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Abstract

This article presents a short review of the three-dimensional transition of wakes from two-dimensional bodies, such as

cylinders of various cross-sectional shape, and axisymmetric tori or rings. The nature and sequence of instabilities are

compared and contrasted, especially with reference to the base case of the circular cylinder wake. The latter has been the

subject of intense interest and scrutiny for well over a century, and has implicitly assumed the role of providing

the generic transition scenario for turbulent wake flow. For elongated cylinders with streamlined leading edges, the

analogues of the instability modes for a circular cylinder become unstable in the reverse order, which may have

implications for the route to wake turbulence for such bodies. As well, the analogue of mode B has a significantly

increased relative spanwise wavelength and appears to have a different near-wake structure. At the other extreme, for a

normal flat plate, the wake first becomes unstable to a nonperiodic mode that appears distinct from either of the

dominant circular cylinder wake modes. For tori, which have a local geometry approaching a two-dimensional circular

cylinder for high aspect ratios (ARs), the sequence of transitions with increasing Reynolds number is a strong function

of AR. For intermediate ARs, the first occurring wake instability mode is a subharmonic mode. Possible underlying

physical mechanisms leading to some of these instabilities are also examined. In particular, support is provided for the

role of idealized physical instability mechanisms in controlling wavelength selection and amplification for the dominant

wake instability modes. The results presented in this article focus on relevant research undertaken by the Monash group

but draws in results from many other international groups.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Considerable experimental and computational effort has gone into documenting the three-dimensional wake

transitions of a nominally two-dimensional circular cylinder. A nonexhaustive but representative sample of articles

includes Williamson (1988b, 1996a,b), Wu et al. (1996), Thompson et al. (1994, 1996), Barkley and Henderson (1996),

Henderson (1997), Mittal and Balachandar (1995), Karniadakis and Triantafyllou (1992), Brede et al. (1996), Bays-

Muchmore and Ahmed (1993), and Gerrard (1978). Stability analysis (Barkley and Henderson, 1996) indicates that the

two-dimensional wake becomes linearly unstable to mode A at Re ’ 190, and the base flow undergoes a further

bifurcation to mode B at Re ’ 260. Experiments (Williamson, 1988b; Miller and Williamson, 1994) and direct
e front matter r 2006 Elsevier Ltd. All rights reserved.
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numerical simulations (DNS) (Thompson et al., 1996; Henderson, 1997) show that mode B becomes unstable at a

significantly lower Reynolds number (Re ¼ 2302240). At slightly higher Reynolds numbers, there is a strong nonlinear

interaction between the modes and the wake undergoes a rapid transition to spatio-temporal chaos (Henderson, 1997),

so that it is effectively turbulent for a Reynolds number of just a few hundred. The growth and saturation of the modes

in the wake have been modelled in detail using the Landau equation (Henderson, 1997; Sheard et al., 2003a). Finally,

the underlying physical mechanism driving the instability modes has been explored by various authors, including

Barkley and Henderson (1996), Henderson (1997), Leweke and Williamson (1998b), and Thompson et al. (2001b).

Fig. 1 shows a side-by-side comparison of experimental and numerical tracer visualizations of the mode A and B

shedding modes. Thus it appears that this wake has been well documented and is well understood; however, an obvious

question is whether this transition scenario is generic or universal for a variety of other two-dimensional and

axisymmetric body shapes. This question is addressed by the current paper.

The FLAIR (Fluids Laboratory for Aeronautical and Industrial Research) group at Monash University has spent

some effort investigating the effect of body shape on wake transition. In particular, two broadly representative families
Fig. 1. Numerical visualizations of the two shedding modes using passive tracer particles (top) compared with experimental dye

visualizations obtained by Williamson (199a,b). Mode B is shown at the left and mode A at the right.

Fig. 2. Top: sequence of (cross-sections of) two-dimensional cylinders used to study two-dimensional wake evolution. Bottom:

axisymmetric bodies examined.
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of body geometry have been examined, which include previously well-studied generic body shapes as limiting cases.

