange polynomial

P
Hq:O,qsép (z — )

P
Hq:O,q;ﬁp (.Tp - xq)

hy () = , p=0,..,P. (4.50)

The Lagrange polynomial has the property that at the nodal points, x = z,, the

Lagrange polynomial represents a Kronecker-delta function. This property implies that
p p
5 A N A
u’ (zq) = Zuphp (zq) = Z“p5pq = Uqg, (4.51)
p=0 p=0

where the expansion coefficient 4, can be defined in terms of the approximate solution at
the nodal points x,. Therefore the coefficients, i, physically represent the approximate
solution at the nodal points. Linear finite elements use nodal expansions with the nodal
points located at either end of the solution domain; for the Gauss—Legendre-Lobatto
quadrature used in this solver, nodal points are chosen to be internal and include all

extremes of the solution domain.
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The choice of nodal expansion basis is influenced by numerical efficiency and ap-
proximation properties. Consider for example, the Galerkin approximation of a smooth
function, f(x),

<w5,u5> = (w‘s,f) . (4.52)

Using a Galerkin formulation the test and trial functions have the same form, u® (z) =
wd (z) = zzo Uy Py, () . As such, equation 4.52 can be transformed to a matrix prob-
lem of the form,

w! [Mi = f] = Ma = f,, (4.53)

where,
Mpq = <®p7 q)q) A [’IAL[), T 7QP]T7 fp = ((I)pv f) . (454)

The matrix M is known as the mass matrix and contains the global expansion base
coefficients, 4 is the solution vector at the p nodal points, and f,, is the elemental nodal
values of the forcing term in the ODE. The matrix M may be inverted to find the
solution to the algebraic equation 4.53. The numerical efficiency associated with the
choice of expansion base stems from the cost of constructing and inverting the matrix.
As such, to promote numerical efficiency the expansion base used is chosen on the basis
of generating a matrix with a predetermined structure that is conducive to construction
and inversion.

From this perspective, the Lagrange polynomial is particularly useful as it produces
a purely diagonal mass matrix, on an elemental level, by virtue of the Kronecker-
delta function. The diagonal structure is very inexpensive to construct and invert.
Lagrange—Legendre polynomials have the added advantage of being orthogonal, leading
to excellent matrix conditioning which is important to numerical accuracy in terms of

the numerical matrix inversion process.
4.4.2.1 Gauss—Legendre—Lobatto quadrature

As described earlier, nodal expansions are based on the value of a function at a set
of nodal points, i.e. they are based on the Lagrange polynomial. In the algorithm
employed herein, the nodal points may be spaced in any way throughout the solution
domain with the only restriction being they include nodal points at the extremes of
the domain (this is in order to enforce C%-continuity between elements). The location
of nodes does impact on the stability of the numerical method. Using nodal points at

the zeros of Gauss—Legendre-Lobatto integration rules creates a particularly efficient,
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stable and accurate expansion. Unlike the pure Gaussian quadrature, Gauss—Legendre—
Lobatto quadrature includes nodal points at the edges of the domain, for a small cost
in accuracy.

Lagrange polynomials, hy,, are unique polynomials that have the value of unity at

the node z, and zero at all other nodes z,,
hp (xq) = Opg. (4.55)

Note the Lagrange polynomial, as defined by equation 4.50, can be expressed at the
nodal locations using the property 4.55. The test function interpolation approximation

requires the interpolant J which is a function of wu,

Ju(zq) = u(xq),

and therefore the interpolant can be written as

P
Ju(z) =Y dphy (2). (4.56)
p=0

If u (x) is a polynomial of order p the relationship is exact. For the particularly accurate
case of Gauss—Legendre-Lobatto quadrature, the p-type expansion in the standard
element is

17 fzﬁp,
Pp (§) = hyp (§) = (E—1)(E+1) Ly (€) (4.57)

p(p+1)Lp (&) (& —&) otherwise,

where Lp is the Legendre polynomial, L', is its derivative and p is the polynomial order

of the expansion. The shapes of these modes for a polynomial order p = 3 are shown
in figure 4.3

Owing to its nodal construction, all modes are polynomials of order p. The bound-
ary modes ¢g and ¢s3 are the only modes to exhibit a value other than zero on the
boundaries; this allows the h-type decomposition of the solution domain to enforce
CP-continuity.

As the Galerkin formulation with Gauss—Legendre—Lobatto quadrature uses the
same nodal points on which the expansion was defined for the test function; the property
in equation 4.51 implies that the mass matrix is diagonal rather than full.

p

Me [p][a] = (hp, hg) = Y wily (&) hq (&) = Y wibyipg = wpipg, (4.58)
i=0 i=0
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F1GURE 4.3: Nodal expansion modes for a polynomial order of p = 3 in the standard element.

The red, green, blue and black lines represent the ¢g, ¢1, ¢2, and ¢3 modes respectively.

where w; are the weights for Gauss—Legendre-Lobatto quadrature using p + 1 points.
Using the same nodal points for both the quadrature rule and Lagrange polynomial
ensures discrete orthogonality, which ensures an exact solution for polynomials of order

2p — 1 (Karniadakis & Sherwin 1999).

4.4.3 Numerical integration

Having developed a numerical basis for decomposing the global expansion basis into
elemental sub-domains and mapping them onto a standard region over which a poly-
nomial expansion base is expressed, the Gauss—Legendre-Lobatto quadrature can now
be used to integrate and differentiate within the standard region.

Given the Galerkin formulation is cast in weak form which is based on the sum of
elemental integrals, a technique is required to evaluate the integral of each function
across the standard domain. Once established in the standard domain this may then

be mapped to local-elemental co-ordinates. The integral over a standard domain is

1
JRIGES (4.59)
where u (£) may be made up of products of the polynomial basis functions (e.g.equation 4.57).
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Given the form of u (&) is application-specific a generic evaluation technique must be
employed. This provides the motivation to use numerical quadrature techniques such
as Gaussian quadrature.

Gaussian quadrature represents the integrand as a Lagrange polynomial using the

() points &; in
-1

u(§) =D ul&)hi(€)+e(u), (4.60)

7

O

Il
=)

where € (u) is the approximation error. Combining this with the integration equa-

tion 4.59 gives,
1 Q-1
[ w@ de= Y v + mw, (4.61)
where,

1
w; = / hi (€) de, (4.62)

-1

and

1
R(u) = /_ e (u) dE. (4.63)

1

Equation 4.62 describes the integration weights in terms of integrals of the Lagrange
polynomial. All that is required then to perform the integration is the nodal locations,
namely the zeros &; (also known as abscissae). If the nodal positions are equispaced, an
exact solution for u (§) which is represented by a polynomial of order @ — 1; could only
be achieved with a polynomial of @) — 1 (Karniadakis & Sherwin 1999). In Gaussian
quadrature non-equispaced zeros are chosen. To facilitate easy implementation of global
boundary decomposition a sub-class of the more accurate Gaussian quadrature, Gauss—
Legendre—Lobatto quadrature is employed. This form of Gaussian quadrature has zeros

at either end of the standard region. i.e.

1, i=0,
Si: él'lLl]_’Qfgv i:la"'vQ_27
1, i=Q-1, (4.64)
0,0 2 .
00 _ , —0,....0—-1
" T @ D) Lea @F z ¢
R(u)=0 it u () € Pags ([-1,1]).

where Lg (§) is the Legendre polynomial (LQ &) = ]35’0 (5)) The zeros of the Jacobi
polynomial P are 52‘ Wﬁl for which there is no analytical solution. Karniadakis & Sherwin

(1999) describes a recursive strategy for determining the Jacobi zeros.
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4.4.4 Differentiation

Using the polynomial approximation,
P
Zupqsp ) =2 o (4.65)
p=0
where y (§) is the standard-to-elemental domain mapping, differentiating using the

chain rule to obtain,

du® (€) doy (
de d§ d:p Z U (Ii)ﬁ dx (4.66)

Thus in approximating the differential of the unknown u a method for evaluating d%g(g)
and 4 @ is required. Given a polynomial expansion using Lagrange polynomials (see
equation 4.50) and utilizing Gauss—Legendre-Lobatto quadrature the derivative of u in

the standard domain (i.e. in &- space) is

Q-
Z (&) —h (4.67)
=0

Typically, we only require the derivative at the nodal points &; which is given by

Q-1
du @‘ =S dyule). (4.68)
¢ =& =0
where
. dh; (§)
dij = a& L_&. (4.69)

For the specific case of Gauss—Legendre-Lobatto quadrature the standard element dif-

ferentiation matrices may be described by

1, i=0,
S ‘511’11@—27 i=1,...,Q0 -2
]-a Z_Qil’

( _ _ 4.70
Q(i? )’ P (4.70)
Lo-1t&) 1(1) L i#£5,0<6,j<Q 1,

-1 L
Q(Q4 )7 i—i—Q-1

Note: Just as with the quadrature formulae the construction of the differentiation
matrices requires the numerically determined quadrature zeros which are found using

a recursive formula given in Appendix A of Karniadakis & Sherwin (1999).
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4.5 Forming global operators

In the discussion thus far the merits of the Galerkin approximation and the choice of a
nodal-based Gauss—Legendre-Lobatto quadrature scheme to discretise a set of partial
differential equations has been outlined. It has been shown how this mathematical
framework may be used to perform integration and differentiation over a standard do-
main. It has also been demonstrated how the Galerkin formulation allows easy enforce-
ment of boundary conditions. The following sections illustrate how this mathematical
basis is used to solve complex systems by mapping the solution from a standard region
to a local elemental space and finally how this is connected to form the global solution.
Algebraic matrix operators are formed from the mathematical framework and special

operators for higher-order operations and enforcing boundary conditions are expressed.
4.5.1 The Jacobian

As discussed earlier when performing elemental operations, integrals and differentials
are efficiently computed by performing them over a standard region and then mapping
them onto the elemental domain. It has been shown how such a mapping may be formed
in one dimension. In two and three dimensions the concept of Jacobian mapping is

introduced. Just as in one dimension the integral becomes

/ u (l‘l,.rz) dl‘l dl‘g = / u(&,&) |J2D| dfl dfg. (4.71)
€ Qst
Here Jyp is defined as
% %
_ &1 E2
Jop = ey ey |’ (4.72)
081 0&

and for completeness J3p is defined as

dz1  Oz1 Oz
061 0& 03

ho=| G Ge e (473)
Ozz  Ozg Oz
061 0&  0&3

where |...| represents the determinant of the matrix.

Given the form of the mapping x; = x (£1,£&2), all partial derivatives required for
the Jacobian can be calculated. For a straight-sided quadrilateral element with corner
nodes at {(.1:’14, m‘24) , (ZL'IB, xf) , (xlc, fvg) , (ZL'ID, xQD)} the mapping is described by

1-&1- 14+&1—

zi = x (&1, &) =2 Gl1-6& B &11-&

S Cait (4.74)
cl+&61+&  pl—61+46

+x; 7! .
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The simple form of these mappings ensures that the partial derivatives and Jacobians
are constant for all quadrilateral regions of this shape. For deformed elements the Jaco-
bian may be evaluated and stored at the quadrature points, thus storing the standard-
to-elemental mapping at each of the nodal points.

An analogous application of the Jacobian mapping may be applied to differential
operations. A chain rule expansion shows that the differential operator may be given

by

0] [oao o8 o
v | 071 | _| Ox1071 Ox1072 | (4.75)
I N SRS
8:(}2 81‘2 8331 81‘2 8952

Through a process of manipulating the coordinate mapping (in 2D)

06 _10m 96 _ _10nm 96 _ 10m & _10m oo
8.1‘1_J8§2’ 8$2_ Jafz’ 8.7}1_ J8£17 8%‘2_J851. '

At this point computation of the two-dimensional gradient operator equation 4.75 is
possible using the relationships in equation 4.76, as all partial derivatives can be ex-
pressed in terms of the standard elemental co-ordinates (£1,&2). This allows us to
pre-compute and store the differential operators using the Jacobian mapping, just as

with the integral formulae.

4.5.2 Mass matrix, W

As a consequence of the Galerkin formulation a method of numerically performing
an integral is required. The following discusses the development of the W matrix
(Karniadakis & Sherwin 1999, following), a matrix operator which performs integrals
in the numerical algorithm.

As solutions are computed across a standard region and then mapped to elemental
space, let the vector u denote the evaluation of u (&) at the standard elemental points.

The weight matrix, W, is a diagonal matrix which contains the Gaussian quadrature
weights, augmented by the elemental Jacobian at each quadrature point. It is designed
to be consistent with u evaluated at each of the quadrature points. This forms the
matrix implementation of the numerical integration formulae discussed in § 4.4.3 in one
dimension.

W [m (ijk)] [n (rst)] = Jijrwiwjwg0mn, (4.77)

where d,,,,, is the Kronecker-delta function, and m (ijk) and n (rst) are integer values

which run consecutively from 0 to the number of quadrature points Ng thus relating
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all nodes in the domain. The use of the Jacobian in forming the matrix W allows it
to perform integration in the local-elemental coordinate system. In global co-ordinates

the assembly matrix, A4, is used to combine the degrees of freedom.
4.5.3 Differentiation matrix, D

The final matrix required to complete the set of discrete operators is the differentiation
matrix (analogous to the one-Dimensional operation in equation 4.67), extended to
global co-ordinates. The partial derivative of local-elemental co-ordinates with respect

to standard co-ordinates is defined by

Q1 Q2 Qs

88;1 (SIRSTRSIES ZZZ

r=0 s=0 t=0

his (ng) hi (§3k) urst, (4.78)
14

where h, (£) is the one-dimensional Lagrange polynomials through the ) Gauss—Legendre—

Lobatto quadrature points. A differentiation matrix may be formed,

o dhr (gl)
Pe ™ Tug

which acts on the global vector u evaluated at the quadrature points to form the

hs (&25) he (E3) (4.79)
&1,

derivative at the quadrature points in each of the &; directions. To finalize this discussion
it is recognized that the derivative with respect to the local coordinates may be obtained
from the chain rule (i.e. equation 4.75). Given this definition, the differential operator
must be pre-multiplied by a diagonal matrix containing the factors % evaluated at
each of the quadrature points. This may be represented by the diagonal component
notation A (f (£1,&63)) = f(&1i,625,€35) Omn. Finally the differentiation matrix in

global coordinates takes the form,

ou 01 02
gu A%y, A%
91 or 8 T M

&3

9. De| (4.80)

In this discussion it has been shown that by casting the equations in the weak
Galerkin form enables the reconstruction of the partial differential equations in a form
that may be approximated using polynomial functions. Using Gauss-type quadrature
rules it is evident that the equations may be cast into simple algebraic matrix equations.
Equipped with the quadrature rules and the standard-local Jacobian mappings enables
construction of the matrices W and D. Finally, the assembly matrix 4 can be used
to combine local degrees of freedom to form a global system. A numerical toolbox
has been described which may be used to solve complicated PDEs with integral and

differential operators.
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4.5.4 Forming higher-order operators

While it has been shown that integrals and differentials can be easily performed, a
non-trivial extension that is required is the formation of high-order operators such as
the Laplacian, V2. These higher-order operators are required in this implementation
for the viscous term in the Navier—Stokes equations (4.1) and the stress gradient term
in the solid mechanics equations (4.3). To illustrate this consider the example used in

Karniadakis & Sherwin (1999) of the Galerkin approximation of a Poisson equation
V2u (z) = f (z). (4.81)

Taking the Legendre inner product and applying Gauss’ Divergence theorem (as per

Galerkin approximation) obtains

(Vv,Vu) = /89 vVu.ndS — (v, f), (4.82)

where 0 is the boundary of the problem domain and n is the unit normal vector to

the boundary. The weak Laplacian is (Vv, Vu), and in two dimensions may be written

ov  0u v Ou

Given that the Galerkin approximation uses the same test and trial functions, the

as

matrix form of the weak Laplacian, becomes

e i3 3 T 91 9
vo= [a () peea(ge) oe) wia (G ) P e (o) 2o

€, 3 T 3 9
o [a () e a () e (A (G5 e e 2 (52) e

Note the transpose in the pre-multiplied differentiation matrix is simply a result of the

matrix algebra required to recover the form of the Laplacian (see equation 4.83).

4.5.5 The surface integral

As a direct consequence of the Galerkin formulation and specifically the step involving
Gauss’ Divergence theorem, a surface integral (in 3D) or a line integral (in 2D) must be

performed. See for example the Galerkin form of the Helmholtz equation. Physically
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this line or surface integral may be interpreted as representing the enforcement of

boundary conditions on the reformulated equations
(Vu,Vu)g + A (v,u)g = (v, Vu-n) — (v, f)q - (4.84)

It is noted that the surface integral which results from the Galerkin approximation
allows explicit enforcement of the Neumann boundary conditions. To solve the PDE

an operator which evaluates the surface integral is required,

Ney
(v,Vu-n) =(v,g4) = / vgy dS = Z/ veg y dS€. (4.85)
00y = Jooy none

As with regular integrals the strategy is to perform the integration using efficient Gaus-
sian quadrature across a standard element and subsequently map these to each indi-
vidual element in order to find their elemental contribution. In following this approach
the surface Jacobian is introduced, which is analogous to the Jacobian for full integrals.
Let us first consider the two-dimensional case, which is simply a line integral of the

form

b
/ f(z1,22) ds, (4.86)

where ds = \/(dx1)2 + (dzy)? is the differential length along the path of integration.
The differential length, ds, may be expressed in terms of the local co-ordinates, &,

through knowledge of the mapping Yy, i.e.

r1 = x1(&1,&2), 22 = x2 (£1,&2), (4.87)

allowing dx; and dxy to be expressed as

81'1 6:1:1 83?2 (91'2
= —d& + —d&, dae = —d& + —
96, &1 &2, dxo &1 2%,

d
o &, o€,

dé,. (4.88)

A method for solving the partial derivatives (equation 4.68) has already been developed.
Along a boundary the element edge is completely parametrised by only one of the
standard co-ordinates. That is to say, one of the standard coordinates &1 or & will be
constant on the edge. Thus evaluation of ds can be made in terms of the differential

change in the other dimension, equation 4.89 is for the case where &, is held constant

2
@——1) e (851
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ds = 1/ (der)? + (dw)? = (a&

2
) (d&)®. (4.89)
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Thus the contribution to the e element in the integral equation may be found using

8]}1 8952 2
/695ﬂsf(x1’w2 dS—/ f (&1, &) \/<8§1> + ((%1) dés, (4.90)

which may be simply evaluated using the Gaussian quadrature rules.

The extension to three dimensions is slightly more complex because on any surface
only one of the standard co-ordinates is constant while the other two vary, for example

for a surface for which &3 is fixed

w1 = x1(§1,82,—1), 22 = X2 (§1,82, — 1), w3 = x3 (£1,&2, —1) . (4.91)

To relate the differential change in surface area dS in terms of parametric coordinates
it is recognised that a change in position dx, will be the vector [dx1, dzs, d$3]T and in

parametric co-ordinates,

dr = e, + 8Xd§2, (4.92)

961 S

where x is the position vector and X are surface tangent vectors along lines of constant
&1 and & (in the case that &3 is constant). Given this interpretation, along lines of

constant &3 the change in differential length dle, is

Oz
&1

gy = | 9z | de. (4.93)

Oz3
061

ox
082 e,

dle, =
Finally, these differential tangent vectors may be used to determine the change in area

on the surface using a cross product rule
S = |dlg,| |dlg,|sin 6, (4.94)

where ¢ is the angle between the two vectors dlg, and dlg, which expressed explicitly

as a cross product becomes

8X 8x

d§1 dé, (4.95)

It may be easier to interpret this as finding the component of the vector normal to the

surface. Finally the surface integral may be evaluated as

/memsf(m,mz,:cs)dS: /_11 /_11f(51,§2,—1)

This completes the numerical toolbox needed to construct algebraic approximations of

(‘3x ox

98, 85 dé; déo (4.96)

the partial differential equations to be solved in this thesis.
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4.6 Static condensation

Having described the mathematical framework described in Karniadakis & Sherwin
(1999), which transforms a partial differential equation into a set of algebraic matrix
equations, an efficient technique is now described for solving the system, known as
static condensation. For details on the derivation of the static condensation technique,
the reader is directed to the discussion in Karniadakis & Sherwin (1999). It is assumed

the matrix system to be solved is of the form
Mx = ATM®ax = f, (4.97)

where x is a vector of global unknowns M is a block diagonal matrix formed from the
Laplacian, local mass matrices, or both. In the static condensation technique use is
made of the global elemental decomposition to perform the matrix inversion over an
elemental matrix domain, which is far more efficient due to the smaller matrix sizes.
Each of the elemental matrices M® can be broken down into components containing
boundary and interior contributions (as a result of the numbering scheme employed),

that is,
M¢  M¢
M° = S (4.98)
(M9)" Mg
Where M7 is the boundary-boundary mode interactions, M is the components re-
sulting from a coupling between boundary and interior nodes and MY is from interior-
interior mode interactions. Just as with the matrix M° the vectors & and f may be

broken into the boundary and interior components xy, ; and f;, f; respectively, that

is,

T
e R Fo : (4.99)
T fi
then equation 4.97 can be written as
M¢  ME¢ T
o bl | Pl (4.100)
(Mg)" M T fi

To solve this system a standard block elimination can be performed (Karniadakis &

Sherwin 1999). After block elimination, equation 4.100 becomes

M — Mg (M) (M9)T 0 y fi—MS(MS) ' f; (101)
(Me)” Me || a f; -
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The equation for the boundary unknowns is therefore
(M5 — M (V)7 (M) ) 3y = = M (M) (4.102)

Once the boundary unknowns x; are determined the internal degrees of freedom x; can

be determined from the second row of equation 4.101 since
_ ey—1 ey—1 eNT

To solve the matrix system (equation 4.97) no longer requires finding the inverse
of M. Instead evaluation of M; alone is required. Since M; is a block diagonal matrix
(due to the choice of Legendre polynomials for the basis function) the local matrices
M5 and its inverse (Mf)_1 are also diagonal. This can be inverted locally within each
element which is much less computationally expensive than a global inversion of the
M, matrix. Once this inverse is found, simple matrix multiplication can be used to
form Mg (M)~ = [ve)~ ()]

The final component is to form and invert the Schur complement, My, = Mj —
M (M) (M¢)T. Once these three components have been formed equations 4.102
and 4.103 can be easily solved for x; and x; Most of the memory is used in storing
this large matrix. Although it may be formed on an elemental level it cannot be
inverted on an elemental level as it is not in a block diagonal form. By using the static
condensation technique the size of the global inversion matrix has been drastically
reduced. Section 4.6.1 goes on to discuss how the Schur complement matrix (which
has all of the boundary-boundary and boundary-interior node information) can be
solved more efficiently while enforcing both the homogenous and Dirichlet boundary

conditions.

4.6.1 The Schur complement, M,

The Schur complement matrix has all of the boundary-boundary and boundary-interior
node information. As such it is where the boundary conditions must be enforced (re-
call § 4.3.2 in which the lifting of boundary conditions was discussed). The Galerkin
formulation allows a direct implementation of Neumann boundary conditions. Other
boundary nodes may be considered to be either homogenous or Dirichlet. As before,
the homogenous unknown solution of x; is denoted by XZ{ and the Dirichlet component

by xi so the total boundary vector x; may be written
xp = X+ x?. (4.104)
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For the efficient manipulation of the Schur complement matrix and to easily handle
the different homogeneous and Dirichlet boundary conditions, a numbering system
is adopted whereby the Dirichlet degrees of freedom are listed after the homogenous

degrees of freedom. In this way the boundary degree-of-freedom vector may be written

x;
Xp = . (4.105)

D
X
Similarly. the Schur complement matrix is reordered into

Mﬂﬂ{ M}[Q)
M, = * o, (4.106)
M2 M2?

HH M}(D

L MZP M2 and M2? correspond to the homogenous

where the sub-matrices M

and Dirichlet solutions xb}[ and z;, respectively. This matrix may be used to solve the

problem
M M <! = a (4.107)
M2 MP? Xy £

where £7 and 2 are the homogenous and Dirichlet components of the vector f respec-

tively. f is the right hand side of the boundary equation 4.102, i.e.
f=f, — M (M) £

Having already constructed the vector f, equation 4.107 may be solved with enforcement
of the Dirichlet boundary conditions. The sub-matrices M2* and M2? are not part
of the Galerkin problem as they contain weight functions that are not zero at Dirich-
let boundary conditions. To enforce the Dirichlet boundary conditions the system is
manipulated to

M7t — £ — M7Px, (4.108)

where the known Dirichlet boundary conditions have been moved to the right hand
side. The symmetry of the system MZ? has been maintained, essentially lifting the
known solution from the problem. Now all that remains is the inversion of the M7
matrix in order to solve the system of equations 4.97. Despite containing the majority
of the connectivity data, Mgf{ remains a sparse matrix. It is of much smaller size than
the original matrix M of equation 4.97, which makes it much more efficient to solve.
This static condensation technique also shows how the Dirichlet boundary conditions

may be accounted for.
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Numerically, the matrix manipulation is handled by two separate packages. The
LAPACK package is used for linear algebra operations including the inversion and
multiplication of matrices on an elemental level where the matrices are dense. The
sparse matrix solver PARDISO (Schenk & Gértner 2004) is used for all higher level
matrix manipulation due to its excellent efficiency properties when handling sparse

madtrices.

4.7 Closure

In solving continuum mechanics, fluid or solid, the conservation laws of mass and mo-
mentum are modelled. This common underlying physics precipitates mathematically
into quite similar mathematical expressions for the evolution of each primary variable
through time. This similarity was exploited to develop very similar and highly accu-
rate time stepping schemes for both the fluid and solid mechanics equations based on
operator-splitting and backwards differencing approaches. In both cases polynomial ex-
trapolation was used to determine the contribution of non-linear terms at the updated
time-step as the algorithm uses an implicit matrix solve.

The Galerkin formulation allows each step in the three-step splitting schemes to be
recast in integral form and allows a simple way to enforce higher-order Neumann bound-
ary conditions such as those required for the pressure sub-step in the Navier—Stokes
problem and for the forces applied at the boundaries to solid domains. A spectral-hp
element spatial discretisation was chosen for both solvers to take advantage of the highly
efficient refinement of p-type discretisations. Gauss—Legendre—Lobatto quadrature was
chosen as the basis for the nodal expansion for its efficiency, accuracy and the ease it
offers for enforcing C° continuity between elements.

Using this discretisation scheme a series of matrix-based numerical operators can
be formed for conducting integration differentiation and higher-order operations, these
were constructed for the numerical implementation of this model.

A mathematical toolbox for spatial discretisation and a framework for the temporal
discretisation has been outlined. This framework can be similarly applied to fluid
dynamics and both linear and non-linear solid mechanics. This work leads to the
completion of aim 1c of this thesis, construction of a fluid-strucutre interaction solver
capable of modelling the non-linear elastic material properties of the wall.

The validity of this algorithm will be proven in chapter 6. While the algorithm
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is well documented for fluid mechanics problems, it has not explicitly been used in
solid mechanics and fluid-structure interactions. With the successful validation of the
algorithm, the similarity of the fluid and solid algorithms prove advantageous in FSI

problems with the efficient and accurate passing of boundary information.
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Chapter 5

The neo-Hookean solver

5.1 Introduction

Chapter 4 detailed the mathematical framework used for the temporal and spatial
discretisation of the Navier—Stokes and neo-Hookean governing equations. Typically
investigations into aneurysm haemodynamics that involve an elastic wall do not include
the inertial term in the neo-Hookean governing equations. Instead, previous solvers
solve a quasi-static system in which a time varying boundary condition is employed in
conjunction with a steady state solver. The temporal discretisation described briefly
in § 4.2.3.2 includes the inertial term. A combination of a finite differencing approach

and an operator splitting method is used to solve the set of equations.

A spectral element discretisation is used for the spatial terms. In solid mechanics,
finite element schemes are by far the most popular methods used. Spectral element
methods have been shown to exhibit exponential convergence properties in their ap-
plications to fluid mechanics. In the context of solid mechanics, the spectral element
discretisation in addition to the inclusion of the inertial term and using an operator
splitting method for the temporal discretisation represents a new algorithm. Such an
algorithm has not previously been developed to solve the neo-Hookean governing equa-

tions.

In the following description the neo-Hookean algorithm will be presented in more
detail. Also developed in this thesis is a new coupling method for fluid-structure inter-

actions. For details on this the reader is directed to § 3.5.1.
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5.2 Splitting the governing equations

For solid mechanics problems the governing equations are
— =pb+V -0, (5.1)

where U = (U, Us, Us) is the displacement vector, p is the solid density, o is the stress
tensor, b are the body forces and ¢ is time. The stress tensor o will take a different
form depending on the constitutive model being used; for further discussion on this
refer to chapter 2.

As described in chapter 2, the neo-Hookean solid has a complex structure for the

Cauchy stress tensor, i.e.

oF

where W is the neo-Hookean strain-energy-density function, which is non-linear in

a:PI+F< (5.2)

aW)T
nature, F' is the deformation gradient (a function of U), P is the pressure arising to
maintain incompressibility, and I is the identity matrix. Substitution into equation 5.1
obtains

0*U

P o = GV2U + F~TpI + pb,

(5.3)
V.U =0,
where G is the shear modulus, F~7 is the inverse transpose of the deformation gradi-
ent F' which describes the map from deformed to original coordinates. The physical
ramifications of this term will be treated in § 5.3
As discussed in § 4.2.1, operator splitting schemes assume an operator can be written

as a linear sum of m components

Lu=Liu+Lou+...+ Lyu, (5.4)

the solution that eventually updates the variable u to the next time step n + 1 can
be derived simply by summing the contribution of each L, operating on u separately
(Press 2007).

