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Abstract

The two-dimensional symmetry breaking transition, from an initially time-periodic streaming flow produced by a circular cylinder
oscillating in quiescent fluid at a low amplitude and frequency of oscillation, is examined using Floquet stability analysis. In experi-
mental visualisations it has been observed that a number of distinct flow structures arise when the flow becomes unstable and the initial
symmetry about the axis of oscillation (the reflection symmetry) is broken. Using Floquet analysis, two distinct symmetry breaking
instabilities have been observed in the form of bifurcations to either a separate time-periodic solution or to a quasi-periodic solution
(Neimark–Sacker bifurcation). These bifurcations correspond to the loss of either periodicity and/or reflection symmetry observed
in experiments. Neutral stability curves and vorticity contours of the unstable modes are presented for values of the dimensionless
oscillation amplitude (Keulegan-Carpenter number, KC), KC < 10 and frequency (Stokes number, β), β < 100.

Introduction

Two dimensionless control parameters determine the state of this flow. These are the Keulegan–Carpenter number KC = 2πa/D and
the Stokes number β = f D2/ν, where a is the amplitude of motion, D is the cylinder diameter and f is the frequency of oscillation.
The visual observations of Honji (1981) and Tatsuno & Bearman (1990) identified a number of unique flow structures present in
the wake for different combinations of KC and β. These structures were further classified into eight separate regimes by Tatsuno &
Bearman (1990) on the basis of the two-dimensional flow structures observed and the presence of a three-dimensional instability along
the cylinder span. Two-dimensional numerical simulations of these phenomena by Iliadis & Anagnostopoulos (1998) using a finite
element method have obtained transition values slightly higher than those obtained by Tatsuno & Bearman (1990). Application of a
spectral element method by Elston, Sheridan & Blackburn (2001) yielded results which more closely matched the known experimental
values. In that study the location of the three-dimensional transition was obtained using Floquet analysis, while the two-dimensional
transition locations were obtained using a combination of direct numerical simulation (DNS) and post-processing of the velocity fields
at each time step to examine the symmetry of the velocity fields about the axis of oscillation. In the present work, attention is focused
on the two-dimensional transition using Floquet stability analysis, and a number of new features emerge.
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Figure 1: Close up of the two-dimensional DNS vorticity contours for the flow produced by a cylinder in vertical oscillation in Regimes
A, B, C, D and E (regime labelling convention as defined in Tatsuno & Bearman (1990)). Also shown is the peak-to-peak amplitude of
oscillation. (a) Regime A, β = 12.5 KC = 7.0; (b) Regime B, β = 100.0 KC = 3.5; (c) Regime C, β = 40.0 KC = 5.0; (d) Regime D,
β = 13.5 KC = 7.0; (e) Regime E, β = 100 KC = 4.0. Cyan vorticity contours represent negative vorticity and black represents positive
vorticity.

As the controlling parameters, KC and β, are increased and the wake undergoes the first two-dimensional transitions from its initial
time-periodic, symmetrical state, three distinct flow regimes have been observed experimentally. Figures 1(a) and (b) show vorticity
contours of the induced flow along the oscillation axis before the two-dimensional transition has occurred. The flow of these regimes,
denoted A and B by Tatsuno & Bearman (1990), is periodic with the cylinder’s oscillation. The flows of regimes C, D and E, shown
in figure 1 (c-e), all exhibit breakage of the reflection symmetry about the oscillation axis. In regime D, figure 1(d), the induced flow
direction has deviated from its previous course along the oscillation axis although the overall pattern retains a symmetry about the
horizontal axis and the flow remains synchronised with the oscillation. The deviation is due to asymmetrical vortex pairs being formed
on the top and bottom sides of the cylinder over a period of motion. However, these are not shed into the streaming flow as discrete
vortices. In regime C, figure 1(c), large vortices form along the axis of oscillation and are shed as discrete vortices, creating a shedding
pattern resembling a Kármán vortex street, with one major exception: the rotational direction of the vortices is opposite to that found
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Figure 2: Spectral element domains used for computations. Shown is the 164 element 40D×40D domain, (b), used for Floquet stability
calculations, the corresponding half-domain, (a), used to produce a symmetrical periodic base flow field and (c) a subsection used for
determining outer boundary condition effects. The length scale is given in terms of the cylinder diameter D.

in the wake of a fixed circular cylinder; the flow is jet-like rather than wake-like. Vortices are shed with a new period, that is different
from that of the oscillation period. Regime E, figure 1(e), produces similar effects to those occurring in regime D, however in this case
the direction of the shed vortex pairs changes intermittently resulting in a loss of periodicity and symmetry about the oscillation axis.

In Floquet stability analysis a T -periodic flow, U, is examined in conjunction with a perturbation, u′, to the flow to determine whether
the perturbation grows or decays in time. The evolution equations for the perturbation flow are the Navier–Stokes equations linearsied
about the T -periodic base flow. Perturbation solutions, u′, can be written as a sum of components ũ(t)exp σt where ũ(t) are the T -
periodic Floquet modes. Equivalent to the Floquet exponents σ are the Floquet multipliers µ, where µ = expσt. In the results presented
here we use Floquet stability analysis to obtain the locus, in (KC, β) control space, of the two-dimensional symmetry breaking transition.