The first set consists of the normal flat plate, a circular cylinder, and elongated cylinders with elliptical-leading

edges to prevent vortex shedding except from the trailing edge. The second set focusses on axisymmetric bodies, in

particular a ring or torus placed with its axis aligned with the flow direction. By adjusting the AR, this topology

can be transformed continuously from a sphere to a very large ring where curvature effects are negligible, so that a

section of the geometry is representative of a circular cylinder. These sequences of body shapes are depicted in Figs. 2(a)

and (b).
2. Wake transition of two-dimensional bodies

Table 1 provides an overview of the cases considered in this section. The critical Reynolds numbers, wake mode

descriptions and the preferred wavelengths are given for circular and square cylinders, the normal flat plate, and an

elongated streamlined leading-edge blunt trailing-edge cylinder. References to the original sources are provided in the

following subsections.

2.1. Circular and square cylinders

As mentioned above, the three-dimensional transitions in the wake of a circular cylinder have been extensively

studied experimentally, numerically and theoretically. The wake becomes unstable to three-dimensional perturbations

through a subcritical (i.e., hysteretic) transition (Henderson, 1997) to an instability mode, dubbed mode A by

Williamson (1988a) [also see Williamson (1996a,b)], at Re ’ 190. The wavelength of this mode is approximately 4D,

where D is the cylinder diameter. Experimentally it is found that the saturated mode is not periodic, at least for

Reynolds numbers not too far in excess of transition. DNS at Re ¼ 210, have confirmed this behaviour [Sheard, private

communication; also see Henderson (1997)]. The reason for the loss of periodicity as the mode reaches saturation is still

unclear. Floquet stability analysis (Barkley and Henderson, 1996) of the two-dimensional base flow indicates that a

second mode, known as mode B, becomes unstable at Re ’ 260. This has a much shorter preferred wavelength of

l=D ’ 0:8 and is unstable over a relatively narrow wavelength range. In experiments and DNS this mode is seen at

much lower Reynolds numbers, Re\230, presumably due to the modification of the two-dimensional wake by the

saturated mode A state. The wake becomes chaotic rapidly with increasing Reynolds number through spatio-temporal

chaos (Henderson, 1997), and is effectively turbulent at Re\300. Importantly, the wake continues to show strong

evidence of the mode B wavelength at much higher Reynolds numbers (Wu et al., 1996). The associated structures

presumably contribute significantly to lateral mixing, and may be the dominant source at least in the near wake, even in

the strongly turbulent case.

Two other instability modes have been found for the circular cylinder wake. The first of these is known as mode C

(Zhang et al., 1995). This mode is artificially generated by perturbing the flow on one side of the wake. This leads to a

subharmonic mode of intermediate spanwise wavelength between those of mode A and mode B. Studies of a square

cylinder Robichaux et al. (1999), see below, also revealed mode S (for subharmonic). This mode also exists for a circular

cylinder wake, and evidence for it in the subcritical state was provided by Barkley and Henderson (1996). Blackburn

et al. (2005) provide accurate estimates of the critical Reynolds number and corresponding wavelength given in Table 1.

This mode is not subharmonic, although it has a period close to two base periods, hence the designation of mode S was

relabelled to mode QP (quasi-periodic) by Blackburn et al. (2005). The onset Reynolds number is considerably higher

than the two better known modes and it is unlikely that it plays a role in wake transition, since the wake is highly

nonlinear and demonstrates spatio-temporal chaos at considerably lower Reynolds numbers (Henderson, 1997).

Robichaux et al. (1999) performed a Floquet stability analysis of the wake of a square cylinder. The transition

scenario appears to be similar to the circular cylinder. Again, modes A and B occur in the same sequence with transition

Reynolds numbers of about 160 and 190, respectively. The maximally amplified wavelengths are also similar at 1:2 and

5:5 times the cylinder height. Interestingly, if the scale length is taken as the length of the diagonal, the preferred

wavelengths are the same as for the circular cylinder to within a few percent. These authors also found a further

instability mode, mentioned above, called mode S, which occurred at a higher critical Reynolds number of Re ¼ 200,

and has a wavelength between mode A and mode B wavelengths. Blackburn and Lopez (2003) subsequently showed

that, in fact, this mode was not a subharmonic, but was a mode with a complex Floquet multiplier with a period of only

approximately twice the base flow period. A theoretical analysis based on symmetry groups (Blackburn et al., 2005) of

the possible modes for geometries with this set of flow symmetries, indicated the only modes with the time–space

symmetries of modes A and B could occur. The occurrence of a true subharmonic mode would be extremely unlikely.
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In summary, the wakes of both compact bodies show a very similar transition scenario. The sequence of transitions is

the same, with the mode shapes and structure appearing to be closely analogous. This is despite flow separation

occurring from two distinct points—the leading and trailing edges—for the square cylinder, unlike the single varying

separation point for each half of a circular cylinder. This naturally leads to the question of whether this state of affairs is

preserved for the flow past other body shapes which possess an underlying two-dimensional quasi-periodic Kármán

wake.