Using a second-order accurate backwards differencing approach for the inertial term,
the present work proposes a two-step splitting scheme (§ 4.2.3.2). This scheme is
implicit, second-order accurate and utilises backwards differencing for the temporal

discretisation as described in § 4.2.3.2,

U-Yi asun
2o 5 = -V (F TP, (5.5)
(At)

p
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HsUn-H o f]
S =Viyu"t. 5.6
A7 (5.6)
Details of the finite differencing coefficients £ and « can be found in §4.2.3.2. The
following sections describe in detail the matrix operators used and the solution method

to solve each of the sub-steps defined in equations 5.5 and 5.6.

5.3 Sub-step 1

In the first sub-step, equation 5.5, the contribution of the previous displacement field,
Z;{;O a,U""1 is used to account for the contribution of the pressure term and to
determine the intermediate displacement field U. This first requires evaluation of the
kinematic pressure, P. Toward this goal, one must take the divergence of both sides of

equation 5.5,

J Ji sprn—
V.<U—ZQZO%U “

™% ) =V (-VF Tprt), (5.7)

which becomes
VU=l av-Une

(‘ZS); = V2 (F~Tpt). (5.8)

The pressure P introduced in the neo-Hookean Cauchy stress is introduced as a penalty
function to enforce the incompressibility. As such the vector field should satisfy an

incompressibility constraint (Bower 2009),
V-U=0. (5.9)
To enforce the incompressibility constraint on the intermediate displacement field, U,

V -U =0 is substituted leaving

V- asUm
Z(‘JA‘;’)Q 1 = —V?(F~Tprtt). (5.10)

Equation 5.10 is the final form of equation 5.5 that must be solved. The inertial

Ji b

70 qU" 1 is calculated explicitly from knowl-

contribution to the displacement field
edge of the displacement field history. As such, it is a known quantity and forms the
right hand side of a Poisson matrix equation, which shall be called f. Equation 5.5 must
then be solved for the kinematic pressure, P. To do this the framework in chapter 4 is

followed; recasting the equation
—~V2(F~ TPt = §, (5.11)
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in its weak form by taking the Legendre inner product with respect to a test function
w (z),

— (0, V? (F~'P")) = (w, f). (5.12)

Since V2P = V - VP, Gauss’ divergence theorem can be applied to obtain

(Vw,V (F~TP")) + (w, VP - n) = (v, f) (5.13)
where
(w,VP-n) = /BQ wVP - -ndx (5.14)

and m is the outward normal to the boundary 9f2.

The flux contribution in equation 5.13, and explicitly defined in 5.14, only makes
a contribution on the Neumann boundary since, by definition, w (9€2p) is zero on all
Dirichlet boundaries. Equation 5.14 therefore allows us to weakly enforce the Neumann

boundary conditions

VP-n=gy, (5.15)

where g 4 are the Neumann boundary conditions. These boundary conditions can sim-
ply be enforced by substituting the value g_4 into the integral 5.14. As the contribution
of g 4 is zero on all Dirichlet boundaries and known for all Neumann type boundaries
it may be moved to the right hand side of the equation and enveloped into the forcing

function f*,
(Vu,V (F~TP"1)) = (w, f) — (w, VP - n)

=f
where f* = (w, f)—(w, VP-n). Handling of Dirichlet boundary conditions is performed

(5.16)

through lifting the solution as discussed in the static condensation technique description
in § 4.6.

Having manipulated the equations into their weak form, a method for solving equa-
tion 5.16 is considered. The mathematical framework of chapter 4 provides a method
for developing the appropriate differential, integral and higher-order operators neces-
sary to solve the equation. Initially a single element will be considered, and later the
global system will be constructed. Within each element a discrete approximation is

made of the solution using a polynomial expansion

P¢ = M°P®, (5.17)
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where P° is the elemental pressure, M€ is the elemental mass matrix (comprising the
test function weights), and Pe are the discrete trial functions in the elemental domain.
Similarly, the forcing function (or right hand side) of equation 5.16, f*, is denoted by
f€ at the quadrature points. Using Gauss—Legendre-Lobatto quadrature and Legendre
polynomial basis functions the elemental contribution of equation 5.16 can be written
as

L°FTPe=wefe—s° (g(/y + VP ) (5.18)
where it is recalled from chapter 4 that,

W [m (ijk)] [n (rst)] = Jijrwiwjwg0mn, (5.19)
e _[a (28 06 ! s 08
= [ (an) o (an) o] wa (52) peea (521) 2

o¢1 0 T o0& 0
w A () e (G e wa(G5n) e s a (52) e

and S€ is the surface integral from § 4.5.5. P’ represents the homogeneous pressure

(5.20)

boundary contributions.

At this point the definition of F' is considered. This describes the map between
the original and deformed coordinates. The inverse transpose, F~1, describes the
map from deformed to original coordinates. Physically, the effect that this has is to
link each state of matter. If the derivative matrices are formed with respect to the
deformed coordinates this term can be omitted from the matrix equation 5.18. To
form the matrices at this deformed configuration the third-order accurate polynomial
extrapolation, i.e.

X" = 3x™ - 3x" ! 4 x" 2 (5.21)

is used to predict the position of the solid at the next time step. Then this geometry

is used to form the matrix operators L¢. This simplifies the equations to
LePe — Wefe — §° (gﬂ/ + VPH) . (5.22)

The next step is to form the global matrix solution. To form the global matrix

system, the assembly matrix 4 is used. The assembly matrix is described in § 4.4.1 as
b, = ap,, (5.23)

where P, is the discrete local coordinates and Pg are the discrete global coordinates. 4

can be stored as a vector, as it links global and local coordinate systems. As such, to
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go from local to global coordinates simply substitute equation 5.23 and pre-multiply

equation 5.22 by 47 to obtain
aTLeapP, = aTwefe — a'T, (5.24)

where

r—se (gw + VP}[> : (5.25)

is the non zero surface integral terms from equation 5.22.

Before solving for P using the static condensation method outlined in § 4.6, which
allows the strong enforcement of the Dirichlet pressure boundary conditions, the homo-
geneous pressure boundary contributions VP¥ are described. The pressure boundary

condition imposed at the (n + 1)* time step is

P+l Ut Tl e
Plin= = | +p > BVHU) n (5.26)
n =

This homogenous boundary condition is derived by rearranging the governing equations
in terms of P and taking the component which is normal to the homogenous bound-
aries. To ensure it provides the boundary conditions at the next time step (n + 1) the
non-linear stress term is determined using a polynomial extrapolation method (see equa-
tion 5.21) based on past displacement fields U™ 9. The pressure boundary condition
can be explicitly determined based on the previous displacement fields. Once found,
P? can easily be substituted directly into equation 5.25 and in turn equation 5.24 to
form the known right hand side of the matrix equation.

Finally, to solve the matrix equation the static condensation technique (§ 4.6) is
applied. The kinematic pressure P that is determined is then substituted back into

equation 5.5 to find the intermediate displacement field U.

5.4 Sub-step 2

The second sub-step, solving equation 5.6, involves solving a Helmholtz equation for the
final displacement field U™!. The intermediate displacement field, U, is known from
the solution to equation 5.5, and provides contributions from the pressure and inertial
terms as well as the enforced incompressibility condition. To construct the matrix
operator system for sub-step 2, the same steps are followed as were outlined in § 5.3.
The subsequent matrix operator system may be solved using the static condensation

technique described in § 4.6.
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Firstly, equation 5.6 is rewritten with all of the known quantities on the right hand

side

M + vipnt! = E

At At

Next equation 5.27 is recast in weak form by taking the Legendre inner product

(5.27)

with respect to the test function w ()

2rn+1 is n+1l) _ g 9
(w,V U )+ Ar (w,U ) (w, At) ) (5.28)
Since V2U = V - VU, Gauss’ divergence theorem can be applied to obtain
(w,VU - n) — (Vw, VU") + % (w, U™ = <w, Z) : (5.29)
where
(w, VU™ . n) = / wVU™ ! nda. (5.30)
o

Following § 5.3 the flux contribution defined in equation 5.30 allows weak enforce-

ment of the Neumann boundary conditions,
VU™ . n =gy, (5.31)

where g 4 are the Neumann boundary conditions. As the contribution of this is zero on
all Dirichlet boundaries and known for all Neumann type boundaries it may be moved
to the right hand side of the equation
(Vw, VU 1) — Z;; (w, U™ = (w,g.4) — (w, Z) : (5.32)
Again the Dirichlet boundary conditions are handled through lifting the solution as
discussed in the static condensation technique in § 4.6.
In following the method of § 5.3, the differential, integral, and higher-order operators
developed in chapter 4 are now substituted into equation 5.32. A single element is
initially considered and the global system constructed later. Within each element a

discrete approximation is made of the solution using a polynomial expansion
U® = M°U®, (5.33)

where U*® is the elemental displacement vector, M€ is the elemental mass matrix (made
of the test function weights) and U¢ are the discrete trial functions in the in the ele-
mental domain. Using Gauss—Legendre-Lobatto quadrature and Legendre polynomial

basis functions the elemental contribution of equation 5.32 can be written as

A~

U
weyentt = 8eg o — wWeL (5.34)

K;S

Le Ue,n+1 o
At
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where W€, L® and S¢ are defined in both § 5.3 and chapter 4.

Unlike sub-step 1 (equation 5.5) there is no F~T term. This means that the matrix
operators may be formed using the current geometry.

The next step is to form the global matrix solution. To form the global matrix
system assembly matrix 4 is used. Just as in § 5.3, to go from local to global coordinates

equation 4.49 is substituted into equation 5.34 and pre-multiplied by 47 to obtain

ar [Le - “We] auen+t = 47T, (5.35)
At
where
U
I =S°%, — W'~ :
S°g.r — WL, (5.36)

is the non zero surface integral terms from equation 5.22.
By setting H = [L — Z—;W] as the global Helmholtz operator equation 5.35 may
finally be rewritten as

HU" ™ =T. (5.37)

All of the components of I" on the right hand side are known having been explicitly
calculated in sub-step 1. As such the matrix equation for the displacement field at
the next time step U"*! is finally able to be solved using the static condensation
technique (§ 4.6). Displacement boundary conditions are prescribed through the static

condensation process.

5.5 Closure

The governing equations for an incompressible neo-Hookean material are solved using
a backward differencing temporal discretisation and a spectral element spatial discreti-
sation. A two-step operator splitting scheme is proposed in order to implicitly solve for
the displacement at the next time step. The Galerkin approximation of the equations
allows weak enforcement of the Neumann boundary conditions. Once the matrix system
is formed the static condensation method described in § 4.6 is used to simultaneously
enforce the Dirichlet boundary conditions and solve for the system of equations.

The combination of a two-step operator splitting scheme, the inclusion of the inertial
term and the use of a spectral element spatial discretisation makes this a new technique
for solving the governing equations for an incompressible neo-Hookean solid. When

simulating the response of the arterial wall in an aneurysms, a hyperelastic material
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model such as the neo-Hookean is essential. This algorithm in conjunction with the new
fluid-structure interaction coupling scheme described in § 3.5.1 represents a new and
highly accurate tool for investigating FSI in aneurysms. Validation of this technique
can be found in chapter 6, while preliminary results on aneurysm haemodynamics are

presented in chapters 8 and 9.
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Chapter 6

Validation

The purpose of this chapter is to present a series of validation cases which were used
to confirm the accuracy of the numerical techniques developed in chapters 3 to 5. The
fluid-structure interaction solver consists of both solid-structural and fluid dynamics
components. The fluids component of the algorithm has been rigorously validated and
used in many published papers, for examples of its validation the reader is directed to
Sheard & Ryan (2007). The validation presented in this chapter focuses on the accuracy
of the Hookean and neo-Hookean solid solvers and the Arbitrary Lagrangian—Eulerian

(ALE) algorithm for coupling the solvers.

6.1 Introduction

The validation of a numerical algorithm is a process whereby the accuracy of the al-
gorithm is assessed. This is performed using a test case for which the results are well
defined. The capacity of the algorithm to model the desired physics is determined by
how closely it reproduces the known solution.

The numerical algorithms developed in this thesis were constructed in a sufficiently
broad manner so as to allow their application to a wide range of engineering problems. A
series of validation cases were constructed to determine the accuracy of each component
of the algorithm and the sum of their parts. The variability in the function of each model
means that the same testing procedure cannot be applied to each problem. As such,
the series of validation cases presented in the following sections focus on very different
problems. The generality with which the algorithm was developed allows testing to
be conducted on simple known solutions rather than complicated application-specific
examples for which data may not be readily available.

To this end, the accuracy of the Hookean solver is tested using a simple three-
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F1GURE 6.1: The seven-element patch test mesh used for Hookean model verification.

dimensional patch test, the neo-Hookean solver is compared to an existing algorithm
and some experimental data for a rubbery material; and the ALE solver is tested using

three different test cases.

6.2 Hookean solver

Testing of the Hookean solver is conducted using a simple uni-axial stress test. The test
uses the patch test mesh which is widely used in the testing of linear finite element solid
mechanics codes (see for example Pierson et al. 2004; Koteras et al. 2006; Scherzinger
& Hammerand 2007). The mesh, shown in figure 6.1, is a cube consisting of seven
elements. The elements in this mesh are not parallelepipeds, which makes the mesh
useful in assessing the linear consistency of the hexahedral elements used in the spatial
discretisation of the domain. The patch-test mesh has eight exterior nodes that are
used to define boundary conditions. The boundary conditions can be either prescribed
displacements or tractions.

A simple uni-axial stress test is used to validate the Hookean model solver. A uni-
axial stress is prescribed using displacement control in the z-direction and traction-free

boundary conditions are applied in all other directions. One face of the cube which
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Displacement Predicted % error

Uy € o Uy € o Uy
0.005 | 0.995 1.05x 107 —1.2461x10"2 | 0.0 0.12 0.1
-0.005 | -0.005 9.95 x 10° 1.2539 x 103 0.0 0.13 0.15

TABLE 6.1: Comparison of the predicted lateral displacements and stresses to simulated

values. Simulations were conducted using a polynomial order of n = 8.

is oriented normal to the z-direction is fixed in space while the corresponding face on
the opposite side of the cube has displacements of 0.005 m and -0.005 m prescribed as
boundary conditions for two tests. All other surfaces are free to move. A polynomial
order of n = 8 was used in both test cases, at this resolution the solution has reached
a mesh independent result which exhibits very little numerical error.

The material constants for the Hookean model used in this problem are: Young’s
modulus, F = 10 x 10° Pa, and Poisson ratio, v = 0.25.

Given a uni-axial strain problem on a unit cube with zero lateral tractions, the

stress calculated using a Hookean elastic model is
o = Ee, (6.1)

where F is the Young’s modulus and € is the true strain. Given the axial displacements
prescribed on the unit cube, the true strain and axial stress may be calculated as known
values, these are shown in table 6.1. Since the lateral surfaces are traction free they are

free to contract. The displacement of the lateral surfaces is

1
. 2

Using the prescribed displacements, the minimum and maximum lateral displacements
are tabulated in table 6.1

Figure 6.2 shows the patch test cube after it has undergone the deformation. When
an axial displacement elongated the domain (figure 6.2(a)) the lateral surfaces con-
tracted, forming an hourglass shape. When the axial displacement compressed the
domain (figure 6.2(b)) the lateral surfaces bulged outward. The lateral displacements
and stresses determined from the simulation show excellent correspondence with the
predetermined solution. Table 6.1 shows that when using a polynomial order of n = 8

the maximum error was less than 0.2%.
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(a) us = 0.005 (b) u, = —0.005

FIGURE 6.2: Elongated and compressed unit cube in Hookean model patch test. Sub-plot
(a) shows the case with a displacement of 0.005 enforced on the right hand face and sub-plot
(b) shows the case with a displacement of -0.005 enforced on the right hand face. Contours

are of lateral displacement magnitude.

6.3 Neo-Hookean solver

Testing of the neo-Hookean solver was conducted using a simple compression test.
The results of the neo-Hookean simulation were validated against the experimental and
numerical results presented in Mesa Munera (2011). Mesa Munera (2011) measured the
deformation of an 80 mm diameter by 70 mm height cylinder fabricated from silicone
rubber Ecoflex 00-10. They then developed a neo-Hookean model and determined
the elasticity of the material which best matched the deformation characteristics of
the silicone specimen. They found that the elastic modulus of the silicone was £ =

8769 MPa.

The current validation simulation aims to replicate the conditions of the experimen-
tal and numerical work conducted in Mesa Munera (2011). To this end, figure 6.3(a)
shows the mesh created to test the compression of the silicone block (a polynomial order
of n = 6 is used within the macro elements). The dimensions are 80 mm in diameter
and a height of 70 mm. A uniform pressure force was applied to the top and bottom
surfaces of the cylinder causing a compression of the material. Figure 6.3(b) shows the
deformed configuration of the material. As expected, the material has compressed in
the axial direction and expanded laterally. The side walls do not exhibit the bulging

shape seen in the Hookean displacement test results (figure 6.2(b)), because in this test
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(a) (b)

FIGURE 6.3: Compression test of a rubbery cylindrical block. Sub-plot (a) shows the initial
mesh of the cylindrical block, while sub-plot (b) shows the case after deformation using a
neo-Hookean material model. The simulation was conducted with a polynomial order n = 6.

The contours are of axial displacement.

the boundary conditions do not limit the diameter of the top and bottom surfaces where
the pressure is applied. This matches the results published in Mesa Munera (2011) in
which they indicate the surfaces of the silicone block were lubricated in order to allow
free movement of the upper and lower surfaces in the compression rig.

Figure 6.4 compares the stress-strain curve produced from the neo-Hookean solver
developed in this thesis to the published data in Mesa Munera (2011). The results
show an excellent agreement between the neo-Hookean models used in the literature
and the one developed in this thesis. Using a polynomial order of n = 6 (shown in
figure 6.4), the maximum error between the neo-Hookean solvers is 0.52%. Table 6.2
shows the performance of the neo-Hookean solver as the resolution is increased which
shows good convergence towards the published data in Mesa Munera (2011). This
verifies the neo-Hookean algorithm developed in this thesis as accurate in describing
neo-Hookean constitutive models.

One of the aims in this thesis is to determine the efficacy of using a linear elastic-wall
model for modelling the fluid-structure interaction in aneurysms. The results presented
in figure 6.4 show that at large stresses, such as those found in the natural function
of the arterial wall, the linear elastic assumption of the material properties grossly
overestimates the wall motion. At an intermediate stress of 1000 Pa the linear elastic

model predicted a strain 20.5% greater than the neo-Hookean model. These results
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FIGURE 6.4: Comparison of neo-Hookean solver results to the results presented in
Mesa Munera (2011). The blue line represents the experimental data from Mesa Munera
(2011), green squares M represent the neo-Hookean simulations conducted by Mesa Minera
(2011) and the red line represents the neo-Hookean model developed in this thesis. The
dashed black line shows the Hookean response for the same test case.

€ %-error
7.786 x 1072 1.44
7.776 x 1072 1.58
7.819 x 1072 1.02
7.847 x 1072 0.67
7.859 x 102 0.52
7.860 x 102 0.51

EN B N U VR

TABLE 6.2: Results of a grid resolution study for the neo-Hookean solver. Strains were

measured at o = 750 and compared to the neo-Hookean solver used in Mesa Munera (2011)
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indicate that use of a linear elastic model would overestimate the wall displacement in
an aneurysm. As such, a linear elastic model is not sufficient for modelling the fluid-
structure interaction in an aneurysm. The results presented in chapter 9 will show the

impact that wall motion has on the haemodynamic environment.

6.4 Arbitrary Lagrangian—Eulerian algorithm

The previous sections have verified the accuracy of the Hookean and neo-Hookean al-
gorithms. These algorithms were coupled with an existing in-house fluid solver (Sheard
& Ryan 2007) to form a solver capable of studying fluid-structure interactions. As the
accuracy of each of the fluid and solid components has been confirmed, the remaining
validation concentrates on the accuracy of the arbitrary Lagrangian—Eulerian coupling
scheme.

To this end three benchmark tests were conducted. The first was a case of forced
solid body motion in which the motion of the solid body was predetermined and pre-
scribed as a boundary condition on the fluid domain. Next, the conservation of mass
was confirmed using the case of a pressure driven flow against a membrane separating
two chambers. The final test case simulated a strongly coupled system in which two-
way coupling is dominant in the system. A velocity driven flow in a lid driven cavity
was used for this test case. These test cases were designed to verify all aspects of the
coupling between the two solvers. The first case (§ 6.4.1; oscillating cylinder) describes
the case of a one-way information flow. The second case (§ 6.4.2; bulging membrane)
verifies the code in terms of conservation of mass and in the framework of a pressure
driven flow. Finally, the third case validates the capacity of the ALE algorithm in
a fully coupled two-way information flow in which the results are driven via a mixed

pressure-velocity boundary response (§ 6.4.3; lid driven cavity).

6.4.1 Oscillating cylinder

The first test of the ALE solver investigated the performance when the motion of the
solid was prescribed as a boundary condition on the fluid. To this end, the forced
transverse oscillation of a cylinder in a cross flow was considered. Under various flow
conditions, notably the Reynolds number, the frequency of oscillation and amplitude
of oscillation, the wake shed behind the oscillating cylinder will form different flow pat-

terns. Leontini et al. (2006) presented a study which mapped the energy transitions and
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FIGURE 6.5: Macro-element mesh used in the forced oscillation validation case of an oscil-

lating cylinder.

wake states formed across a large combination of Reynolds numbers, frequencies and
amplitudes of oscillation. Their study was conducted using a moving reference frame
algorithm and solved the incompressible Navier—Stokes equations. This validation case
endeavours to repeat the simulations conducted in Leontini et al. (2006) and identify

identical wake states under the different flow regimes.

The mesh used in this analysis is identical to that used in Leontini et al. (2006).
The spatial domain is discretised into 508 elements, with the majority concentrated in
the wake and boundary-layer regions. This macro-element mesh is shown in figure 6.5.
Leontini et al. (2006) chose this mesh after an extensive mesh and domain optimization
study. Similarly, a polynomial order of n = 8 was used for verification purposes,

matching that used in the spectral element discretisation in Leontini et al. (2006).

The cross flow is applied on the left hand boundary and the top and bottom walls
with a non-dimensionalised velocity v* = 1. A prescribed reference value is imposed on
pressure at the right-hand side of the domain where the fluid exits, along with a zero

normal gradient condition on the velocity field. At the cylinder wall a no-slip condition
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FIGURE 6.6: Flow in the near wake region behind an oscillating cylinder in a cross flow.
Sub-plot (a) shows the wake when the amplitude of oscillation is A* = 0.7D and (b) shows
the wake when the amplitude of oscillation is A* = 1.1D. The simulation was conducted at
a Reynolds number of 100 and an oscillating frequency f = fg;. Red and blue contours show

positive and negative vorticity, respectively which range from -2 to 2.

is imposed. The motion of the cylinder is prescribed by the function,
A*

uy =5 sin (27 ft) , (6.3)
where A* is the amplitude of oscillation, D is the diameter of the cylinder, and f is the
frequency of oscillation of the cylinder (The Strouhal frequency was determined to be
fst = 0.189). The Reynolds number of the simulation is controlled via the kinematic
viscosity. For this validation case a Reynolds number of 100 was used. The amplitude
of oscillation was set at 0.7D and 1.1D and the frequency of oscillation was selected
such that ﬁ =1.

Figure 6.6 shows the wake formed behind the oscillating cylinder at the two am-
plitudes of oscillation 0.7D and 1.1D. In the region directly behind the cylinder, two
different wake modes were observed. At the lower value of A* = 0.7D, a synchronized
2 S shedding mode is observed, with two single vortices shed per oscillation cycle. This
is depicted in figure 6.6(a). At the higher value of A* = 1.1D, a synchronized P + S
shedding mode occurs, with one single and one pair of vortices of opposite sign shed
per shedding cycle (see figure 6.6(b)). This reflects the findings of Leontini et al. (2006)
which are reproduced in figure 6.7.

A quantitative comparison of the results presented in Leontini et al. (2006) was
also conducted. Figure 6.8 shows the coeflicient of lift on the cylinder for the case of
A* = 0.7D and Re = 200. These results demonstrate an excellent correlation with
those presented in Leontini et al. (2006), the maximum error was found to be 1.9% at

the time of peak coefficient of lift.
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FIGURE 6.7: Flow regimes for a Re = 100 in the primary synchronization region. It is clear
that at various values of cylinder oscillation amplitude and oscillation different flow regimes
are achieved. Reproduced with the permission of Leontini, Stewart, Thompson & Hourigan
from Leontini et al. (2006)

These results show that the ALE formulation is capable of achieving results in
the fluid domain when the motion of a solid boundary is prescribed as a boundary
condition. These results extend to the validation of three-dimensional examples. While
the 3D cases are not explicitly shown here, the extra degree of freedom serves only to
increase the dimensions of the matrix and not the fundamentals of the algorithm. As

such validation of the 2D or 3D case provides sufficient validation of the solver.

6.4.2 Pressure driven bulging membrane

The case of a bulging membrane in a fluid is used to verify that mass is conserved
throughout the fluid and solid domains. This is important as both the fluid and solid
constitutive relationships are incompressible. To this end, an adaptation of the bulging
membrane problem suggested in Van Loon et al. (2007) is presented. Different boundary

conditions are imposed compared to Van Loon et al. (2007) which mimic the type of
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FIGURE 6.8: The change in coefficient of lift as a function of time as the vortices are shed
downstream for the case of A* = 0.7D, Re = 200 and % = 1.01. The black line shows the
reported data from Leontini et al. (2006) found using the moving reference frame technique,

the red line shows the lift calculated using the ALE formulation developed in this thesis.

boundary conditions used in the aneurysm studies presented in chapter 8. As such, the
aim of this validation case is not to compare studies, rather it is purely to verify the
mass conservation properties of the algorithm. Measurements of flow rate though the
domain inlet and outlet and the rate of volumetric displacement of the membrane are
monitored to determine any error associated with mass conservation. Similar studies
have been used to assess the accuracy of FSI algorithms, see for example the bulging
pipe case in Bathe & Ledezma (2007).

In this test case a slender solid membrane is considered that separates the fluid
domain in two parts as shown in figure 6.9. The boundary conditions applied to the
fluid domain are a linearly increasing pressure boundary condition on the lower inlet
Iy,

P = h(t) = 25000¢t, (6.4)

where h () is a linear function of time. A zero pressure boundary condition is applied
at the outlets of the second chamber I's. A no-slip boundary condition is applied at all

surfaces including the surface of the membrane
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FIGURE 6.9: Details of the fluid domain used in the pressure driven bulging membrane test.
Sub-plot (a) shows the detail of the domain including dimensions, inlet and outlets; while (b)

shows the undeformed macro-element mesh used in the simulation.

Dimension Fluid parameters Solid parameters

Wy 1]v 0.004 | E 2 x 108
W 0.5 | ps 1000 | ps 1000
H, 1
H, 0.5
tmem 0.016

TABLE 6.3: Dimensions of the bulging membrane problem and relevant physical parameters.

Since no flow is allowed through the membrane, an influx through I'y will cause
the pressure to rise in the bottom part of the fluid chamber and induce deformation
of the membrane. Due to the incompressibility of the fluid, the amount of fluid that
enters the domain will equal the amount leaving the domain through I's. The increase in
pressure leads to a deformation in the membrane and increase in the volume of the lower
chamber. This in turn leads to a flow rate through I'y. Due to the incompressibility
conditions, this flow rate is also equal to the fluid volume displaced by the membrane,

i.e.

// Qin dAm dt = // Qmem dAmem dt = / Qout dAout dt
t Azn Fl t Amem t Aout

where () represents the flow rate through a surface of area A. This observation can be

, (6.5)

I

used to monitor the flow conservation at various stages of the coupling.
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FIGURE 6.10: Visualisation of the flow in the bulging membrane domain. Flooded contours

are of velocity magnitude (varying from 0 to 0.07) with streamlines overlaid.

The macro-element mesh used for the computations is shown in Figure 6.9(b), and a
polynomial order of n = 7 is used as the basis function within each element. Dimensions
of the domain and the relevant physical parameters are detailed in table 6.3. The
solid membrane was modelled using ten quadrilateral macro-elements, and the same
polynomial order was used for the solid domain to allow efficient transfer of data from
one domain to the next. As a final note, the membrane is fixed in all degrees of freedom

where it connects to the channel walls at the edges of the fluid domain.

Figure 6.10 shows the flow field in the two cavities at an advanced stage of the
simulation. The solid membrane has bulged outwards into the upper chamber decreas-
ing its volume and increasing the volume of the lower chamber. Fluid is seen to be
drawn in from the bottom boundary, I'y, and as a result of conservation of mass, the
fluid is forced out of outlets of the upper chamber. Figure 6.11 shows the flow rate
results of the simulation. It is evident that the algorithm conserves mass with excellent
precision. The flow rate at the inlet and outlet are within 0.012% of each other with
the membrane flow rate remaining at an equivalent value. Figure 6.11(b) shows the

error in the flow rate as a function of time. As the membrane is increasingly stretched,
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FIGURE 6.11: Flow rate results for the bulging membrane study. Sub-plot (a) shows the flow
rate through the inlet B in the lower cavity and out the outlets in the top cavity . Sub-plot

(b) shows the error between the inlet and outlet flow rates.

the quality of the mesh begins to degrade and as a result, the accuracy of the mass
conservation is reduced. This highlights a shortfall in the current implementation of
the ALE solver. When modelling multiple fluid-solid interfaces, as the deformation
between interfaces gets large mesh elements may become skewed. This limitation is a
result of the Lagrangian fashion with which the solid is modelled. This interface track-
ing strategy ensures high accuracy at the interface boundary but may lead to poorly
structured meshes at very large deformations. For the aneurysm investigations studied
in this thesis the deformations are small enough that this is not of concern.

