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Following previous experimental and computational studies, we further investigate the applicability of
the Stuart-Landau equation to describe the Hopf bifurcation occurring for flow past a circular cylinder.
In contrast to previous findings, it is shown that when the amplitude variable is taken as the transverse
velocity component at a point in the wake, the so-called Landau constant varies considerably with position
and importantly is generally far from constant during the saturation phase of wake development. However,
it is found that the Landau constant at saturation is indeed a position-independent constant and this value
is close to that generally measured previously both experimentally and numerically.

1. INTRODUCTION

The complex Stuart-Landau equation has been widely used to model supercritical bifurcations occurring in
flow systems when a control parameter exceeds a critical value. Typical examples include: the transition
from steady flow to vortex shedding (i.e., the Hopf bifurcation) in the wake of a circular cylinder (Dusek
et al. 1994, Sreenivasan et al. 1986, Provansal et al. 1987, Schumm et al. 1994, Albarède & Provansal 1995,
Zielinska & Wesfried 1995); the regular bifurcation (i.e., steady to steady) of a sphere wake leading to
the beautiful two-tailed structure as shown by Margarvey & Bishop (1961) (e.g., Thompson et al. 2000,
Ormières & Provansal 1999); the Hopf bifurcation of the sphere wake (Thompson et al. 2000, Provansal
& Ormières 1998, Ghidersa & Dusek 2001); and the transition to three-dimensional mode B shedding of a
two-dimensional circular cylinder wake (Henderson 1997). However, not all flow transitions are governed
by the cubic form of the Stuart-Landau model, for instance, the initial three-dimensional transition of a
circular cylinder wake from the two-dimensional Bénard-von Karman wake is subcritical and hence requires
the retension of at least quintic terms to model the approach to the saturated state (Henderson 1997). These
successes have been achieved despite an incomplete mathematical foundation for the Stuart-Landau model.

A key reason for studying the (Stuart-) Landau model is that, because it is amenable to straight-forward
mathematical analysis, it can predict the behaviour of, and provide important insight into, complex flow
systems. For instance, Landau models can be coupled together to describe the wake dynamics of interacting
cylinder wakes (Peschard, 1995). The model also provides a starting point for the Ginzburg-Landau model
describing aspects of the two-dimensional shedding from a circular cylinder, such as phase transitions, oblique
shedding and chevron patterns (Albaredé & Provansal 1995, Williamson 1988). The model can be extended
to describe interacting wake modes such as the two initial three-dimensional circular cylinder wake modes
(Barkley et al. 1999). In theory, it can also be extended to wake flows from forced or freely-oscillating
bodies. For example, it was applied to predict the asymptotic wake states of a circular cylinder wake under
transverse forcing by Le Gal et al. (2000). For forced flows a complete mathematical analysis of the different
possibilities has been provided by Gambaudo (1985).

The aim of the present paper is to re-examine the application of the Stuart-Landau model to the Hopf
bifurcation of the circular cylinder wake. The work of Dusek et al. (1994) showed that the model accurately
describes the observed response when the Reynolds number is restricted to be within 10% of the critical
value. These authors used the transverse velocity on the wake centreline as the Landau model variable. For
points on the wake centreline, the transverse velocity is zero prior to transition, and hence this provides a
direct measure of the growth of the instability. Importantly they found that the Landau constant indeed
appeared to be a constant at all sampled points in the wake.



2. THEORY

2.1. THE STUART-LANDAU EQUATION

The complex Stuart-Landau equation is given by

dA

dt
=(γ + iω)A− (cR + icI)|A|

2A+ . . . , (1)

in which A is a complex-valued function of time t and the parameters γ, ω, cR and cI are all real. The
Landau constant, usually denoted by c, is given by c = cI/cR in this formulation. The equation is generally
truncated after the cubic term as is the usual case for supercritical transitions since the cubic term is
nominally sufficient for limiting the initial exponential growth and causing saturation. This is the case for
the Hopf bifurcation, i.e., the transition to periodic shedding in the circular cylinder wake. Importantly, the
real part of the cubic coefficient is positive so that this term is responsible for saturation. Also note that
only odd terms in the (complex) amplitude can appear on the righthand side.