2.2. Normal flat plate

As for the circular cylinder there is only a single separation point on each side of the bluff body, although it is fixed in

position. At low Reynolds numbers the wake resembles the typical Kármán wake of a circular cylinder. As the

Reynolds number is increased the wake rapidly evolves spatially downstream to two sets of positive and negative

vortices distributed on either side of the wake centreline. The two-dimensional wake as depicted by greyscale vorticity

contours is shown in Fig. 3 for Reynolds numbers of 40, 80 and 130. Johnson et al. (2004) examined the two-

dimensional wake state for a sequence of elliptical bodies with the circular cylinder and flat plate as limiting cases.

Interestingly, the characteristic Kármán wake is displaced downstream by a wake consisting of two sets of vortices

offset from the wake centreline, even at quite low Reynolds numbers, as the body geometry tends towards that of a

normal flat plate. The behaviour is shown clearly in Fig. 3. Other relevant research includes Najjar and Balachandar

(1997), who performed a three-dimensional numerical study of the three-dimensional wake at Re ¼ 250, and Julien

et al. (2004, 2003) who examined the instability modes for an idealized wake of a normal flat plate.

Fig. 4 shows dominant Floquet multipliers against wavelength for a range of Reynolds numbers. Of the first two

unstable modes, the longer wavelength mode is the first to go unstable at Re ’ 1052110, and has a preferred

wavelength of approximately 526H, where H is the height of the plate. In this case, the dominant mode has a complex

multiplier (indicated by the dashed line). The shorter wavelength mode has a dominant wavelength of l=H ’ 2

becoming unstable at Re ’ 125.

Although the immediate vortex street at the rear of the body still resembles that of a circular cylinder, the mode

shapes and symmetries are quite different. Fig. 5 shows perturbation spanwise vorticity contours for the shorter and
Fig. 3. Two-dimensional greyscale vorticity contours showing the shedding pattern for flow past a normal flat plate. Flow is from left

to right. Left to right: Re ¼ 40, 80 and 130, respectively.
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Fig. 4. Dominant Floquet multipliers for the wake of a normal flat plate.
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Fig. 5. Spanwise perturbation vorticity structure of the first two instability modes for the normal flat plate. The left and right images

correspond to wavelengths of l=H ¼ 2 and 5.5, respectively. The Reynolds number is 130.

M.C. Thompson et al. / Journal of Fluids and Structures 22 (2006) 793–806798
longer wavelength modes. The position of the spanwise vortex structures are indicated as well. The shorter wavelength

mode has the same spatio-temporal symmetry as mode A of the circular cylinder. In addition, there is strong evidence of

elliptical instability in the vortex cores, consistent with mode A (Thompson et al., 2001b). The longer wavelength mode

is strong close to the rear of the plate but decays rapidly with downstream distance. As mentioned, the Floquet

multiplier is complex before and after transition, and the period of the mode is not commensurate with the base flow

period. Indeed, the period is highly variable with wavelength, which may indicate a rapid development to a highly

chaotic wake with increasing Reynolds number.
2.3. Elongated cylinders

Results for this body geometry have been presented in Ryan et al. (2005). A summary of the key findings are

presented here. Critical Reynolds numbers and wavelengths are provided in Table 1.

In this case there are three unstable modes denoted as mode A, B0 and S0, in line with the analogous modes

observed for square and circular cylinders. The critical wavelengths of these modes are approximately 4, 2:2 and 1

cylinder heights, respectively. Mode A is topologically similar to, and has the same spatio-temporal symmetry of,

mode A for a circular cylinder, as can be seen from the spanwise perturbation vorticity contours in Fig. 6 and

isosurfaces of streamwise perturbation vorticity in Fig. 7. In particular, the sign of the perturbation vorticity is

opposite on each side of the wake and this is maintained from one shedding cycle to the next (see top visualization in

Fig. 7). This discounts the immediate wake where the perturbation vorticity has the opposite sign. That situation

also occurs for a circular cylinder wake and has been discussed in Thompson et al. (2001b). Fig. 7 also shows

Mode B0 has the same spatio-temporal symmetry as mode B of a circular cylinder with the streamwise perturbation

vorticity at any spanwise position maintaining the same sign for each half-cycle; however, there are some

other significant differences (hence the prime). The preferred wavelength is considerably longer (2:2H compared with

0:82D), and the perturbation field in the near wake is markedly different. Nonetheless, the downstream development is

very similar. For intermediate length cylinders this mode becomes the most unstable mode, and for very long cylinders,

the difference between the onset of this mode and the second mode to become unstable becomes large, as is discussed

below.