These results demonstrate that this implementation of the ALE algorithm is very
capable of modelling a pressure driven flow in which the fluid pressure causes a defor-
mation of the solid which in turn affects the velocity of the fluid. These results show

that mass is well conserved throughout both the fluid and solid domains.

6.4.3 Flow in a lid driven cavity with a membrane

The final validation case for the fluid-structure interaction solver is the strongly coupled
case of a lid driven cavity with an elastic membrane at the bottom surface. This example
was first introduced in Wall (1999) and has since been reproduced in many validation
studies (Mok & Wall 2001; Forster et al. 2007; Kiittler & Wall 2008; Bathe & Zhang
2009; Jog & Pal 2011). It is a variant of the classical lid-driven cavity problem in

fluid mechanics, where the bottom is a flexible membrane of non-dimensional thickness
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FIGURE 6.12: Details of the fluid domain used in the lid driven cavity study. Sub-plot (a)
shows the details of the domain including dimensions, inlet and outlets; while (b) shows the

undeformed macro-element mesh used in the simulation.

0.002L, and there are apertures near the top through which fluid can flow in or out
as shown in figure 6.12. In this example, the high elasticity (low elastic moduli) of
the membrane causes it to distort rapidly as the velocity field in the near field region
changes.

No-slip boundary conditions are applied on all walls and the surface of the mem-
brane. A gap in the wall is made either side of the lid in order to allow flow to enter
and exit the domain to conserve mass as the motion of the membrane changes the vol-
ume in the cavity. A traction-free, zero normal pressure gradient boundary condition
is applied at these openings. The lid of the cavity is driven by an oscillating velocity

acting at a tangent to the lid (in the z-direction). The lid velocity boundary condition

vy =1 — cos <257Tt> , (6.6)

which has a maximum non-dimensionalised amplitude of 1 m/s and a period of os-

is prescribed by

cillation of 5 time units. The solid membrane is fixed at each edge in both the x
and y-directions. A zero reference pressure boundary condition is applied to the outer
surface while the inner surface is subject to the pressure conditions in the fluid domain.

The properties of the fluid are the same as used in the work of Bathe & Zhang (2009)
and Jog & Pal (2011). For the fluid domain these are: fluid density p; = 1 kg/m”®,
dynamic viscosity py = 0.01 Pa - s which gives a Reynolds number of Re = 100. The
flexible membrane of thickness 0.002 mm, has a stiffness of £ = 250 Pa. The mesh used
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to discretise the fluid domain consists of 20 macro-elements with a polynomial order of
n = 7 used as the basis function for interpolation (see figure 6.12(b)). The solid domain
consists of a strip extending across the bottom boundary, 5 macro-elements long and 1
element thick, with an identical polynomial order to allow efficient and accurate transfer

of data between the solid and fluid domains.

Figure 6.13 shows the computed flow field and membrane displacement at three
snapshots in time. The motion of the membrane can clearly be seen to be oscillating
in response to the changing velocity boundary condition at the lid. The motion of
the wall is dominated by the presence of the recirculation region which forms in the
main chamber. At the times shown in figure 6.13(c) the response of the membrane to
the presence of the recirculation region is most obvious as the asymmetric shape of the
deformation is reflected in the offset of the recirculation region. Such deformations of the
membrane and flow fields mimic (qualitatively) the results presented in Kassiotis et al.
(2011). This indicates the high level of coupling between the membrane deformation

and the local flow dynamics.

Figure 6.14 shows the vertical displacement of the midpoint of the membrane as
a function of time. There is reasonable qualitative agreement with the corresponding
solution presented in Jog & Pal (2011) and Bathe & Zhang (2009). The membrane
moves in the mean upwards direction, the oscillations of the membrane reach a steady
state and oscillate at a steady amplitude (after the initial transients have died out)
reflecting the findings presented in the literature. The time period of the oscillation is
almost exactly 5 time units as is expected from the velocity boundary condition and

was reported by Jog & Pal (2011).

Despite the good qualitative agreement with the corresponding solutions presented
in the literature, some discrepancies and limitations must be discussed. Firstly, Jog
& Pal (2011) highlight that the solution to the problem is extremely sensitive to the
boundary conditions imposed on the gaps left in the wall near the lid of the domain. In
this case a zero normal pressure gradient boundary condition has been applied. Other
studies impose a zero y-velocity component (Jog & Pal 2011), while some use a zero
velocity gradient at the boundary (Bathe & Zhang 2009). The sensitivity of the solution
to the boundary conditions is also stated by Bathe & Zhang (2009), who note that in
their solution the bottom membrane moves in the mean downwards direction, whereas

in the solution of Kiittler & Wall (2008) (who do not indicate what type of boundary
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FIGURE 6.13: Visualisation of the flow in the lid driven cavity. Colour flood is of pressure
with red indicating positive pressure (maximum +0.1) and blue indicating negative pressure

(maximum -0.1). Streamlines of velocity are also shown.

condition they impose) it moves upwards.

Finally, in terms of the limitations, the membrane displacements reported herein are
smaller than those reported in Bathe & Zhang (2009) and Jog & Pal (2011). This is a
result of the difference in membrane stiffness employed in this study compared to their
works. In this study the membrane was stiffened to reduce its motion. In the event that
the membrane motion became too large, the solution became unstable and diverged.
This emphasizes an important aspect of the coupling between the fluid and solid solvers.
Owing to their construction, the stability characteristics of each algorithm (fluid and
solid) are quite similar. However, the appearance of a first-order time derivative in the

fluid and a second-order time derivative in the solid, leads to a difference in the Courant
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FIGURE 6.14: Displacement of the central point of the membrane (0.5,0) as a function of

time.

condition, which scales as

_ LA
= Re At
for the fluid and
Ax
Cs = E@?

for the solid. This presents a challenge when coupling the solvers. The fluid algorithm
is most stable using smaller time steps and lower Reynolds numbers, while the solid
solver is more stable at larger stiffnesses and smaller time steps. Furthermore, issues
arise when the time step is lowered to satisfy the stability of the fluid solver, the
At? term in the stability condition of the solid solver can cause extrema (either very
large or very small numbers). Extreme values can induce significant round-off errors.
Furthermore, matrices formed with extrema may be poorly conditioned; not satisfying
diagonal dominance which is a problem for some linear solvers. Finally, the difference
in the scale of the Reynolds number and wall stiffness typically modelled presents a
problem, this leads to a larger time step being preferential to solve the solid domain
and a lower time step for the fluid.

In order to circumvent some of the stability concerns a different time step can be
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applied to each of the solution domains. This helps some cases to run more smoothly,
though if the required difference in time step is too large it can produce step changes
in the solution (as the extrapolation used to supply information at intermediate steps
misrepresents the change in the solution over that time) which can lead to solution
divergence. This proved to be the case in the lid driven cavity problem presented here.
Despite these limitations, these results demonstrate that the algorithm is capable of
solving a strongly coupled problem in which changes in the velocity field effect the
local wall deformation. These results also show that for the stability of the solution,
the solver is best suited to solving problems in which the pressure and stiffness of the
wall is high (as is the case in the bulging membrane test case and the arterial flows

investigated in chapters 8 and 9).

6.5 Closure

In this chapter, the numerical algorithms developed in chapters 3, 4 and 5 were tested
against a series of benchmark studies. Each component of the solver was tested inde-
pendently to verify its accurate performance before ensuring the coupling algorithm was
capable of combining the solutions and resolving complex fluid-structure interactions.
Previously validation has been conducted on the fluid dynamics solver. This validation
showed excellent accuracy and solution convergence properties (Sheard & Ryan 2007).

The Hookean solver was tested using a simple uni-axial patch test. The results of the
simulation were compared with known analytical solutions for both the displacement
and stress in the material. In all cases the Hookean algorithm performed excellently
producing results within 0.2% of the analytical solution. The patch test also involved
using non-orthogonal mesh elements which tested the linear consistency of the spatial
discretisation.

The neo-Hookean solver was validated against experimental and numerical data
from Mesa Munera (2011). In this, the strain response in a rubber specimen was
assessed in a uni-axial compression test. Like the Hookean solver, the neo-Hookean
solver proved highly accurate with the maximum error reported as 0.52%. In conducting
this compression test, a Hookean model was also used, These results showed that even
at intermediate levels of stress, the Hookean material drastically overestimated the
strain in the material. This result implies that using a Hookean material model to

model the wall dynamics in an aneurysm would lead to an over-estimate of the wall
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motion. Consequently it would be inappropriate to use a Hookean elastic model in the
context of aneurysm FSI. Such sentiment is widely supported in the literature (see for
e.g. Humphrey & Taylor 2008).

Having determined the accuracy of each of the solver components, a series of bench-
mark studies were conducted to assess the performance of the ALE coupling algorithm.
It was determined that the ALE algorithm was capable of simulating a variety of fluid
structure problems with varying degrees of coupling between the fluid and solid. The
solver performed exceptionally well in unidirectional coupling problems and strongly for
cases which were pressure driven. While proving capable of simulating strongly coupled
systems such as the lid driven cavity problem in § 6.4.3, stability of the solution did
become an issue in large deformation cases. To resolve these issues the algorithm has
been constructed such that the time step of the fluid and solid can be varied indepen-
dently of each other allowing the user extra capabilities to tune the algorithm to the
problem at hand. In any case, the solver performs well under conditions where wall
stiffnesses are high and the pressure is driven from the boundary conditions. This suits
the problems considered in subsequent chapters well.

The first phase of this thesis aimed to develop a numerical method for analysing
fluid structure interactions in aneurysms. The numerical method needed to be suffi-
ciently complex so as to consider the non-linear constitutive models of the wall, which
included non uniform wall properties. The validation cases presented in this chapter,
combined with the numerical algorithm outlined in chapters 3, 4 and 5 achieve this
outcome. Furthermore, the unique combination of spectral elements, a new time step-
ping algorithm for neo-Hookean applications and a modified coupling algorithm for the

ALE formulation presents a novel contribution to this field.

168



Chapter 7

Parameter space

7.1 Introduction

Numerical modelling of fluid-structure interactions necessitates the prior knowledge of
a set of parameters pertaining to the geometry, the fluid and solid continuum models, as
well as the appropriate physiological boundary conditions for both continuum phases.
Humphrey & Taylor (2008) emphasize a major downfall in current fluid-structure inter-
action models in aneurysms is the use of inappropriate, non physiological, continuum
properties and boundary conditions.

Modelling biological material and flows is always fraught with generalisations and
simplifications. Firstly, because humans are unique, different genetic predispositions
and different environmental stimuli leads to each individual having a particular resting
heart rate, artery wall stiffness and aneurysm size. Secondly, because measurement
is difficult, biological materials are difficult to work with, and can easily be damaged
during measurement. Furthermore, access to the material to accurately test their prop-
erties is impossible without causing harm to the patient.

This chapter aims to canvas the literature in order to define a reasonable value
for the fluid and solid properties which can be utilised in the subsequent aneurysm
investigations. It will also provide justification of the wall stiffness parameter space to
be investigated. Finally it will present an explanation of the geometries chosen for the

ensuing fluid-structure interaction research.

7.2 Geometry

Aneurysms are prevalent in the large blood vessels throughout the human body. Most

commonly they are located in the abdominal aorta just above the iliac junction, but
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FIGURE 7.1: The location of an abdominal aortic aneurysm with renal arteries above and
the iliac junction below. Reproduced with the permission of Annual reviews from Lasheras
(2007).

are often also located in the knee joint, and with a lower prevalence, in the circle
of Willis (Lasheras 2007; Sforza et al. 2009). With the mortality rate of abdominal
aortic aneurysms at 70-90% (Lindholt et al. 2005) investigation into these aneurysms
is crucial. Abdominal aortic aneurysms form in the aorta between the renal artery
junction and the iliac junction which sends blood down each of the lower limbs, this

location is depicted in figure 7.1.

7.2.1 Healthy aorta

Figure 7.2 shows the computational domain for the aneurysm initiation investigation.
It simulates blood flow through a healthy aortic section in which abdominal aortic
aneurysms commonly form.

An aortic diameter of 20 mm is used, which is a value commonly used throughout
the literature (Di Martino et al. 1998; Finol et al. 2003a,b; Salsac et al. 2006). In their
investigation, Stefanadis et al. (1995) measured the dilation of the aorta throughout

the pressure pulse from the heart. They found the aortic diameter varied from 20.5 mm
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FIGURE 7.2: The geometry used in the straight pipe aneurysm initiation investigation. The
darker raised region is the aneurysm wall (thickness, t;otq; = 1.5 mm), with the brighter red

region representing the fluid flowing into the moving wall section (diameter d = 20 mm).

at peak diastole to 22.5 mm at peak systole. This is in good agreement with the 20 mm

diameter wall used for rigid-wall simulations in the aforementioned studies.

7.2.2 Aneurysm

Aneurysm shapes may be saccular (balloon-like expansions of only a portion of the
wall), fusiform (gradual dilation of the complete circumference of the artery), or cylin-
droidal. The different shapes have not been related to any specific cardiovascular disease
or clinical manifestation (Morrison 1999). While in the early stages of development ab-
dominal aortic aneurysms are often approximated by a fusiform shape, it is unlikely
that well developed aneurysms of medium or large size (diameter > 45 mm) would be
fusiform or axisymmetric. In fact, advanced AAAs form truly asymmetric shapes due to
the presence of the tissue in the perianeurysmal environment and the vertebral column
located posterior to this artery segment. This makes a large AAA less fusiform and
asymmetric, accounting for a major anterior dilation and a flattened posterior surface
(Finol et al. 2003b).

While recognising the departure from the fusiform shape in the late stages of ab-
dominal aortic aneurysm development, the work in this thesis will focus on a fusiform
shape only. In their investigation into the effects of asymmetry, Finol et al. (2003b)
recognise that in early stages of development the aneurysm takes on a nearly fusiform

geometry. Furthermore, in order to determine the effect of a heterogeneous wall stiff-
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FIGURE 7.3: The geometry used in the established aneurysm investigation. The darker raised
region is the aneurysm wall (thickness, tiotq; = 1.5 mm), with the brighter red region repre-
senting the fluid flowing into the moving wall section (diameter d = 20 mm). The bulge may

be described by an aspect ratio % = 3 and dilation ratio % =2

ness on the flow dynamics in an aneurysm all other parameters that have an effect on
the haemodynamics are held constant in order to isolate the effect of the variable wall
stiffness.

The fusiform bulge created for the aneurysm in this investigation (shown in fig-

ure 7.3) is created using the sinusoidal relationship,

[SlisH

if z<zgorz>zy+ L,

r(z) =
g+%[5m(@)} if 20 < 2 < 20+ L,

(7.1)

where 7 (2) is the radius of the aneurysm as a function of z-position, z¢ is the starting
position of the aneurysm bulge, L is the aneurysm bulge length, D is the maximum
diameter of the aneurysm, and d is the diameter of the original artery (Sheard 2009).

Fusiform aneurysms may be characterised by their aspect ratio % and dilation ratio
% as seen in figure 1.4. Previous numerical studies have investigated a range of aspect
and dilation ratios (e.g. Salsac et al. 2006). Table 7.1 summarises some of the ratios
used. In this investigation a dilation ratio % = 2 and an aspect ratio % = 3 is chosen.
This is within the range of aspect and dilation ratios used in the literature. It also
corresponds to a small to medium sized aneurysm, which should not have departed too
far from a fusiform shape.

In terms of physical dimensions the maximum diameter of the aneurysm was kept

at 40 mm (in accordance with the dilation ratio % = 2), this was chosen to remove
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Bulge shape

Aspect ratio £ Dialation ratio £
Salsac et al. (2006) 2.9-5.2 1.3-2.4
Sheard (2009) 2.9 1.9
Finol et al. (2003b) 6.0 3.0
Finol et al. (2003a) 9.0 3.0
This study 3.0 2.0

TABLE 7.1: Literature survey of aneurysm aspect and dilation ratios of aneurysms that have

been used in numerical simulations.

the likelihood of intraluminal thrombus forming which has been shown to affect flow
dynamics (Di Martino et al. 1998). Aneurysms with diameter D < 45 mm are clinically
shown to be typically devoid of an intraluminal thrombus (Harter et al. 1982). Again the
choice of this parameter is aimed at isolating the effect of wall stiffness on the aneurysm

haemodynamics while maintaining a physiologically relevant simulation environment.

The length of the aneurysm will be 60 mm. This parameter is simply chosen based
on the aspect ratio which has been commonly used in the literature. It represents
an aneurysm of medium size. Large aneurysms can grow up to the full length of
the section of the abdominal aorta which lies between the renal arteries and the iliac
junction. The average length of this arterial section is 130 mm across both males and

females (Hoffmann 2008).

In the following investigations, the length of arterial wall that is allowed to move is
120 mm in both the aneurysm initiation and established aneurysm cases (note: longer
inlet and outlet regions are used with solid walls to ensure inlet and outlet conditions
do not affect the solution in the region of interest). This closely matches the length
of the abdominal aorta described in Hoffmann (2008). The circulatory system is much
longer than this section and the vessel wall is compliant throughout, however, junctions
such as the renal artery and iliac junctions will form tethering points limiting the local
dilation of the artery wall. As such, modelling just the 120 mm section between the
renal and iliac junction with the ends tethered closely models the human physiological

environment.
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7.3 Fluid parameters

In modelling the blood flow in an aneurysm it is important to select a physiologically
accurate set of fluid properties and boundary conditions to accurately assess the haemo-
dynamics in vivo. The choice of fluid dynamic parameters and boundary conditions
used in this study follows closely the works of Finol et al. (2003b) and Leung et al.
(2006).

7.3.1 Fluid properties

The density of blood is widely accepted to be 1060 kg/m3 (Finol et al. 2003b; Leung
et al. 2006) which is very close to that of water at 1000 kg/ m?®. The extra density is a
result of the small amounts of protein and inorganic salts in the plasma and haematocrit.

In § 1.2 the composition of blood is discussed. Due to the level of haematocrit
which exists within the plasma, blood is strictly a non-Newtonian fluid (it does not
have a linear stress-strain relationship). Regardless, the results presented in this thesis
use a Newtonian fluid assumption. The works of Rodkiewicz et al. (1990); Perktold &
Rappitsch (1995) and (Wootton & Ku 1999) showed that in large vessels such as the
abdominal aorta, blood behaves like a Newtonian fluid. In the present study a dynamic

viscosity of u = 3.85 x 1073 Pa-s (Finol et al. 2003b) is used.

7.3.2 Boundary conditions

The boundary of the fluid domain is divided into the following regions for the assignment
of boundary conditions: an inlet, outlet, and the fluid-structure interaction interface.
The applied boundary conditions for the fluid inlet and outlet are a time dependent fully
developed Poiseuille velocity profile for the inlet, and at the outlet a time dependent

pressure boundary condition. The Poiseuille velocity profile is described by

v, = Upeak (R2 —z? - y2) , (7.2)

where v, is the inlet velocity in the z direction, vpeqr is the time dependent peak inlet
velocity (shown in figure 7.4), R is the radius of the artery and x and y are positions
in the z-y plane. While the Womersley profile is the naturally forming velocity profile
for oscillatory flows in pipes, the Poiseuille flow forced at the inlet will develop into a
Womersley profile given enough time before it reaches the proximal neck.

The pressure outlet boundary condition is time dependent due to the pressure pulse
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FIGURE 7.4: Time-variation in the peak velocity at the inlet over a single period, used in
this thesis.

from the heart driving the flow. The variation in outlet pressure as a function of time

is plotted in figure 7.5.

The systolic and diastolic pressures shown in figure 7.5 match those used in Finol
et al. (2003b) which use the in vivo luminal pressure measured at the iliac junction
in Mills et al. (1970). Similarly the velocity profile of figure 7.4 matches the peak
systolic velocity and velocity range measured in Mills et al. (1970) at the renal artery
junction. The use of this transient input velocity based on normal arterial conditions
(not aneurysm geometries) is justified by the fact that the inlet boundary condition is
applied well upstream of the proximal neck of the aneurysm, where the abdominal aorta
is undilated. For average resting conditions (heart rate of 60— 70 bpm), blood flow in the
abdominal aorta is generally laminar (Finol & Amon 2002); flow deceleration achieved
after peak systole induces laminar disturbed flow conditions and vortex formation even
under simulated exercise conditions (Moore Jr et al. 1994). Inlet peak systolic flow

occurs at t = 0.4 s and outlet peak pressure at t = 0.5 s.

Some previous investigations have used Windkessel models to reproduce the physio-

logical influence of the arterial beds distal to the outlets (e.g. Arzani et al. 2012). Such
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FIGURE 7.5: Pressure outlet boundary condition as a function of time used in this thesis.

models use a three-element Windkessel model coupled to the computational domain
using the method described in Vignon-Clementel et al. (2006) with outlet volumetric
flow rates determined by the Windkessel model. In the Windkessel model of the arterial
network, the pressure, flow rate and flow resistance are seen as the voltage, current and
resistance in an electric circuit. The pressure is determined by integrating the following

equation:

dP P

where @ is the flow rate in the artery, C' is the compliance of the artery, and D is the
resistance of the distal arterial network.

In the context of this work, the compliance factor C' can be readily calculated,
however the resistance D of the distal arterial and vascular network remains unknown.
The dependence of the Windkessel model on the pressure drop implies a domain size
dependence. If a Windkessel model were adopted, complications could arise with in-
let velocity profiles. In order to constrain the number of parameters in this study a
Windkessel model is not used.

While the pressure and velocity profiles do not exhibit the same systolic and diastolic

acceleration shown in figure 7.6, matching the relevant peak physiological parameters
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FIGURE 7.6: In vivo luminal pulsatile velocity based on the velocity profile in Mills et al.
(1970). Inlet peak systolic flow occurs at ¢ = 0.304 s. Reproduced with the permission of
BioMed Central Ltd from Scotti et al. (2005).

should give a good approximation of the in wvivo flow conditions. The peak velocity
measured in Mills et al. (1970), is reflected in this velocity inlet as it is expected that
the peak wall shear stress (in the case of laminar flow) should occur when the velocity is
the greatest. The simplification of the time evolution of the velocity and pressure fields
does limit how physiologically representative the simulations are. However, an aim of
this thesis is to determine the effect of heterogeneous wall stiffness on the haemodynamic
stimuli in an aneurysm. By performing simulations that compare changes in stiffness
under like boundary conditions; conclusions can be drawn in relation to the variations in
wall stiffness. Furthermore, the simplification of the time evolution of the pressure and
velocity boundary conditions allows analytical expressions to be developed, providing a
platform from which the underlying physics driving the changes in the flow fields may

be understood.
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7.3.2.1 FSI interface boundary conditions

The boundary conditions applied at the fluid-structure interface are as follows: displace-

ment (u) of the fluid (0€f) and solid (0€)s) domain boundaries must be compatible,

UsQ, = UsQ;, (7.4)

the traction (stress, o) normal to the wall must equal the pressure (P) applied by the
fluid at the wall,
oc-n=P"P, (7.5)

where n is the unit normal vector to the wall; and the fluid must obey a non-slip

boundary condition at the wall, that is,
v§ = Vs, (7.6)
where vy is the velocity of the fluid and v, is the velocity of the FSI interface.

7.3.3 Flow properties

Finally we define some of the non-dimensionalised parameters that describe the flow.
The time-averaged Reynolds number is Régeqn = 410, which is characteristic of a
patient in resting conditions (Milnor 1989). The dynamic range of the Reynolds number
is Re = 61.5 — 758.

The heart rate of the resting patient for which such a time averaged Reynolds
number is appropriate is 60 bpm which implies a period of each heart cycle of T =1 s.

The Womersley number, «, characterizes the flow frequency w = 2%, the geome-
try and the fluid viscous properties. For this investigation, which has been based on
physiological properties, the Womersley number o« = 9.7. As the rest of the study is
based on the physiologically accurate boundary conditions the Womersley number is
also physiologically realistic, a = 9.7 is a typical value for the human abdominal aorta
under resting conditions (Nichols & O’Rourke 1990; Finol et al. 2003b; Scotti et al.
2005; Lindholt et al. 2005).

7.4 Solid parameters

In their reviews, both Lasheras (2007) and Sforza et al. (2009) indicated a major short-

coming in the current modelling of fluid-structure interactions in aneurysms is based
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FIGURE 7.7: A computed tomography (CT) scan slice of an abdominal aortic aneurysm.
A three dimensional model (also shown) is reconstructed from the series of 2D segments
identified in the CT scan. The arterial wall (cross-sectioned) has a highly variable thickness.
Reproduced with the permission of Elsevier Ltd from Di Martino et al. (2001).

around the lack of information about the mechanical properties of the wall. Further-
more they highlighted the inadequacy of the existing continuum models used for the
solid phase. While many models use highly complex constitutive models to describe
the wall, incorporating hyperelasitc material models (Raghavan & Vorp 2000), linear
or non linear viscoelastic models (Pontrelli 2001; Canié¢ et al. 2006) and anisotropic
models (Grotberg & Jensen 2004; Rissland et al. 2009); very few have accounted for

the heterogeneous thickness and stiffness distribution in an aneurysm.

Figure 7.7 shows the reconstruction of an aneurysm from a CT scan. What is readily
visible is the high degree of variation in the arterial wall thickness. Furthermore, in fig-
ure 7.8, the stress distribution is shown to be highly heterogeneous, with calcification
deposits scattered sporadically throughout the aneurysm. The highly heterogeneous
wall stiffness environment motivates this study. This examination aims to investigate
the effect of localised variations in material stiffness in both a healthy artery and an es-
tablished aneurysm geometry. The healthy artery investigation focuses on investigating
causes of aneurysms while the aneurysm study shows how an uneven stress distribution
may cause undesirable haemodynamic properties which could perpetuate the growth of

aneurysIns.
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FIGURE 7.8: The computed von-Mises stress distribution in a patient specific aneurysm (A).
The stress distribution changes dramatically if calcification regions (B) or Intra-Luminal
Thrombus (ILT) (C) are excluded. Reproduced with the permission of Elsevier Ltd from Li
et al. (2008).

7.4.1 Wall thickness

Previous studies such as Scotti et al. (2005), have investigated the effect of a changing
wall thickness on the haemodynamics in a fusiform aneurysm. They showed that a
variable wall thickness drastically affects the wall stresses. The current study will
investigate the effect of varying the other heterogenous material parameter, the stiffness.
The wall response to the haemodynamic forces is not a function of stiffness or thickness
alone. If identical forces are applied then a decrease in stiffness or thickness will lead to
larger stresses being felt by the wall. In order to isolate the effect of changes in stiffness
for the purpose of assessing its feasibility as a risk of rupture indicator, the thickness
of the wall will be kept constant and the wall stiffness varied.

The artery wall is made up of three layers, the intima, media and adventitia. Many
investigations have either measured the wall and layer thickness of an abdominal aorta

or used a derived wall thickness in a simulation. Table 7.2 summarises the range of
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Thickness (mm)

Intima Media Adventitia Total

Healthy aorta

Lindsay & Hurst (1979) 0.13 1.00 - 1.63
Restrepo et al. (1979) 0.13 1.00 - 1.63
Astrand et al. (2005) - 0.73 - 1.06*
Restrepo et al. (1979) 0.10 - - -
Gao et al. (2006) - - - 2.00
Driessen et al. (2004) - 0.26 0.13 0.41*
Aneurysms

Raghavan et al. (2006) - - - 1.48
Thubrikar et al. (2001) - - - 1.58-3.19
Scotti et al. (2005) - - - 1.50
Papaharilaou et al. (2007) - - - 2.00
Di Martino et al. (2006) - - - 2.00
This study 0.195*  0.840%* 0.465* 1.50

TABLE 7.2: Literature survey of healthy arterial wall and aneurysm wall thicknesses. Both
values of wall thickness determined by experiment and implemented in numerical simulations
are presented. * represents a value determined using the layer thickness ratio found in Schulze-
Bauer et al. (2003).

thicknesses quoted in the literature.

From these papers, the mean artery wall thickness is 1.346 mm. For aneurysm
measurements and simulations the average thickness is 1.95 mm. Aneurysm formation
is usually associated with large variations in wall thickness as cell apoptosis occurs and
intraluminal thromboses form. In this study the thickness of the wall was chosen to
be a constant across both the aneurysm bulge and the healthy artery sections just as
in Scotti et al. (2005); Di Martino et al. (2006); Gao et al. (2006) and Papaharilaou
et al. (2007). In this study a thickness of t;tq; = 1.5 mm is chosen which is close to the

average of thicknesses for aneurysms and healthy aorta.

