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Abstract

The stability of the flow generated by a cylinder oscillating
in quiescent fluid is investigated using direct numerical sim-
ulation and Floquet analysis. This study determines transi-
tions between flow regimes as functions of the dimensionless
oscillation amplitude (Keulegan-Carpenter number, KC) and
frequency (Stokes number, 3). At low values of KC and {3 the
flow is two-dimensional and has a reflection symmetry about
the axis of oscillation. Increasing KC or 3 causes either of
two distinct transitions to three-dimensional flow. The two
transitions are either a breakage in the reflection symmetry
accompanied by a three-dimensional transition or a transi-
tion to three-dimensional flow where the spanwise average
maintains the original symmetry. The interaction of these
two transitions results in a large number of complex vortex
shedding patterns which were visualised in the experimental
studies of Tatsuno & Bearman [5]. Accurate locations of the
transitions and the variation of the three-dimensional critical
wavelength as a function of KC and [3 are presented.

Introduction

Oscillatory motion of a circular cylinder normal to its axis
in quiescent fluid generates a streaming motion of the fluid.
In the case of an infinitely long cylinder, two dimensionless
control parameters determine the state of the flow. These are
the Keulegan—Carpenter number KC = 21@,/D and the Stokes
number B = fD? /V, where a is the amplitude of motion, D is
the cylinder diameter and f is the frequency of oscillation. A
Reynolds number can be defined as Re = KC.

Several well-defined and fascinating two- and three-dimen-
sional structures have been shown to occur in this flow.
Honji [3] used flow visualisation to show that the appear-
ance of streaks that alternated along the length of the cylin-
der axis was evidence of a three-dimensional spanwise in-
stability. Tatsuno & Bearman [5] further extended this work
and produced a control-space map, classifying the flows into
eight separate flow regimes each with a characteristic two-
and three-dimensional flow structure. Numerical simulations
of these phenomena to date have only examined the two-di-
mensional transition that occurs for low KC and 3 values.
lliadis & Anagnostopoulos [4] used a finite element method
to locate the boundary between symmetric and asymmetric
two-dimensional flow.

The characteristics of the flow regimes defined by [5] can
be described in terms of their symmetry properties. At the
boundaries between these regimes a transition in the symme-
try properties occurs. At very low values of KC and 3 the
flow resulting from a cylinder oscillating in the vertical (y)

axis has the following symmetry properties:

u(x,y,z,t) = —u(—x,y,z,t) (1a)
vV(X,Y,Z,t) = V(—X,Y,Z,t) (1b)
u(x,y,z,t) = u(x,—y,z,t+T/2) (2a)
v(X,y,z,t) = —v(X,—y,t +T/2) (2b)
u(x,y,z,t) = u(x,y,z,t+T) 3)
u(x,y,z,t) = u(x,y,z+2,t) 4)

where U = (u,V,w), T is the period of oscillation and Z is an

arbitrary translation along the z-axis. Reflection symmetry
about the y-axis is represented by (1), while (2) represents a
symmetry about the X-axis which is the same as that observed
about the wake centreline for von Kdrmén vortex shedding.
Equation (3) results from the periodic nature of the oscilla-
tion and (4) represents the spanwise (z-axis) translation sym-
metry.

The purpose of this study is to apply a combination of di-
rect numerical simulation and Floquet stability analysis [1]
to determine the locations of the two- and three-dimensional
transitions and accurately quantify the critical wavelengths at
which three-dimensional transitions occur.

Computational Methods

The direct numerical simulations (DNS) presented in this
paper employed a spectral element spatial discretisation
to solve the two-dimensional (2D) incompressible Navier—
Stokes equations in an accelerating reference frame attached
to the cylinder [2]. The three-dimensional (3D) simulations
utilised Fourier expansions along the axis of the cylinder; this
provides a domain that is periodic in the spanwise direction.