Equation (1) represents the normal form of the Hopf bifurcation which occurs at the critical value of the
parameter γ = 0. For γ < 0, the null solution A = 0 is a stable solution. For a circular cylinder, the flow
corresponds to steady flow with attached eddies at the rear of the cylinder. For γ > 0, this base state loses
its stability and the solution settles down to a time-periodic state (corresponding to Bérnard–von Karman
vortex shedding). If only the linear and cubic terms are considered, the saturation amplitude is given by
|A| = (γ/cR)

1/2, and the angular frequency at saturation is given by ω−γc. The time-scale for the transient
approach to this final periodic state is given by γ−1 (e.g., Dusek et al. 1994).

In general, the parameters in this equation may be a function of Reynolds number although it is hoped
that the dependence is weak, except for γ which changes from negative to positive at transition. Also, if
A is taken as a local quantity, such as the transverse velocity component, the coefficients may be function
of position. It is found that γ and ω are independent of position close to transition, this can be justified
theoretically and from measurements. For the analysis presented here we take the coefficients cR and cI to
depend on |A|2. This is equivalent to including higher-order terms in the equation but allows us instead
to focus on the constancy of these parameters during the exponential growth and saturation phases of the
transition. To reiterate, for the analysis presented in this article we explicitly truncate equation (1) to
include only linear and cubic terms. The effect of higher-order terms is then implicitly included by allowing
the real and imaginary cubic coefficients to depend on |A|2. Note that in terms of this truncated model, the
real and imaginary cubic coefficients at zero amplitude correspond to the cubic coefficients of the original
(untruncated) expansion.

To proceed with the analysis of the Landau model, it helps to write A(t) in the form

A(t) = ρ(t)eiφ(t), (2)

where ρ(t) = |A(t)| is the real and non-negative amplitude of the complex function A, and φ(t) is its phase
(also real). Substitution into equation (1) results in the pair of equations

d log ρ

dt
= γ − cR(ρ

2, ζ)ρ2 (3)

and

φ̇ = ω − cI(ρ
2, ζ)ρ2. (4)

Again note that the cubic coefficients are now written as explicit functions of the time-dependent amplitude
(ρ = |A|). They are also a function of position (ζ = x/R) if we use the transverse velocity component as the
Landau complex amplitude variable.

3. RESULTS

3.1. NUMERICAL METHODOLOGY

We describe a series of simulations which extend the work of Dusek et al. (1994). The spectral-element
method is used to simulate the flow at post-critical Reynolds numbers. The specific implementation is
described in Thompson et al. (1996). The implementation achieves second-order time accuracy and spectral
spatial convergence as the number of nodes per element is increased. The software has been successfully
used on a number of related problems (e.g., flow past plates, Thompson et al. 1996), and three-dimensional
circular cylinder wake transition (Thompson et al. 1996). Resolution and domain size studies indicate the
accuracy of the predictions is better than 1%. The critical Reynolds number is Re = 46.4 for the present



simulations. The exact transition Reynolds number is slightly dependent on domain blockage; Dusek et al.
(1994) found a critical value of Re = 46.1.

3.2. SIMULATIONS AT SLIGHTLY POST-CRITICAL REYNOLDS NUMBERS

Simulations were performed at a number of Reynolds numbers exceeding the critical Reynolds number,
however, for the purpose of the present discussion we will focus on the Re = 48 case, which is representative
of the general behaviour. The growth and saturation of the transverse velocity component at 2R downstream
is shown in figure 1(a). The transition takes place naturally, from initiation through computer round-off
error, without the need to add a random noise component. At this Reynolds number the shedding period is
16.48 R/U∞, hence it takes approximately two-hundred periods to grow from low levels to saturation. Note
that the timestep was 0.01 R/U∞, corresponding to 1648 timesteps per shedding cycle. For the analysis
described below, the transverse velocity was recorded at the following positions on the wake centerline:
ζ = x/R = 1.3, 2, 4, 7, 10.5, 14, 17.5, 21, 24.5, 28, 31.5, 35, 38.5, 42, 45.5, 49, 52.5, 56.