Computational Methodology

In the present implementation the periodic flow to be tested for stability (the ‘base flow’) is obtained using DNS. The DNS employed a
spectral element spatial discretisation to solve the two-dimensional incompressible Navier–Stokes equations in an accelerating reference
frame attached to the cylinder (Blackburn & Henderson 1999). To enforce the symmetry about the axis of the cylinder oscillation for
the flow to be tested (the base flow), the domain used for the Floquet analysis was cut in half as seen in figure 2 (a) and (b). Along
the vertical (y) side of the half domain the boundary conditions were set as u = 0 and ∂v/∂n = 0 with a high-order pressure boundary
condition. This simulation was run until a periodic base flow was obtained, at which point 64 field dumps, equi-spaced in time, were
created over one period. These field dumps were subsequently projected onto the full domain, Figure 2(b), and used in the Floquet
analysis as the base flow via Fourier series interpolation to reconstruct the periodic flow fields at each time step.

The linear stability of the symmetrical periodic base flow to infinitesimal perturbations was then calculated using Floquet stability
analysis. In this technique the evolution of a system governed by the linearised Navier–Stokes equations is examined every time T ,
where T is the base flow period, to extract the leading eigenpairs of the evolving perturbation, u′(x,y,t), subject to the forcing of the
periodic base flow, U(x,y,t), using a Krylov subspace method (Barkley & Henderson 1996).

The Floquet simulations were run on the full size domain with a Gauss–Lobatto–Legendre (GLL) polynomial interpolant order of 8
which was selected using the convergence tests in table 1(a). In these tests, the influence of interpolant order was found to result in a
variation of less than 0.1% over the range of orders tested. The polynomial order was subsequently chosen to be identical to that used
to create the base flows; convergence results for the base flow can be found in Elston et al. (2001). Convergence tests to determine an
appropriate domain size found that the distance to the outer boundary slightly altered the magnitude of the Floquet multipliers due to the
corresponding change in the base flow. The chosen domain size, 40D×40D, reflects the average domain size used in the experiments
of Tatsuno & Bearman (1990) with which we are comparing results. To ascertain whether the impact of the outer boundary conditions
did not unduly influence our results the base flow was projected onto a smaller sub-domain, Figure 2(c), and the stability analysis was
run on this smaller domain at β=100.0, KC=3.65. The Floquet multiplier was found to vary by less than 0.3% as a result of this and we
conclude from this that the growth of a perturbation is determined by the dynamics close to the cylinder.

(a) p 6 8 10 12
|µ| 1.147180 1.147338 1.147052 1.146481

(b) Domain Size 20×20 40×40 60×60 80×80
|µ| 1.110241 1.147338 1.144826 1.142876

Table 1: Convergence results for Floquet multipliers at (a) different polynomial interpolant orders with a 40×40 domain. p is the order
of the tensor-product interpolant function employed within each spectral element, (b) different domain sizes at p = 8. All simulations
were conducted at β = 100.0 and KC = 3.65.
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Results and Discussion

The locus of the critical Floquet multipliers for the first two-dimensional transition that occurred is shown in figure 3 as a function of KC
and β. The location of the critical points closely matches the earlier experimental values obtained by Tatsuno & Bearman (1990) and the
DNS results of the authors (Elston et al. 2001). Both real and complex critical Floquet multipliers were found to occur along the neutral
stability curve, which denotes a break in the reflection symmetry. For low Stokes numbers (or alternatively, high Keulegan–Carpenter
values) a real Floquet multiplier was the first to become unstable. In contrast, at low values of the Keulegan–Carpenter number (high
Stokes numbers) a pair of complex Floquet multipliers was the first to become unstable. In the central region of figure 3, the real and
complex branches of the unstable solutions are extremely close together. In this region the type of instability to emerge was found to
be extremely sensitive to small changes in the controlling parameters, however, at no location were both real and complex solutions
simultaneously unstable.
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Figure 3: Critical Floquet multiplier dependence on KC and β. Shown are the results of Tatsuno & Bearman(1990), —, Two-
dimensional DNS simulation results Elston et al. (2001), - -, unstable real Floquet multipliers, ×, and unstable complex Floquet
multipliers, •. Also indicated are the approximate locations of the regimes found by Tatsuno & Bearman, A, B, C, D & E.

The appearance of either type of multiplier appears to correlate with the type of symmetry breaking transition observed in experimental
visualisations. Figure 4 shows the symmetric base flow and the growing real Floquet mode for a transition to regime D from A and
a DNS result at a neighbouring location in regime D. In terms of vorticity the growing perturbation has an even reflection symmetry
about the oscillation axis in comparison to the base flow which has an odd reflection symmetry. An important point to note here is that
the combination of the growing perturbation and the base flow results in a flow which breaks the spatial symmetries observed about the
oscillation axis, but is still synchronous with the base flow. The resultant DNS flow in figure 4(c) has clearly lost its reflection symmetry
about the vertical (oscillation) axis and is also synchronised with the base flow.