The stability of the two-dimensional time-periodic solutions
found using DNS is obtained via Floquet stability analysis.
This method determines the stability of a two-dimensional
time-periodic base flow to infinitesimal disturbances in ei-
ther two or three dimensions. In the cases described here this
is achieved using the linearised Navier—Stokes equations as
a subroutine to an Arnoldi-method eigensystem solver to ex-
tract the leading eigenpairs [6]. The linearised Navier—Stokes
equations are:
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where U (x,y,1) is the 2D flow of period T whose stability is
sought [1]. U’(X,y,z,t) and p’(X,Y,z,t) are the perturbations
to the velocity and pressure. The 2D periodic base flow U
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Figure 1: Spectral element mesh used for computations

(a) MeshSize 40x40 60x60 80x80

Ci 3.78341 3.78210 3.78045
(b) p 6 8 10
Ci 3.78420 3.78341 3.78392

Table 1: Convergence results for peak coefficients of force
at (a) different mesh sizes at p = 8, (b) different interpolant
orders with a 40 x 40 mesh. p is the order of the tensor-
product interpolant function employed within each spectral
element.

is reconstructed using Fourier interpolation from a sequence
of 32 field dumps, obtained via DNS, equally spaced in time
over one period.

The breakage of the 2D reflection symmetry of the flow was
determined by taking an integral of the product of the veloc-
ity component normal to the axis of oscillation multiplied by
the distance from the axis over the computational domain Q:

5= [ Xlu(ey.nl.d0 ©)

A significant deviation from zero was taken to indicate a tran-
sition. The 2D computations employed the DNS code.

In all the results described here, solutions were obtained in a
square domain of size 40D x 40D with an interpolant order of
8, using the 164-element mesh shown in figure 1. The outer
mesh boundary conditions are set to the prescribed velocity
of the mesh. Convergence tests for the mesh size and order
of the interpolants are shown in table 1 for control values of
KC =2.5, 3 =100.0.

Two-Dimensional Symmetry-Breaking

Here we examine the breaking of the 2D reflection symmetry
about the oscillation axis using 2D DNS. A transition from
the streaming flow along the cylinder axis occurs as the pa-
rameters KC and [ are increased [3, 5]. The initial state
has symmetries about both the x and y-axes, is periodic in
time and is two-dimensional as described by (1-4). Figure 2
shows the vorticity contours for this symmetrical state. Two
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Figure 2: Close up of vorticity contours for the flow produced
by a cylinder in vertical oscillation. Also shown is the peak-
to-peak amplitude of oscillation. At KC = 3.5 and 3 = 100.0
the vorticity contours exhibit reflection symmetry about the
oscillation axis.

possible transitions were found to occur as the controlling pa-
rameters were increased. The first was a transition from the
state of figure 2 to that shown in figure 3. In this case the re-
flection symmetry, (1), has been broken and the induced flow
no longer streams along the oscillation axis but makes an an-
gle to the oscillation direction. However the flow retains the
remaining symmetry properties (2—4).

Figure 3: Close up of vorticity contours for the flow produced
by a cylinder in vertical oscillation. Also shown is the peak-
to-peak amplitude of oscillation. At KC = 6.0 and 3 = 22.5
the reflection symmetry seen in figure 2 has been broken.

The second transition was from the initial state of figure 2 to
that shown in figure 4. In this case, both the reflection sym-
metry and the periodic symmetry about the x-axis have been
broken, as described by (1-3). The direction of flow convec-
tion switches chaotically from either side of the vertical axis
so that vorticity contours such as those seen in figure 4 occur.
However the initial stages of the simulations resembled the
flow in figure 3 as found by Tatsuno & Bearman [5] before
becoming chaotic.

A large number of simulations utilising the measure of sym-
metry from (6) were used to determine the boundary in the
(KC, B) control space between the symmetrical and asym-
metrical flows. The results of figure 5 show the location
of this transition. The transition to the state shown in fig-
ure 3 occurs in the upper branch for low [ and high KC
values while the transition to the aperiodic state of figure



Figure 4: Close up of vorticity contours for the flow pro-
duced by a cylinder in vertical oscillation. Also shown is
the peak-to-peak amplitude of oscillation. At KC = 4.0 and
B = 100.0 the two-dimensional symmetry properties exhib-
ited in figure 2 have been lost.

