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The generation of distinct polygonal configurations via the instability of a Stewartson
shear layer is numerically investigated. The shear layer is induced using a rotating
cylindrical tank with differentially forced disks located at the top and bottom
boundaries. The incompressible Navier–Stokes equations are solved on a two-
dimensional semi-meridional plane. Axisymmetric base flows are consistently found
to reach a steady state for a wide range of flow conditions, and details of the vertical
structure are revealed. An axially invariant two-dimensional flow is ascertained for
small |Ro|, which substantiates the Taylor–Proudman theorem. Sufficient increases in
|Ro| forcing develops flow features that break this quasi-two-dimensionality. The onset
of this breaking occurs earlier with increasing |Ro| for Ro > 0 compared with Ro < 0.
The thickness scaling of the vertical Stewartson layers are in agreement with previous
analytical results. Growth rates of the most unstable azimuthal wavenumber from
a global linear stability analysis are obtained. The threshold between axisymmetric
and non-axisymmetric flow follows a power law, and both positive- and negative-Ro
regimes are found to adopt the same threshold for instability, namely |Ro|> 18.1E0.767.
This relationship corresponds to a constant critical internal Reynolds number of Rei,c '
22.5. A review of reported critical internal Reynolds number and their characteristic
length scales yields a consistent instability onset given by |Ro|/E3/4 = 15.4–16.6; here
we find |Ro|/E3/4 = 15.8. At the onset of linear instability, the initially circular shear
layer deforms, resulting in a polygonal structure consistent with barotropic instability.
Dominant azimuthal wavenumbers range from 3 to 7 at the onset of instability for
the parameter space explored. Empirical relationships for the preferential wavenumber
have been obtained. Additional instability modes have been discovered that favour
higher wavenumbers, and these exhibit structures localized to the disk–tank interfaces.
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1. Introduction
Rotating flows are abundant in nature and are renowned for their instabilities

leading to the formation of intriguing structures of geometric shape, for which a
comprehensive understanding is desired.
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One such instability is associated with the presence of a horizontal shear layer
induced by differential rotation. This region of fluid is also called a ‘Stewartson
layer’, after the person who performed the first comprehensive theoretical study of
the shear layers of a rotating flow with sharp gradients in the azimuthal velocity
(Stewartson 1957). Under particular circumstances, a shear-layer instability (also called
‘barotropic instability’) can deform the initially axisymmetric Stewartson layer and
produce non-axisymmetric, polygonal fluid patterns. These geometric patterns, usually
non-stationary with respect to the rotating background flow, can be visualized as
regular arrays of vorticity patches, or even stretched coherent vortices. Stewartson
layers and associated barotropic instability are considered common features of many
types of fluid flows, with range of scales that vary greatly from laboratory experiments
through to geophysical and astrophysical systems. Some examples at laboratory scale
include experiments from Hide & Titman (1967), Niino & Misawa (1984), Solomon,
Holloway & Swinney (1993), Früh & Read (1999), van de Konijnenberg et al.
(1999) and Aguiar et al. (2010). Intriguingly, even laboratory experiments with free
surface fluids at the interface with a partially dry rotating solid bottom exhibit
shear-layer instability capable of producing a non-axisymmetric interfacial pattern,
characterized by polygonal shapes (Vatistas 1990; Jansson et al. 2006). Geophysical
examples include the possible formation of regular arrays of meso-vortices within
strongly sheared flows inside the eye of a hurricane (e.g. Kossin & Schubert
2001, 2004). Geometric patterns are also observed in the morphology of planetary
polar vortices, and barotropic instability of the circumpolar jet is often put forward as
a hypothesis for their formation. A good example is the hexagonal structure observed
by Voyager and Cassini spacecraft at the north pole of Saturn (Godfrey 1988; Fletcher
et al. 2008), while a hurricane-like eyewall structure is observed at the south pole
(Dyudina et al. 2009). The work by Aguiar et al. (2010) exemplifies the dynamical
similarities between Saturn’s northern polar vortex and the flow structure produced in a
differential-disk rotating apparatus. Venus is another example where geometric patterns
can be observed in the morphology of both northern (Murray, Wildey & Westphal
1963; Taylor et al. 1979) and southern polar vortices (Piccioni et al. 2007; Luz et al.
2011), and barotropic instability has been considered (Limaye et al. 2009). Finally,
there exist examples of instability of a shear layer at astrophysical scales as well.
Gilman & Fox (1997) have generalized the problem of barotropic instability on a
sphere to its hydromagnetic analogue by demonstrating that the differential rotation of
the solar photosphere is unstable when a non-uniform toroidal magnetic field is added.
Peralta et al. (2009) have presented numerical simulations of a superfluid Stewartson
layer in the outer core of a differentially rotating neutron star. The nonlinear instability
of Stewartson layers can even relate to Keplerian accretion disks, as discussed in § 2.

Thus, understanding the underlying instabilities in these rotating flows may
provide deeper insight into the origins of the natural polar vortices and other
geophysical phenomena. Such flows have been reproduced in simple rotating container
configurations and have illustrated excellent dynamical similarity across a wide range
of scales (e.g. Montabone et al. 2010b). This has generated interest in understanding
the fundamental dynamics of these flow systems.

Shear layers emerging in rotating systems are best studied in the laboratory.
The generation of differentially rotating layers of fluid can be easily obtained by
mechanical forcing. Rotating disks/bottom experiments (e.g. Hide & Titman 1967;
Früh & Read 1999; van de Konijnenberg et al. 1999) and source–sink experiments
(e.g. Sommeria, Meyers & Swinney 1991; Montabone et al. 2010a) are two of the
most common techniques used to investigate the barotropic instability of shear layers.



Linear stability of a shear layer induced by differential rotation 301

Although the appearance of polygonal patterns and arrays of vortices has mostly been
described in experiments with mechanically rotating parts, recent source–sink studies
have successfully shown that such structures can readily develop from barotropically
unstable jets (Montabone et al. 2010b; Vo, Sheard & Montabone 2011). Simple
two-dimensional numerical models have also captured the essential features of these
vortical structures (van de Konijnenberg et al. 1999; Früh & Nielsen 2003).

The aim of this study is to numerically investigate the stability of flows produced
via a differentially rotating disk set-up closely related to Stewartson’s (1957)
theoretical work and the experimental work of Früh & Read (1999). This will
provide insight into the axisymmetric structure of the flow, the degree of depth
independence, and the non-axisymmetric stability of the flow. The system differs
from the experimental set-up through the absence of a central rod used to physically
drive the rotation of the disks. The presence of this rod may become significant in
generating Taylor–Couette type instabilities in the flow as the container acts as an
annulus. Disturbances have been observed to shed off the rod for time-dependent flow,
which may interact and disrupt larger structures formed through barotropic instability.
Therefore, the absence of the rod in this numerical study may avoid the creation
of instabilities other than barotropic. Positive- and negative-Rossby-number flows are
investigated, and the differences in their stability characteristics are analysed. The
linear instability wavenumbers that develop from a flow defined by a pairing of Rossby
number (Ro) and Ekman number (E) are mapped onto a Ro–E regime diagram. The
numerical technique employed allows the instability mode shapes to be visualized in
isolation, which is particularly difficult to achieve in the laboratory.

This paper is organized as follows. Previous studies relevant to this investigation
are reviewed in § 2. Section 3 details the geometric model under investigation, the
discretization of the geometry, the numerical treatment and the validation of the
computational mesh. Numerical results and discussion pertaining to flow structures of
axisymmetric base states and instability modes obtained via linear stability analysis are
presented in §§ 4 and 5, respectively. Finally, a concluding discussion is presented
in § 6.