Schulze-Bauer et al. (2003) observed a thickness ratio for the artery wall layers of

intima/media/adventitia of 13/56/31 for healthy arteries. Driessen et al. (2004) used a
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ratio of 2/1 for media/adventitia and Gao et al. (2006) used a ratio of 1/6/2. The ratios
used by both Driessen et al. (2004) and Gao et al. (2006) are simplifications of the ratio
quoted in Schulze-Bauer et al. (2003); as such, this ratio is used in determining the
layer thicknesses for the model. Given a total thickness t,tq; = 1.5 mm, this yields an
intima thickness of ¢; = 0.195 mm, a media thickness of ¢, = 0.84 mm, and adventitia

thickness of ¢, = 0.465 mm.

7.4.2 Wall stiffness

As with wall thickness, many studies have been completed to assess the stiffness of an
artery wall. Determining the stiffness of the wall in situ is a complicated prospect.
Estimates of the stiffness have been made by observing the dilation or response of
the wall to the different pressures of systole and diastole. Other measurements have
been performed using ultrasound techniques (Claridge 2010; Couade et al. 2010). Some
investigations have completed uniaxial and biaxial tensile tests on ruptured aneurysm
tissue or animal tissues (Di Martino et al. 2006; Lally et al. 2004). Table 7.3 compiles

the range of stiffnesses determined throughout the literature.

From these papers the median healthy artery stiffness is 0.8 MPa. Some of the
papers used in forming this average cite data for artery sections that are not near the
abdominal aorta and others use data for elderly subjects with hypertension and other
health concerns. Although this does skew the data to a stiffer value of the overall stiff-
ness, the prevalence of aneurysms is greatest in the elderly population. Furthermore,
the incidence of aneurysm is often coincident with hypertension, atherosclerosis or other
health concerns that adversely affect wall stiffness, making this value of 0.8 MPa plau-
sible. In further support of this argument, figure 7.9 from Claridge (2010) shows the
regression of the artery stiffness with age. The stiffness of 0.8 MPa corresponds to a
person of approximately 65 years, which is the beginning of the age bracket in which

there is a high prevalence of abdominal aortic aneurysms.

The stiffness of aneurysm sections will be varied from 0.2 — 6.0 MPa, this encom-
passes the full range of stiffnesses quoted in the literature for both healthy and damaged
vessels. This range should provide a physiological parameter space sufficient to deter-

mine if non-uniform stress distributions affect the flow haemodynamics.
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Stiffness

Youngs modulus, £ (MPa) Shear modulus, G (MPa)

Healthy aorta

Di Martino et al. (2006) 0.200 0.066
Laurent et al. (1994) 2.250 0.750
Claridge (2010) 0.250-1.000 0.083-0.333
Couade et al. (2010) 0.300 0.100
Mosora et al. (1993) 0.600-2.000 0.200-0.666
Aneurysms

Vorp et al. (1996) 3.510-5.690 1.170-1.890
Di Martino et al. (2006) 3.800 1.260
Thubrikar et al. (2001) 1.000-6.000 0.333-2.000
Scotti et al. (2005) 2.700 0.933
Finol et al. (2003a) 5.000 1.666
This study

Healthy aorta 0.800 0.267
Aneurysm 0.200-6.000 0.066-2.000

TABLE 7.3: Literature survey of the stiffness of both healthy arterial walls and aneurysm
walls. Values represented in this table are average wall stiffnesses and not accurate for
individual layers of the arterial wall. Both values of wall stiffness determined by experiment

and implemented in numerical simulations are presented.

7.4.2.1 Layer stiffness

The measurements of the material stiffness parameters are performed on bisected artery
and aneurysm sections (Mosora et al. 1993; Claridge 2010; Couade et al. 2010). A tensile
or compressive test rig is used such as the one shown in Dokos et al. (2000). This rig
is capable of measuring the stress-strain behaviour of the arterial tissue, and from this,
the material parameters of the tissue may be determined. Due to the complex nature of
the layers of the artery walls and their thickness it is difficult to accurately dissect the
layers in order to measure precisely the material properties of each. As such the stiffness

values quoted in table 7.3 are average stiffnesses of the entire arterial cross-section.
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FIGURE 7.9: The regression of the mean Young’s modulus (E) in kPa plotted as a function
of age. Reproduced with the permission of Claridge from Claridge (2010).

Xie et al. (1995) provides a means to determine the stiffness of the individual layers
of the artery wall. They found the Young’s modulus of the inner layers (intima and
media) was three to four times larger than that of the outer layer (adventitia). Cabrera-
Fischer et al. (2002) presented some experimental data showing that the Young’s mod-
ulus of the intima is smaller than that of the media. This investigation follows the
work of Gao et al. (2006). The Young’s modulus of the media is set to be three times
that of both the adventitia and intima (i.e. 1:3:1). Since the mean Young’s modulus of
the vessel wall across the entire wall volume is invariable, the Young’s modulus of each
layer is in inverse proportion to the area of the layer in the cross-section (Gao et al.
2006). The stiffness of each layer may be related to the average stiffness of the arterial

wall using

E, xti+ Ep Xty + E, X t,
E = 7.7
mean trotal s ( )

where E,,eqn is the mean stiffness of the wall, F;, E,, and E, are the stiffnesses of

the intima, media and adventitia respectively; t;, t,, and t, are the thicknesses of the
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Layer stiffness, £ (MPa)

Average stiffness, Eean | 0.2 0.4 0.6 0.8 (healthy) 2.0 4.0 6.0
Intima stiffness, E; 0.031 0.063 0.094 0.126 0.314 0.629 0.943
Media stiffness, E,, 0.094 0.189 0.283 0.377 0.943 1.887 2.830
Adventitia stiffness, E, 0.031 0.063 0.094 0.126 0.314 0.629 0.943

TABLE 7.4: Breakdown of the layer stiffness used at each of the prescribed average stiffnesses

used in this investigation.

intima, media and adventitia respectively and ;4 is the thickness of the wall. Also

required is the relation from Xie et al. (1995),
By, = 3E; = 3E,. (7.8)

Using these relations the stiffnesses of each layer is calculated and summarized in

table 7.4.

7.4.3 Wall assumptions

At this point some of the assumptions made in choosing these material properties are
recognised. Firstly, the wall is modelled as an isotropic incompressible neo-Hookean
solid. Biological tissues such as the artery wall have been shown by Raghavan & Vorp
(2000) among others to be anisotropic in nature and feature both hyperelastic and
viscoelastic properties. This is a result of the highly complex structure of the artery
wall. Humphrey & Taylor (2008) indicated that the most advanced FSI solvers currently
use a neo-Hookean wall model (Wolters et al. 2005). Other investigations such as Torii
et al. (2008) tested the effect of using more complex material models on the artery
wall response. They found that while neo-Hookean material models gave very different
results to Hookean material models, more complex models had a negligible impact on
the results.

In terms of choosing the wall stiffness and thickness, Lopez-Candales et al. (1997)
and Thompson et al. (1997), identified a thinning of the intima and medial layers dur-
ing aneurysm formation. In this study the layer thickness is kept constant regardless
of whether it is in the aneurysm or healthy aorta region. Lopez-Candales et al. (1997)
also described the change in the material stiffness that occurs as a result of the wall re-

modelling process that leads to an aneurysm forming. In this study the overall stiffness
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will be changed to simulate the stiffening of different regions. However, individual layer
stiffness will remain proportional to the total stiffness of the region. This would be a
good subject of further investigation but is beyond the scope of the work completed in
this study. Finally, the grain like structure of the stiffness and thickness pattern shown
in figure 7.8 is considered. The stiffening that is to be conducted in this investigation
is applied across bands of the arterial wall giving a very axisymmetric stiffness profile.
This is obviously a simplification of the structure shown in figure 7.8 but is done in
order to investigate a pattern or distribution which may be generalized across many
aneurysms. While the case of non-symmetric stiffening would be more physiologically

accurate and of interest, it is again beyond the scope of this investigation.

7.4.4 Solid boundary conditions

The solid domain boundary consists of the fluid-structure interaction interface, the
inlet and outlet cross-sectional ends and the outer surface which interacts with the
perianeurysmal environment.

The FSI interface will have the boundary conditions that were described in § 7.3.2.1.
The cross-sectional ends at the inlet and outlet of the geometry will be fixed in place,

that is,

u =0, (7.9)

where u is the displacement of the solid material. As discussed in § 7.2.2 the renal
and iliac artery junctions provide a stabilising platform which tethers the abdominal
aortic section. The length of the simulated section between these two boundary faces is
comparable to the abdominal aortic section. Finol et al. (2003b) use identical boundary
conditions for these surfaces.

The final boundary condition is the outer wall surface. This surface interacts with
the perianeurysmal environment. Finol et al. (2003b) could find no published data on
normal forces exerted by internal organs and tissue on the wall of the abdominal aorta.
A further search of the literature yielded no further information about pressures exerted
by the perianeurysmal environment. Fixing the outer surface of the artery wall, as is
common practice in Finol et al. (2003b); Lindholt et al. (2005) and Scotti et al. (2005),
can result in underestimating the movement of the artery wall. Stefanadis et al. (1995)
measured the dilation of the artery wall in two patients throughout the cardiac cycle.

They reported a change in vessel diameter of Ad = 1.2 —2.5 mm. A short investigation
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found that using an external pressure which matched the diastolic pressure at diastole
and varied by 20% of the change in luminal pressure throughout the cycle produces a
dilation of 1.54 mm in a healthy artery which falls within the range of values quoted in
Stefanadis et al. (1995). The external pressure boundary condition that is then applied
is,

P.yt = Pyig +0.2 M [1 — cos (?t” : (7.10)
where P, is the pressure applied to the external surface of the artery wall, Py, is the

diastolic pressure in the lumen, P, is the peak systolic pressure in the lumen, 7" is

the period of the heart beat and ¢ is time.

7.5 Summary

Through an extensive survey of the literature and careful consideration of the phys-
iological environment; the full parameter space of the subsequent investigations into
aneurysm initiation and growth has been justified. Table 7.5 provides a summary of

the chosen fluid and solid dynamic parameters used throughout the rest of this thesis.
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Summary

Parameter value
Geometry

Length of solid section (aneurysm) 140 mm
Length of solid section (straight pipe) 120 mm
Length aneurysm bulge 60 mm
Aortic diameter d 20 mm
Aspect ratio % 3
Dilation ratio % 2
Total wall thickness t;q; 1.5 mm
Intima layer thickness t; 0.195 mm
Media layer thickness t,, 0.84 mm
Adventitia layer thickness t, 0.465 mm
Fluid

dynamic viscosity p 3.85x 1073 Pa-s
density p 1060 kg/ m®
Inlet velocity mean v,,eqn 16.25 cm/s
Inlet velocity peak vpeak 30 cm/s
Outlet pressure systolic Py, 120 mmHg
Outlet pressure diastolic P g, 70 mmHg
Phase lag (velocity-pressure) 0.1s
Heart rate (period) T 1s
Time averaged Reynolds number Re,,eqan 410
Peak Reynolds number Repeqk 750
Womersley number « 9.7
Solid

Stiffness (healthy) Eean 0.800 MPa
Aneurysm stiffness range 0.200-6.000 MPa
density p, 1160 kg/ m®

TABLE 7.5: Summary of the parameter space used in the aneurysm initiation and growth

investigations.
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Chapter 8

Investigation 1: Aneurysm
initiation

8.1 Introduction

The precise initiation process of aneurysms is currently unknown (Lasheras 2007; Sforza
et al. 2009). Many physiological studies have identified a series of risk factors that
increase the risk of aneurysm formation. These include smoking, sex, alcohol, hyper-
tension, atherosclerosis, disease or infection (e.g. syphilis). While these risk factors
have been identified, the asymptomatic nature of aneurysms means early detection is
unlikely. In fact, generally aneurysms are not identified until they are quite advanced
in their evolution. As such, little is known about aneurysm initiation (Lasheras 2007).

Age is considered to be the greatest risk factor, with aneurysms being most prevalent
in the elderly. Age makes arteries thicker and stiffer. The median layer thins and loses
its orderly arrangement of elastin changing to a disordered “patchwork” of elastin grain.
The elastin to collagen ratio becomes more collagenous which leads to a stiffening of
the arterial wall (Lasheras 2007). Furthermore, histological studies have shown that in
the early stages of aneurysm formation there is a degeneration of endothelial cells and
internal elastic lamina (Stehbens 1963, 1989). A thinning of the medial layer through
apoptosis (programmed cell death) of smooth muscle cells is also evident (Stehbens
1963, 1989). Disruptions in the remodelling process have been identified with increased
levels of elastase (Chaytte & Lewis 1997) and matrix metalloproteinase (Bruno et al.
1998). This could lead to a weakening of the wall.

Nichols & O’Rourke (1990) suggest that fatigue through cyclic stresses causes the
fracture of the load-bearing elastic sheets. Under the pulsatile haemodynamic forces,

the polymerised structure of elastin sheet and fibres reorganises, causing them to fail
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at lower tensional stresses. The tearing of these sheets is associated with a loss in
elastic re-coil which may cause a permanent dilatation of the vessel. The permanent
stretching of the smooth muscle tissue is accompanied by a permanent remodelling
process whereby collagen content in the muscular layer increases. The end result of

this irreversible process is the creation of an aneurysm.

Haemodynamic factors play a key role due to the capacity of endothelial cells to
sense and react to Wall Shear Stresses (WSS). Studies have shown that low wall shear
stress and high oscillatory patterns of wall shear stress correlate with intimal wall
thickening (Dardik et al. 2005; Friedman et al. 1981; Ku et al. 1985). A uniform
shear stress field tends to stretch and align endothelial cells. Furthermore, studies on
animals show an increase in WSS can fragment the internal elastic lamina or damage

the endothelium (Sforza et al. 2009).

Presented in this chapter are the results of an investigation into the initiation of
aneurysms. There exists a consensus in the literature (Stehbens 1963, 1989; Nichols &
O’Rourke 1990; Bruno et al. 1998; Lasheras 2007) that through the ageing process and
possible exposure to disease, arterial walls undergo a slow degradation which leads to
a localised discontinuity in arterial wall stiffness. Nichols & O’Rourke (1990) suggest
the fatigue-like wall degradation triggers an interruption in the mechanotransduction
process which leads to the negative progression of arterial wall health and the creation

of an aneurysm.

This study aims to address aim 2c¢ from § 1.8, to investigate the effect of a heteroge-
neous wall stiffness on the haemodynamics in an artery and how this in turn may lead
to a haemodynamic environment that could disrupt the mechanotransduction process

leading to the initiation of aneurysm growth.

In addressing this aim, blood flow through a straight section of pipe with elastic-
walls was simulated. To simulate the localised wall degradation that can occur naturally
as part of the ageing process or as a result of disease; sections of the elastic-wall were
prescribed a spatially varying stiffness. This investigation shows the effect that lesions,
calcification or wall tethering can have on arterial haemodynamics and the eventual

initiation of aneurysms.

For the set of hypotheses relating to this investigation the reader is referred to

§ 1.8.3.
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8.2 Geometry

Figure 8.1 shows the computational domain used for this aneurysm initiation inves-
tigation. The model simulates blood flow through a healthy aortic section in which
abdominal aortic aneurysms commonly form. As discussed in § 7.2.1, an aortic diam-
eter of d = 20 mm is used. The length of the elastic-wall region shown in figure 8.1
is 120 mm (or 6d). Figure 8.1 shows the macro-element mesh used in the meshing of
the straight pipe. Gauss—Legendre—Lobatto quadrature points are used to interpolate
within each of the macro-elements shown. By using these quadrature points a highly
accurate mesh is formed (see § 8.3 for details of the accuracy).

It is clear from figure 8.1(a) that the computational domain extends both upstream
and downstream of the elastic region. While physiologically this region does not exist,
it must be included to ensure that inlet and outlet boundary conditions do not affect
the flow in the region of interest. Further details of the choice of inlet and outlet length
can be found in § 8.3.2. The large inlet length allows the Poiseuille velocity profile
inlet condition to adopt the stable Womersley profile for oscillating flows by the time it
reaches the inlet of the elastic region. The inlet is 9d upstream of the entrance to the
elastic region and the outlet is 6d downstream.

Downstream of the elastic region is a flared section leading to the outlet (fig-
ure 8.1(d)). A velocity inlet boundary condition is applied to the side walls of the
flared section and a periodic pressure boundary condition is applied at the end of the
pipe. Due to the motion of the elastic-wall blood is drawn back into the elastic section
periodically throughout the heart-cycle. Figure 7.6 shows the time evolution of velocity
in an artery which includes a diastolic phase with reverse flow. In order to simulate
this reverse flow through the elastic region in a stable manner, this flared velocity inlet
condition was included to ensure positive flow through the pressure outlet at all times
while allowing reversed flow in the region close to the elastic-wall. While the boundary
condition itself is covered in § 8.2.1 it is noted here that the flared shape was chosen to
minimise the energy input into the system thus providing a minimal effect on the elastic
region upstream. The flare has a length of 3d and expands from the pipe diameter d
to 1.5d at the downstream boundary.

Hexahedral mesh elements are used to simulate the flow through the three-dimensional
domain (see figure 8.1(b)). To maximise accuracy in the elastic region where the mov-

ing arterial wall introduces multi-dimensional flow dynamics, the mesh is much denser.
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In this region the macro mesh elements are of approximate size 0.2d x 0.2d x 0.2d (i.e.
aspect ratio of unity). A near cube-shaped macro-element should ensure that numeri-
cal errors introduced through the matrix inversion process (which is more accurate on
diagonally dominant matrices) is minimized.

Outside of the elastic region, the mesh is coarser. The rigid walls and uniform
geometry in this region ensures the flow is almost completely unidirectional. As such,
less resolution is required to describe the flow in these regions (see § 8.3.3). A coarser
mesh was used in these regions to decrease simulation time.

Figure 8.1(c) also shows the solid domain mesh used. This mesh consists of three
macro-element layers. Each layer represents a layer in the arterial wall. The wall
has a constant initial thickness throughout the geometry and each layer is also initially
constant along the length of the artery. The overall thickness is 1.5 mm with the intima
thickness, ¢; = 0.195 mm, the media thickness, ¢,, = 0.84 mm, and the adventitia
thickness of ¢, = 0.465 mm. Justification of these thicknesses can be found in § 7.4.1.
Section 8.3.4 demonstrates the accuracy of the mesh.

The investigation into aneurysm initiation involves a local change in wall stiffness.
The results presented in § 8.5 include a stiffer band of material that is one element (or
0.2d) wide, in the centre of the elastic region. All three layers of the wall are stiffened by
the same amount. The results presented in § 8.5.6 investigate the effects of expanding
this thickened region to two elements (or 0.4d) wide and three elements (or 0.8d) wide.

In § 8.5.7 flow though an expanded rigid-walled pipe is simulated, to assess if the
geometry alone is responsible for some of the flow structures being observed in the
fluid-structure interaction study. For this investigation the geometry from figure 8.1(a)
is used. All of the mesh features described for the fluid-structure interaction cases are
used with the shape of the bulge determined from the maximum solid response in an

FSI simulation.

8.2.1 Fluid properties and boundary conditions

In this investigation blood is modelled as a Newtonian fluid. The viscosity of blood is
p=3.85x 1073 Pa-s, with a density of p = 1060 kg/mg. These parameters have been
extensively documented in the literature. For justification of the Newtonian model of

blood see § 1.2.

The fluid boundary conditions are extensively documented and justified in chapter 7.
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(a) Geometry

(b) Mesh detail (c) Solid mesh (d) Flared Outlet

FIGURE 8.1: Mesh detail used in the aneurysm initiation investigation, blood flows from
left to right. (a) shows macro-elements in the entire computational domain. Red regions
represent blood flow, the green region shows the band of solid material that is to be stiffened.
(b) shows a detailed cross-section of the mesh, clearly visible are the cube-shaped elements
in the fluid region and the thinner layer of solid elements. (¢) shows a detailed cross-section
of the solid mesh with its three macro-element layers. (d) shows the outlet flare with vectors

representing the inlet boundary conditions and outflow at the pressure outlet.

These consist of a velocity inlet boundary condition with Poiseuille profile. Figure 7.4
showed the temporal flow profile at the velocity inlet, which comprises a sinusoidal
profile with a peak inlet velocity of vpeqr = 30 cm/s and a mean velocity of vpmean =
16.25 cm/s. A time-varying pressure outlet boundary condition is also used. Figure 7.5
shows the time evolution of the pressure boundary condition, which features a sinusoidal
profile with a phase lag of 0.1 s behind the inlet velocity profile. The period of both the
inlet and outlet boundary conditions is 7' = 1 s. These boundary conditions correspond
to a time-averaged Reynolds number of Re,,eqn = 410 and a peak Reynolds number of

Repeqr, = 750. The Womersley number used in the investigation is a = 9.7.

At the vessel wall a no-slip boundary is applied. At the fluid-structure interface in
the elastic region, the velocity of the wall is prescribed as the fluid boundary condition.

ie.
vy = V. (8.1)
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Finally, the flared inlet boundary condition near the pressure outlet is described.
Figure 8.1 shows the velocity vectors on a two-dimensional slice of the flared section.
The magnitude of the velocity entering the domain increases linearly from the start
of the flared section to the end. This allows the boundary conditions at the end of
the straight section (which is a no-slip boundary condition, i.e. v = 0) to match the
flared boundary condition at their interface edge. The x, y, and z components of this

boundary condition are

[(z = Ly,)vy] -

[(z = Ly,) vy -

Vg = —

(8.2)

N el N
S

Uy = —

b=l L)

where v., vy, v, are the x, y, and z components of this velocity, Ly, is the length of
straight pipe leading to the beginning of the flared section, R is the radius of the pipe,

and vy is

vf =4 —2cos (27t) . (8.3)

As discussed in § 8.2 this boundary condition is applied to ensure continuous out-
flow at the pressure outlet. The time-varying component vy is used rather than a con-
stant value as throughout the cardiac cycle flow periodically reverses direction. This
boundary condition is therefore not required at all times and to minimise the energy
it introduces into the system the flow rate through the boundary is reduced (by the
sinusoidal time dependence) at times when the velocity through the outlet is naturally
outward. The domain size study conducted in § 8.3.2 showed that the addition of this
outlet sufficiently far downstream of the elastic region had no measurable impact on

the flow through the elastic region of interest.

For the rigid-wall expanded-pipe case the geometry formed at peak systole was
captured. Once formed the walls were held fixed in this location while the velocity and
pressure boundary conditions at the inlet and outlet respectively were allowed to vary
as in the previous investigations. Finally, a no-slip boundary condition is applied to all

walls with no fluid-structure interaction occurring.

Justification of each of the parameters and boundary conditions used in this inves-

tigation may be found in chapter 7.
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8.2.2 Solid properties and boundary conditions

The elastic artery wall represents the second component of the fluid-structure interac-
tion in aneurysms. The wall is modelled as a hyperelastic neo-Hookean material. In
chapter 7 a literature survey is used to determine the Young’s modulus of the healthy
abdominal aorta as Fpeqn = 0.800 MPa. Details of the layer stiffness are given in
§ 7.4.2.1. In conjunction with the Young’s modulus, a density of p; = 1160 kg/m3 is

specified for the healthy arterial wall.

The band of material to be stiffened in the elastic region is shown in figure 8.1(a).
This region will have stiffnesses ranging from Ej,eqn = 0.2 — 6.0 MPa. Specifically, sim-
ulations were conducted with a rigid-wall; a uniform healthy stiffness throughout the
artery (Fmean = 0.8 MPa); and adverse conditions (Eyeqn = 0.2,0.4,0.6,2.0,4.0 and 6.0 MPa) .
This range of stiffnesses were chosen based on the literature survey conducted in chap-

ter 7.

The boundary conditions of the solid domain are described in § 7.4.4. They include
a zero displacement boundary condition on the inlet and outlet faces; this mimics
the tethering that occurs at the iliac and renal artery junctions at either end of the
abdominal aortic section. On the interior surface a pressure boundary condition is
applied. The pressure is calculated during the fluid phase and applied as a normal

stress to the solid domain, i.e.

oc-n=P" (8.4)

The exterior of the artery wall is in contact with the periarterial environment. To
simulate the response of the periarterial environment a pressure boundary condition is

applied to the surface,

Pyeak — Pui 2
Prst = Piia +0.2 w [1 — cos (;tﬂ : (8.5)

The exterior pressure increases as the luminal pressure increases. This simulates the
increase in the periarterial response to the dilation caused by the luminal pressure. The
period and phase of this pressure boundary condition is the same as the outlet pressure

boundary condition for the fluid.

Justification of each of the parameters and boundary conditions used in this inves-

tigation may be found in chapter 7.
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8.3 Solution validation

Rigorous validation of the numerical techniques, domain size, and mesh independence
were conducted as part of this research. The numerical techniques developed in this
thesis are validated in chapter 6.

To ensure the mesh used in this investigation provided sufficient spatial and tem-
poral resolution while maintaining a minimal computational cost, a mesh optimisation
investigation was conducted (see § 8.3.1). A series of meshing strategies were tested for
their accuracy, and based on the time taken to achieve a certain level of accuracy, the
mesh shown in figure 8.1 was chosen.

After selecting the optimized mesh, a domain analysis was conducted to guarantee
that the inlet and outlet boundary conditions were not affecting the flow through the
region of interest. Inlet and outlet lengths extending up to 24D upstream and down-
stream were investigated while monitoring the flow in the elastic region. Section 8.3.2
presents the results of the domain analysis.

Once the most efficient mesh and domain size were established, a grid independence
study was performed to determine the spatial accuracy of the simulations.The results
of this are detailed in sections 8.3.3 and 8.3.4.

Finally, the accuracy of the temporal discretisation was examined in § 8.4. This
study considered the effect of varying the time step of the solver and the number
of oscillation cycles were required in order to evolve the flow to its asymptotic fluid-
structure interaction state.

In this thesis, an error threshold of < 1% for global error measures and < 2% for
local error measures was used to direct the choice of spatial and temporal resolution;

and domain size.

8.3.1 Mesh optimisation

The spectral-hp element method allows both h-type and p-type refinement of a com-
putational mesh. Spectral methods exhibit exponential convergence properties when
the number of degrees of freedom are increased (Karniadakis et al. 1991). This means
in order to achieve a desired spatial resolution, the spectral element method can use a
coarser macro-element mesh with a higher degree polynomial which amounts to fewer
degrees of freedom when compared to traditional linear finite element methods. How-

ever, the improved spatial convergence properties do not guarantee a reduction in the
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computational cost. Simulation time, while strongly linked to the number of degrees
of freedom, is also dependent on the density and structure of the matrix system (Kar-
niadakis & Sherwin 1999). The software packages used to perform the matrix solves
have different performance results dependent on the structure of the matrix system.
To determine the most time-efficient mesh for a prescribed level of accuracy, a mesh
optimisation analysis was performed.

Four meshes were created in the mesh optimisation study. Each mesh, shown in
figure 8.2, employed a different level of h-type refinement. The meshes were created by
linking successive 2D planes of elements. To ensure accuracy at the boundary, element
depth (plane spacing) was set to match the width of the element closest to the boundary.
This gives an aspect ratio as close to unity as possible for these boundary elements.
A near cube-shaped macro-element should ensure that numerical errors introduced
through the matrix inversion process (which is more accurate on diagonally dominant
matrices) is minimized. Accuracy is especially important at the fluid-structure interface
where boundary layers form: in this region vorticity is high and wall shear stresses are
to be determined. Mesh 1 in figure 8.2(a) employs very few macro-elements. As such it
requires a higher polynomial order, p, to attain spatial convergence. Conversely, Mesh 4
employs a large number of macro-elements, which in turn permits a lower polynomial
order to attain spatial convergence. Meshes 2 (figure 8.2(b)) and 3 (figure 8.2(c))
employ intermediate levels of h-type refinement.

To determine the optimal mesh configuration, a p-type grid independence study
was conducted for each mesh. As the haemodynamic parameters are of the greatest
importance to aneurysm initiation, only the fluid region was simulated with a non-slip
rigid-wall boundary condition. The time-dependent inlet velocity and outlet pressure
boundary conditions discussed in § 8.2.1 were applied to each mesh, and a number of
global and local parameters were recorded in order to assess the accuracy of each mesh.
The time taken for the simulation to run was also recorded to give an indication of the
computational cost associated with each meshing strategy.

To assess the spatial resolution of the solution produced from each mesh at each
level of p-type refinement, a set of global and local flow measurements were taken. The
Lo-norm is used to measure the overall difference between the solutions from different

meshes and resolutions. It is a vector norm mathematically described by
Ly = / lv|? dQ, (8.6)
Q

197



(a) Mesh 1 (b) Mesh 2

(c) Mesh 3 (d) Mesh 4

FIGURE 8.2: Macro element meshes used in the mesh optimisation investigation. Meshes 1-4
show an increasing level of h-type refinement. The meshes were created by linking successive
2D planes of elements. To ensure accuracy at the boundary element, depth (plane spacing)
was set to match the width of the element closest to the boundary. Note: a curvilinear
mapping of the element faces onto the circular pipe is used - the flat faces depicted on
the pipe walls here is a product of the plotting package used, which accentuates the poor
representation of the geometry at the limit of small p-type resolution.

where ) represents the computational domain, v are the velocity vector, and |-| the
local magnitude of the vector. The additive nature of the Lo-norm and the use of a
magnitude function make it useful in assessing the global error in a solution as local
variations are amalgamated into a single value.