Mode S0 is in some senses similar to the almost subharmonic mode observed by Robichaux et al. (1999). Again, the

mode has a complex Floquet multiplier, although it is not close to having a subharmonic period. The real part of the

Floquet multiplier only becomes greater than unity for large AR (i.e., length to height ratio) cylinders, but eventually it

too becomes more unstable than mode A. For an AR of 17.5, the longest cylinder studied, mode S0 becomes unstable at

Re ’ 690 and mode A at Re ’ 700. The lower visualization of Fig. 7 shows a typical snapshot of the mode S0. The

mode is modulated in time.

Fig. 8 shows the variation of critical Reynolds number as a function of AR for modes A and B0. The most striking

feature is that mode B0 becomes unstable at a lower Reynolds number for cylinders with AR greater than approxi-

mately 7. Indeed, for a cylinder with length to height ratio is 17.5, the difference in the critical Reynolds numbers is

close to 300. Given that Karniadakis and Triantafyllou (1992) found that mode B underwent period-doubling when the

existence of mode A was suppressed by artificially restricting the spanwise domain, it is not clear that the transition to

turbulence will occur through the same route for elongated cylinders (or the normal flat plate) as for short cylinders. To

study this aspect of transition requires full three-dimensional simulations.
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Fig. 6. Comparison of the wake spanwise vorticity field of the Floquet mode for a circular cylinder (Re ¼ 190, l ¼ 4D) and short

cylinder (AR ¼ 2:5, Re ¼ 240, l ¼ 4H) showing the longer wavelength instability for the short cylinder is analogous to the Mode A

instability of the circular cylinder. The spatial structure of the perturbation field relative to the position of the Kármán vortices is

highlighted by the contours of spanwise vorticity with oz ¼ �0:2. Both images are at approximately the same phase in the shedding

cycle. This figure corresponds to Fig. 8 of Ryan et al. (2005).

Fig. 7. Plan view of isosurfaces of the streamwise vorticity field for the three identified instability modes (A, B0 & S0) for an elliptical

leading-edge cylinder. Isosurfaces of spanwise vorticity show the positions of the Kármán vortices. Note that these obscure the

cylinder. The span length is 12H. Flow is from left to right. Adapted from Figs. 17–19 of Ryan et al. (2005).

M.C. Thompson et al. / Journal of Fluids and Structures 22 (2006) 793–806 799
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3. Wake transition of axisymmetric bodies

The instability modes associated with the wakes of axisymmetric bodies are discussed in this section. The generic

example is flow past a sphere, and the transitions for that case have been well documented. Another interesting example

is flow past a torus, which naturally transforms into a sphere, albeit topologically discontinuously, as the AR is

decreased, while a section approaches the geometry of a circular cylinder as the AR becomes large. The latter was one of

the reasons that this body was examined in the study of Leweke and Provansal (1995)—to remove the end effects which

distort results from experimental studies of circular cylinder wakes.

Table 2 provides a summary of key findings, comparing the symmetry breaking and transition modes for a torus, and

for a sphere and circular cylinder.

3.1. Sphere

This case has been studied extensively by many research groups over the years. The wake transitions not surprisingly

are quite distinct from those for a circular cylinder wake. The wake undergoes a regular (i.e., time-steady) transition at

Re ¼ 212 to the beautiful two-threaded wake (Margarvey and Bishop, 1961a,b; Johnson and Patel, 1999; Tomboulides

et al., 1993, 2000; Thompson et al., 2001a; Ghidsera and Dusek, 2000; Ormières and Provansal, 1999). This wake then

becomes unstable at Re ’ 270 through a Hopf (steady to periodic) bifurcation. At Re ’ 350, the vortical wake

structures no longer maintain the same strict alignment from one shedding cycle to the next (Mittal, 1999). The overall

wake structure is similar at considerably higher Reynolds numbers, although much more chaotic.