Because of the distinct difference in timescale between the shedding period and the instability growth
timescale, these signals can be accurately analysed to evaluate the Landau model coefficients. To do this,
the times and amplitudes of all local peaks and troughs are extracted using quadratic interpolation. This
provides direct measures of ρ(t) and φ(t). Next the derivatives on the lefthand sides of equations (3) and
(4), d log ρ/dt and φ̇, are evaluated by central differences. This provides two sets of derivatives as a function
of ρ2 and time. From these data, a fourth-order least-squares fit is performed. The functional variation is
not strong, and a fourth-order fit captures the variation accurately.
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Figure 1. Left: Growth and saturation of the transition as depicted by the transverse velocity component at ζ = 2
and Re = 48. Right: Variation of the Landau constant with ρ2 and position. The different curves correspond to
different downstream positions on the wake centreline as given in the text. The curves end on the dashed line; the
y-coordinate corresponds to csat. The curves are ordered with the position closest to the cylinder having the most
negative initial c.

The data can be further analysed to evaluate the Landau constant. This can be determined by plotting
c(ρ2) = (d log ρ/dt − γ)/(dφ/dt − ω) against ρ2 for each point on the wake centreline. Here γ and ω are
derived from a least-squares fit at each point. Figure 1(b) shows this variation. Clearly, this plot shows
that the Landau constant indeed approaches a position-independent value as the flow saturates. When the
flow is growing exponentially in the linear regime, the Landau constant is a strong function of position,
varying between approximately −3 close to the back of the cylinder to approximately −1 far downstream.
At saturation csat = −2.708. This is consistent with the value found by Dusek et al. (1994). However, these
authors found the Landau constant was only close to a constant independent of position and amplitude.
The difference between the result here and the previous finding results from the different ways the Landau
constant was evaluated. Dusek et al. (1994) evaluated the Landau constant by performing a linear least-
squares fit to estimate cR and cI with a long time series of data including a considerable period of time
after the flow had saturated. This leads to a biasing of the parameters to their saturated values. Hence
their estimated Landau constants at different downstream positions were close to the saturated position-
independent value found here. Numerically they found a variation of about 3%. In contrast, from the current
numerical results, it is found that the Landau constant at saturation is position-independent to within 0.05%
over the range (1.3R < x < 56R). This is within numerical error associated with the finite-differencing. Of
interest, at approximately 10R downstream the Landau constant remains approximately constant during
linear growth and saturation.



4. DISCUSSION AND CONCLUSIONS

Accurate numerical simulations have been used to analyse the applicability of the Stuart-Landau model to
the initial Hopf bifurcation of the wake of the circular cylinder. While previous numerical and experimental
results have indicated that the model appears to work remarkably well, a closer examination reveals that the
story is more complex. For example, Dusek et al. (1994) found that, if the Landau model variable is taken
as the transverse velocity on the centreline, the Landau constant is position independent to within about 3%
over a range of different positions in the wake. We find that the value they found corresponds to what we
have called the Landau constant at saturation (csat). Here, we focus on the truncated cubic Stuart-Landau
model and allow higher-order terms to be accounted for by allowing the complex cubic coefficient to be
a function of amplitude. In this case, it can be shown that given a few physically realistic assumptions
(i.e., phase-locking during the linear growth phases and after saturation), csat must become a constant
independent of position (although still dependent on Reynolds number). The numerical results bear this out
to within numerical error. On the other hand, the initial Landau constant (c0), i.e., the value straight after
the linear growth phase when cubic terms start to be important, is far from constant and is found to vary
with position by a factor of approximately 3. Importantly, this parameter is really the mathematical Landau
constant corresponding to the semi-infinite Stuart-Landau model containing odd terms in the amplitude that
has been treated previously analytically.

These results apply to a local wake variable (the transverse velocity) rather than a global variable (as
perhaps the model was suggested for). To investigate the applicability of these results to a global variable,
the Stuart-Landau model was examined also using the lift coefficient per unit length of the cylinder as the
Landau model variable. In so far as the local results can be carried across, they apply to the analysis using
the lift coefficient. For example, post-saturation csat is the same constant as for the local analysis. There is
also non-negligible variation of the Landau constant with amplitude during the saturation phase as there is
for the transverse velocity. The model will be further explored at the conference.
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