2. Background on differential rotation experiments
The system considered in this paper involves a pair of disks used to drive fluid

in the inner radial core of the container at a different speed to fluid in the outer
region, leading to the development of a cylindrical shear layer at the interface between
these differentially rotating regions. Stewartson (1957) has identified and quantified the
thicknesses of the vertical shear layers in this type of flow. The Ekman layers, on
the other hand, are viscous boundary layers that arise due to the friction between the
bulk rotation of the flow and the rotating disks. Their thicknesses are typically given
by δ = E1/2H, where H is an appropriate vertical length scale. Outside of the Ekman
layer, the flow adopts geostrophic properties, characterized by a balance between the
pressure forces and Coriolis forces. Two scalings have been found to describe the
shear layers at the interface between the inner and outer fluid regions, which have
come to be known as Stewartson layers. A layer with thickness scaling with E1/4 acts
to smooth out the discontinuity in angular velocity across the shear layer, while a layer
with thickness scaling with E1/3 is required to complete the meridional circulation in
the region.

Beyond a critical threshold, the Stewartson layers become susceptible to barotropic
instability, which manifests as a wavy structure in the azimuthal direction. The
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threshold has been observed to be dependent on the system geometry and the
controlling parameters Ro, E and Reynolds number Re (Hide & Titman 1967; Niino &
Misawa 1984; Früh & Read 1999). In an unstable flow, these wave-like perturbations
grow. With the contribution of nonlinear effects, these perturbations may deform the
shear layer into multiple vortices that arrange themselves into a polygonal chain
encircling the rotational axis. The number of vortices, and thus the resulting flow
structure, have been mapped against possible governing parameters such as the Rossby
number and Ekman number (Hide & Titman 1967; Aguiar et al. 2010) and the
Reynolds number (Chomaz et al. 1988; van de Konijnenberg et al. 1999; Früh &
Nielsen 2003). Previous studies have demonstrated successive transitions to lower
unstable wavenumbers with increasing Rossby number and Reynolds number.

Hide & Titman (1967) investigated a differentially rotating disk submerged in a
rotating tank for |Ro| � 1. When the flow loses its axisymmetry, a circular shear
layer evolves on the edge of the rotating disk. This detached shear layer develops into
azimuthal instability modes with wavenumbers between 2 and 6 for positive Ro. In
contrast, flow patterns at negative Rossby numbers developed an off-axis ellipse rather
than experiencing wave-like disturbances. Despite the differences in the resulting flow
between positive and negative Ro, the transition point from axisymmetric to non-
axisymmetric flow occurred at similar absolute values of Rossby number, irrespective
of its sign. It should be noted that only three flow conditions in the negative-Ro regime
were investigated in determining the critical Ro. The empirical fit they found for the
stability threshold of critical Ro as a function of E is given by |Roc| = 16.8E0.568.
The resulting wavenumbers decreased as the Rossby number increased and showed
little dependence on E. The trend of either decreasing Ro or Re with increasing
wavenumber has been seen in many previous studies. However, linear stability results
from Niino & Misawa (1984) using a quasi-geostrophic approximation suggest an
increase in wavenumber with increasing Re. Decreasing E has also demonstrated a
succession to lower wavenumbers.

Früh & Read (1999) investigated a very similar set-up to that studied here and
produced regime diagrams for the Ro–E parameter space for positive and negative Ro.
They found that the stability threshold did not strongly depend on the sign of Ro,
and polygonal configurations were seen for positive and negative Ro. The empirical
relationship they found for the stability threshold was |Roc| ≈ 27E0.72±0.03. The flow
types differed slightly between the two Ro regimes. This is in contrast with Hide &
Titman (1967), who observed major flow structure differences between positive and
negative Ro.

An investigation on the discrepancy between the two experiments was conducted
by Hollerbach (2003). It was concluded that the cause of the flow state anomaly
observed between positive and negative Ro in Hide & Titman (1967) was due to the
geometry of the system. The numerical results of flow inside a spherical shell in rapid
rotation suggested that, if the fluid depth does not change or changes gradually over
the shear layer, then flow states for positive and negative Ro are expected to be the
same. However, if the depth abruptly changes across the shear layer as in the case
of Hide & Titman (1967), then wavenumbers observed in positive- and negative-Ro
cases will differ. In other words, the positive- and negative-Rossby-number stability
behaviours are expected to be the same if the differentially rotating surface is mounted
flush with the surrounding enclosure similar to that of Früh & Read (1999). It should
also be mentioned that Aguiar & Read (2006) conducted experiments on multiple
configurations for which the fluid depth abruptly increases or decreases across the
shear layer with increasing radius. Despite the abrupt changes in height across the
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Stewartson layer, only a weak asymmetry in the resulting wavenumber was found
with respect to the sign of Ro. It was thought that the thickness of the disk may
be the cause of the strong asymmetry observed by Hide & Titman (1967). Although
experiments with a thicker disk were able to obtain an asymmetry in wavenumbers
for negative and positive Ro, the large differences observed by Hide & Titman (1967)
were not reproducible by Aguiar (2008).

Previous numerical investigations have been able to capture the qualitative trends
observed in the experiments. The flow fields have been primarily modelled by the
quasi-geostrophic equation in a two-dimensional domain, which allows very small
Ekman numbers to be computed. Although these tend to capture the same dynamical
features observed experimentally, they are unable to generate the entire variety of
flow states, nor examine the vertical structure of the flow when two-dimensionality
is broken. Also, quasi-geostrophic theory only considers the E1/4 layer and neglects
the E1/3 layer. It has been suggested that discrepancies between numerical and
experimental results may be due to the absence of this E1/3 layer. This deficiency
would be overcome by simulating three-dimensional flows.

An on-going debate in astrophysics concerns the stability of astrophysical disks
that adopt a Keplerian rotation, namely Ω ∝ r−3/2. The Keplerian velocity profile
is linearly stable according to the Rayleigh–Kuo criterion (described in § 3.5) and
the laminar aspect of the flow is not sufficient to cause accretion. The observed
rates of angular momentum transport may be related to a nonlinear mechanism
of the flow. Several experiments have employed multiple split rings, each rotating
independently, to produce a Keplerian profile. This configuration is similar to the
set-up studied in this paper. Provided enough rings are used, a smooth angular
velocity profile can be obtained as each Stewartson layer merges to fill the entire
tank. A numerical study by Hollerbach & Fournier (2004) at small Ro suggested
that the influence of the Stewartson layers at each split disk and the end effects are
practically unavoidable for small E. This was supported by the numerical work of
Avila (2012), who noted that current split-ring configurations demonstrate turbulent
flow at moderate Reynolds numbers. Recent experiments (Paoletti & Lathrop 2011;
Paoletti et al. 2012) demonstrated finite-amplitude instabilities in a container with
independent rotating cylinders. This is in contrast to the experimental results of Ji
et al. (2006) and Schartman et al. (2012), who observed no such instabilities even at
very large Reynolds numbers. Thus, there still remains the question as to whether a
truly Keplerian flow would be unstable. Although this paper does not attempt to solve
this problem directly, as only linear stability is considered, the presented results may
provide some insight into this issue.

3. Methodology
3.1. System description

The system studied in this paper comprises a cylindrical container, rotating at angular
velocity Ω , with flow variation imparted by the differential rotation of disks occupying
the inner radial half of the base and lid of the container. This system is illustrated in
figure 1, which identifies the key length scales and boundary conditions. The closed
cylindrical tank has a radius Rt and height H. Two disks of radius Rd are centred at
the top and bottom boundaries, which align with the axis of rotation of the tank. The
tank and disks rotate independently at rates of Ω and Ω + ω, respectively, relative
to the laboratory reference frame. The proportions of the tank are scaled to match
the set-up employed by Früh & Read (1999), which had Rt = 30 cm, Rd = 15 cm
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FIGURE 1. (a) A schematic diagram of the differential rotating disk set-up under
investigation. The key dimensions are the disk radius Rd, tank radius Rt and tank height
H. (b) The spatially discretized semi-meridional mesh used for the numerical simulations is
illustrated. The disks (grey) and tank (black) rotate about the central axis (dashed line) at a
rate of Ω + ω and Ω , respectively.

and H = 10 cm. A schematic diagram of the model is given in figure 1(a). The
tank is entirely filled with a working fluid that is assumed to be incompressible,
Newtonian and characterized by the kinematic viscosity ν = µ/ρ, where µ is the
dynamic viscosity and ρ is the fluid density. The ratio of the magnitude of the
forcing to background rotation is represented by the Rossby number, Ro, which
relates inertial to Coriolis forces in the flow. A small-Rossby-number flow indicates
a high importance of Coriolis effects. For values of Ro much less than unity, the
Taylor–Proudman theorem states that the flow is two-dimensional and invariant in the
direction parallel to the axis (see Pedlosky 1987). In general, as Ro increases above
unity, the depth independence of the flow is lost and the effects of centrifugal forces
become significant. A secondary parameter used to characterize the rotating flow is the
Ekman number, E, which represents the balance between viscous and Coriolis effects.
The Rossby number and Ekman number are defined as

Ro= Rdω

2ΩH
(3.1)

and

E = ν

ΩH2
, (3.2)

where Ω =Ω + ω/2 is the appropriate mean rotation rate determined following Früh
& Read (1999).