3.2. Torus

Sheard has undertaken an extensive numerical study of aspects of flows past tori, including three-dimensional

transitions (Sheard et al., 2003b), DNS and Landau modelling, examining the saturation of the instability modes

(Sheard et al., 2004), and examining wake transition to a subharmonic mode for a torus of a specific AR (Sheard et al.,

2005).

Basically, the general wake behaviour naturally falls into two distinct types depending on the ratio of the ring

diameter to cross-section diameter—the AR. For ARt3:9, the wake behaviour has strong similarities to that of a

sphere, while for larger AR the torus is sufficiently large so that the local wake from sections of the torus have a lot in

common with a cylinder wake. Despite the broad classification on AR, there are still considerable differences in the

order in which different modes become unstable depending on AR.
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Fig. 9. Critical Reynolds number for the onset of modes A, B and C for tori for aspect ratios AR45. The critical Reynolds number for

the circular cylinder wake are also provided for comparison. Adapted from Fig. 11 of Sheard et al. (2003b).
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3.2.1. Small AR tori

For ARs below 1.6, the wake flow transitions are similar to those of a sphere. In particular, a regular transition

occurs prior to a Hopf bifurcation. Interestingly, this Reynolds number range spans the appearance of the hole in the

toriodal geometry at AR ¼ 1, yet the wake behaviour is continuous across this topology change. For 1:6oARo1:7, the
axisymmetric steady wake undergoes a Hopf bifurcation with azimuthal mode number m ¼ 1, in the absence of any

regular bifurcation. At larger ARs, 1:7tARt3:9, again the regular bifurcation occurs first.

3.2.2. Large AR tori

For large ARs, the analogues of modes A and B of the cylinder wake also occur for this geometry, with similar

preferred wavelengths but restricted by the discreteness of mode selection due to the periodic azimuthal geometry. For

each mode, the spatio-temporal symmetry is approximately preserved, together with the general mode shape, i.e., the

spatial distribution of the perturbation field. The curvature does result in a clearly observable loss of symmetry between

the two sides of the wake. Importantly, even for large AR tori, the small ring curvature still leads to a noticeable loss of

the symmetry that is clearly visible in the plane defined by the flow direction and cylinder axis for a two-dimensional

cylinder. This change to symmetry group properties allows a true subharmonic mode to develop (mode C), which is in

fact the first occurring instability mode for tori of ARs 4tARt8. Fig. 9 shows the transition Reynolds numbers for

modes A, B and C, for AR ¼ 5. Sheard et al. (2005) provide experimental verification of this transition sequence for

moderate AR tori.

DNS using restricted spanwise arcs based on the preferred wavelengths determined from the Floquet instability

analysis have been used to examine the saturated states. Fig. 10 shows visualizations of these three modes for a torus of

AR ¼ 10. The spatio-temporal symmetry displayed by each mode can be observed from these plots.

4. Physical mechanisms of transition

There has been a debate over the physical mechanisms responsible for the development of these instabilities. There

have been suggestions that mode A is due to a Benjamin–Feir instability (Leweke and Provansal, 1995), a centrifugal

instability of the braid region between the main vortex rollers (Brede et al., 1996), and an elliptical instability of the

vortex cores (Leweke and Williamson, 1998b; Thompson et al., 2001b). Speculation has also occurred for mode B,

certainly in terms of a three-dimensional shear layer instability of the separating shear layers (Brede et al., 1996), a

centrifugal instability (Ryan et al., 2005) and a hyperbolic instability of the braid region (Leweke and Williamson,

1998b). Naturally, the flow field is complex and hence it is not clear that the development of an instability can be

entirely attributed to a unique physical instability mechanism that governs a very simple flow topology. Nevertheless, it

is appealing to do this to provide some physical insight into the evolution of the flow as the Reynolds number is

increased.
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Fig. 10. Perspective view of the three saturated instability modes for a large aspect ratio torus. In this case, AR ¼ 10. The flow is

visualized using isosurfaces of positive and negative streamwise vorticity, which reveals the spatio-temporal symmetry. Top to bottom:

mode A (Re ¼ 200), mode B (Re ¼ 280) and mode C (Re ¼ 235), respectively. Semi-transparent isosurfaces showing sections of the

torus and the positions of the axi-symmetric rollers are also provided. Flow is from top left to bottom right. Adapted from Fig. 23 of