Local variations in the solutions are observed by monitoring v, the z-component
of velocity, and the strain-rate-magnitude at a point in the global domain. In the
results presented in figure 8.3, these parameters are sampled along the centreline at

the midpoint of the elastic region (x,y,z) = (0,0,12D). The velocity component is a
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first-order quantity which should be reasonably smooth due to the use of C%-continuous

elements. The strain-rate-magnitude defined is by
€] = V2¢ : &, (8.7)

where ¢ is the strain rate,

. 1 auz 821,]'
EU - 5 <a.73] + 83}1) ’ (8.8)

is more likely to exhibit resolution-based variation as it is based on spatial derivative

o Au;
quantities -

. Spatial derivatives reduce by one the order of the polynomial approx-

imation of the field (i.e. gz; of a fourth-order resolved field becomes a third-order
representation of the gradient field). As such, gradient fields require higher resolution
(relative to zero-th order fields) to resolve. In this regard, gradient fields are more sensi-
tive to borderline resolution. The numerical “wiggle” which presents in some results is
a by product of the post-processing of data in which data fields are interpolated across
CP-continuous element interfaces where the local mismatch has been averaged. As such
at large polynomial orders where numerical “wiggle” becomes prevalent this property
may give the first indications of error in the solution.

The results presented in figure 8.3 show the p-type grid independence studies con-
ducted for each of the 4 meshes (see figure 8.2). In order to compare the resolution
achieved between meshes, the results are plotted against the number of independent
degrees of freedom in the solution domain. As expected, as the polynomial order is
increased for each mesh the solution converges to a consistent value. The results for
the Lo-norm shows the most consistent convergence behaviour. Mesh 3 produces a
slower convergence rate with some fluctuation present in the v, results. Mesh 2 shows
similar wiggle characteristics in terms of the strain-rate-magnitude data. The sparse
nature of these two meshes meant they were run at higher polynomial orders compared
with Mesh 4. Mesh 4 exhibits stable convergence behaviour in both global and local
error cases. The higher-degree polynomial basis functions may be responsible for the
poor convergence observed for meshes 2 and 3. Mesh 1 is also sparse and simulations
were conducted at higher polynomial orders, though similar fluctuations were not ob-
served in this case. This may be due to the larger z-dimension of elements in Mesh 1
as compared to Meshes 2 and 3, which may mean that small-scale flow variations along
the longitudinal axis were not resolved and hence did not contribute to the wiggle in

the solution.
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FIGURE 8.3: Results of the p-type grid independence study for each mesh 1-4 shown in
figure 8.2. In each sub-plot red, green, blue and grey lines and symbols represent meshes 1,
2, 3 and 4, respectively. For all sub-plots and meshes as the number of degrees of freedom
(polynomial order) is increased the mesh solution converges to a stable value. (a) shows the
Lo-norm, a global measure of the energy in the solution. (b) shows the v, velocity component
at a point along the centre line of the pipe and (c) shows the magnitude of strain rate at a

point on the pipe centreline. All values were taken at time of peak energy.
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% error

P Mesh 1 Mesh 2

Ly Uy €| Lo Uy €]
7 13x107% 71x1073 0.13 3.9x107% 13x107% 7.8
8 41x107* 34x107* 0.22 1.1x1073 45x107* 0.01
9 87x107% 13x1073 0.03 42x107% 33 x107* 0.76
10 1.9x107° 43x107*% 24x1073 3.0x107* 3.7x107* 0.17
11 33x107% 1.2x1073 0.10 1.5x107% 1.5x107* 1.18
12 0.0 0.0 0.0 0.0 0.0 0.0
P Mesh 3 Mesh 4

Ly v, €] L, v, €]
4 0.157 0.13 2.5 - - -
5 65x1073 3.2x107* 2.70 0.02 1.8x107* 261
6 3.0x107* 37x1073 0.36 9.2x107% 1.0x1073 145
7 19x107% 1.1x1073 0.24 8.0x107° 9.9x107° 0.07
8 69x107* 75x107° 0.10 0.0 0.0 0.0
9 0.0 0.0 0.0 - - -

TABLE 8.1: Percentage error in each mesh when compared to the most resolved case. Error

is shown for global measures (Ls-norm) and local measures (v, and |€]).

Table 8.1 provides a numerical estimate of the error associated with each mesh
at each resolution level. The error was calculated by comparing the flow parameter
measured at each resolution level to the most resolved case. Here the assumption is
made that each mesh has reached a mesh independent state at the highest resolution
case. The data presented in table 8.1 supports the results presented in figure 8.3. As
the polynomial order is increased, the error in each case decreases. In all cases the
error is small (error< 1%) for the more resolved cases. The smallest error is observed
in the global Ly-norm error estimate, with error converging to less than 10~4% for each
mesh. The greatest error was observed in the strain-rate-magnitude with error only
converging to (< 1071%) in most cases. The larger error in the strain-rate-magnitude
is to be expected for the reasons outlined previously. Finally, to emphasize the validity
of using any of the meshes in solving this system, the maximum difference between any

mesh at the most resolved case was 0.011% for Lo-norm, 0.008% for v, and 0.25% for
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FIGURE 8.4: Simulation time required to complete 100 time steps, t109, is plotted with respect
to the number of degrees of freedom for each simulation. As in figure 8.3, red, green, blue
and grey lines and symbols represent Meshes 1, 2, 3 and 4, respectively. A more efficient

simulation has a shorter run time at higher resolution. Mesh 4 is the most efficient mesh.

strain-rate-magnitude.

The most appropriate mesh for the aneurysm initiation study should provide a grid
independent solution at the lowest computational cost. Figure 8.3 and table 8.1 show
each meshing strategy is capable of producing a sufficiently accurate mesh. Figure 8.4
shows the physical time taken to complete 100 time steps (t100) in the solver for each
mesh at each level of resolution. This clearly shows that Mesh 4 which is based on
more macro-elements and a relatively low polynomial order is more efficient than the
other meshes. Mesh 4 is capable of running faster at higher levels of resolution than

the other meshes.

Figure 8.3 and table 8.1 present a clear case that when using all mesh types a grid
independent solution can be achieved. Mesh 4 with the use of relatively low polynomial
orders provides the most stable, accurate and efficient solution. This mesh is used
throughout the aneurysm initiation study. Finally, a polynomial order of 5 was used as
it provided less than 1% error with minimal computational cost. A similar paradigm

for balancing h- and p-type refinement can be found in Blackburn et al. (2008)
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8.3.2 Domain size

The mesh optimisation study conducted in § 8.3.1 simulated flow through a straight
rigid section of pipe that represents the abdominal aorta. To ensure that the blood
flow through the region of interest is physiologically accurate it is imperative that the
proximity of the boundary conditions does not affect the results. The upstream inlet
velocity is prescribed with a Poiseuille profile which needs time to adapt to the phys-
iological profile for oscillating flows. Furthermore, the downstream inlet and pressure
outlet could introduce back pressure and propagate numerical error. To minimise the
effect that each of these have on the region of interest they should ideally be located
as far away as possible. A domain size analysis was conducted to determine the mini-
mum upstream and downstream distances required to prevent the boundary conditions

affecting the solution.

Five inlet and outlet lengths were simulated in each case, 0d, 3d, 6d, 9d and 24d.

8.3.2.1 Upstream

Simulations were conducted using a constant outlet length and varying the upstream
length. The flow was monitored at a series of points throughout the region of interest.
Figure 8.5(a) shows the velocity profile at the entrance to the region of interest at
t = 0.4 s for each of the inlet length cases. For the case of 0d upstream the velocity
distribution is that of the perfect Poiseuille profile that is described at the outlet. As
the inlet length is increased the flow has time to adopt the Womersley profile which is
the natural state for oscillating flow. Figure 8.5(b) demonstrates that increasing the

inlet length beyond 6d yields a negligible change in the velocity profile.

To illustrate precisely the effect of changing the inlet length, figure 8.5(b) plots
the error-norm of the axial velocity across the diameter of the pipe at the entrance to
the elastic region. As the inlet length is increased, the change in velocity diminishes
dramatically. This correlates well with the velocity profile plots of figure 8.5. The
percentage change of flow as a result of varying the inlet length is listed in table 8.2. The
inlet length has a greater effect on the peak velocity than at the near-wall region. These
results show that with an inlet length of 9d or greater, the effect of the inlet boundary
condition is less than 0.01%. This is sufficiently accurate for this investigation, so an

inlet length of 9d is used hereafter.
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F1GURE 8.5: Velocity profile at the beginning of the elastic zone, velocity is normalised using
the period of oscillation and diamter of the vessel. Black squares B, red diamonds ¢, blue
circles e, green triangles A, and orange inverted triangles Vv represent the profile for an inlet
length 0d, 3d, 6d, 9d and 24d upstream, respectively. (a) shows the velocity profile across
the pipe diameter and (b) shows the percentage error of each velocity profile relative to the
longest inlet case in (a). As the inlet length is increased, the difference in velocity profiles

becomes negligible.

% error

Inlet length r=0 r=0.3d

0 13.8 5.7 x 1071
3 83x107°% 2.7x107*
6 3.6 x107° 3.0x107°
9 2.1x107% 3.0x107°
24 0.0 0.0

TABLE 8.2: Percentage error of the axial velocity at the centreline and near-wall locations.

The error decreases as the inlet length increases.
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FIGURE 8.6: Velocity profile at the end of the region of interest, velocity is normalised using
the period of oscillation and diamter of the vessel. Black squares B, red diamonds ¢, blue
circles o, green triangles A, and orange inverted triangles Vv represent the profile for an outlet
length 0d, 3d, 6d, 9d and downstream, respectively. (a) shows the velocity profile across
the pipe diameter and (b) shows the percentage error of each velocity profile relative to the
longest inlet case in (a). As the outlet length is increased, the difference in velocity profiles

becomes negligible.

8.3.2.2 Downstream

Having established an inlet length of 9d, a series of simulations were conducted to
determine the appropriate outlet length. The inlet length was fixed at 9d, while the
outlet length (distance from the end of the elastic region to start of the flared region)
was varied between 0d and 24d. The flow was monitored at identical locations to the
upstream domain study. Figure 8.6(a) shows the velocity profile at the aneurysm bulge
outlet (distal neck) at t = 0.4 s for each of the outlet length cases. A top-hat profile is
clearly visible, as is expected for oscillating flow through a straight pipe. It is clear that
for the straight pipe case changing the outlet length has a negligible effect on the flow
in the region of interest. Figure 8.6(b) demonstrates that increasing the outlet length

beyond 3d yields a negligible change in the velocity profile.

To further elucidate the effect of changing the outlet length, figure 8.6(b) shows the
error-norm of the axial velocity across the diameter of the pipe at the exit of the elastic
region. As the outlet length is increased, the change in velocity diminishes dramatically.
Table 8.3 shows the percentage error for each outlet length. The maximum error is only

0.75%, which is negligible compared to errors associated with spatial discretisation. As
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% error

Outlet length r=0 r =0.38d

0 4.4 x 1073 0.75
3 6.7 x 1073 1.3 x 1072
6 6.3x1073 1.4x1073
9 20x 1073 3.7x 1074
24 0.0 0.0

TABLE 8.3: Percentage error of the axial velocity at the centreline and near-wall locations.

The error decreases as the outlet length increases.

a result, the impact of the outlet length on the flow was small enough that an outlet

length of only 3d was chosen for all simulations. This produced an error < 0.05%.

8.3.3 h.-type refinement

In § 8.3.1, a variety of meshing strategies were used to determine the most efficient
strategy for this geometry using the numerical algorithm described in chapter 6. As
part of this, a p-type investigation was conducted and a polynomial order of p =
5 was determined to provide sufficient accuracy for this investigation. The previous
investigations identified the most efficient meshing strategy, the appropriate polynomial
order and the inlet and outlet domain lengths to negate any boundary condition effects.
In a further effort to reduce the computational cost, a further h,-type analysis was
conducted.

The aim of this h,-type analysis was to determine the required resolution in the axial
(or longitudinal) direction. Using fewer macro-elements reduces computation time,
and consequently it is desirable to have a longer axial element length. In the h,-type
refinement study, axial element length was varied between 0.2d (giving approximately
cube-shaped elements with a unit aspect ratio), 0.36d, 0.4d, 0.5d and 0.75d.

Figure 8.7 shows the effect that changing the h.-type refinement has on the Lo-
norm. The Le-norm is sampled at the time of peak flow through the aneurysm (i.e
0.4 s), this corresponds to the time of peak energy in the system. As the axial element
length is reduced, so too does the change in Lo-norm. Such convergence is expected as

the spatial resolution is increased. Table 8.4 shows the percentage difference in Ls-norm
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FIGURE 8.7: Results of the h-type refinement study. The Lo-norm is measured at t = 0.4 s

for each level of refinement. Note: only the axial length of the elements was changed.

as a function of element length. Error was calculated relative to an estimate of the mesh
independent value. This value was calculated using a Richardson-type extrapolation.
As is clearly evident from table 8.4, for the straight pipe case, extra h,-type re-
finement in the axial direction has little effect on the accuracy of the simulation. As
this study is primarily interested in the effect a moving wall, the smaller cube-shaped
elements are maintained in the region of interest (i.e. h, = 0.2). This ensures that the
highest level of accuracy is maintained in this region. Outside this region, in the inlet
and outlet sections where the flow is less critical to this investigation, the element size

in the axial direction is set to h, = 0.75.

8.3.4 Solid domain p-type refinement

In this section, the spatial resolution of the solid domain is analysed. To simplify
the meshing process, the solid mesh is created with macro-elements which completely
coincide with the exterior fluid elements. In this way the h-type refinement for the solid
is fixed. A p-type refinement study was conducted in which the polynomial order was
increased from p = 2 to p = 6.

Fach end of the elastic region was fixed in space. The pressure boundary condition
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h, % error

0.75d  0.0255
0.5d 0.0133
0.4d 0.0103
0.36 0.0101
0.2d 0.0091

TABLE 8.4: Percentage error in the Ls-norm with reference to a theoretical 100% accurate
case defined using a Richardson extrapolation. The error decreases as the element length

decreases.

described in equation 8.5 was applied to the perianeurysmal interface. As a forcing
function, the outlet pressure boundary condition for the fluid was applied to the inner
surface of the solid. In flow through an aneurysm unsteady flow structures locally alter
the pressure at the fluid-structure interface. However, the change in mean pressure is
many orders of magnitude greater than the local variations caused by the unsteady
flow. As such, these boundary conditions closely match those encountered by the solid
in the fluid-structure interaction. The neo-Hookean wall model was used with a mean

Young’s-modulus of 0.8 MPa (that of a healthy artery).

The maximum displacement in the lateral direction was monitored as the polynomial
order was increased. The maximum lateral displacement occurred at ¢ = 0.5 s and at a
position exactly half way along the elastic region for all levels of resolution. Figure 8.8
shows the maximum lateral displacement, 4., as a function of increasing polynomial
order. The convergence behaviour described for the fluid domain throughout § 8.3.1 is
clearly evident here. In fact, for the solid the solution converges to a mesh independent

value at a much lower polynomial order, p = 3, than the fluid cases.

Table 8.5 shows the percentage error in the solution compared to the most refined
case. Here, the most resolved case is assumed to contain no error. These results
correlate well with the convergence behaviour shown in figure 8.8. Using a polynomial
order of 3 or greater gives a mesh independent solution (error < 0.02%). These results
suggest that for a neo-Hookean solid continuum, less elements are required to spatially
resolve the system than for similar fluid elements. As the equations governing each are

so similar this is likely due to the state parameters, viscosity and Young’s modulus.
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FIGURE 8.8: Results of the p-type refinement study for the solid domain. The maximum

lateral displacement, w4z, is measured at t = 0.5 s for each level of refinement.

p % error

2 29338
3 0.0138
4 0.0027
5  0.0002
6  0.0000

TABLE 8.5: Percentage error in maximum lateral displacement, w.,,q;. The error decreases

rapidly as the polynomial order is increased.

The Young’s modulus in this case is several orders of magnitude larger than viscosity.

While using a polynomial order p = 3 provides a sufficiently resolved solution for
this investigation, a polynomial order of p = 5 is chosen. Using a polynomial order
that matches that of the fluid provides an efficient and accurate method for passing
information between the fluid and solid meshes. Matching the polynomial order ensures
both macro and quadrature nodes are coincident at the fluid-structure interface. As

such, vector fields do not require interpolation between the two regions, a direct copy
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of information can be passed. This is both highly efficient and more accurate than
interpolation. The polynomial order of p = 5 is well resolved spatially and will produce

a solution with only 0.002% error.

8.3.5 Fluid-solid coupling p-type refinement

In the preceding sections the spatial resolution of both the fluid and solid mesh compo-
nents were analysed. It was concluded that a polynomial order of p =5 and p = 3 for
fluid and solid, respectively was required to attain a sufficiently mesh-independent so-
lution. Before proceeding, the spatial resolution is tested once more for a fully coupled
fluid-structure interaction solution. This determines whether the use of the arbitrary
Lagrangian-Eulerian solver affects the spatial resolution of the mesh.

For this investigation, the full computational domain was solved with physiologically
accurate fluid and solid boundary conditions (see chapter 7 and § 8.2). A healthy
artery wall was simulated with stiffness of 0.8 MPa. A p-type grid resolution study was
conducted in which the polynomial order was increased from p = 3 to p = 6.

As was anticipated given the results of the preceding sections, figure 8.9 shows the
classic convergence behaviour. Figure 8.9(a) and 8.9(b), respectively, show the Lo-
norm and z-velocity component for the fluid region. After an initial variance, each plot
begins to converge to a single value. A polynomial order of p = 5 initiates the converged
section and exhibits a low percentage error. Table 8.6 records the error relative to the
most resolved case for each metric. For each fluid measurement the error at p = 5 is
less than 0.1%, which is well within the desired level of accuracy for the simulations.
This correlates well with the p-type study conducted in § 8.3.1 in which the polynomial
that delivered the desired level of accuracy for a fluid solve alone was p = 5.

Similarly, for the solid, figure 8.9(c) shows the variation in maximum radial displace-
ment, Umqz, as a function of polynomial order. Just as the fluid components correlated
well with previous results, the solid solver too exhibits an analogous convergence be-
haviour. Again convergence is reached at a polynomial order of p = 4. Table 8.6 shows
that the error associated with the solid region is less substantial than the fluid at p =4
the error is merely 0.0027%.

This fluid-structure interaction spatial resolution study confirms the findings of
§ 8.3.1. For both fluids and solids the solution reaches a mesh independent state at a

polynomial order of p = 5. This mesh and this level of resolution can now be used with
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FIGURE 8.9: Results of the spatial resolution study using the fully coupled FSI algorithm.
In each plot the polynomial order was used to change the spatial resolution of the mesh. (a)
shows the Lo-norm of the fluid domain, measured at ¢t = 0.4 s at the time of peak velocity
inlet. (b) shows the maximum fluid velocity along the centreline at ¢ = 0.4 s. (c) shows the

peak displacement of the wall at t = 0.5 s.

confidence in the proceeding aneurysm initiation study.

8.4 Temporal resolution

The continuum mechanics governing equations describe both spatial and temporal
changes. In § 8.3 the appropriate spatial resolution of the computational mesh was
determined to ensure a mesh independent solution was being produced. It is just as
important to ensure that a sufficiently small time step is being used to capture the
physics of the system. Depending on the flow properties different structures can de-

velop over different time scales. If a large time step is used, there may not be sufficient
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% error

p L2 Uz Umaz

3 0.4487 0.5036 0.0139
4 0.1619 0.1016 0.0027
5 0.0028 0.0051 0.0001
6 0.0000 0.0000 0.0000

TABLE 8.6: Percentage error in fluid parameters Lo-norm and axial velocity component v,

and as well as the solid domain parameter u,,,, relative to the most resolved case.

temporal resolution to simulate the formation of these structures thus introducing error
into the simulation. The following investigation determines the appropriate time step
required to resolve the flow in a distensible aneurysm and determine how many bound-

ary condition cycles are necessary to capture the asymptotic fluid-structure response.

8.4.1 Time step

Firstly the temporal resolution is assessed and the appropriate time step is selected
that captures the physics of the aneurysm problem. As an Eulerian reference frame is
used for the fluid domain, large time steps may cause the solution to diverge as fluid
moves fast enough to pass through an entire element within a time step. This alludes
to a Courant stability condition. Courant stability conditions relate the stability to a

quantity such as

1 Ax
=" .
T ReAr S (89)
for the fluid and
Ax
Gs = E—At2 <1, (8.10)

for the solid, where ¢ is the Courant condition, E is the Young’s modulus of the solid,
Re is the Reynolds number, Az is the characteristic element length and At is the
time step. Given the restrictions on spatial resolution applied by the grid resolution
study, this investigation seeks to determine the largest possible time step that allows
an accurate and stable solution.

A number of time steps were tested ranging from 0.0001 s, to 0.05 s. As with

the spatial resolution study, the Lo-norm and v, (component of the velocity in the z-
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FIGURE 8.10: Results of the time step independence study are presented. Closed symbols (H)
represent simulations that run in a stable fashion, open symbols (O) represent simulations
that diverge later in the simulation. (a) shows the change in Ly-norm and (b) shows the
change in the velocity component in the z-direction at the centre of the aneurysm bulge. All

measurements were conducted at ¢ = 0.05 s.

direction) were used to assess the global and local error in the solution. The z-velocity
component was measured at the centre of the aneurysm bulge. Measurements were
taken at ¢t = 0.05 s, and while some simulations ultimately diverged, all were capable
of integrating to this point in time. Figure 8.10 shows the results of the time step
independence study. As the time step is reduced the solution converges to a particular
value. The closed symbols on each sub-plot represents simulations that are stable, while
open symbols represent those that diverge.

Table 8.7 shows the percentage error for each time step. The error is measured
relative to a theoretical fully resolved value at At = 0, calculated using a Richardson
extrapolation. These results show that once a time step small enough to satisfy the
stability criterion is used, the effect the time step has on the results is small. In
order to reduce the computational cost of each simulation the largest stable time step
At = 0.0006 s is chosen for all further investigations. At this time step the error is only

0.026% in Le-norm and 0.096% in v,.

8.4.2 Time period

Finally, a small study was conducted to determine if the fluid-solid coupling caused any

interactions to occur on a longer time scale than the boundary condition period. A
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% error

At L2 Vy

0.05 1.482  3.548
0.01 0.754  1.659
0.005  0.347 0.826
0.001  0.055 0.163

0.0006 0.026 0.096
0.0005 0.019 0.082
0.0002 0.002 0.034
0.0001 0.009 0.018
TABLE 8.7: Percentage error in the Lo-norm and z velocity component v, relative to a theo-

retical resolved value (calculated using a Richardson type extrapolation). Time steps below

the double horizontal line are stable, those above diverge.

fully coupled fluid-structure interaction simulation was conducted for a healthy aorta.
The boundary conditions and geometry described in § 8.2 were used with a stiffness of
0.8 Mpa for the artery wall and a time-averaged Reynolds number of 410 for the fluid.

Figure 8.11 shows the results of the time period analysis. Two parameters were
monitored throughout the time period, the La-norm (in sub-plots 8.11(a) and 8.11(b))
and v, the z-component of velocity (in sub-plots 8.11(c) and 8.11(d)). These plots
indicate that the first time period produces very different results to subsequent cycles.
This is caused by transient conditions in the pipe created by the initial imposition of
a Poiseuille velocity profile throughout. It takes nearly the entire first period to flush
this initial condition from the computational domain. Subsequent cycles exhibit very
small deviation from the asymptotic solution state.

Figures 8.11(b) and 8.11(d) plot the percentage error in each parameter compared
to the asymptotic periodic solution. The periodic solution was calculated by averaging
the last three time periods of the time saturated simulation. Data is plotted with
respect to a scaled time

t=t—(n—1)T, (8.11)

where ¢ is the physical time, T is the boundary condition period (in this case T'=1 s)

and n indicates the n'™ period. Plotting relative to the scaled time t* allows each time
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FIGURE 8.11: Results of the time period study. In each sub-plot red, green, blue and grey
lines and symbols represent the first, second, third and fourth boundary condition time
periods respectively. (a) shows the time evolution of the La-norm, a global measure of energy
in the solution. (b) shows the percentage error in Ly-norm relative to the time saturated
value. (c) shows the time history of v, velocity component at a point along the centre line of

the pipe. (d) shows the percentage error in v, relative to the time saturated value. In each

case the error in the latter periods is minimal.

period to be compared with ease. The first time period exhibits errors in excess of 20%,
while subsequent cycles are subject to less than 1% error.

From this study two conclusions can be drawn. Firstly, there are no long-timescale
phenomena observed in the FSI in a straight pipe. Measurement of the Ls-norm and
v, showed no discernible variation as more time periods were simulated. Secondly, the
initial conditions in the pipe are inaccurate and take a full cycle to be flushed from the
computational domain. This was observed in the large error in the Lo-norm and v, for

the first period when compared to the time-averaged data (see figure 8.11).
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As a result of this investigation, simulations will be evolved for 4 inlet waveform
cycles to eliminate transient startup errors from the reported results. This is sufficiently
long to remove the errors associated with the initial conditions and to capture all

interactions in the system.

8.5 Results

Having determined the spatial and temporal accuracy of the mesh, the effect of local
variations in wall stiffness is investigated. First § 8.5.1 describes the flow through a
pipe with rigid-walls. Section 8.5.2 discusses the effect of a moving wall boundary
condition compared to a rigid-wall. Section 8.5.3 describes how a local variation in the
wall stiffness can effect the flow dynamics in the aneurysm both globally and locally.
In order to assess the impact on the potential initiation of an aneurysm the wall shear

stress is studied in the context of varying stiffness.

8.5.1 Flow in a rigid pipe

Before discussing the flow characteristics in an abdominal aorta in the context of
aneurysm initiation, the flow in a healthy artery with a rigid-wall is characterised.
This case will form the reference case for the aneurysm initiation study; it epitomises
the majority of the work currently conducted in this field (Salsac et al. 2006; Lasheras
2007) and serves as a point of comparison for quantifying the affect a dynamic wall has
on the haemodynamics. The aorta was idealized using the dimensions and boundary
conditions described in chapter 7. Briefly, this corresponds to an aorta of diameter
20 mm, with a time varying velocity inlet and pressure outlet boundary conditions,
similar to those experienced in a subject at rest. The input flow conditions correspond
to a peak Reynolds number of Reyeqr = 750, a time-averaged Reynolds number of
Renean = 410 and a Womersley number of 9.7.

The velocity profile of the flow in a straight pipe is determined by the relative
strength of transient inertial effects to the viscous forces (see the discussion in § 1.6.1).
The Womersley number is a non-dimensionalised parameter which describes the balance
of these forces. At high Womersley numbers such as those involved in arterial flow, the
velocity profile forms a top-hat profile, in which the flow is characterised by transient
changes in the flow occurring in the near-wall region first with bulk movement of the

flow slow to follow.
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The input waveform of the flow rate, is replotted in figure 8.12(a). The time evolu-
tion of the velocity field was measured in the centre of the refined region in the axial
plane. Figure 8.12(b) shows, at a few instants of time, the profiles of the axial velocity
component v,. During the systolic acceleration phase, t* = 0.0 — 0.5, the peak velocity
increases. The flow develops the characteristic top-hat profile (or flattened Poiseuille
profile) of the Womersley solution. When the Womersley number is small (« ~ 1), vis-
cous forces dominate and the velocity profiles are parabolic in shape. However, for a
Womersley number of o = 9.7, which is the case in the abdominal aorta, the unsteady
inertial forces dominate, and the flow approaches a top-hat profile with thin boundary
layers. At peak systole, the thickness of the boundary layer scales as

d
— 12
6tOC 04’ (8 )

where ¢; is the transient boundary layer thickness (Fung 1997).

The effect of the dominant inertial forces is highlighted in comparing the profile at
t* = 0.25 and t* = 0.75. At these two times the flow rate through the pipe is identical,
however a distinct difference in the velocity profile is evident. During the acceleration
phase (t* = 0.25) the centreline velocity is lower and the velocity in the boundary layer
is greater compared to the velocity profile in the decelerating phase (t* = 0.75). This
demonstrates that the change in flow in the boundary layer leads the change in the flow
of the overall profile.

After the peak systole, the flow decelerates first along the walls. Despite the bulk
fluid motion remaining in the forward direction, the flow along the wall reverses (see
t* = 1.0). For the time varying velocity profile used in this study, the bulk flow
never reverses as the area-averaged flow rate is always positive. Having completed the
deceleration phase the flow sets forward again with the increase in forward momentum
first being observed in the boundary layer. Interestingly, despite the development of an
inflectional velocity profile during diastole, the flow remains entirely laminar throughout
the entire cardiac cycle. Salsac et al. (2006) state that a transition to turbulence does
not occur at these high values of Womersley number because the characteristic time for

the growth of the instability is much longer than the period of the pulsatility.
8.5.1.1 Analytical solution

As a first approximation, the healthy abdominal aorta can be modelled as an infinitely

long straight pipe. The flow of a viscous fluid in an infinite tube under a periodic
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FIGURE 8.12: (a) peak flow velocity (v,) waveform at the inlet. (b) velocity profiles measured
across the healthy abdominal aorta with a rigid-wall at various times throughout a single
cardiac cycle. Velocity profiles were taken at the non-dimensionalised times indicated in (a);
red, green, blue and grey represent the velocity profiles at the non-dimensionalised times t* =
0.25, 0.5, 0.75, and 1.0, respectively. Comparison is made between the simulated data (single

points) and the velocity profiles calculated with the Womersley solution (solid lines).
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pressure gradient was first mathematically described by Womersley (1955). Helps &
McDonald (1954) and Womersley (1955) calculated analytical solutions for the arterial
pulsating flow. They started by expressing the time-varying pressure gradient as a
Fourier series of sinusoidal modes. The axial velocity component v, (r,t) can be related

to the time varying pressure gradient by

v, (1, %) = RBTGS (1 - 7‘*2> + P;eg:l Z;z 1- m et (8.13)

where the length r has been non-dimensionalised by the radius g giving the non-
dimensionalised radius r* and the time is normalised by the pulsation frequency w
to t*. i = /=1 is the imaginary number, .Jy is the Bessel function of the first kind
of order 0, GG}, are the Fourier coefficients of the pressure gradient which have been

normalised by the radius r and time ¢, and

anp = -/ —, (8.14)

is the dimensionless Womersley number associated with the n'" harmonic of the Fourier

series expansion of the time varying pressure gradient.