The Rossby and Ekman numbers combine to form a Reynolds number, and the
literature defines both external and internal variants differing in the choice of reference
length scale. Taking a velocity scale as the velocity differential at the interface
between the disk and the tank (Rdω), an external Reynolds number is defined using the
tank height as a length scale, giving

Re= RdωH

ν
= 2Ro

E
. (3.3)

Conversely, an internal Reynolds number can be defined based on the thickness of
the shear layer. Stewartson (1957) demonstrated that this shear-layer thickness scales
with E1/4, and Niino & Misawa (1984) implemented (E/4)1/4H as an expression for
the thickness given a tank height H. This value was subsequently employed in Früh &
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Read (1999) and Aguiar et al. (2010). In van de Konijnenberg et al. (1999) a parabolic
base set-up was considered, though featuring a free surface, and they took the shear-
layer thickness to be E1/4H, where the omission of the factor (1/4)1/4 accounts for
the free surface acting as a reflective plane of symmetry, rendering the fluid depth
in that experiment as half that of an equivalent experiment in an enclosed tank with
disks above and below the fluid. Employing the length scale L = (E/4)1/4H provides
an internal Reynolds number

Rei = Rdω(E/4)
1/4H

ν
=
√

2Ro
E3/4

. (3.4)

3.2. Numerical treatment
The flow is governed by the time-dependent incompressible Navier–Stokes equations.
Scaling lengths by Rd, velocity by RdΩ , time by Ω−1 and pressure by ρ(RdΩ)

2 yields
dimensionless equations governing momentum and mass conservation given as

∂u
∂t
+ (u ·∇)u=−∇P+ A2E

1− ARo
∇2u, (3.5a)

∇ ·u= 0, (3.5b)

where u= (ur, uθ , uz) is the velocity vector, P is the kinematic pressure and the aspect
ratio of the shear layer is given by A = H/Rd. In this study a cylindrical (r, θ, z)
coordinate system is used.

The flow is computed on an axisymmetric meridional semi-plane that has been
discretized into quadrilateral elements as shown in figure 1(b). The boundaries of
the domain are solid and impermeable, with the exception of the left boundary. The
left boundary represents the axis of rotation and spatial symmetry, and its boundary
condition treatment is as per Blackburn & Sherwin (2004); zero radial and azimuthal
velocities are exactly enforced as a Dirichlet boundary condition, whereas a zero
Neumann condition is imposed on the axial velocity. The remaining boundaries have
azimuthal velocity profiles imposed on them to induce a split-disk forcing. A single
component of velocity in the azimuthal direction of uθ = r(Ω + ω) is imposed on the
disks, while uθ = rΩ is imposed on the tank walls. The mesh density is concentrated
in areas where shear layers are expected to emerge and evolve.

The Navier–Stokes equations are solved in cylindrical coordinates using a nodal
spectral-element discretization in space and a third-order time-integration scheme
based on backward differentiation (Karniadakis, Israeli & Orszag 1991). Imposed upon
each macro-element are Lagrangian tensor-product polynomial shape functions. The
polynomial degree Np is varied to control spatial resolution and is interpolated at the
Gauss–Lobatto–Legendre quadrature points. The cylindrical formulation of the solver
employed here has been validated in previous studies (Sheard & Ryan 2007; Sheard
2009).

3.3. Linear stability analysis technique
Interest in the developing non-axisymmetric three-dimensional structures on an
underlying axisymmetric base flow motivates an application of a linear stability
analysis. The velocity and pressure fields are decomposed into the sum of an
axisymmetric field (u,P) and a small perturbation field (u′,P′). As with Blackburn,
Marques & Lopez (2005) and Cogan, Ryan & Sheard (2011), the perturbation field
was constructed as a single complex Fourier mode of an azimuthal expansion of the
flow field to accommodate the swirling precession of the flow, and the wavenumber
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of the perturbation is a parameter in the stability analysis. Substituting these into (3.5)
and eliminating terms satisfying (3.5) for axisymmetric flow as well as products of
perturbation quantities yields the linearized Navier–Stokes equations

∂u′

∂t
+ (ū ·∇)u′ + (u′ ·∇)ū=−∇P′ + A2E

1− ARo
∇2u′, (3.6a)

∇ ·u′ = 0. (3.6b)

A linear stability analysis (Barkley & Henderson 1996) is performed to calculate the
complex Floquet multipliers µF of the system. The Floquet multipliers correspond to
the dominant eigenvalues of an evolution operator associated with time integration of
the linearized Navier–Stokes equations, and are related to the exponential growth rate
of individual wavenumbers through

µF = eσT, (3.7)

where σ denotes the complex growth rate and T is the time interval over which the
equations are integrated within the eigenmode solver. The growth rates reported later
in this paper are the real component of this complex growth rate, evaluated from
σR = log |µ|/T . For simplicity the subscript ‘R’ is omitted hereafter. Typically, T is an
oscillation period, but in the case of steady-state base flows, such as are produced in
the present study, T may be arbitrarily chosen. Thus a stable flow is characterized by
|µF| < 1 and an unstable flow having |µF| > 1, with the respective growth rates being
negative and positive. Eigenvectors corresponding to the leading eigenvalues (Floquet
multipliers) give the mode shape of the instability on the perturbation field. The
present implementation in cylindrical coordinates follows work by Sheard, Thompson
& Hourigan (2005), and was recently validated by Cogan et al. (2011). An implicitly
restarted Arnoldi method is used to extract the leading eigenmodes of the linearized
perturbation fields (Sheard 2011).

3.4. Grid independence
To ensure grid independence, the convergence of several global parameters has been
computed. A reference case featuring a small E = 8.33 × 10−5 and a constant
Ro = −0.833 is considered. This case is representative of the limit of feasible
computational resource usage, as smaller E produces thinner shear layers, requiring
higher resolution. Thus achieving grid independence for this case ensures solution
accuracy for higher E cases.

Three measures for convergence are adopted: the integral of the azimuthal velocity
relative to the tank (uθ,rel = uθ − Ωr) across the domain, the leading eigenvalue
magnitude obtained by linear stability analysis of a perturbation with azimuthal
wavenumber k = 12, and the L2 norm taken as the integral of the velocity magnitude
throughout the domain. The values are obtained once the flow has reached a steady
state. The relative percentage error ε against a high-resolution reference case with
element polynomial degree Np = 14 is plotted in figure 2. The results demonstrate a
decreasing error with increasing Np. A threshold criterion of order O(0.1%) is sought
to ensure that solution error due to finite spatial resolution is much smaller than likely
laboratory sources of error. This is approximately satisfied with Np = 11, which is used
hereafter.