Sheard et al. (2004).
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For mode A, it appears that the elliptical instability mechanism strongly contributes to the development of the

instability. Williamson (1996a,b) suggested that for a circular cylinder, the instability modes scale with the wake vortex

cores (mode A) and the width of the braids between the cores (mode B). Leweke and Williamson (1998b) explored the

possibility that mode A was primarily elliptic in origin by analytically calculating the growth rate of the strained vortex

cores to an elliptic instability. The growth over a cycle was found to be substantial, and it was speculated that this would

provide sufficient feedback from one shedding cycle to the next to sustain the instability. In addition, the analytically

predicted spanwise wavelength for an elliptic instability closely matched the experimentally observed and numerically
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predicted wavelength. Thompson et al. (2001b) examined the growth of the mode through DNS. These authors showed

that as each pair of wake vortices form and begin to shed, the perturbation fields within the cores are locally consistent

with the signature of elliptic instability. Effectively, a cooperative elliptic instability (Leweke and Williamson, 1998a)

develops between the shedding vortices. However, the perturbation then grows rapidly between the cores, where the

flow is undergoing rapid straining. DNS established that the mode A field would recover more quickly if the

perturbation field was artificially zeroed in the parts of the domain where the flow was hyperbolic rather than elliptic. It

appears that the instability is slaved to the elliptic core instability. Julien et al. (2004) found similar behaviour occurring

between vortex cores for Bickley flow as an idealized model of the wake from a normal flat plate. Again, the core

instability controls the wavelength and overall growth rate although the perturbation field appears strong between the

cores.

Mode B shows strong growth in the braids and between the forming Kármán vortices. The development of the

perturbation field within the vortex cores is much reduced and does not show a strong signature of an elliptic instability.

Indeed, the preferred wavelength is probably too small for amplification through an elliptic mechanism. In Ryan et al.

(2005) an attempt is made to associate the instability with a centrifugal instability. The spatio-temporal topology of the

mode is consistent with a centrifugal instability, in that the streamwise vortices identified with the development of the

perturbation extend downstream as unbroken tubes along the braids. This provides a feedback mechanism from one

cycle to the next, sustaining the perturbation. An idealized stability analysis, based on isolating part of the near wake

region where the growth rate is large, shows that the predicted instability wavelength is within 25% of the preferred

wavelength of mode B. In addition, the predicted growth rate applicable to the time taken for fluid parcels to travel

through this region on circular streamlines is also within 30% of the total growth measured directly from DNS for the

corresponding time.
5. Conclusion

The sequence of three-dimensional modes involved in the wake transition from two-dimensional (or axisymmetric)

flow to three-dimensional flow is very much a function of bluff body geometry. For example, for elongated cylinders

with a blunt trailing edge, an analogue of mode B for the circular cylinder wake becomes unstable at a much lower

Reynolds number than mode A. As the AR increases, the difference in critical Reynolds number becomes large.

However, while this mode has the same spatio-temporal symmetry as mode B, its perturbation field structure is

considerably different in the near wake, and the preferred spanwise wavelength is 2.5 times greater. For a torus, for

intermediate ARs 4tARt8, mode C, which is subharmonic and at least superficially appears related to the almost

subharmonic mode occurring in a circular cylinder wake, is the most unstable mode. On the other hand, for a normal

flat plate, the most unstable mode is a long wavelength quasiperiodic mode—which does not appear to be closely

related to any of the circular cylinder wake modes.

Whether the different transition sequences and existence of different modes significantly alters the transition to a

chaotic flow state, or affects the final turbulent state at higher Reynolds numbers, are still open questions. This will

require full direct simulations and careful experiments, which are currently underway.

The association of complex three-dimensional instability modes with generic physical instability mechanisms is also

considered briefly in this article. There does seem to be reasonable circumstantial evidence supporting this

interpretation, including the prediction of instability wavelengths and growth rates. There is also evidence that

multiple mechanisms may contribute. For example, for mode B, the characteristic signature of the elliptical instability

can be seen in the cores of the Kármán rollers downstream, yet the maximum perturbation amplitude appears to

develop in the forming braids between the rollers in the near wake, and this shows hallmarks of being driven by a

centrifugal instability. In addition, for mode A, the elliptic instability mechanism appears to act separately in the near

wake and further downstream.
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