4 occurs for the branch with low KC values. These are in
excellent agreement with existing experimental results [5]
but differ slightly from the numerical results [4]. The dif-
ference could possibly be attributed to the smaller domain
(20D x 20 —40D) or to the different technique (finite element
method) employed in obtaining those results.
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Figure 5: Results for the first 2D transition in the symme-
try characteristics of the flow as the controlling parameters
are increased. Also shown is the regime boundary for 2D
transition of Tatsuno & Bearman [5] and of Iliadis & Anag-
nostopoulos [4].

Three-Dimensional Symmetry-Breaking

In this section we examine the onset of three-dimensionality
which is the breakage of the spanwise symmetry property (4).
Determination of the transition location was achieved using
Floquet analysis. Figure 6 shows an example where the
critical wavenumber is determined as a function of (3 for
KC =1t In this instance the transition to three-dimension-
ality occurred at 3 = 57.5, KC = 1tfor a critical wavenumber
k =2mD/A of 4.5. Figure 7 shows the vorticity isosurfaces
of the dominant mode at KC = 1t This compares favorably
with the vorticity isosurfaces from three-dimensional DNS
run using the matching axial periodic length of 1.40D, which
is shown in figure 8. The differences result mainly from the
presence of nonlinear advection terms in the full Navier—
Stokes equations, as opposed to their linearised equivalents
in (5). For transition at low values of 3, the base flow had
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Figure 6: Floquet multiplier | dependence on spanwise
wavenumber K at the given  values for KC = 1t Values of |
greater than 1 indicate the growth of a 3D instability.

broken the reflection symmetry property before a 3D mode
became unstable. Figures 9 and 10 show a critical Floquet
mode for this region, at KC = 21mand 3 = 18.1 with the cor-
responding 3D DNS solution.
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Figure 7: Vorticity isosurfaces of the critical Floquet mode at
KC =T, for the component of vorticity aligned with cylinder
translation Four spanwise-periodic repetitions of wavelength
A are shown.

Figure 8: Vorticity isosurfaces generated by three-dimen-
sional DNS at KC = 1t Four periodic repetitions are shown.

The location of the transition to three-dimensionality is
shown in figure 11. The results closely match the results of
Tatsuno & Bearman [5]. The region in the mid-section of the
curve is devoid of points because the 2D base flow was ape-
riodic in this region and this breaks an essential criterion for
the use of Floquet analysis. The critical wavenumbers Kk at
the onset of three-dimensionality, shown in figure 12, quite
clearly have two distinct regions which reflect the different
2D base flows at the point of transition.



Figure 9: Vorticity isosurfaces of the critical Floquet mode at
KC =21 Four periodic repetitions are shown.
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Figure 10: Vorticity isosurfaces generated by the nonlinear
Navier—Stokes solver at KC = 21t Four periodic repetitions
are shown.
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Figure 11: Three-dimensional transition curve denoting the
onset of instability. Floquet analysis results and the exper-
imental regime boundary for 3D transition from Tatsuno &
Bearman [5] are shown.

Combined Results

Curves representing two- and three-dimensional transition
from figures 5 and 11 are overlaid in figure 13 along with
the results of Tatsuno & Bearman [5]. Our numerical results
clearly match quite closely their experimental results. It is
interesting to note that a necessary precondition for 3D in-
stability in the low [3, high KC area was a breakage in the
reflection symmetry property of the 2D base flow as shown
in figure 3.

Conclusions

It has been shown that the transitions in the two-dimensional
state and the onset of three-dimensional instabilities of a si-
nusoidally oscillating circular cylinder can be accurately de-
termined using a combination of 2D DNS and Floquet analy-
sis. The results obtained closely match experimental [5] and
numerical [4] results found by other researchers.
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Figure 12: Variation of the critical wavenumber with KC at
transition. The two different transitions that occur are clearly
shown as two different sets of wavenumbers.
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Figure 13: Transition results for both two and three-
dimensional cases. Also shown are the corresponding regime
boundaries of Tatsuno & Bearman [5].
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