3.5. Rayleigh–Kuo criterion for barotropic instability
In geophysical applications, atmospheric and oceanic motions are under the influence
of non-uniform background vorticity. The non-uniformity of the background vorticity
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FIGURE 2. The relative percentage error ε in the global variables of the integral of
the relative azimuthal velocity (squares), L2 norm (triangles) and the leading eigenvalue
magnitude (diamonds) of the case study (Ro,E)= (−0.833, 8.33× 10−5). A decreasing trend
with increasing polynomial degree Np is seen with all variables. An error of ε = 0.1 % is
marked by the horizontal dashed line.

arises from the planetary rotation and the spherical shape of the planet. Thus,
the vertical component of the background vorticity varies with latitude, which is
measured by the Coriolis parameter f = 2Ω sin θ , where θ is the latitude. The f -
plane approximation is satisfied when f is constant, which is dynamically similar to
a rotating flow of constant depth. For systems of linearly varying depth, an extra
term is included in the approximation of the Coriolis parameter, known as the β-
plane approximation.

A necessary condition for three-dimensional instability in barotropic two-
dimensional flows was developed by Rayleigh (1880) for the f -plane and extended
by Kuo (1949) for the β-plane. The condition is given by

∂2ū

∂y2
− β = 0, (3.8)

where β represents the variation of the Coriolis parameter with latitude, ū is the
base flow velocity profile and y the northward coordinate. The condition is that the
horizontal gradient of the absolute vorticity changes sign somewhere in the domain,
which is represented by the terms on the left-hand side. The absolute vorticity is
the sum of the background and relative vorticity. The Rayleigh–Kuo condition is a
necessary but not sufficient criterion for instability.

The equivalent condition in cylindrical coordinates for a flow governed only by uθ is

∂ωz

∂r
= ∂

2uθ
∂r2
+ 1

r

∂uθ
∂r
− uθ

r2
− ∂f

∂r
= 0, (3.9)
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where f is the Coriolis parameter and ωz is the axial component of vorticity. In the
f -plane case as considered here, the last term (∂f /∂r) vanishes.

4. Results: axisymmetric flow
4.1. Axisymmetric flow structure

Steady-state solutions were obtained on the meridional semi-plane for a variety of
flow conditions. Time-evolved solutions are taken to be steady-state ones when
velocity variations are less than 10−12 between successive time steps. Simulations
are largely performed for Rossby numbers between −4.0 < Ro < 0.6 and Ekman
numbers between 5 × 10−5 < E < 3 × 10−3. Interest in atmospheric polar vortices
motivates the analysis of small positive-signed Rossby numbers, and a wider range
is explored in this study for its fundamental interest. Negative and positive Ro
correspond to the inner disks rotating slower and faster than the tank (in the same
orientation), respectively. Counter-rotation between the disks and tank is described
when Ro<−Rd/H =−1/A.

Typical contours of the axial velocity uz and axial vorticity ωz are shown in figure 3.
Two cases each of positive and negative Ro of E = 3 × 10−4 are illustrated. For
positive-Ro cases, there is Ekman pumping at the disk–tank interface (r = 1) where
fluid is drawn radially towards the interface in the Ekman layer and is ejected axially
into the interior. To replace the fluid along the horizontal boundaries, fluid from
the interior is directed back into the Ekman layer on either side of the pumping
region. The flow direction is reversed for negative-Ro flows. Interesting dynamics
are also demonstrated at r = 1 in the contours of ωz. For the smaller positive-Ro
case (figure 3a i), the concentrated vorticity portrays significant depth independence,
which is surrounded by uniform vorticity. The interior of the flow is dominated
by a depth-independent azimuthal velocity field. Thus the base flow is highly two-
dimensional away from the lid and base and portrays characteristics consistent with
a barotropic flow. The characteristics of the base flow at small Ro are in agreement
with the Taylor–Proudman theorem. Large changes in E are required to induce the
same effect to the flow structure in comparison to Ro variations. Increasing E causes a
larger shear-layer region to develop and also promotes depth independence, similar to
decreasing Ro. In contrast, thin detached shear layers are present at very small E.

As the positive Rossby number is increased in magnitude, the flow begins to lose its
depth independence. The negative-vorticity regions located at the disk–tank interface
grow into strands, which are initially symmetric about the mid-depth. Eventually, the
strands elongate into the flow interior and the flow loses reflective symmetry about
the mid-depth. This behaviour is shown in figure 3(a ii). Further increases to Ro cause
‘hooks’ to develop at the tips of the negative vortical strands. These are represented by
a strand branching back towards the horizontal boundaries from the tip of the strand.
This flow feature has only been observed in low-E flows, which form thin detached
shear layers. At larger E and sufficient Ro forcing, a detached negative-vorticity region
is instead present at mid-depth in the shear-layer region. These distinct features, which
are observed through the progression of increasing Ro, affect the linear stability of the
flow. The linear stability analysis is discussed in the next section.

Unlike positive-Ro flows, increases to the magnitude of Rossby number in the
negative-Ro regime do not have any significant effect on the base flow over a wide
range of Ro values. The flow preserves its depth independence outside the top and
bottom Ekman layers for the majority of combinations of Ro and E computed in this
study. This is portrayed in the contours of Ro = −1.0 and E = 3 × 10−4 (figure 3b i).



Linear stability of a shear layer induced by differential rotation 309

Axial velocity, uz Axial vorticity,

z

r

(i)

(ii)

(i)

(ii)

(a)

(b)

FIGURE 3. (Colour online) Structure of the axisymmetric flows visualized on the semi-
meridional r–z plane. Axial velocity (left) and axial vorticity (right) are shown for
E = 3× 10−4 at positive and negative Ro: (a i) Ro= 0.05, (a ii) Ro= 0.5; and (b i) Ro=−1.0,
(b ii) Ro = −2.0. For the axial velocity plots, equi-spaced contour levels are plotted between
±0.1|Ro|(Ω + ω); while for the axial vorticity plots, equi-spaced contour levels are plotted
between 2Ω ± 10ω. Dark (blue online) and light (yellow online) contour shading represent
low and high values, respectively, while solid and dashed contour lines identify positive and
negative contour levels, respectively. The domain shown represents the entire semi-meridional
plane with 0 6 r 6 2 and 0 6 z 6 2/3.

The analysis of negative-Ro cases corresponding to figure 3(a), i.e. Ro = −0.05 and
−0.5, demonstrate qualitative features identical to figure 3(b i), although this is not
shown here.

The ability of the flow to retain its axial depth dependence may be explained
by the sign of the vorticity generated at the disk–tank interface. For positive-Ro
flows, the decrease in angular velocity from the disk to the tank at the disk–tank
interface introduces a region of negative vorticity, which develops at higher Ro. This
is not observed for negative Ro, as the increase in angular velocity at the disk–tank
interface produces positive axial vorticity in the vicinity. As this region is surrounded
by the same-signed vorticity, it is not encouraged to grow into the interior. If this
explanation holds true, the flow’s two-dimensionality is expected to break if the disk
and tank rotate in opposite directions. This occurs when ω 6 −Ω or, equivalently,
Ro 6−1/A (Ro 6−1.5).

The axial velocity and axial vorticity contours for a Rossby-number flow with
opposing disk and tank rotations are illustrated in figure 3(b ii). The flow condition is
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of Ro = −2.0 and E = 3 × 10−4. Distinct features are seen in regions enclosed by the
disks (r 6 1). In addition to the vertical column of axial vorticity around r = 1, there
are vorticity patches and strands angled towards the centre of the tank and interior
of the flow originating from a point along the disk. The vorticity strand is positive,
while the patch closer to the axis is negative. As the negative Rossby number increases
in magnitude, the negative-vorticity patch enlarges, which forces the positive vorticity
strand to incline more towards the vertical shear layer. With regards to the axial
velocity, an extra circulation is seen towards the centre of the tank. However, there still
remains a reflectional symmetry about z/H = 0.5, which is broken in the positive-Ro
regime.