An analogous expression can be derived relating the velocity profile to an area-
averaged inlet velocity by taking the surface integral of equation 8.13 and dividing by

the area,

027r fOR v, (r) rdrdd

v(t) = 1
o (1) ey (5.15)
Given an area average flow is to be imposed of the form
v = A, cos (wpt) + By, cos (wpt) (8.16)

where A,, and B,, are the Fourier coefficients of the n*® mode. The velocity profile is

described by

vy (r,t) = (CTJS (r) — ¢;J? (r)) cos (wt) — (ciJg (r) + ¢ J? (r)) sin (wt) (8.17)
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where

o AnJr — BnJi
TR

_ _AnJi - BnJr
TRy

oit/2 i (/%)

® J (13/204)

2i1/2 J1 (i3/2€¥> (8.18)
a (13/2a>

I (i#2ag)

Jr = Real < 1+

Ji=1Imag 1+

J? = Real { 1 — W
J) =TImag{1— M
Jo <i3/2a>

and J, is the complex Bessel function of the first kind of order v. This solution was
developed by Professor Spencer Sherwin and provided via private correspondence.
Figure 8.12(b) compares the simulated velocity profile in the rigid pipe to those
calculated using the Womersley solution. Excellent agreement is observed with the
simulated velocity profile (data points in figure 8.12(b)) falling within 0.4% of the
Womersley solution (lines in figure 8.12(b)). The Womersley solution predicts an in-
flectional flow profile which remains laminar as a result of the unsteadiness of the flow
preventing the instability from developing. This supports the lack of turbulence ob-
served in the rigid artery model. The small difference in the theoretical and simulated

velocity profiles are within the spatial uncertainty of the mesh.

8.5.2 Flow in a healthy artery

Of principal interest to this investigation is how the motion of the wall affects the flow
in a straight pipe. As such, figure 8.13 compares the axial velocity profile in a rigid pipe
to the flow in a healthy artery with uniformly flexible walls. Figure 8.13(a) shows the
time evolution of the axial velocity component (v,) for a rigid pipe in the y-z plane. The
flow reversal predicted by the Womersley profile is observed in the non-dimensionalised
time period t* = 0.55 — 0.85. As discussed in § 8.5.1 this is indicative of a Womersley
profile in which the transient inertial forces first affect the near-wall region prior to
being evident in the bulk flow; i.e. the greatest change is found in the boundary layer.

Figure 8.13(b) shows an identical plot for the case where the walls are elastic with a
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FI1GURE 8.13: Visulaisation of the time evolution of axial velocity field v, in a straight pipe
in the y-z plane. (a) shows the rigid-walled case, and (b) shows the case of a elastic-walled
pipe with uniform stiffness £ = 0.8 MPa. (c) shows both the velocity inlet condition and
the wall velocity as a function of non-dimensionalised time. Note: for the case of the wall

velocity, an expanding wall corresponds to a negative velocity.
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stiffness of 0.8 MPa (that of a healthy artery). In comparison to the rigid-wall case, the
period of reversed flow is reduced by the elastic-wall from 0.3 s to 0.2 s. Furthermore,
the onset of the reversed flow is delayed from t* = 0.55 s to t* = 0.75 s. The added
inertia of the wall modifies the effective Womersley number of the vessel. This occurs
in two forms; firstly the diameter of the vessel increases, and secondly the motion
of the wall introduces extra transient inertia into the elastic region. In determining
the new velocity profile with the distended and moving wall, the modified Womersley
number must be considered. An analytical solution is described later in § 8.5.5.1. In
this section, the change in effective Womersley number is related to a change in the

transient boundary layer thickness which in turn changes the velocity profile.

The motion of the wall has a dramatic effect on the flow. The additional inertia
acts in the wall-normal direction, perpendicular to the bulk motion of the fluid. Fig-
ure 8.13(c) shows the velocity inlet boundary condition and velocity of the wall, respec-
tively. The motion of the artery wall is driven by the time-varying pressure boundary
condition which is 0.1 s out of phase with the inlet velocity. The pressure-velocity
phase lag may contribute to the delayed onset of the flow reversal in the elastic-walled
case. When the bulk fluid motion driven by the inlet velocity boundary condition is
starting to reverse, the phase lag causes the wall to continue to constrict. The changing
vessel volume contributes momentum to the flow in the downstream direction in order
to conserve mass (for an analytical argument of this point the reader is directed to
the Reynolds transport theorem analysis conducted in § 8.5.5.1). The extra velocity

introduced by this process reduces the onset and duration of the reversed flow.

Also evident in figure 8.13(b) is a reduction in the magnitude of v, at the peak
systolic time t* = 0.2 s compared to the rigid case in figure 8.13(a). This may be an-
ticipated as the increased vessel diameter drives a reduction in the velocity magnitude
in order to conserve mass. However, the area-averaged flow rate (figure 8.15) for each
case shows a reduced peak flow rate suggesting this is not the sole contributing factor.
Another hypothesis is that the velocity of the wall introduces components of velocity
in the non-axial direction. In order to validate this hypothesis the velocity magnitude
was plotted for the rigid pipe in figure 8.14(a) and for the elastic-walled case in fig-
ure 8.14(b). The relative difference in the velocity magnitudes (in figure 8.14) is less
than the difference between velocity profiles (in figure 8.13), this indicates that a small

amount of velocity in the radial direction is introduced by the velocity of the wall.
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FIGURE 8.14: Visualisation of the time evolution of velocity magnitude in a straight pipe in
the y-z plane. (a) shows the rigid-walled case, and (b) shows the case of a elastic-walled pipe
with uniform stiffness E = 0.8 MPa. (c) shows both the velocity inlet condition and the wall
velocity as a function of non-dimensionalised time. Note: for the case of the wall velocity, an

expanding wall corresponds to a negative velocity.
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F1GURE 8.15: Flow rate through outlet boundary in a rigid pipe (red) and elastic artery
(blue).

It is clear that the motion of the wall causes a reduction in both the peak axial
velocity component and the peak velocity magnitude. Figure 8.15 shows the time
evolution of the flow rate through the outlet of both the rigid and elastic pipe cases.
A reduction in the peak flow rate (at peak systole) is observed in the elastic case,
this is matched by an increase in the peak diastole flow rate. The result of this is to
maintain the mean flow rate across the entire cardiac cycle regardless of the elasticity
of the walls. Note: the phase difference between the flow rates for the rigid case and
elastic case matches the phase difference between the pressure and velocity boundary

conditions.

8.5.3 Flow dynamics with localised stiffness variations

To assess the impact of heterogeneous stiffness properties, the stiffness of a thin band
of material was altered (see figure 8.1(a)). Figure 8.16 shows the variation in the axial
component of velocity v, throughout the cardiac cycle. The black lines represent the
case of flow in a rigid pipe, while coloured lines and symbols show the case of flow
through an elastic artery. The most prominent feature of figure 8.16 is the difference

in peak velocity in the rigid pipe cases compared to the elastic pipe cases. During the
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systolic acceleration phase the rigid-wall cases have a higher peak velocity than the
elastic cases. This trend is reversed during the diastolic deceleration phase in which
the peak velocity of the elastic cases is greater than the rigid pipe case. As discussed
in § 8.5.2 this is due to flow being directed in the wall-normal direction as the wall
moves. During the systolic phase this motion is acting to subtract flow from the axial
direction and during the diastolic phase it is acting to add flow. Figure 8.16(f) shows
the velocity profile at a time when the wall motion is zero. At this snapshot in time
there is negligible difference between the velocity profile predicted with a rigid or elastic
wall.

Figure 8.16 also shows how the locally varied wall stiffness affects the axial velocity
component of the flow. As the section of wall is stiffened, the peak velocity trends
towards the rigid-wall case (this is shown in more detail in figure 8.18). This trend
is expected since as the stiffness of the entire artery wall is increased to infinity the
rigid-wall solution is approached. For the elastic-walled cases simulated here, the wall
predominantly has the stiffness of a healthy artery with a localised band of material
with altered stiffness. As such, changes in stiffness have a less significant effect (i.e. the
material maintains a stiffness of 0.8 MPa along much of its length, with only a small
stiffness fluctuation in the small banded region). Figure 8.17 shows the relationship
between the peak axial velocity at t* = 0.37 as a function of wall stiffness. A nearly
linear relationship between the peak velocity and the inverse stiffness is observed at this
snapshot of the cardiac cycle (similar linear trends of varying gradient are observed
at different times). The relationship is not perfectly linear due to the neo-Hookean
material model used for the wall. If a Hookean model were used a linear relationship

governs the wall displacement (or strain) in response to the force applied (stress),

e=7. (8.19)

If it is assumed that the wall motion is linearly proportional to any change in the flow
dynamics; a linear relationship between the peak axial velocity and the inverse stiffness
can be expected. Figure 8.17 indicates that as the thin band of material is stiffened
the impact it has on the flow is diminished. In fact any change in stiffness beyond
6.0 MPa (7.5 X Epeqithy) will change the flow by less than 0.08% based on a Richardson
extrapolation of the results. Conversely, reductions in stiffness will have a profound
impact on the peak flow rate.

Variation in the stiffness has both a global and local effect on the wall motion.
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FIGURE 8.16: Plots of axial velocity in the y-z plane in the centre of the stiffened band
(z = 12), velocity is normalised using the period of oscillation and diamter of the vessel. Sub-
plots (a)-(f) show the axial velocity component for various wall stiffnesses at times A-F shown
in (g). In each plot filled black squares (B), filled red squares (M), filled green squares (M),
filled blue squares (W), open grey squares (O), open blue squares (O), open green squares (),
and open red squares (O) represent the cases of a fully rigid pipe, the region with 6 MPa,
4 MPa, 2 MPa, 0.8 MPa (healthy-uniform), 0.6 MPa, 0.4 MPa, and 0.2 MPa, respectively.
(g) shows the velocity inlet (red) and wall velocity (blue) a negative wall velocity indicates

the volume is expanding.
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FIcURE 8.17: The peak axial velocity at non-dimensionalised time t* = 0.37 plotted as a
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Globally, if the stiffness is reduced it acts to increase the total dilation of the wall as
the less stiff region can stretch more. Conversely, an increase in stiffness will cause
a global reduction in the resulting dilation. Locally, there is a slight variation in the
expansion shape. Figure 8.19 shows the local change in wall profile as a result of
varying the stiffness. A stiffer band causes a localised constriction of the artery akin
to a mini stenotic geometry while the less stiff geometry causes a localised dilation of
the geometry above that of the normal wall motion. Figure 8.19 also shows the change
in global dilation as a result of the varying stiffness. Note that an increase in the wall
displacement corresponds to a greater wall-normal velocity: detail of this are shown
in figure 8.20. In terms of the size of the impact that a change in local stiffness has
on the flow, the results shown in figures 8.17 and 8.18 indicate that an increase in
stiffness above 0.8 MPa has a less significant effect than a local weakening of the wall
of the same order of magnitude. This is a result of the inverse relationship between
stiffness and wall motion (for a given stress, see equation 8.19). Increases in stiffness
form the asymptotic region of this relation, while decreases in stiffness move away from

the asymptote where relative changes in wall motion resulting from changes in stiffness
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FIGURE 8.18: Axial velocity in the y-z plane in the centre of the stiffened band (z = 12) at
t* = 0.3868, velocity is normalised using the period of oscillation and diamter of the vessel.
Filled black squares (W), filled red squares (M), filled green squares (M), filled blue squares
(M), open grey squares (), open blue squares (O), open green squares () and open red
squares () represent the cases of a fully rigid pipe, the region with 6 MPa, 4 MPa, 2 MPa,
0.8 MPa (healthy-uniform), 0.6 MPa, 0.4 MPa and 0.2 MPa, respectively with the rest of the
wall being an elastic 0.8 MPa.

are greater.

The results presented in figure 8.16 describe the effects of wall dilation on the bulk
flow. However, local variations in the flow resulting from the local variation in wall
motion are not well represented. This is because the local change in wall profile arising
from the local change in stiffness is small relative to the length of the artery. The
small length scale of the localised variation in stiffness leads to a minimal change in
the bulk flow. The change in surface profile has a greater effect in the boundary layer.
Figure 8.20 shows the variation in the wall-normal component of velocity, v,, at the
centre of the localised stiffness region throughout the cardiac cycle.

Figure 8.20 shows the elastic case, which varies significantly in comparison to the
inelastic case. This is particularly evident at the wall boundary where for an inelastic-
wall the no-slip boundary condition forces the velocity to be zero while the elastic

boundary is free to move. The motion of the elastic-wall causes a non-zero velocity
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FIGURE 8.19: Wall displacement, exaggerated by a factor of 5 for visualisation. Black lines
show the case of a uniform healthy artery stiffness of 0.8 MPa, red lines represent the case of
0.8 Mpa with a 6.0 MPa central band, and green lines represent the case of 0.8 Mpa with a
0.2 MPa central band.

in the boundary layer. The effect of the local change in wall stiffness is evident when
looking at the wall-normal velocity component in the stiffened region. As the local
stiffness increases, the magnitude of the peak wall-normal velocity also increases. As
with the axial velocity component (v,), as the wall is stiffened it approaches the rigid-
wall solution: this is true of all but time ¢* = 0.8684 in figure 8.20(f). At this time the
trend reverses due to the phase lag between the wall motion and the inflow velocity.
The phase lag is also responsible for the difference in the v, velocity profile between
the elastic cases and the rigid case at time t* = 0.5348 in figure 8.20(c). Note that this
occurs at both times when the magnitude of the wall-normal velocity is a minimum.
To emphasize the local nature of the effect on the flow, figure 8.21 shows the wall-
normal velocity v, at a location 1 diameter downstream of the altered stiffness region.
When comparing figure 8.21 to figure 8.20 it is immediately apparent from the partial
collapse in the data that the difference between the less stiff (0.2 MPa) and stiffened
(6 MPa) elastic cases is much less significant downstream. The variation of the velocity
with stiffness alteration is on a scale closer to that observed for the axial wall component
in figure 8.16, which demonstrated the global effect of a local alteration in wall stiffness.
To finalise this discussion on the effect that local stiffness has on local flow dynamics,
figure 8.22 shows the vorticity in the vicinity of the region of varying stiffness. The
small variation in wall profile in this region changes the vorticity distribution along the

wall. For the case when the material is stiffened, figure 8.22(e) shows that the local
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F1GURE 8.20: Plots of the wall-normal velocity in the y-z plane in the centre of the stiffened
band (z = 12), velocity is normalised using the period of oscillation and diamter of the vessel.
Sub-plots (a)-(f) show the wall-normal velocity component for various wall stiffnesses at times
A-F shown in (g). In each plot filled black squares (W), filled red squares (M), filled green
squares (M), filled blue squares (W), open grey squares (O), open blue squares (O), open green
squares (), and open red squares (O) represent the cases of a fully rigid pipe, the region
with 6 MPa, 4 MPa, 2 MPa, 0.8 MPa (healthy-uniform), 0.6 MPa, 0.4 MPa, and 0.2 MPa,
respectively.(g) shows the velocity inlet (red) and wall velocity (blue) a negative wall velocity

indicates the volume is expanding.
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FiGURE 8.21: Plots of the wall-normal velocity in the y-z plane in the downstream of the
stiffened band (z = 13), velocity is normalised using the period of oscillation and diamter
of the vessel. Sub-plots (a)-(f) show the wall-normal velocity component for various wall
stiffnesses at times A-F shown in (g). In each plot filled black squares (M), filled red squares
(M), filled green squares (M), filled blue squares (W), open grey squares (O), open blue squares
(O), open green squares (L), and open red squares (O) represent the cases of a fully rigid
pipe, the region with 6 MPa, 4 MPa, 2 MPa, 0.8 MPa (healthy-uniform), 0.6 MPa, 0.4 MPa,
and 0.2 MPa, respectively. (g) shows the velocity inlet (red) and wall velocity (blue) a

negative wall velocity indicates the volume is expanding.
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FIGURE 8.22: Left: contours of vorticity in the y-z plane in the region of varying stiffness.
Vorticity contours are constant and vary from -75 to 75 (depicted by blue and red respec-
tively). Right: the A2 field with contour levels of -0.0001 shown. Small negative values of
A2 identify vortical regions of the flow. (a) and (b) shows the case of a 0.2 MPa region; (c)
and (d) the uniform stiffness 0.8 MPa (healthy wall); and (e) and (f) is the stiffened case of
6 MPa.

restriction of the artery wall causes a region of greater vorticity to form close to the
wall, figure 8.22(f) confirms that this is in fact a vortex core forming as a result of
the restriction (a negative Ao implies that a vortex core is present). For the case of a
less stiff wall the extra wall motion reduces the vorticity magnitude upstream of the

disturbance and increases it downstream.

These results demonstrate that models which use a rigid-wall fail to capture the full
flow dynamics in an aorta. The peak axial velocity predicted with a rigid-pipe model
exceed the healthy elastic-wall case by over 32%. Furthermore, large variations in
velocities close to the wall were observed. Section 8.5.5 will discuss the impact this has

on the wall shear stresses which are integral to the healthy function of the endothelial
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cells in the arterial wall. In the proceeding sections the rigid-wall model will be used
as a comparison only to demonstrate the inadequacy of such models in describing the
haemodynamic environment in the large arteries. Comparisons to the uniformly stiff
healthy elastic-wall case will provide the basis upon which the heterogeneous wall results

are discussed.

8.5.4 'Wall shear stress in a perfectly rigid aorta

The evolution of the wall shear stress was calculated over time using equation 1.4. For
the case of flow in a rigid-walled aorta where the flow is laminar and axisymmetric
the wall shear stress may be approximated by equation 1.1. Using this approximation,
and substituting the description of the Womersley velocity profile in equation 8.13, the

analytical expression for the wall shear stress may be written as

. :3/2
ov* ReGE, ReG* 2 1 (1 O‘") .
wss (t*) = =55 lr=1 = 0+ n. et (8.20)
or 2 n;l 2 13/2an Jo (13/20571,)
where
8
0= 5 21
G =~ @i, (321)
and
G = 2i0m : (8.22)

" (o i) o

320, Jo(i%/2an)
where () are the Fourier coefficients of the input flow rate, and quantities denoted by
a (*) indicate that it has been non-dimensionalised by the input flow rate and viscosity
(Salsac et al. 2006).

This analytical expression for the wall shear stress in a rigid-walled artery is com-
pared to the wall shear stress calculated in the rigid-walled simulation using equation 1.4
in figure 8.23. The correlation between the analytical expression and the calculated wall
shear stress is excellent for this simple laminar flow case. The wall shear stress ranges
from -1.38 Pa to 3.56 Pa, the extrema occurring respectively at the peak diastole and
peak systole. The simulated WSS measurements were within 2% of the analytical so-
lution at all times. This shows an excellent correlation despite the assumptions made
in the analytical solution. These include assumptions of a perfectly laminar and axi-
symmetric flow and a uniform wall geometry (i.e. it assumes the geometry is a flat

plate). Other investigations have recorded wall shear stresses in rigid-walled pipes,

Salsac et al. (2006) found the wall shear stress varied in the range of -3 Pa to 4.9 Pa.
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FIGURE 8.23: Variation of wall shear stress as a function of time inside a rigid-walled artery.
The black line represents the analytical solution while the red squares, M, show the results

of the simulation.

In vivo measurements have also been conducted which would account for a moving
wall, Oyre et al. (1997) reported a wall shear stress range of -1.3 Pa to 4.9 Pa, Cheng
et al. (2002) found the peak wall shear stress in a resting patient to be only 2 Pa. The
wall shear stress range found in this investigation is well within the range described
within the literature, the difference in the wall shear stress between Salsac et al. (2006)
and this study is likely due to the difference in inlet velocity profile. This study has a
minimum inlet velocity of 2.5 cm/s compared to -8.8 cm/s (Salsac et al. 2006), which
would allow for a greater near-wall velocity gradient in the reverse flow direction and
therefore a greater negative wall shear stress. Furthermore, Salsac et al. (2006) uses a
physiologically realistic heart beat waveform which includes sharper velocity gradients
compared to the sinusoidal profile considered in this investigation.

Regardless of these small differences, the variation in the calculated wall shear stress
correlates well with the analytical solution and is within the previously reported range
of wall shear stress values. As this is a rigid-walled simulation and analytical model,
the wall tangent shear stress model is sufficient to accurately predict the shear stress.

The wall shear stress is the parameter that is physiologically relevant at the level of
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the endothelial response. Figure 8.23 showed that the WSS fluctuates in a healthy
abdominal aorta. Any departure from the healthy pattern of WSS strongly affects the

morphology, metabolism and gene expression of the endothelial cells (Salsac et al. 2006;

Lasheras 2007).

8.5.5 Wall shear stress in an elastic aorta

With an elastic wall, the flow dynamics inside an artery vary dramatically compared
to rigid-walled models (examples of these variations were discussed in § 8.5.2). This
section describes the repercussions of the changed flow dynamics in terms of the wall
shear stress. Section 8.5.5.1 analytically describes how a change in the wall geometry
will cause a change in the wall shear stress distributions. Section 8.5.5.2 goes on to

compare the wall shear stress distributions in an elastic artery to that of a rigid pipe.
8.5.5.1 Analytical approach

The purpose of this section is to propose an analytical model of the flow through a
bulging pipe to aid explanations of the root of changes in wall shear stress as a result
of a changing geometry. Much of the discussion included later in this thesis relates

changes in wall shear stress to three factors.

1. The change in geometry causes a spatial acceleration or deceleration.
In order to conserve mass if the local radius of the pipe changes, the velocity of

the fluid through the pipe must change to ensure a constant fluid flux.

2. The temporal dependence of the wall geometry, i.e. the velocity of the
wall causes a change in the pipe volume The changing volume of the pipe

changes the downstream flow rate at a point in order to conserve mass flow rate.

3. An increase in mass flow rate is associated with a thinner boundary
layer A thinner boundary layer corresponds to large velocity gradients, strain

rates and consequently, wall shear stresses.

The ultimate goal is to describe what happens to the wall shear stress in the changing
arterial environment. Primarily this may be linked to the boundary layer thickness.
As such, the boundary layer is defined by referring to the momentum equation of the
Navier—Stokes equations,

g‘; + (v-V)v = —-VP + V3. (8.23)
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The momentum equation of the Navier—Stokes equations represent a balance of the four

forces, term by term these are:

Transient
inertia per
unit volume

—+

Convective
inertia per
unit volume

Net  pres-
sure force
on the sur-
face of the
infinitesi-
mal control
volume

Net viscous
forces  on
the surface
of the in-
finitesimal
control

volume

To determine the relative importance of these terms under differing flow conditions
the Navier—Stokes equations are re-cast into a non-dimensionalised form using a charac-
teristic velocity V, frequency w, and length L. In the particular context of flow through
an artery V' = vpeqn (the mean flow speed), w is the heart rate and L = d (the diameter

of the artery). Using these characteristic quantities the non-dimensionalised variables

are
|
vi=— =t PP=—P v (8.24)
Umean PVnmean D

Substituting these quantities into equation 8.23 yields the non-dimensionalised Navier—

Stokes equations

Oé2 B'U* 1 2
Reor T Vv TReY Y (8.25)
V*.v* =0,
where,
mean d
Re = mean @ (8.26)
v
and

w
o= d\/: . (8.27)
These form the complete set of field equations for an incompressible fluid, it is clear that
the Reynolds number and the Womersley number are the only two physical parameters.
This implies that two flows in geometrically similar vessels but with different sizes
will exhibit identical flow dynamics if both the Reynolds number, Re, and Womersley
number, «, are the same. Thus the Reynolds and Womersley numbers may be said to
govern the balance of forces in a flow (Fung 1997).
The Reynolds number expresses the ratio of the convective inertial forces to the shear

force. A large Reynolds number indicates a predominant convective inertial effect; a

small Reynolds number indicates a predominant shear effect. Similarly, the Womersley
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number expresses the ratio of the transient inertial forces to the shear force. If the
Womersley number is large, the oscillatory inertial forces dominate.

The concept of a boundary layer was presented by Prandtl (1904). It can be under-
stood by comparing the significance of various terms in the Navier—Stokes equations. If
an ideal inviscid fluid is considered (i.e. ¥ = 0) the last term in equation 8.23 vanishes.
At a boundary, an ideal fluid may not penetrate the wall but its tangential velocity is
unrestricted. For a viscous fluid the non-slip condition must apply regardless of the
magnitude of the viscosity of the fluid. Prandtl (1904) postulates that if the viscosity
is small, the influence of the no-slip condition and final term in equation 8.23 is limited
to a small layer adjacent to the solid wall. Conversely, in this scenario, far from the
wall the influence of the last term in equation 8.23 is insignificant and can be neglected.
In this case the boundary layer thickness § can be deduced by comparing proper terms
in equation 8.23. The boundary layer is therefore defined as the region in which the
viscous forces are dominant in the Navier—Stokes equations.

First consider an oscillating velocity field of frequency, w, and velocity amplitude,
V. The first term of equation 8.23 shows that the transient inertial force is of order
pwV . The last term in equation 8.23 shows that the order of magnitude of the viscous
forces is %, where d; is the transient boundary layer thickness (a length scale used
to non-dimensionalise the viscous term in the Navier—Stokes equations as a result of
the definition of a boundary layer). In the transient boundary layer these terms are of

similar orders of magnitude and balance each other to determine the flow. Hence

|4
pwV o~ — (8.28)

&:VZ. (8.29)

In a tube flow let the characteristic length be the radius R, then the ratio of R to ¢; is

or

the Womersley number

R
5 = (8.30)

Hence, if the Womersley number is large, the transient boundary layer is thin compared
to the tube radius. This supports the discussion of Womersley profiles in § 8.5.1 in which
it was shown that at high Womersley numbers the flow becomes plug like with changes

in flow first occurring (as a result of the oscillatory nature of the flow) close to the
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walls. When the Womersley number is low the flow approaches a Poiseuille flow profile
in which the boundary layer thickness is equal to the entire tube radius.

Also of significance are the convective inertial forces: these are particularly im-
portant in the aneurysm context in which the changing shape will cause a convective

acceleration. In a convective boundary layer of thickness d. the magnitude of the con-

vective inertial forces % compete with the viscous forces ”6—‘22. Thus the convective
boundary layer may be described as
L
5. ;‘—U. (8.31)

In a tube flow let the characteristic length be the radius R, then the ratio of R to é. is

the square root of the Reynolds number

55 ~ vV Re. (8.32)

Therefore, if the Reynolds number is large, the convective boundary layer is very thin.
In a pipe flow at a distance from the wall much larger than d; and J. the flow may be
considered ideal and the effect of viscous forces neglected.

Having defined some relationships between the non-dimensionalised physical pa-
rameters and relationships between the physical parameters and the boundary layer
thickness, changes in local Reynolds and Womersley numbers can be used to describe
changes in boundary layer thickness and consequently wall shear stresses.

In an artery model with an elastic wall, both the radius and the flow velocity can
change. To determine the boundary layer thickness at a particular location the Reynolds
transport theorem may be employed. Consider the bulging pipe shown in figure 8.24
with an arbitrary control volume shown. For an arbitrary moving and deformable

control volume the Reynolds transport theorem is

d d
an _ 4 </ pdV> +/ erndAout—/ pVrndA;,, (8.33)
dt  dt \Jev cs cs

where

Vi=V —-Ves (8.34)

is the relative velocity between the fluid (V') and the control surface (Viog), m is the
mass and A,,: and Ay, are the areas of the control surface through which fluid flows.
If the fluid is incompressible the mass flux

dm
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FIGURE 8.24: An example of the control volume used to determine the flow rate at any
position along the pipe. The control volume deforms with the walls and has velocity flowing
through its inlet on the left and out the outlet on the right.

giving the relationship

0= 4 < / pdv> + / pVery dA gyt — / pVrndA;, (8.36)
dt [01% cS CS

For the control volume shown in figure 8.24 there is an input upstream of the elastic
region, inflow as a result of the wall motion, and an output at the region at which the

boundary layer thickness is of interest. i.e.

d
02(/ pdV)+/ p‘/r'ﬂdAout_
dt \Jev cs

(/ p‘/r’,inlet . ﬂdAzn + / p‘/;’wall . ndAm> .
cSs cSs

If the control volume is fixed to the wall, the relative velocity between the control

(8.37)

surface and the wall/fluid flow is zero, similarly if the control volume is fixed in space
relative to the longitudinal axis, the relative velocity is simply the velocity of the fluid.