(a) (b) (c)

Figure 4: Vorticity contours for a transition across the neutral stability curve from regime A to D. Shown are: a) periodic base flow at
KC = 7.0, β = 13.5; b) the leading real Floquet mode at KC = 7.0, β = 13.5; c) DNS results in regime D at KC = 7.0, β = 15.0.

The impact of an unstable complex Floquet multiplier is illustrated in Figure 5. The central section of figure 3, shown approximately as
regime C, indicates a somewhat more involved transition is occurring. The flow in this regime has broken the reflection symmetry but is
no longer periodic; instead it is quasi-periodic. Figure 5 illustrates a forced base flow, leading Floquet mode and DNS of flow in regime
C. In this transition, which has a complex Floquet multiplier, the DNS vorticity contours, figure 5(c), far from the cylinder indicate the
shedding of discrete vortices into the induced flow; a characteristic which was absent from the transition between regimes A and D
(figure 4). However, near the cylinder the vorticity contours still resemble the contours of regime D, where the induced flow had broken
reflection symmetry but the flow was still synchronised with the oscillation. The presence of a complex Floquet multiplier indicates
the transition from a synchronous to a quasi-periodic state and this corresponds to the onset of shedding of discrete vortices into the
induced flow. The bifurcation of forced periodic solutions into asymptotically quasi-periodic solutions are known as Neimark-Sacker
bifurcations (Iooss & Joseph 1990).

Further progression along the neutral stability curve denoting the break in the two-dimensional reflection symmetry, towards high β
values, encounters the transition from regime B to E as illustrated in figure 6. Experiments and DNS of the flow have shown that a
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Figure 5: Vorticity contours for a transition across the critical transition curve from regime A to C. Shown are: a) periodic base flow
at KC = 4.60, β = 40.0; b) one of the leading complex conjugate critical Floquet modes at KC = 4.60, β = 40.0; c) DNS results at
KC = 4.60, β = 44.2.

transition to the flow of regime D initially emerges before the direction of the induced flow intermittently switches to either side of the
oscillation axis, resulting in an aperiodic flow. As with the transition to regime C, an unstable complex Floquet multiplier indicates
the transition to a quasi-periodic state and the onset of discrete vortex shedding. In this case the DNS of the flow indicates that the
quasi-periodic state is only transient and the flow subsequently becomes aperiodic as the intermittent switching of the induced flow
direction develops.

(a) (b) (c)

Figure 6: Vorticity contours for a transition across the neutral stability curve from regime B to E. Shown are: a) periodic base flow at
KC = 3.65, β = 90.0; b) one of the leading complex conjugate Floquet modes at KC = 3.65, β = 90.0; c) DNS results in regime E at
KC = 3.65, β = 100.0.

Conclusions

Two-dimensional Floquet stability analysis of symmetric periodic flows produced by an oscillating circular cylinder accurately matches
the results obtained from experiments and DNS. The reflection symmetry about the oscillation axis is lost when the Floquet multiplier
is greater than one, |µ| > 1, while the presence of a non-zero imaginary component in the Floquet multiplier determines if the flow
retains its synchronicity with the period of the forcing. As we traverse the neutral stability curve (which denotes the break in reflection
symmetry) from the low β values towards high β values, the critical Floquet multiplier changes from real to complex. This change
corresponds to a Neimark-Sacker bifurcation where a periodically forced flow bifurcates to a quasi-periodic state. The appearance of
this bifurcation indicates the onset of the shedding of discrete vortices into the flow. Subsequent progression along the neutral stability
curve towards even higher β values sees a change in the nature of the solutions observed using DNS from the quasi-periodic state of
regime C to the chaotic (aperiodic) state evident in regime E.

Acknowledgements

We thank the Victorian and Australian Partnerships for Advanced Computing for their support.

References

Barkley, D. & Henderson, R. D. (1996). Three–dimensional Floquet stability analysis of the wake of a circular cylinder, J. Fluid Mech.
322: 215–241.

Blackburn, H. M. & Henderson, R. D. (1999). A study of two-dimensional flow past an oscillating cylinder, J. Fluid Mech. 385: 255–
286.

Elston, J. R., Sheridan, J. & Blackburn, H. M. (2001). The transition to three-dimensionality in the flow produced by an oscillating
circular cylinder, 14th Australasian Fluid Mechanics Conference, Adelaide University, Adelaide, Australia.

Honji, H. (1981). Streaked flow around an oscillating cylinder, J. Fluid Mech. 107: 509–520.
Iliadis, G. & Anagnostopoulos, P. (1998). Viscous oscillatory flow around a circular cylinder at low Keulegan–Carpenter numbers and

frequency parameters, Intnl J. Num. Meth. Fluids 26: 403–442.
Iooss, G. & Joseph, D. D. (1990). Elementary Stability and Bifurcation Theory, 2nd edn, Springer-Verlag, Berlin.
Tatsuno, M. & Bearman, P. W. (1990). A visual study of the flow around an oscillating circular cylinder at low Keulegan–Carpenter

numbers and low Stokes numbers, J. Fluid Mech. 211: 157–182.

4