4.2. Vertical shear-layer profile and thickness

Profiles of the relative azimuthal velocity extracted at mid-depth are shown in
figure 4(a). The profiles consistently feature three distinct regions. The two regions
of linearly increasing and zero relative azimuthal velocity outside of the shear layer
around r = 1 typify the rotation rates of the disk and tank, while the region inside
the shear layer represents an interface zone over which the profiles smoothly vary
from the disk to the outer tank profiles. As |Ro| increases, the amplitude of the
velocities increases, with the location of the peak remaining relatively constant for all
|Ro| < 0.1 investigated. The radial position of the peak relative azimuthal velocity for
larger Ro shifts closer towards the centre of the tank due to the breaking of depth
independence. Decreasing E induces the same effect although the changes are less
pronounced compared to Ro variations. For |Ro| < 0.1 the profiles are identical at
other depths, excluding the vicinity of boundary layers.

The mid-depth axial vorticity profiles corresponding to the cases in figure 4(a) are
shown in figure 4(b). A minimum in axial vorticity is observed at r = 1 for Ro < 0.1,
with constant vorticity on either side. At the higher magnitudes of positive Ro, the
vorticity profile demonstrates multiple troughs. Indeed, at these higher |Ro| flows, the
profiles are not depth-independent.

The radial gradients of axial vorticity for positive-Ro cases are calculated and shown
in figure 4(c), which demonstrates ∂ωz/∂r changing sign at least once within the
domain. The common root observed in all cases appears at r = 1 where the vorticity
gradient changes sign, whereas it approaches zero when moving away from r = 1. This
suggests the possibility of barotropic instability developing at the radial location of
the disk–tank interface, which is explored in detail in § 5. Additional intersections of
the horizontal axis are evident at higher positive Ro. Similar trends are observed for
negative-Ro flows, though they are not included in the plot for clarity. The vorticity
gradient consistently changes sign at r = 1 for small Ro, while multiple root crossings
are observed at larger negative Ro.

From figure 4, it is clear that the profiles of azimuthal velocity and axial vorticity
remain continuous across the disk–tank interface. The discontinuity imposed by the
boundary at this interface is smoothed out via the vertical detached shear layers.
Indeed, this is the role of the Stewartson layers. Theoretical analysis by Stewartson
(1957) identified two nested shear layers of thicknesses scaling with E1/3 and E1/4

for infinitesimal Ro. The function of the thinner E1/3 layer is to complete the
meridional circulation of the Ekman pumping/suction, which in turn removes the
vorticity singularity, while the role of the thicker E1/4 layer serves to smooth out the
discontinuity in angular velocity between the inner and outer sections (Smith 1984;
Vooren 1992; Schaeffer & Cardin 2005).
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FIGURE 4. (a) Azimuthal velocity relative to the rotating tank against radius extracted at
z/H = 0.5 for E = 3 × 10−4 at various Ro. Curves above and below the zero-line axis
correspond to positive and negative Ro, respectively. (b) The axial vorticity profiles and
(c) its radial gradient as a function of radius for various positive Ro only (negative-Ro data
have been omitted for clarity). Root crossings of dωz/dr are observed at r = 1.

Aside from theoretical analysis, the only experimental investigation that has been
able to retrieve a thickness scaling of the shear layers was conducted by Baker (1967).
The range of Rossby numbers that Baker investigated was very small, ranging over
0.0041 < Ro < 0.038. The scalings of the thick and thin layers were determined to
be proportional to E0.25±0.02 and E0.4±0.1, respectively. Those scalings were determined
by measuring the shear-layer thickness from measured azimuthal and axial velocity
profiles, respectively, though the precise criterion used to define the edges of the shear
layer is unclear. The issue of an ill-defined shear-layer edge may be the cause of
a lack of numerical validation, and is further exacerbated by the frequent use of a
quasi-geostrophic model, which neglects the E1/3 layer. Additionally, there has been
no mention in the literature of how the shear-layer thickness scales at higher Ro. It
is evident from figure 3(a ii) that the theoretical scaling obtained for infinitesimal Ro
breaks down at high Ro.
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FIGURE 5. The techniques used to measure the thicknesses of (a) the shear layer associated
with azimuthal velocity and (b) the shear layer associated with axial vorticity. (a) The relative
azimuthal velocity uθ,rel plotted against r. Here 1uθ,rel is the difference between the maximum
and minimum values obtained by the velocity profile at mid-depth. The thickness δvel is taken
as the absolute value of the difference between the radial locations where uθ,rel first reaches
within 5 % of the maximum and minimum uθ,rel values moving away from the disk–tank
interface (|r − 1| increasing from zero). (b) The radial derivative of the axial vorticity plotted
against r. The thickness δvort is taken as the absolute value of the difference between the radial
locations of the maximum and minimum values of dωz/dr bracketing the disk–tank interface
at r = 1.

Since the functions of the E1/4 and E1/3 layers are to smooth out the azimuthal
velocity and axial vorticity discontinuities, respectively, it is proposed that their
respective thicknesses can be determined from the profiles of azimuthal velocity and
radial gradient of axial vorticity from the axisymmetric base flow. The techniques
used to measure the thicknesses are illustrated in figure 5, where δvel represents the
thickness of the E1/4 layer and δvort represents the E1/3 thickness. The thickness
δvel is taken as the absolute value of the difference between the radial locations of
where uθ,rel first reaches within 5 % of the maximum and minimum uθ,rel values on
either side of the disk–tank interface (r = 1). Although this 5 % threshold has been
chosen arbitrarily, it has been determined that the relevant results obtained through
this approach are quite insensitive to the threshold value used provided that it is small
(e.g. <10 %). The thickness δvort is determined by the absolute difference between the
radial positions of the minimum and maximum values of dωz/dr.

Figure 6 maps log10δvel and log10δvort on axes of log10(E) and Ro. In each case
a regular increase in thickness with Ekman number is observed, and additionally a
continuous increase in thickness with Rossby number through both the negative and
positive Rossby-number ranges is found. These plots confirm that the Stewartson
layers adopt a finite thickness in the limit as |Ro| → 0. This feature is not without
precedent in fluid mechanics. For instance, it is well known (Schlichting 1979) that
at a stagnation point in plane flow (Hiemenz flow) the boundary layer has a finite
thickness at the stagnation point, despite the velocity differential across the boundary
layer going to zero.

For all negative Rossby numbers (and small positive Rossby numbers), an
approximately uniform vertical spacing between contour levels in both plots in figure 6
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FIGURE 6. (Colour online) Contours of the base-10 logarithm of vertical shear-layer
thickness plotted on axes of log10(E) against Ro. Contours plots of (a) log10δvel and
(b) log10δvort, respectively, with thicknesses as defined in figure 5. In both plots, small to large
thickness is represented by dark (blue online) to light (yellow online) contours, respectively,
and thickness values take the same contour shading in both plots. Contour line intervals are
1/4 and 1/3 of the vertical axis scale in panels (a) and (b), respectively. This follows the
respective expected shear-layer scalings of E1/4 and E1/3. The data agree with these scalings
when the vertical contour line spacing matches the vertical axis tick mark spacing. The
vertical dash-dotted line corresponds to the Stewartson limit of |Ro| → 0, demonstrating that
a finite shear-layer thickness is produced in this limit.

is seen. The contour-level spacing further indicates that the shear-layer scalings are
approximately consistent with their theoretical E1/4 and E1/3 values. For example,
power-law fits of δvel and δvort against Ekman number for a very small Rossby number
(Ro = 0.005) yields δvel = 1.31E0.22 and δvort = 1.26E0.31, respectively. The exponents
of E are in good agreement with those predicted by theory.

So why is it that an E1/3 scaling is detected from the axial vorticity profile
when Baker (1967) used the axial velocity profile to measure the E1/3 layer?
Within the Stewartson layers, fluid circulates axially towards mid-depth at positive
Rossby numbers, and towards the horizontal boundaries at negative Rossby numbers.
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Recirculation is therefore confined to one vertical half of the enclosure, and, near to
mid-depth, the fluid pumped axially through the E1/3 layer migrates horizontally near
the mid-plane to complete its meridional circulation away from the Stewartson layers.
The change in angular momentum as this fluid migrates radially inwards or outwards
at mid-depth then modifies the axial vorticity profile, which we believe drives the
detection of an E1/3 scaling in the shear-layer thickness measured from the radial
axial vorticity profile in figure 6(b). A similar analysis conducted on the axial velocity
profiles yields an E exponent comparable to that of δvort, namely 0.31 (not shown
here).