As such, the final Reynolds transport equation is:

d
0=— </ Pdv> +/ PVout - ndAgu: — / PVin - ndA;,, (838)
dt \Jev cs cs

where the first term accounts for the change in volume of the artery and the motion
of the wall, the second term describes the mass flow rate at the outlet of the control
volume (location of interest) and the final term represents the mass flow rate at the
inlet to the control volume. In this analysis, the location of the control volume inlet is
fixed at the inlet to the elastic region. At this location the area of the control surface is
constant as the elastic walls cannot move. Therefore at a particular instant in time, the

final term is constant and known from the velocity inlet boundary conditions. Hence,
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the Reynolds transport theorem can be re-written as

d
/ pvout-ndAoutsz(t)_< / pdv>, (8.39)
cs dt \Jev

where @ (t) is the volumetric flow rate at the inlet.

Equation 8.39 shows that if the volume of the aneurysm is increasing with time, the
flow rate at the outlet is reduced. Conversely a decreasing control volume will cause
an increase in the flow rate at the control volume outlet. Furthermore, if the radius at
the outlet is greater than the radius at the inlet, the velocity at the outlet will be less
than the velocity at the inlet.

Consider the relationship shown in equation 8.32. If the local velocity increases,
the boundary layer becomes thinner and consequently the wall shear stress increases.
By considering equation 8.32 in conjunction with equation 8.39, it can be seen that an
increasing volume or an increasing radius of the pipe causes a reduction in the local fluid
velocity, an increase in boundary layer thickness, and consequently a decrease in the
local wall shear stress. Conversely, a decreasing volume or radius causes an increase in
the local fluid velocity, a thinning of the boundary layer, and consequently an increase
in the local wall shear stress.

This analysis can be taken further to derive an analytical expression for the flow
through an incipient aneurysm with moving walls.

Salsac et al. (2006) present an analytical solution to flow through an incipient
aneurysm with rigid walls. An analytical solution for the wall shear stress in a slowly
expanding pipe is derived via an extension of the analytical solution for a straight pipe
in § 8.5.1.1. In formulating this expression it is assumed that changes in the axial
velocity occur very slowly along the longitudinal axis, i.e. the expansion is at a very
small rate. In the case of a slowly expanding pipe the radial velocity, v,., can no longer
be neglected. Salsac et al. (2006) defines a characteristic length, £ along which the

local radius varies, i.e.

dr
L=rog— 4
Todz, (8 0)

where rg is the original pipe radius, z is the axial direction and r is the radius of the
pipe at location z. The definition in equation 8.40 is rearranged to form a new small

parameter

€= —, (8.41)



which is used to define a new set of parameters,
Z* =ez*, P*=ep*, vl =V}, (8.42)

where Z* is the new non-dimensionalised axial position, P* is the non-dimensionalised
pressure and V,* is the new radial velocity. To extend the Salsac et al. (2006) approach
to the case of an elastic bulging pipe the small parameter of equation 8.41 is defined
not simply as a linear approximation of the radial position of the wall, but instead as

the instantaneous gradient of the radius in the axial direction,

L dr
E=— =

= —. 8.43
ro dz ( )

If the change in radius is small this allows consideration of the case of a continually
changing radius rather than a simple expanding pipe case. This definition permits the
slightly bulging pipe case of this investigation to be considered (see figure 8.19).

A first-order approximation of the momentum equations decouples the flow into
axial and radial velocity components, i.e. the axial velocity component reduces to a
similar form as that of the straight pipe equations in § 8.5.1.1. The dimensionless

longitudinal velocity vi(Z*,r*,t*) is given by

* (7k
’U: (Z*,T*,t*): RBGZ( ) <R*2—T*2>+

(8.44)
int*

Re Gy (z0) (A (i)

2 .
= o Jo (13/20én>

where R* (Z*) = "Z%) i5 the local dimensionless radius, oy, (Z*) =r(Z*) /57 is the

70
local Womersley number corresponding to the n'" harmonic of the input arterial flow

rate and G}, (Z*) is the n'® Fourier coefficient of the pressure gradient gIZD:.

As in § 8.5.1.1 it is preferential to recast equation 8.44 in terms of the flow rate Q)
rather than the pressure gradient. The pressure coefficients G}, (Z*) are then calculated

using,
2

G5 (2°) = e Qs Cn(Z7) = cpmiran (8.45)

where

o N1 (13/2an>

F (o) = #Pa, 1 <i3/2an>

, (8.46)

and Jp is the Bessel function of the first kind with order one.
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In addition, the radial velocity takes the form (Salsac et al. 2006):

2Q¢ dR* r* 72
V= — 1= =
" paR*2dYx R* ( R*2> +

. I <i3/2an 17:2 ) (8.47)

int

Z Qn dRx 1a2F(a )2 L
ATR*2dY * (1 — f (ap))? | B* Jo (iS/QQn)

In equations 8.44 and 8.47 the velocity is now dependent on the local wall gradient
through the inclusion of the small parameter defined in equation 8.43. To account
for the motion of the wall the Fourier components of the flow rate must include a
component from the inlet boundary condition as well as the changing volume of the

vessel,
Q;kl = :,inlet + Qz,wall' (848)
This is a direct result of the Reynolds transport theorem analysis in equation 8.39.

The wall shear stress can be approximated by taking the gradient of the axial

velocity component at the wall location,

= 8.49
or* r*— R 2 o 2 i3/2an JO <i3/2an> ( )

Twss (1) = —

where G{j and G, are as described in equation 8.45.

Each of the Fourier coefficients in equation 8.45 are dependent on the parameter
R (Z*) = % Consider the differential control volume shown in figure 8.25. This
shows that for a particular control volume, 7y is the radius of the control volume on
the inlet side and r* is the radius of the control volume at the outlet side. If the
differential control volume is located in the diverging section of the aneurysm, R* > 1,
conversely if the differential control volume is located in the converging section of the
aneurysm, R* < 1. Because the wall shear stress involves a fourth-order relationship
with R*, small changes in this ratio have a greater effect than other terms which are
of order O(1). Thus if the wall is diverging and R* > 1, the coefficients G and G,
are reduced and so too is the wall shear stress. Similarly if the wall is converging and
R* < 1, the coefficients Gj and G, are increased and the wall shear stress also increases.
This matches the findings of § 8.5.5.2 in which the diverging wall at the distal neck is
associated with a reduction in the wall shear stress and the converging wall near the
distal neck is associated with an increase in wall shear stress.

Similarly, analysis of the Fourier coefficients in equation 8.45 in association with

the Reynolds transport relationship in equation 8.39 supports these findings. At times
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FIGURE 8.25: An example of a differential control volume. Depending on the axial location

of the control volume, the ratio R* (Z2*) = oz

L= may be greater than or less than unity.

when the wall is collapsing and the volume is decreasing the flow rate increases: this
leads to an increase in both Gy and G}, and consequently an increase in the wall shear

stress at these times.

8.5.5.2 Simulated wall shear stresses

In § 8.5.4 an analytical expression for the wall shear stress was compared with rigid-
walled results. Here, the variation in the wall shear stress with an elastic-wall is con-
sidered. Figure 8.26 shows contours of the variation in wall shear stress in the elastic
region of interest through time. Figure 8.26(a) shows the case of a rigid pipe, the wall
shear stress pattern is dominated by continuous horizontal bands. This shows that at a
particular time the wall shear stress is spatially invariant along the length of the artery.
This correlates well with the velocity distribution in a rigid smooth-walled artery in
which the velocity profile is expected to be laminar throughout the cardiac cycle. The
structure of figure 8.23 can be seen when looking at a vertical transect of figure 8.26(a),
the wall shear stress reaches a maximum at peak systole before decreasing to a minimum
at peak diastole. As the inlet velocity has a non-zero mean the intensity of contours
around the peak systole is greater than the peak diastole.

Figure 8.26(b) shows the case when the wall has a uniform elasticity of £ = 0.8 MPa.
The elasticity of the wall allows it to balloon outward and form the shape shown in
figure 8.19. Each contour plot shows the extents of the elastic region only, not the rigid
sections up- or down-stream. The variation in shape drastically affects the banded
contour profile of the wall shear stress. The peak wall shear stress occurs during systole

as expected. However, rather than the peak shear stress occurring continuously across
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FIGURE 8.26: The variation of wall shear stress (WSS) in a straight pipe as a function of
both time and space. Contours show WSS with high low levels represented by red and blue,
respectively. Negative values are represented by dashed contour lines. The contour levels are
equispaced and vary from -3 Pa to 3 Pa. Sub-plot (a) represents the WSS distribution in a
straight pipe with rigid-walls. Sub-plots (b)-(d) represent the WSS in a straight pipe with a
localised variation in wall stiffness of 0.8 MPa (healthy), 0.2 MPa and 6.0 MPa, respectively.
The figures on the right show the velocity inlet (red) and wall-normal velocity (blue). A

negative wall-normal velocity indicates that the wall is expanding.

the section of artery, it occurs predominantly at the distal neck formed by the change
in shape. Similarly the minimum wall shear stress occurs at the peak diastole localised
around the proximal neck. A close comparison of the time at which the maximum
and minimum wall shear stress occurs in the rigid and elastic cases reveals that the
peak wall shear stresses occur later in the time cycle for the elastic-walled cases (see
figure 8.27). In fact the peak wall shear stresses occur at times of peak wall velocity
t* = 0.4 in rigid-walled cases. Equations 8.39 and 8.32 describe how the presence of the
wall velocity causes the boundary layer to change size. As the boundary layer changes

in size so too does the local strain rate. This in turn changes the wall shear stress which
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FIGURE 8.27: The time at which peak wall shear stress occurs at the distal neck as a function
of wall stiffness. Results are for an elastic region with stiffness of 0.8 MPa with a stiffened

region with a stiffness of £ MPa

is strain rate dependent (equation 1.4). In the near-wall region the wall motion has a
greater effect on the flow than the bulk motion of the fluid. This is why a delayed onset
of peak wall shear stress is observed.

Figures 8.26(c) and 8.26(d) also show cases of an elastic-wall. However, they feature
a localised change in stiffness (thickness 0.2D) centred around z = 12. As discussed
in § 8.5.3 this altered stiffness band causes both global and local effects. Globally
the change in stiffness affects the amount the wall will displace; a lower stiffness (fig-
ure 8.26(c)) causes a greater dilation of the artery wall. Conversely a higher stiffness
(figure 8.26(d)) causes a smaller dilation. The effect of the global change can be ob-
served in comparing each of the plots in figure 8.26. As the stiffness is increased the
peak wall shear stress occurs earlier in the time cycle (see figure 8.27). When comparing
the elastic cases only, the peak wall shear stress is more localised around the distal neck
as the stiffness increases. Also evident is that as the stiffness is increased the peak wall
shear stress occurs earlier, i.e. closer to the peak systolic flow of the rigid-walled case.
With a reduced stiffness and increased dilation of the wall, the change in volume of the

artery is increased.
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Equation 8.39 shows that the flow rate at the distal neck increases as a result of two
processes. Firstly, as the local geometry is akin to a converging nozzle at any instant in
time, the flow rate must increase at the outlet in order to conserve mass. This effect is
enhanced by large wall motions as the wall gradient is larger for these cases. In addition
to this effect an increase in the flow rate at the distal neck may also occur as a result
of the motion of the wall itself for the case when the wall is contracting, the negative
rate of change in volume causes an increase in the flow rate through the distal neck.
An increase in the wall-normal velocity (which is a maximum after the peak systolic
velocity) simultaneously increases the flow rate through the distal neck and therefore
the peak velocity. The result of this increase in the flow velocity is an increase in
the local Reynolds number at the distal neck and as described by equation 8.32 the
convective boundary layer is thinner. A thinner boundary layer corresponds to an
increase in velocity gradients near the wall and as a result, an increase in the wall shear
stress. With a stiffer wall the wall displacement is reduced and consequently so too
is the effect on the wall shear stress. Figure 8.27 shows that as the wall stiffness is
decreased (and consequently the motion of the wall increases) the onset of peak wall
shear stress is delayed. This indicates that the wall motion has a greater effect on the
flow conditions as the wall stiffness is reduced. When the wall is rigid the peak in wall

shear stress correlates directly with the peak in inflow rate.

Also evident in figures 8.26(c) to 8.26(d) is that a variation in the wall shear stress
contours around the z = 12 position where the wall stiffness is locally changed. As
discussed in § 8.5.3 and pictured in figure 8.19 the local change in stiffness causes a
local variation in the wall geometry. This local change in wall shape and velocity causes
a local change in the fluid flow at that location. Figure 8.26(c) shows that with a less
stiff section the wall shear stress in this local region is lower for a longer period than

for the stiffer case in figure 8.26(d).

Figure 8.28(a) shows the variation in wall shear stress at the centre of the altered
stiffness region. This supports the finding in figure 8.26(c) whereby the local wall
shear stress is lower for more of the cardiac cycle. Upstream near the proximal neck,
(figure 8.28(b)) changes in stiffness have little affect on the wall shear stress distribution.
Downstream at the distal neck (figure 8.28(a)) large variations in the peak wall shear
stress are observed. The control volume analysis in § 8.5.5.1 provides an explanation for

this phenomenon. Figure 8.19 shows that the change in wall displacement as a result of
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the change in stiffness is largely localised to the region of altered stiffness. Therefore,
far upstream of the change in stiffness, the wall motion is nearly independent of the
stiffness at the central location. As such the change in volume of the wall upstream of
this point is almost the same regardless of the wall stiffness. This leads to the same
flow rate through a control volume with an outlet at this location. At the position of
altered stiffness, the wall motion is very different depending on the stiffness, leading to
a change in the flow dynamics at this location. Equation 8.49 describes how the local
wall gradient and change in radius at this location can affect the wall shear stress. A
less stiff wall leads to a local increase in radius at this location, equation 8.49 shows
this leads to a decrease in the wall shear stress. Conversely, a stiffer wall leads to a
local decrease in radius and consequently an increase in wall shear stress. As with
the upstream case, downstream at the distal neck the local wall displacement varies
negligibly with the stiffness of the upstream region (see figure 8.19). Despite this, a
large difference in the local wall shear stress is observed. Unlike the upstream case,
downstream of the altered elastic band the flow is affected by the increase or decrease
in volume upstream. Equation 8.39 shows that including this region in the control
volume will affect the local velocity downstream and as a result of equation 8.32 the

wall shear stress is further altered.

Further supporting this finding is figure 8.29 which shows the time-averaged wall
shear stress in the elastic artery. The rigid-walled case shows an almost uniform time-
averaged wall shear along the artery length. This is expected given the banded nature
of the wall shear stress distribution shown in figure 8.26(a). The cases which include
an elastic-wall show a large variation in the time-averaged wall shear stress through the
elastic region (z = 9 — 15). The elastic cases are dominated by a sharp decline in the
wall shear stress at the proximal neck before the wall shear stress begins to increase
beyond the initial wall shear stress value. The wall shear stress gradient continue to
increase until the distal neck is reached. The peak time-averaged wall shear stress is

observed at the distal neck.

Also evident in figure 8.29 is the local variation in wall shear stress at the location
of the local change in wall stiffness. For the case of a uniform stiffness (£ = 0.8 MPa)
the wall shear stress gradient is smooth, in contrast to the stiffened and less stiff cases.
A less stiff artery causes a greater local wall motion and this causes a local increase

in the boundary layer thickness and consequently a reduction in the local wall shear
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FIGURE 8.28: The wall shear stress plotted as a function of time at (a) the centre of the
altered stiffness region z = 12, (b) near the proximal neck z = 10 and (c) the distal neck
z = 15. The black line represents the rigid-walled reference case, red, green and blue lines
represent the cases with a local variation in wall stiffness of E = 0.2 MPa, 0.8 MPa (healthy),
and 6.0 MPa respectively.
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FicURE 8.29: Comparison of the time-averaged wall shear stresses with varying local wall
stiffness. The black line represents the rigid-walled reference case, red, green and blue lines
represent the cases with a local variation in wall stiffness of E = 0.2 MPa, 0.8 MPa (healthy),
and 6.0 MPa respectively. Note: for the elastic-walled cases a stiffness of £ = 0.8 MPa is

applied outside the region of local stiffness variation.

stress. Conversely, a stiffer artery causes a reduction in the local wall motion and
velocity. A stenotic geometry forms which causes a local acceleration of the fluid and
a corresponding thinning of the boundary layer, the thinner layer is synonymous with

an increase in the wall shear stress (equation 8.32).

The minima of wall shear stress occurring immediately behind the proximal neck
is a result of the local expansion of the artery wall. This causes an increase in the
boundary layer thickness as the increasing radius causes a decrease in local flow velocity
(equation 8.39). The wall shear stress begins to increase again at the point where the
wall displacement gradient has reached a maximum and the spatial deceleration of
the fluid catches up to re-establish contact between the bulk fluid flow and the wall

motion. To determine the axial position of the minimum or maxima in wall shear stress
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analytically, one must solve
_ drwss

0
dz*

(8.50)

where Tyygs may be given by equation 8.49. This shows that the minima of wall shear
stress will occur at a location where

dRr* &% (2%)*
dzx —  dz=*

(8.51)

is also minimised, i.e. where the wall displacement gradient has reached a maximum.

The peak wall shear stress observed at the distal neck in figure 8.29 is much higher
in the elastic-artery case than in the rigid-walled case. This increase in the wall shear
stress is due to two factors. Firstly, the wall profile at the distal neck forms a converging
nozzle shape causing a spatial acceleration (seen through the convective acceleration
term in the Navier-Stokes equations) as the fluid speeds up to conserve the mass flux
through the pipe. Equation 8.32 describes how the increase in local velocity is associated
with a thinning of the boundary layer and as a result a local increase in the strain-rate
and consequently the wall shear stress. The artery wall motion also acts to enhance
this effect, the motion of the wall after peak systole forces extra fluid through the distal
neck as the volume of the artery decreases (see equation 8.39). This causes the flow
rate through the distal neck to be greater than that which would occur in a rigid-walled
artery alone. This allows the peak wall shear stress to far exceed the wall shear stress
predicted using a rigid-walled aneurysm model. The time-averaged wall shear stress
at the distal neck is 85% higher in the elastic case. Furthermore, figures 8.28(c) and
figure 8.29 show that the peak wall shear stress at the distal neck is greatest in the
0.2 MPa case in which the total wall motion is greatest.

Further to the discussion of wall shear stress, figure 8.30 shows the time-averaged
wall shear stress magnitude. The oscillatory nature of the flow means that a time-
averaged wall shear stress result can obscure the total shear felt at the wall as negative
values of shear artificially reduce the intensity of the time-averaged wall shear stress.
In terms of healthy endothelial cell function, wall shear stress magnitude may be more
important to consider as shear stress direction is not important. Figure 8.30 shows
that the wall shear magnitude in the elastic-wall case is close to 50% lower than the
rigid-wall case across the majority of the aorta. The wall shear stress at the distal neck
still exceeds the wall shear stress magnitude for the elastic cases.

Experiments, in which the temporal distribution of shear stresses applied to the en-

250



2.5

1.5

5|
S
/
\
N

§=.>;

17 \7/
0.5}
Og 10 12 14 6
y4
= m —
|l ]
| |
= = =

FicURE 8.30: Comparison of the time-averaged wall shear stress magnitude with varying
local wall stiffness. The black line represents the rigid-walled reference case, red, green
and blue lines represent the cases with a local variation in wall stiffness of £ = 0.2 MPa,
0.8 MPa (healthy), and 6.0 MPa respectively. Note: for the elastic-walled cases a stiffness of

E = 0.8 MPa is applied outside the region of local stiffness variation.

dothelial cells could be carefully controlled, have shown that the endothelial behaviour
depends not only on the magnitude of the shear stresses, but also on their spatial and
temporal variations. The Oscillating Shear Index (OSI) quantifies the pulsatility and
primary direction of the flow. It ranges from 0 (forward flow throughout the cardiac
cycle) to 1 (fully reversed flow). An OSI index of 0.5 corresponds to a purely oscillating
flow with a WSS mean of 0. Figure 8.31 shows the oscillating shear index distribution
along the healthy aorta. Salsac et al. (2006) found the OSI of a rigid-walled healthy
aorta to be 0.4, while others have calculated the OSI in a healthy artery to be 0.32
(Oyre et al. 1997). Figure 8.31 shows the oscillating shear index distribution along a
rigid-walled artery to be 0.22. An OST = 0.22 implies the flow is mostly forward which

is to be expected given the inlet velocity profile for these simulations. The difference
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FIGURE 8.31: Comparison of the oscillating shear index (OSI) along the pipe with varying
local wall stiffness. The black line represents the rigid-walled reference case, red, green
and blue lines represent the cases with a local variation in wall stiffness of E = 0.2 MPa,
0.8 MPa (healthy), and 6.0 MPa respectively. Note: for the elastic-walled cases a stiffness of

E = 0.8 MPa is applied outside the region of local stiffness variation.

in velocity profile is the likely cause of the discrepancy between the OSI values quoted
in the literature and those determined here. The inclusion of an elastic-wall drastically
changes the distribution of OSI. At the proximal neck the OSI reaches 0.38 and at the
distal neck it dips as low as 0.04. This implies that the proximal neck is more prone
to reverse flow and the distal neck is dominated by forward flow. Such local variation
of the OSI away from the healthy range (0.32-0.42) at the proximal and distal necks
may lead to endothelial cell damage in these locations. The locations of high wall shear

stress gradients correspond strongly with the extreme values of OSI.

8.5.6 Effects of stiffened band thickness

The results presented in § 8.5.5 focus on the effect of varying the local stiffness of a band

of material at the centre of the elastic region of the aorta. The results were discussed
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FIGURE 8.32: Wall displacement, exaggerated by a factor of 5 for visualisation. Grey lines
show the case of a uniform healthy artery stiffness of 0.8 MPa; green, blue, and red lines
represent the case of a 6.0 MPa stiffened region with thicknesses of 0.2d, 0.4d and 0.8d,

respectively.

(c) 0.2 (d) healthy

FIGURE 8.33: The variation of wall shear stress (WSS) in a straight pipe as a function of
both time and space. Contours show WSS with high low levels represented by red and blue,
respectively. Negative values are represented by dashed contour lines. The contour levels are
equispaced and vary from -3 Pa to 3 Pa. Sub-plots (a)-(c) represented the WSS in a straight
pipe with a locally stiffened zone (6.0 MPa) of thickness 0.4d, 0.8d and 0.2d respectively.
Sub-plot (d) shows the uniform healthy stiffness case. The figures on the right show the
velocity inlet (red) and wall velocity (blue) as a function of time. A negative wall-normal

velocity indicates that the wall is expanding.
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in relation to the magnitude of the wall displacement and velocity in both a global
and local context. This section focuses on the affect that varying the thickness of the

stiffened region has on the wall shear stress distribution in the aorta.

Three scenarios were tested, those relating to a stiffened band of width 0.2d (pre-
sented in § 8.5.5), 0.4d and 0.8d. Each scenario consisted of a constant stiffness of
0.8 MPa outside of the local stiff zone and 6.0 MPa in the stiffened zone. Comparison
is made to an elastic artery case. Figure 8.32 shows the displacement of each of the
scenarios relative to an artery with uniform stiffness. As the thickness of the stiffened
region is increased the outward displacement at the centre of the stiffened region is
decreased forming a more stenotic geometry (Note: the stenotic shape forms as a result
of the smaller expansion of the stiff band relative to the surrounding material. At sub-
sequent times such as peak diastole the artery forms a straight pipe shape). Associated
with this reduced wall motion in the vicinity of the stiffened band is a global reduction
in the total wall motion. This is expected as a greater proportion of the wall is less
susceptible to changes in pressure. The increase in the stiffened band thickness is anal-
ogous to a localised increase in the wall stiffness in that both create an exaggeration of

the wall motion effect.

Figure 8.33 shows contours of the variation in wall shear stress in the elastic region
of interest through time. In figure 8.33(d) the case of an artery with a uniform stiffness
is presented. As discussed in § 8.5.5 a region of high shear stress is present around
the proximal neck at peak systole and a low wall shear stress region forms around
the distal neck around peak diastole. For an elastic-walled artery, the wall shear stress
distribution through time is driven more by the wall velocity (in phase with the pressure
wave) than the inlet velocity waveform. This is a result of the spatial variation of the
wall shear stress being directly related to a change in the wall geometry. Changes in the
wall geometry occur as a result of the changing pressure conditions felt by the artery

wall.

Figure 8.33(c) shows the case of a wall with a stiffened band of size 0.2d centred
around z = 12. Along the line of constant position at this stiffened location, is a
localised increase in wall shear stress. Figures 8.33(a) and 8.33(b) show the case of a
stiffened band of thickness of 0.4d and 0.8d respectively. The presence of the increased
stiffness region size is reflected in a more pronounced wall shear stress increase along

the z = 12 position as the thickness of the stiffened region increases.

254



In conjunction with the localised increase in wall shear stress, as the size of the
stiffened region increases, the width of the region of increased wall shear stress also
increases. This is a result of the wider stiffened region causing a wider section through
which the fluid velocity is high with a thinner boundary layer. Furthermore, the in-
creased thickness of the stiffened region reduces the overall motion of the wall, both
the high and low wall shear stress regions extend further along the artery wall from
the proximal and distal necks. This is approaching the banded contour profile seen in
figure 8.26(a) for a rigid-walled case. As the thickness of the stiffened region increases,
the global displacement of the artery wall decreases; the geometry of the wall is closer
to that of the rigid-wall case.

Further supporting this finding is figure 8.34, which shows the time-averaged wall
shear stress in the elastic artery. As the thickness is increased the wall shear stress at
the thickened location increases both in peak value and in the width of the increased
region. In this way, the larger stiffened zone has a greater local effect on the wall
shear stress distribution in the artery. Furthermore, the increase in wall shear stress
localised around the variation in stiffness is greater for the thickest stiffened region, this
correlates well with the case of a greater wall displacement gradient. The greater wall
displacement gradient leading to the centre of the stiffened region corresponds to an
R* < 1. Equation 8.49 shows that this corresponds to a thinning of the boundary layer
and an increase in the wall shear stress. After the stiffened region the wall shear stress
decreases again as the flow exits the stenotic geometry and R* > 1. Interestingly, the
case in which the thickest region is the widest corresponds to a lower wall shear stress
in the downstream region. This occurs despite the reduced global wall motion which
would suggest a greater wall shear stress in this region as the flow is more attached to
the walls and the wall velocity is affecting the boundary layer less. This indicates that
the wall displacement gradient has a greater impact on the wall shear stress than the
change in flow rate associated with a greater wall motion. Equation 8.49 supports this

finding as it shows that

x QF.

TWSS X o7

The fourth-order dependence on the radius implies that small changes in the radius
of the vessel will lead to greater changes in the wall shear stress than small changes
in flow rate. Similar trends are also observed in the wall shear stress magnitude (fig-

ure 8.34(b)) and the oscillating shear index (figure 8.34(c)) in which the thicker wall
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FIGURE 8.34: Comparison of time-averaged wall shear stress, (a), time-averaged wall shear
stress magnitude, (b), and oscillating shear index, (c), with varying wall stiffened region
thickness. The black line represents the rigid-walled reference case; red, green, and blue lines
represent the cases with a local variation in wall stiffened region thickness of 0.2d, 0.4d and
0.8d respectively. Note: for the elastic-walled cases a stiffness of E = 0.8 MPa is applied
outside of the stiffened region which has a stiffness of £ = 6.0 MPa.
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stiffness exaggerate the trends observed when increasing the stiffness.

Increasing the thickness of the local variation in wall stiffness has been shown to
increase the local effect of the variation in wall stiffness. This trend was established
for all stiffened region sizes studied. These results may not hold true as the size of the
stiffened region exceeds 50% of the total elastic zone. In this case, the wall geometry
may differ substantially from those formed in this study. Investigations into larger
stiffened regions is beyond the scope of this work which is limited to analysing the

effect of a localised lesion or calcification on aneurysm formation.

8.5.7 Flow in an expanded pipe with a rigid-wall

Much of the discussion in sections 8.5.5 and 8.5.6 has revolved around a local change in
shape as a result of the wall motion causing a change in the wall shear stress distribution.
This, in combination with the additional wall-normal velocity, is responsible for the
variation in wall shear stress in an elastic-walled pipe. In this investigation flow through
an expanded pipe is simulated in order to isolate the effect that the geometry change
has on the flow dynamics. In order to perform this simulation the geometry formed by
the uniform stiffness elastic-walled case at peak systole was captured and the identical
velocity inlet and pressure outlet conditions applied with the wall position fixed.
Figure 8.35 shows contours of the variation in wall shear stress in the elastic region
of interest through time. It is striking how similar the wall shear stress distribution
in the expanded rigid-wall case looks in comparison to the uniform elastic-walled case.
Both exhibit the high wall shear stress region at the proximal neck at peak systole and a
low negative wall shear stress region at the peak diastole. Again, equation 8.49 supports
this finding as the fourth-order dependence on the radius implies small changes in the
radius of the vessel will lead to greater changes in the wall shear stress. The subtle
differences appear in the timing of the extrema in wall shear stress. For the rigid-walled
expanded case the peak values coincide with the peaks in inlet velocity waveform, just
as in the rigid-walled case. In contrast to this the wall shear stress distribution of the
elastic-walled cases follows the phase of the pressure waveforms. This indicates that
while the spatial distribution of wall shear stress is largely driven by the geometry of
the wall, the temporal distribution is dependent on the velocity of the wall itself.
Figure 8.36 compares the time-averaged wall shear stress, wall shear stress magni-

tude and oscillating shear index in elastic arteries to an expanded rigid artery. The
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F1GURE 8.35: The variation of wall shear stress in an expanded rigid pipe as a function
of time and space. Contours show WSS with high low levels represented by red and blue,
respectively. Negative values are represented by dashed contour lines. The contour levels
vary from -3 Pa to 3 Pa. Sub-plot (a) represents the expanded rigid pipe case, (b) represents
the straight rigid pipe case and (c) represents the healthy elastic-walled case. The figures
on the right show the velocity inlet (red) and wall velocity (blue) as a function of time. A

negative wall-normal velocity indicates the wall is expanding.

profile of the time-averaged wall shear stress distribution for the expanded rigid pipe
case is very similar to the distribution in the elastic arteries. With a rigid-wall and the
expanded geometry, the reduction in wall shear stress is more pronounced along the
length of the expanded region and the peak wall shear stress at the proximal neck is
greater. This occurs because the rigid-walled expanded case maintains the most ex-
treme wall geometry for the entire time cycle. As such, it is subject to the most adverse
wall gradients throughout the entire time period, and as a result the wall shear stress
pattern is more extreme (i.e. for the entire time period the spatial acceleration and
deceleration at the distal and proximal necks, respectively, is at their largest for the
entire time cycle). In the elastic-walled case these spatial gradients occur at this order

of magnitude only transiently. This is evidence that it is the change in geometry which

258



25—

FIGURE 8.36: Comparison of (a) time-averaged wall shear stress, (b) time-averaged wall
shear stress magnitude, and (c) oscillating shear index, with varying wall shape. The black
line represents the rigid-walled reference case; red, green, and blue lines represent cases with
an elastic-wall with local wall stiffness of E = 0.2 MPa, 0.8 MPa (healthy) and 6.0 MPa
respectively. The orange line represents the case of a rigid-walled expanded artery. Note: for
the elastic-walled cases a stiffness of £ = 0.8 MPa is applied outside of the region of stiffness

variation.
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is the leading factor in defining the wall shear stress distribution throughout the artery.