Another feature observable in figure 6 is that, at larger positive Rossby numbers, the
measured thicknesses begin to lose their dependence on Ekman number (contours of
constant thickness approach the vertical). This Ekman-number-independent behaviour
also manifests itself in the stability of the flow to azimuthal perturbations discussed
later in § 5. By inspection of the axisymmetric flows shown in figure 3 (and similar
plots at other (Ro,E) pairs not shown here), it becomes apparent that this Ekman-
number-independent regime corresponds to the loss of depth independence seen in the
axisymmetric flows (see e.g. figure 3a ii).

Across the negative-Rossby-number range, the thicknesses change gradually. As
Rossby numbers approach zero and increase through the range of positive values,
thickness increases at an accelerating rate. This behaviour can be explained by the
nonlinear relationship between differential angular velocity (ω) and Ro. While ω

appears directly in the numerator of the Rossby number definition (equation (3.1)),
it also enters in the denominator through the definition of Ω . Rearranging (3.1) for the
normalized differential rotation gives

ω

Ω
= 2Ro

1/A− Ro
, (4.1)

which has an asymptotic minimum ω/Ω = −2 as Ro→ −∞, and an asymptotic
maximum ω/Ω = ∞ as Ro → 1/A (which corresponds to Ro → 1.5 with the
enclosure dimensions adopted in the present study). The similarity in Rossby-
number dependence between the relationship described by (4.1) and the thickness
measurements in figure 6 highlights ω/Ω as an important parameter in describing the
dependence of the shear-layer thickness against Rossby number.

We now develop universal relationships for shear-layer thickness. As established
from figure 6, δvel/E1/4 and δvort/E1/3 are approximately constant. When plotted against
ω/Ω , linear trends were found for these normalized thickness quantities for Ro . 0.
Least-squares fits to the data obtained the trends displayed in figure 7. These trends
hold well for all negative Rossby numbers and positive Rossby numbers exhibiting
depth independence in the axisymmetric flows. Once depth independence is lost, the
measured shear layer becomes thicker than the universal curve, which results from the
widening of the shear layer away from the lid and base as reflective symmetry across
the mid-depth plane is broken (this effect can be seen when comparing panel (ii) to
panel (i) in figure 3a).

5. Results: linear stability analysis
A linear stability analysis is used to predict the fastest-growing three-

dimensional azimuthal wavenumbers that develop on the underlying axisymmetric
steady-state flow, for a wide range of Ro and E. The azimuthal wavenumber is
defined by k = 2π/λ, where λ is the angular wavelength of the instability. The zeroth
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FIGURE 7. Partial collapse of the shear-layer thickness data onto universal trends as
functions of E and Ro. The plot shows δvel/E1/4 (squares) and δvort/E1/3 (triangles) against
Ro. Analysis determined that, while the axisymmetric flows remained depth-independent, the
scaled shear-layer thicknesses varied linearly with ω/Ω . The relationships obtained from
least-squares fits to the data are included on the plot. Solid lines show the Rossby-number
range where the universal fits hold; and dashed lines extrapolate these fits for comparison
against the data, which deviate from these trends at higher Ro.

wavenumber is omitted, as it has a synchronous nature that was found always to be
stable. In contrast, the eigenvalues of non-zero wavenumbers are consistently complex,
which corresponds to quasi-periodic instability modes, where the instability introduces
an incommensurate frequency into the flow (Blackburn et al. 2005; Blackburn &
Sheard 2010). In other words, the instability invokes a Hopf bifurcation from a steady
axisymmetric state to an unsteady non-axisymmetric state. This analysis predicts that
flows become linearly unstable under certain combinations of Ro and E. Distinct
stability characteristics are observed between positive and negative Ro, which are
described in §§ 5.1 and 5.2, respectively.

5.1. Positive Rossby numbers
5.1.1. Growth rates

The growth rates for a range of wavenumbers were obtained for a large number
of Ro–E combinations. The fastest-growing wavenumber was established in each case,
with peak unstable wavenumbers ranging primarily from 2 to 9 in the positive-Ro
regime. As a comparison, unstable azimuthal modes with wavenumbers of 2–8 were
typically observed in laboratory experiments (Früh & Read 1999; Aguiar et al. 2010).

The growth rate as a function of wavenumber for a constant small Ro = 0.05
for various E is shown in figure 8. A single maximum can be seen in the σ–k
relationship. Local maxima typically represent distinct instability modes (e.g. Barkley
& Henderson 1996). For wavenumbers beyond this maximum, the growth rate
decreases monotonically. At high Ekman numbers, this peak is still present despite



316 T. Vo, L. Montabone and G. J. Sheard

k

–0.25

–0.20

–0.15

–0.10

–0.05

0

0.05

0 5 10 15 20
–0.30

0.10

FIGURE 8. Growth rate σ as a function of azimuthal wavenumber k for various E at a low
Ro = 0.05. The dashed line represents the zero line where points above and below symbolize
stable and unstable modes, respectively.

the growth rates always remaining negative (stable flow). The flow is only unstable for
low E (< 3× 10−4) at Ro= 0.05. Several trends can be observed from this figure. The
growth rates and the most unstable wavenumber increase with decreasing E. Also, the
profiles do not change significantly with varying E, though the range of wavenumbers
over which the mode branches are detected increases with decreasing E. For example,
the mode branch covers 1 6 k 6 8 for E = 7× 10−4, while a larger range of 1 6 k 6 14
is seen for E = 2× 10−4.

Figure 9(a) illustrates the growth rate as a function of wavenumber at constant
Ro = 0.395 for varying E. Similarly, with small-Ro flows, only a single mode peak
comprising small wavenumbers exists for large E. This first mode peak is shown
for E = 3.16 × 10−3 in figure 9(a), with the most unstable wavenumber predicted
as kpeak = 3. However, unlike small-Ro flows, a second mode peak emerges at
higher wavenumbers as E decreases. In fact, the emergence of the second mode
peak is dependent on both Ro and E, which will be discussed in the next section.
Eventually, the growth rates of these higher wavenumbers become larger than those
of the first mode peak. The dominance of the second peak is shown for the case
of E = 5.26 × 10−4, where the predicted linearly unstable wavenumber is kpeak = 29.
These small-wavenumber and high-wavenumber modes will hereafter be referred to as
modes I and II, respectively. A third mode peak (mode III) has also been observed,
which comprises intermediate wavenumbers between modes I and II, as shown in
figure 9(b). This third peak arises by further decreasing E or increasing Ro, and in a
small number of small-E/high-Ro cases it was seen to achieve growth rates exceeding
those of mode I.

The emergence of these three mode peaks may be related to the features exhibited
in the base flow. Base flows on which mode I dominates are typically two-
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FIGURE 9. Growth rate σ as a function of wavenumber k for (a) various E at Ro= 0.395 and
(b) (Ro,E)= (0.5, 3× 10−4). Two mode peaks of σ are present at low and high wavenumbers
denoted by mode I and II, respectively in panel (a). A third mode peak, mode III, is illustrated
in panel (b). The dashed line represents the zero line where points above and below symbolize
stable and unstable modes, respectively.

dimensional in the vertical. This is reflective of small-Ro and high-E flows, which is in
agreement with the trends seen on growth rate against wavenumber plots. Thus, depth-
independent contours of axial vorticity usually demonstrate dominance of mode I.
Ascendency of mode II is characterized by the elongation of the negative-vorticity
strands and the breaking of axial invariance in the base flow. Further elongation and
development of the ‘hooks’ at the tip of the vorticity strands is associated with the
emergence of mode III. It may be possible for mode III to become the most dominant
by further increasing Ro or decreasing E, though this has not been observed in our
parameter space.