The wall shear stress magnitude in figure 8.36(b) exhibits a substantially different
trend for the rigid-walled expanded case. After the initial decrease in time-averaged wall
shear stress magnitude at the distal neck, it retraces 50% of the reduction in wall shear
stress before reaching the centre of the expanded region at z = 12. Around this central
point there is a brief plateau in the wall shear stress magnitude before the substantial
increase in wall shear stress magnitude at the distal neck. The increase and decrease
in the wall shear stress at the distal and proximal necks, respectively, matches the
results for an elastic-walled artery well as well as the analytical expressions described
in § 8.5.5.1. This indicates that in these regions where the change in wall geometry is
greatest, the spatial acceleration is the dominant cause of the change in wall shear stress.
As mentioned in the discussion of the rigid-wall expanded artery wall shear stress results
the greater time-averaged wall shear stress change in these locations can be attributed
to the expanded geometry remaining constant throughout the time period rather than
only forming transiently. In the central region after the flow has reattached to the wall,
the shape does not change significantly. In this relatively uniform diameter section the
flow is able to adopt a close approximation of the Womersley profile. As such it exhibits
periods of reverse flow in the boundary layer (see figure 8.12); such periods of reverse
flow are suppressed in the moving-wall cases (see figure 8.13). This leads to a greater
wall shear stress magnitude in the expanded rigid-walled case throughout the centre of
the expanded region. The suppression of the reverse flow in the moving-walled case is
most prominent in the centre of the arterial bulge, suggesting it is directly related to
the velocity of the wall which is greatest in the central region.

The results of the oscillating shear index presented in figure 8.36(c) support this
analysis of the wall shear stress magnitude, as it shows that the shear index is much
closer to 0.5 (completely oscillating flow about a mean of zero) near the centre of the
deformed region. Note the peak in OSI is highest near where the minima in wall shear
stress occurs. This location corresponds to the location where the wall displacement

gradient reaches its maximum.

8.6 Closure

It is well documented that the structural function of the intimal endothelial layer is

sensitive to local haemodynamic parameters. Experiments, in which the temporal dis-
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tribution of shear stresses applied to the endothelial cells could be carefully controlled,
have shown that the endothelial behaviour depends not only on the magnitude of the
shear stresses, but also on their spatial and temporal variations (Salsac et al. 2006).
Many have postulated that the endothelial response mechanisms play a key role in va-
soregulation and lesion mitigation in regions of adversely spatially varying wall shear
stresses (Nichols & O’Rourke 1990; Fung 1997; Lasheras 2007; Humphrey & Taylor
2008; Sforza et al. 2009). As such, the characterisation of the changes in wall shear
stress resulting from wall stiffness variations around lesions and sites of disease is es-

sential to understand the initiation process of abdominal aortic aneurysms.

This investigation has made simple comparative measurements of the spatial and
temporal distribution of the flow through an elastic artery. Furthermore, it has mea-
sured the wall shear stress distribution in the elastic artery and compared the results
against rigid-walled models and cases in which a localised variation in wall stiffness is
present. This study has shown that the flow inside an elastic artery is characterised by
the transient formation of regions of higher and lower wall shear stresses than are found
in a rigid-walled artery model. In fact the presence of an elastic wall creates a spatial
variation in the wall shear stress which is not present in rigid-walled approximations.
On this basis it is reasonable to conclude that rigid-walled models of the healthy aorta

are insufficient to accurately describe the wall shear stress environment in the aorta.

The presence of an elastic wall was found to delay the onset and reduce the strength
of flow reversal in the boundary layer during the diastolic phase in comparison to rigid-
walled models. This result was reflected in the measurements of wall shear stress which
exhibited shorter periods of negative wall shear stress in comparison to the rigid-walled
models. The motion of the boundary wall dominates the flow dynamics and temporal
wall shear stress distribution in elastic cases. This was evident in both the discussion
of flow dynamics and the wall shear stress distribution in which a phase shift of 0.1 was
detected for the peak values of wall shear stress and axial flow magnitude for the elastic
cases. This phase shift matches the phase lag between the velocity inlet and pressure

outlet boundary conditions.

In addition to the change in axial velocity, the wall motion was shown to have a
profound impact on the wall-normal velocity and boundary layer thickness. The spatial
variation of the wall shear stress was shown to develop as a result of the change in wall

profile as the elastic wall moved. The expansion of the artery wall caused a diverging
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nozzle geometry to form at the proximal neck and a converging nozzle to form at the
distal neck. The result of this geometry change was a dramatic decrease in the wall
shear stress at the proximal neck before an increase in wall shear stress at the distal
neck beyond what is encountered in a rigid-walled model. The diverging-converging
nozzle shape causes a spatial acceleration of the fluid in order to conserve mass flow
rate. This is associated with a change in local velocity and consequently a change in
the local Reynolds number and boundary layer thickness. A change in the boundary
layer thickness causes an increase in strain-rate in the case of boundary-layer thinning
and a decrease in strain-rate in the case of boundary-layer thickening. The change in
boundary layer thickness can therefore be directly attributed to the changes in wall
shear stress. The transient nature of the wall further compounds these effects as the
changing luminal volume causes an increase or decrease in the flow rate at the distal

neck.

It was found that local variations in the wall stiffness slightly affected the wall shear
stress distribution in the artery. On a global scale, a local increase in the wall stiffness
decreased the peak dilation of the wall, conversely a decrease in stiffness increased the
peak dilation. Global changes in the wall dilation affect the peak wall shear stress
at the distal neck as a smaller volume change occurs leading to lower peak flow rate
through the distal neck and consequently lower levels of wall shear stress. Local effects
were also associated with the local change in wall stiffness. A departure from the
uniform ballooning shape was clearly evident; stiffer sections caused a localised stenotic
geometry while weaker walls formed an exaggerated ballooning at the stiffness variation
location. Such changes in geometry led to similar wall shear stress changes as the locally
changed wall gradient caused flow to detach from the wall when the wall was diverging

and a thinning of the boundary layer when the wall gradient was converging.

This investigation aimed to address aim 2c and determine how a heterogeneous wall
stiffness affects the haemodynamics in the context of aneurysm initiation. The original
hypotheses outlined in § 1.8.3 are supported by the findings of this investigation. It
was shown that local variations in the wall stiffness caused local variations in the wall
shear stress distribution in the artery. A stiffer artery was shown to create a geometry
similar to a stenosis which caused a local variation in the wall shear stress distribution.
Similarly, the reduction in wall stiffness led to the extra ballooning of the artery in the

local region which was shown to reduce the local wall shear stress at that location. In
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terms of the final hypothesis relating to the width of the stiffened region, the results
showed that an increase in the width of the local stiffened region led to an exaggeration
of the haemodynamic changes. This is contrary to the initial hypothesis in which it was
believed a less adverse flow condition would result from the increased thickness. The
reason for this is that the increased width acts to exaggerate the geometry formed by the
artery wall under pressure rather than reducing the wall gradients as was hypothesised.

In terms of the initiation of aneurysms, these results show that the wall shear stress
distribution in an artery is very complex. Previous studies that have focused on rigid-
walled models are likely to have underestimated the maximum and minimum wall shear
stress in a healthy artery. Large variation in the wall shear stresses are present around
the proximal and distal neck of the artery where tethering causes large variation in wall
shapes. Localised lesion or stiffening in the centre of an artery can alter the wall shear
stress distribution both local to the lesion and throughout the artery. The variation in
wall shear stress does not exceed the healthy range described in Salsac et al. (2006),
however, the results do show that the local variation is substantial in comparison to the
local wall shear stress for a healthy elastic artery. The time-averaged wall shear stress
was 31% higher for the stiffest case tested and 47% lower for the least stiff case tested.
Such variation in wall shear stress may be sufficient to change the local endothelial

function of the wall and lead to aneurysm initiation.
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Chapter 9

Investigation 2: Haemodynamics
and wall shear stress in an
established aneurysm

9.1 Introduction

The investigation presented in chapter 8 studied the effect of localised wall stiffness on
the haemodynamics in an aorta. It demonstrated the possible link between the local
variation in wall stiffness and aneurysm initiation. In this chapter, the haemodynamics
of an established aneurysm is considered.

After the formation of an aneurysm the haemodynamics within the bulbous struc-
ture are significantly different to those found in a healthy artery. The new complex
haemodynamic environment drives the continued growth of the aneurysm through the
disruption of the shear sensitive mechanotransduction process. Haemodynamic studies
have not been able to show a sufficient peak pressure to cause rupture on a mechanical
basis (Steiger et al. 1988). Instead aneurysm growth may be understood by a passive
fatigue-based yielding to blood pressure and the associated reactive healing of the wall
(Sforza et al. 2009).

The disruption of the normal mechanotransduction process due to changed haemo-
dynamic stimuli may occur through both high and low wall shear stresses. High wall
shear stresses cause endothelial injury (Kondo et al. 1997), which initiates wall re-
modelling and possible degradation. Furthermore, high wall shear stress can cause the
over-production of nitric oxide (NO) upon which the endothelium is dependent. This
has a variety of effects including altering gene expression and altering the arterial tone
and stiffness (Sforza et al. 2009). Low wall shear stresses are associated with localised

blood stagnation. Stagnation causes a dysfunction in the production of nitric oxide that
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leads to a buildup of red blood cells and leukocytes. The aggregation of blood cells
can suffocate the arterial wall, starving it of important nutrients leading to cell death
and allowing white blood cells and fibrin into the arterial wall which locally degrades
the stiffness (Sforza et al. 2009). Changes in wall stiffness at regions of high and low
wall shear stress will subsequently alter the haemodynamics throughout the aneurysm
which may in turn cause a change in the wall remodelling process and wall stiffness in
these regions.

Presented in this chapter are the results of an investigation into the haemodynamics
in established aneurysms. This study analyses the effect of a non-uniform wall stiffness
on the haemodynamics in an aneurysm and subsequently the impact this has on the
health of the artery.

This study aims to address aim 2a and 2b from § 1.8: that is, to investigate the
effect of a heterogeneous wall stiffness on the haemodynamics in an aneurysm. To this
end, blood flow through a typical medium sized fusiform aneurysm is considered.

A wall comprised of three layers with different mechanical properties was simulated.
A hyperelastic neo-Hookean constitutive model is used to simulate the wall motion.
The effect of wall elasticity on the blood flow through the aneurysm was assessed. To
determine which non-uniform distribution of wall stiffness led to the most significant
changes in haemodynamics, the stiffness of the wall was varied locally in the distal neck,
proximal neck and central bulge region of the aneurysm.

The detailed set of hypotheses relating to this investigation can be found in § 1.8.2.

9.2 Geometry

Figure 9.1 shows the computational domain used for this investigation. It represents
blood flow through a medium-sized abdominal aortic aneurysm. A mathematical de-
scription of the fusiform bulge shape is provided in § 7.2.2. The aspect ratio is ©/4 = 3,
the dilation ratio is /4 = 2, and an aortic diameter of d = 20 mm was justified in
§ 7.2.2. Just as with the aneurysm initiation study of chapter 8, the length of the
elastic-wall region shown in figure 9.1 is 120 mm (or 6d). Figure 9.1 shows the macro
element mesh used in the meshing of the aneurysm. Gauss—Legendre-Lobatto quadra-
ture points are used to interpolate within each of the macro elements shown. By using
these quadrature points a highly accurate fine mesh is formed (see § 9.3 for details of

the accuracy).
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The elastic region only occupies the central region of the computational domain;
with the fluid domain computed both upstream (9d) and downstream (9d) of this region
(see figure 9.1). While this region does not represent anatomical vascular structure, it
is included to ensure that the inlet and outlet boundary conditions do not affect the
flow in the region of interest. Further details of the choice of inlet and outlet length

can be found in § 9.3.2.

Downstream of the elastic region is a flared section leading to the outlet. This
section has an inflow velocity boundary condition imposed through the wall. The flare
has a length of 3d and expands from the pipe diameter d to 1.5d at the exit. The
reader is referred to section 8.2 for an explanation of the numerical necessity of the

flared region.

Hexahedral mesh elements are used to discretise the three-dimensional flow domain.
To maximise accuracy in the elastic region where the moving arterial wall introduces
multi-dimensional flow dynamics, the mesh is much denser. In this region the mesh
elements are approximately 0.2d x 0.2d x 0.2d (i.e. aspect ratio of unity). Outside of
the elastic region, less resolution is required to describe the flow (see § 9.3.3), as such

the mesh is coarser.

Figure 9.1(c) shows the solid domain mesh used. This mesh consists of three macro
element layers. Each layer corresponds to a single layer in the arterial wall. Details of
the layer thicknesses can be found in § 7.4.1. The accuracy of the solid domain mesh

is discussed in § 9.3.4.

The established aneurysm investigation involves a local change in wall stiffness. The
results presented in § 9.5.4.1, 9.5.4.2 and 9.5.4.3 include a stiffer band of material in the
proximal, central, and distal regions respectively. In each case, a third of the aneurysm
bulge is stiffened i.e. the stiffened region is 1d wide. All three layers of the wall are

stiffened by the same amount.

9.2.1 Fluid and solid properties and boundary conditions

The fluid and solid properties and boundary conditions used in this investigation are
identical to those used in the aneurysm initiation study of chapter 8. A summary is pro-
vided in table 9.1. For further details on the boundary conditions and the justification

of the choice of material properties the reader is referred to § 8.2 and chapter 7.
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Summary

Fluid property

Dynamic viscosity p 3.85 x 1073 Pa s
Density p 1060 kg/m”
Inlet velocity mean v,,eqn 16.25 cm/s
Inlet velocity peak vpeqk 30 cm/s
Outlet pressure systolic Py 120 mmHg
Outlet pressure diastolic P g, 70 mmHg
Phase lag (velocity-pressure) 0.1s
Heart rate (period) T 1s
Time-averaged Reynolds number Re,cqn 410
Peak Reynolds number Repeqr 750
Womersley number o 9.67

Fluid boundary condition

Inlet Pouisseule profile (Finol et al. 2003b)
Outlet Time varying pressure (Mills et al. 1970)
Walls no-slip

FSI interface V= Vs

Flared inlet vy =4 — 2 cos (27t)

Solid property

Stiffness (healthy) Eean 0.800 MPa
Aneurysm stiffness range 0.200-6.000 MPa
Density ps 1160 kg/m®

Solid boundary condition

Inlet and outlet Fixed, i.e. © = (0,0,0)
Perianeurysmal environment P..i = Pga — 0.2 M CoS (%’Tt)
FSI interface os-n = P

TABLE 9.1: Summary of the properties and boundary conditions used in the aneurysm in-

vestigation.
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(a) Geometry

(b) Mesh detail (c) Solid mesh (d) Flared Outlet

FIGURE 9.1: Mesh detail used in aneurysm investigation, blood flows from left to right. (a)
shows macro elements in the entire computational domain. Red regions represent blood flow,
the blue region is the proximal region to be stiffened, green is the lumen region and yellow
is the distal region. (b) shows a detailed cross-section of the mesh, clearly visible is the
cube-shaped elements in the fluid region and the thinner layer of solid elements. (c) shows a
detailed cross-section of the solid mesh with its three macro element layers. The outlet flare

with vectors representing the inlet boundary conditions and outflow at the end is shown in

().

9.3 Solution validation

Rigorous validation of the numerical techniques, domain size, and mesh independence
were conducted as part of this research. The numerical techniques developed in this
thesis are validated in chapter 6. This section mimics the mesh optimisation and in-
dependence studies presented in § 8.3 for the aneurysm geometry shown in figure 9.1.
Subsection 9.3.1 describes the mesh optimisation analysis that determined the most
efficient meshing strategy. Any boundary condition effects were negated in the domain
analysis (see § 9.3.2), ensuring a physiologically accurate solution was simulated. Sec-
tions 9.3.3 and 9.3.4 establish the level of spatial accuracy of the mesh. Finally, the
accuracy of the temporal discretisation will be examined in § 9.4.As indicated in 8, an
error threshold of < 1% for global error measures and < 2% for local error measures

was used to direct the choice of spatial and temporal resolution; and domain size.
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9.3.1 Mesh optimisation and p-type refinement

As discussed in § 8.3.1, the spectral-hp element method allows both A-type and p-type
refinement of a computational mesh. To determine the most time efficient mesh for a
prescribed level of accuracy, a mesh optimisation analysis was performed.

The four meshes created for the mesh optimisation study were based on the same
meshing strategies used in § 8.3.1. Each mesh shown in figure 9.2 employed a differ-
ent level of h-type refinement. Mesh 1 in figure 9.2(a) uses the strategy of very few
macro elements. Such a mesh requires a higher polynomial order, p, to attain spatial
convergence. Conversely, Mesh 4 employs a large number of macro elements; this al-
lows a smaller polynomial order to be used to attain spatial convergence. Meshes 2
(figure 9.2(b)) and 3 (figure 9.2(c)) employ intermediate levels h-type refinement.

The optimisation study involved completing a p-type grid independence study for
each mesh. This follows the methodology outlined in § 8.3.1. Global and local flow
measurements were taken to assess the spatial resolution of each mesh at each level of
p-type refinement. The Ls-norm is used to measure the overall difference between the
solutions from different meshes and resolutions. Local variations in the solutions are
observed by monitoring v,, the z-component of velocity, and the strain-rate-magnitude
at a point within the global domain. The time taken for the simulation to run was also
recorded to give an indication of the computational cost associated with each meshing
strategy. In the results presented in figure 9.3, these parameters are sampled along the
centreline at the midpoint of the aneurysm bulge, (x,y, z) = (0,0, 12D).

The results presented in figure 9.3 show the p-type grid independence studies con-
ducted for each mesh. As expected, as the polynomial order is increased for each mesh
the solution converges to a consistent value. Meshes 1 and 3 exhibit some numerical
wiggle in the strain-rate-magnitude data. The sparse nature of these two meshes meant
they were run at higher polynomial orders compared with Mesh 4. Mesh 4 exhibits sta-
ble convergence behaviour in both global and local error cases. Table 9.2 provides a
numerical estimate of the error associated with each mesh. The error is calculated
relative to the most resolved case for each mesh. The assumption is made that each
mesh has reached a mesh independent state at the highest resolution case. The data
presented in table 9.2 supports the results shown in figure 9.3. As the polynomial order
is increased the error in each case decreases. In all cases the error is small (error< 2%)

for the more resolved cases. The smallest error is observed in the global Ls-norm error
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(a) Mesh 1 (b) Mesh 2

(c) Mesh 3 (d) Mesh 4

FIGURE 9.2: Macro element meshes used in mesh optimisation investigation. Meshes 1-4 show
an increasing level of h-type refinement. The meshes were created by linking successive 2D
planes of elements. To ensure accuracy at the boundary element, depth (plane spacing) was
set to match the width of the element closest to the boundary. Note: a curvilinear mapping
of the element faces onto the circular pipe is used - the flat faces depicted on the pipe walls
here is a product of the plotting package used, which accentuates the poor representation of

the geometry at the limit of small p-type resolution.

estimate, with error converging to less than 1072%. The greatest error was observed in
the strain-rate-magnitude as is expected with the use of C°-continuous elements.

A dominant feature of figures 9.3(a) and 9.3(b) is Mesh 4 converging to a different
value than the other meshes. The maximum difference between Meshes 1-3 and Mesh 4
was 0.75% in Lo-norm, 0.51% in v, and up to 12.7% in strain-rate-magnitude. The
larger difference in strain-rate-magnitude data is a result of the higher number of C°-
continuous elements in Mesh 4, producing a smoother first-order vector field. In the

mesh optimisation study for the aneurysm initiation study such a difference was not
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FIGURE 9.3: Results of the p-type grid independence study for each mesh 1-4 shown in
figure 9.2. In each sub-plot red, green, blue and gray lines and symbols represent meshes 1,
2, 3 and 4 respectively. For all sub-plots and meshes as the number of degrees of freedom
(polynomial order) is increased the mesh solution converges to a stable value. (a) shows the
Lo-norm, a global measure of energy in the solution. (b) shows the v, velocity component
at a point along the centre line of the pipe and (c) shows the magnitude of strain rate at a

point on the pipe centreline. All values were taken at time of peak energy.
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% error

p Mesh 1 Mesh 2

Ly v, €] Ly v, €]
5 1.23 0.45 7.23 14.11 21.21 40.94
6 0.12 0.156 0.66 0.86 0.01 10.76
7 65x107% 12.94 0.69 0.12 0.14  1.52
8 53x107% 12.68 1.35 23x107% 007 0.67
9 86x107% 302 6.6x1073 6.6x107% 0.08 0.44
10 36x1073 219 1.98 5.7x 1072 0.02  1.59
12 0.0 0.0 0.0 0.0 0.0 0.0
P Mesh 3 Mesh 4

Lo v, €] Lo v, €]
4 1.27 0.29 14.3 2.11 0.63 11.54
5 0.11 0.17 0.77 0.46 0.01  0.17
6 0.02 0.08 1.02 0.08 0.07  1.38
7 58x1073% 0.58 0.24 98 x 1073 0.03 1.53
8 5.7x107% 145 0.28 0.0 0.0 0.0
9 0.0 0.0 0.0 - - -

TABLE 9.2: Percentage error in each mesh when compared to the most resolved case. Error

is shown for global measures (Lg-norm) and local measures (v, and |€]).

featured. The bulge in the aneurysm geometry causes a more complicated flow pattern
that is not completely dominated by flow in the axial direction; as such resolution in
the z-y plane is paramount. While the percentage difference between the meshes is
small (for Lg-norm and v,) justification for the difference is required.

The numerical solver used in this investigation is capable of solving flow through non
cube-shaped elements through the use of a curvature routine that applies a smooth curve
passing through the macro element nodes on a specified curved boundary. The routine
then places the Gauss—Legendre-Lobatto quadrature nodes at appropriate locations on
the curved boundaries so as to preserve the third-order accuracy. The algorithm used
to predict the curvature fits a circle to subsequent sets of three macro element nodes. It
fits this circular curvature to each set of neighbouring nodes on the curved boundary in
all three directions. The routine then applies a blending operation to provide a smooth

curve across the entire boundary.
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(a) Mesh2 (b) Mesh4

FIGURE 9.4: Curvature at the proximal neck generated using the two different meshing strate-

gies.

The spacing of the macro nodes is paramount to the accuracy of the curvature
routine. If macro nodes are spaced differently between meshes the curve approximated
will also differ. This numerical artefact is prevalent in this mesh optimisation study.
Figure 9.4 shows a slice through the proximal neck region for Mesh 2 and Mesh 4. These
images demonstrate that the curvature of the neck region is different in each case. It
is clear from this figure that a smaller region is affected in Mesh 4 as a result of the

smaller macro element mesh size in the axial direction.

The different geometry will affect the way the characteristic aneurysm vortex is
shed, and hence the flow structures in general (Sheard et al. 2007). This is one reason
for the difference observed between meshes. This concept is supported by Mesh 2
and 4 which have identical axial element sizes and therefore curvatures. These two
meshes produce very similar grid independent results. A further confounding factor is
the dependence of the La-norm on domain size. Figure 9.5 shows the volume of each
mesh at each polynomial order. The variation in mesh volume with each mesh is clear.
Mesh 4 has a 0.11% smaller volume than that of the analytical volume, and Mesh 1 has
a 0.91% smaller volume than the analytical volume. This correlates well with figure 9.4.
This figure shows that Mesh 4 reproduces the analytically prescribed curve with much

greater accuracy and as a result it is the best candidate for the aneurysm study.

Despite the superiority in Mesh 4 in relation to reproducing the analytical geometry,

an attempt is made to reconcile the solution produced by each mesh. To account for
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FIGURE 9.5: Volume of each mesh plotted as a function of increasing polynomial order. red,
green, blue and grey symbols represent meshes 1, 2, 3 and 4 respectively. The volume that
should be achieved using the analytical expression for the curve is 9.67 (show using the dashed
black line). The volume of meshes 1 and 2 is near identical which is to be expected as they
have the same spacing between element planes i.e. axial element length. The smaller macro

elements in Mesh 4 allow for a more accurate curvature and hence larger volume.

the difference in volume between the meshes the data from figure 9.3 is re-scaled by
the volume of each mesh (figure 9.6). The maximum difference in each case is now
only 0.35% in Lo-norm, 0.27% in v, and up to 8.7% in strain-rate-magnitude down
from 0.75%, 0.51% and 12.7% respectively. As expected the greatest improvement
came in the volume dependent Lo-norm. The remaining difference in these results is
a product of the different geometry at the proximal and distal necks affecting the flow

characteristics.

The most appropriate mesh for the aneurysm study provides a grid independent
solution at the lowest computational cost. Figure 9.6 and table 9.2 showed each meshing
strategy is capable of producing a spatially resolved mesh. Figure 9.7 shows the physical
time taken to complete 100 time steps (t199) in the solver for each mesh at each level
of resolution. This clearly shows that Mesh 4 which is based on more macro elements

and a relatively low polynomial order is more efficient than the other meshes.
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FIGURE 9.6: Results of the p-type grid independence study for each mesh 1-4 shown in
figure 9.2 with volume adjustment. In each sub-plot red, green, blue and gray lines and
symbols represent meshes 1, 2, 3 and 4 respectively. For all sub-plots and meshes as the
number of degrees of freedom (polynomial order) is increased the mesh solution converges
to a stable value. (a) shows the Lo-norm a global measure of energy in the solution. (b)
shows the v, velocity component at a point along the centre line of the pipe and (c) shows

the magnitude of strain rate at a point on the pipe centreline. All values were taken at time

of peak energy.
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FIGURE 9.7: Simulation time required to complete 100 time steps, t1g0, is plotted with respect
to the number of degrees of freedom for each simulation. As in figure 9.3, red, green, blue
and grey lines and symbols represent meshes 1, 2, 3 and 4 respectively. A more efficient

simulation has a shorter run time at higher resolution. Mesh 4 is the most efficient mesh.

Figure 9.6 and table 9.2 present a clear case that using all of the meshes a grid
independent solution can be achieved. Mesh 4 with the use of relatively low poly-
nomial orders provides the most stable, accurate and efficient solution. Furthermore,
figures 9.4 and 9.5 demonstrate that of all the meshes, Mesh 4 is least affected by
the curvature routine. As such, this mesh is used throughout the aneurysm study. In
order to minimise the computational cost of this study a polynomial order of p = 5
(DoF = 622080) is chosen. This level of resolution ensures the mesh is within its mesh
independent convergence region, provides less than 0.5% error across both global and

local error measurements and limits the computational cost of each simulation.

9.3.2 Domain size

Following the grid-independence methodology outlined in chapter 8, a domain size
analysis is conducted for the aneurysm geometry case. To ensure that the blood flow
through the region of interest is physiologically accurate it is imperative that the prox-

imity of the boundary conditions do not affect the results. As in §8.3.2, five inlet and
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FI1GURE 9.8: Velocity profile at the start of aneurysm bulge, velocity is normalised using the
period of oscillation and diamter of the vessel. Black squares B, red diamonds ¢, blue circles
e, green triangles A, and orange inverted triangles V represent the profile for an inlet length
0d, 3d, 6d, 9d and upstream respectively. (a) shows the velocity profile across the pipe
diameter and (b) shows the percentage error of each velocity profile relative to the longest
inlet case in (a). As the inlet length is increased, the difference in velocity profiles becomes

negligible.

outlet lengths were simulated in each case, 0d, 3d, 6d, 9d and 24d.

9.3.2.1 Upstream

Simulations were conducted using a constant outlet length and varying the upstream
length. The flow was monitored at a series of points throughout the aneurysm bulge.
Figure 9.8(a) shows the velocity profile at the entrance to the aneurysm at ¢ = 0.5 s for
each of the inlet length cases. For the case of 0D upstream the velocity dist