5.1.2. Global instability mode shapes
The three-dimensional perturbation fields have also demonstrated axial invariance

similar to its base flow counterpart for small-Ro flows. Axial vorticity contours of the
kpeak = 6 perturbation associated with conditions of Ro = 0.05 and E = 2 × 10−4 are
illustrated in figure 10. A pair of vertical vorticity strands are clearly shown around
r = 1, which extends throughout the depth of the flow. In the faster-rotating region
(r < 1), positive axial vorticity is generated, while its opposite is seen in the slower-
rotating region (r > 1). It is also noted that the pair of vorticity strands is joined
together closely all the way along the disk–tank interface. The pair is surrounded by
weaker positive vorticity.

The joining of the positive- and negative-vorticity strands is divided at higher-Ro
flows. An example of this is illustrated in figure 11, where a gap of fluid with an axial
vorticity value similar to that of the surrounding flow is seen in between the pair of
vorticity strands. Figure 11(a,b) presents the three-dimensional perturbation fields of
mode I and II, respectively. Even when the base flow is no longer depth-independent,
the unstable wavenumbers stemming from mode I still exhibit two strands of
negative and positive perturbed vorticity. These strands encompass a region of positive
axial vorticity, with the end of the strands connecting at the horizontal boundaries.
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FIGURE 10. (Colour online) Contours of axial vorticity of the three-dimensional perturbation
field of Ro = 0.05 for E = 2 × 10−4 depicted on the r–z plane. The most unstable azimuthal
wavenumber k = 6 is shown here. Given the arbitrary scaling of linearized eigenvector fields,
equi-spaced contour levels are plotted between ± (|ωz,min| + |ωz,max|)/2. Dark (blue online)
and light (yellow online) flooded contours represent negative and positive values, along with
dashed and solid contour lines, respectively.

(a)

(b)

Mode I Mode II

FIGURE 11. (Colour online) Contours of axial vorticity of the three-dimensional perturbation
field of a given azimuthal wavenumber depicted on the r–z plane. The left and right
columns illustrate the most unstable wavenumber from mode I and II peaks, respectively. The
perturbation fields are obtained at Ro= 0.395 for (a) E = 9.47×10−4 and (b) E = 5.26×10−4.
Contour levels are as per figure 10.

Perturbation fields belonging to mode II display highly localized disturbances around
the periphery of the ring. On each disk, a negative- and positive-vorticity strand is
sandwiched between contrasting vorticity patches. The strands do not extend into the
interior to connect with the disturbances from the opposite disk. As such, mode II
does not appear to be consistent with a barotropic instability. This is expected, as
the growth of the mode II instability only appears when depth independence of the
base flow is broken. The structures of the mode I and mode II instabilities do not
differ significantly in these figures even though the flows are dominated by different
instabilities. The similarity arises from the comparable growth rates between kpeak of
modes I and II in figure 11(b).

When growth rates of wavenumbers from mode II are orders of magnitude greater
than those of mode I, the structure of the perturbation field is altered. The perturbation
fields are shown in figure 12. For the mode I waveband, the vorticity strands, which
would otherwise extend over the entire depth, become truncated and extend diagonally
into the interior. A similar trend is shown in the vorticity contours observed in the
base flows (see figure 3b ii). However, a coupling of both positive- and negative-
vorticity strands stems from r = 1. For the mode II waveband, the instabilities are
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FIGURE 12. (Colour online) Contours of axial vorticity of the three-dimensional perturbation
field of a given azimuthal wavenumber depicted on the r–z plane. Perturbation fields
of the most unstable wavenumbers from (a) mode I and (b) mode II for conditions of
(Ro,E) = (0.273, 5.45 × 10−5). The mode II disturbances are localized at the top horizontal
boundary in this flow, and only the domain of 0.65 6 r 6 1.35 and 0.65 6 z/H 6 1 is shown.
The dashed line represents a depth level of z/H = 0.7. Contour levels are as per figure 10.

only encouraged to grow at the top disk–tank interface (note that mode II in figure 12
only represents a third of the flow depth). No structures are evident in the interior or
bottom of the flow. It is not clear why instabilities are favoured at the top boundary
and suppressed at the bottom horizontal boundary.

In the event of the mode III instability emerging and overtaking the mode I, axial
vorticity in the perturbation field exhibits both signed vorticity strands arising at r = 1
from the top and bottom boundaries, and extending all the way into the interior.
However, the interior does not feature a clear depth-independent zone, instead adopting
a complex structure comprising an amalgamation of negative and positive vorticity.
These characteristics are not illustrated here.

5.1.3. Visualizing the linear instability modes on horizontal planes
In order to visualize the non-axisymmetric structure of the predicted linear

instability modes, the leading eigenmodes are superimposed onto their respective
axisymmetric base flow fields. Slices are then extracted in the r–θ plane for
visualization in a top-down sense. These slices do not depict the actual three-
dimensional flow structure that would be observed in an experiment, as nonlinear
effects during the growth of the instability are bound to alter the flow structure.
Rather, these fields demonstrate the type of distortions that these linear instabilities
can induce on the axisymmetric base flow. Furthermore, we stress the fact that we
only superimpose onto the axisymmetric state the leading instability eigenmode. In a
real-case situation, a growing perturbation is likely to include a combination of several
eigenmodes. The base flow and most unstable perturbation field (shown in figure 10)
of Ro = 0.05 and E = 2 × 10−4 have been superimposed to generate figure 13. This
process can be thought of as flows in which the linear instabilities have grown to finite
amplitudes (though nonlinear effects are disregarded). This flow condition has only the
mode I linear instability associated with it (figure 8). The mode I instability exhibits
an axial vorticity field, which features a regular central polygon coupled with a strand
of lower vorticity around the polygon border. The border is located approximately
at the disk–tank interface. Here, the wavenumber 6 instability is represented by an
interior hexagon of high vorticity, which is surrounded by lower vorticity around the
perimeter. This strand of lower vorticity is thin, with its borders forming a hexagonal
shape. Outside of this hexagonal structure, there are intermediate levels of vorticity
attributed from the rotation of the tank (base flow). A ring of satellite vorticity patches
in lieu of a thin strand around the interior polygon may be observed if the amplitude
of the perturbation field is large compared to the amplitude of the base flow prior to
the superposition.
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FIGURE 13. (Colour online) An r–θ slice taken at mid-depth in z is extracted from a linear
non-axisymmetric flow approximation constructed by superposing the axisymmetric base
flow and the leading instability mode with azimuthal wavenumber 6. This flow field is not
representative of the three-dimensional non-axisymmetric flow since nonlinear effects are
omitted here. The case shown had Ro = 0.05 and E = 2 × 10−4. Contours of axial vorticity
are plotted, with levels as per figure 3. The orientation is such that the positive Ro causes the
central region to rotate clockwise faster than the outer region.

Several more resultant flows from superimposing the perturbation fields with their
respective flows are shown in figure 14. The perturbation fields correspond to those
illustrated in figure 11. For wavenumbers belonging to mode II, the central vortex is
circular in shape and is surrounded by a ring of vorticity patches near the horizontal
boundaries, where the number of vortices corresponds to the wavenumber of the
instability. The mid-plane does not exhibit any noticeable disturbances. With increasing
wavenumber, the size of the vortices decreases in order to fit into the circumference at
r = 1.

5.1.4. Preferred azimuthal wavenumbers
The most unstable wavenumbers for various Ro and E pairings have been mapped

onto an Ro–E regime diagram. The resultant regime diagram is shown in figure 15.
Fractional peak wavenumbers and corresponding peak growth rates were obtained via
the local maximum of a parabolic fitting of the peak and the adjacent wavenumbers
from the σ–k data obtained via linear stability analysis. These data points were
used to generate a contour map of preferred wavenumber (for mode I) over the
Ro–E space, allowing an accurate depiction of wavenumber segregation. As a result
of using fractional peak wavenumbers, the wavenumber in the regime diagram
represents a range of wavenumbers. For example, the contour band of 5 on the
regime diagram represents the most unstable wavenumbers from 4.5 6 k < 5.5. Only
peak wavenumbers from the mode I instability have been used to construct this
regime diagram, even if wavenumbers from other mode peaks have higher growth
rates. The purpose of this is to illustrate the preferential wavenumbers attributed by
barotropic instability for specific flow conditions. The map depicts a decrease in
unstable wavenumber with increasing E at lower Ro. At higher Ro, the dependence of
unstable wavenumber shifts towards Ro, with wavenumbers decreasing with increasing
Ro. These trends differ from those obtained experimentally. In Früh & Read (1999)
their experimental trends depict a stronger dependence on Ro compared to E. The
general trend is that either increasing Ro or decreasing E leads to a decreasing
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(a)

(b)

FIGURE 14. (Colour online) Slices of non-axisymmetric flows constructed by superposition
of the base flow and the linear instability mode as per figure 13. These flow fields are not
representative of the three-dimensional non-axisymmetric flow since nonlinear effects are
omitted here. These cases show Ro = 0.395 at Ekman numbers (a) E = 9.47 × 10−4 and
(b) E = 5.26× 10−4. Left: the mode I instability is visualized on a slice extracted at mid-depth
(z/H = 0.5). Right: the mode II instability is shown at z/H = 0.85 (near the top of the
container). These cases correspond to the meridional semi-plane views of the perturbation
fields from figure 11. Contour levels are as per figure 3 and the sense of rotation is as per
figure 13.

wavenumber state. These trends were also observed by Aguiar et al. (2010) using
differential rings instead of disks.

The dominance of either a mode I or II for each flow has also been mapped
onto an Ro–E parameter space (not shown here). The transition between unstable
wavenumbers belonging to mode I and mode II has been designated by a visually
fitted line. This instability mode type threshold line is drawn on the regime diagram
in figure 15 as a thick dashed line. This threshold is given by RoI−II = 5.44E0.35.
In addition, the ‘highly irregular’ and ‘period-doubled’ threshold flow regimes from
Früh & Read (1999) are overlaid on the regime diagram as black regions and a solid
line, respectively. The overlap between the mode II instability found numerically and
the time-dependent flows observed experimentally suggests that flows with a mode II
dominance may be promoting this time dependence. Although the mode I–II threshold
differs in exponent from the experimental non-modal flows, all of these flow regimes
are seen to occur at higher Ro and lower E. In the same region of the parameter space,
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FIGURE 15. (Colour online) The regime diagram of the most unstable linear wavenumber
as a function of E and positive Ro. The short-dashed lines represent the transition between
one wavenumber and another, denoted by the wavenumber of the instability shown within the
band. The solid boundary lines represents the range of triangulation. The left thick boundary
line represents the stability threshold, which is given by Roc ∝ E0.767 (using positive- and
negative-Ro data). The thick dashed line is a visual fit, separating flow conditions that are
mode I and II dominant dictated by RoI−II ∝ E0.35. The PD line and black regions are extracted
from Früh & Read (1999) and represent period-doubled solutions and highly irregular flow,
respectively. The dash-dotted line represents the stability threshold obtained by Früh & Read
(1999), given by |Roc| = 27E0.72. Black circles and the adjacent labels denoted by f.x mark the
flow conditions illustrated in the respective figure x.

Aguiar et al. (2010) also found time-dependent flows, which they denote as ‘chaotic’
flows. Alternatively, it is possible that nonlinear effects in real experiments alter the
regime diagram, a subject that will be addressed in future numerical work.

The empirical relationship of the critical Rossby number as a function of Ekman
number found by Früh & Read (1999) is given by |Roc| ≈ 27E0.72. This relationship
was obtained using both positive and negative data points, as the experimental
study found little differences between positive and negative Roc. This similarity was
predicted by the asymptotic analysis conducted by Busse (1968), who found that |Roc|
scales with E3/4. The numerical investigation here yields the threshold of stability to be
Roc = 16.877E0.758 when considering positive-Ro data only. The threshold equation
is given by |Roc| = 18.11E0.767 when using both positive- and negative-Ro data.
It should also be noted that the threshold obtained by Hide & Titman (1967) of
|Roc| = 16.8E0.568 is shifted even further to the right with a differing slope (not shown
in the regime diagram).



Linear stability of a shear layer induced by differential rotation 323

There is a quantitative mismatch in the leading coefficient between the numerical
result and the experimental empirical fit, although the exponent of E is in good
agreement, both to the asymptotic result of 3/4 (Busse 1968) and to experimental
results suggesting a 0.72 scaling. The higher coefficient causes a horizontal shift
of the threshold line towards higher Ro, given that the exponent is similar. This
can be seen in figure 15 between the solid line (numerical) and the dash-dotted
line (experimental). The horizontal shifting to the right may be due to difficulty
detecting instabilities at very small amplitudes due to limitations of the experimental
measurements. This is revisited later in § 5.3. The numerical linear stability analysis
conducted is able to pinpoint the stability threshold via the growth rate but does not
include any information about the saturated amplitudes of the instabilities. However,
it is expected that the structures are weak slightly beyond the onset of the stability
threshold. The difference in coefficients causes a significant difference in the critical
internal Reynolds number (equaton (3.4)).

To summarize, the differences in preferential wavenumber trends between numerical
and laboratory results may be attributed to geometric differences, nonlinear effects,
experimental observation and measurement techniques, and time dependence of flow
states. The centre of the tank used in the laboratory contains a vertical rod used to
drive the two horizontal disks. The addition of this rod may introduce perturbations
into the flow that interact with the unstable shear layers and therefore alter the stability.
A type of vortex shedding was observed from the central rod in simulations conducted
by Bergeron et al. (2000) and Früh & Nielsen (2003). Nonlinear effects may also
encourage competition between instability modes that cause the flow to undergo
various wavenumber transitions. During this process, hysteresis effects are present, and
therefore the resulting structure is highly dependent on the flow’s history. In addition,
the sharp changes in the contour lines of figure 15 are due to a number of factors,
including the scatter of the data points used to construct the map and the method used
to determine the peak wavenumbers. A parabolic fitting of the three closest points
to the local peak in the σ–k data is used to determine the true peak growth rate
and wavenumbers. Preferential wavenumbers associated with mode I were obtained for
more than 100 different positive-Ro flow conditions, which is used to construct the
positive Ro–E regime diagram.

5.2. Negative Rossby numbers
5.2.1. Growth rates

A stability analysis was conducted on negatively forced flows in a similar fashion
to that conducted for the positive-Ro regime. Many similarities were observed and will
be briefly noted, but emphasis will be placed on distinct features of the negative-Ro
regime that distinguish it from the positive-Ro regime. Unstable wavenumbers ranging
from 3 to 13 were observed for the range of Ro >−4.0. This implies that negative-Ro
flows are more sensitive to higher wavenumbers compared to positive-Ro flows. In
comparison, experimental observations obtained azimuthal wavenumbers ranging from
2 to 8 for Ro>−0.4 (Früh & Read 1999).

As observed in the results of negative-Ro base flows, a larger range of Ro
demonstrates axial symmetry. Thus, it is expected that the mode I instability will
dominate a large parameter space in this negative regime. Mode II is also expected to
arise, as depth-dependent flow was observed for Ro < −1/A. Similar to the positive
regime, the breaking of depth dependence is a function of both Ro and E. Thus,
counter-rotating flows are not expected to become mode II dominant instantly at
Ro=−1/A.
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FIGURE 16. Growth rate σ as a function of wavenumber k for various E at (a) Ro = −0.167
and (b) Ro = −1.46. One maximum is seen for each E case. The dashed line represents the
zero line where points above and below symbolize stable and unstable modes, respectively.

Growth rates of wavenumbers beyond the mode I branch illustrate a gradual
decrease like that of positive-Ro flows. These features are illustrated in figure 16
for two different Ro values. At a small Ro = −0.167 and a high E = 4 × 10−4,
the flow is linearly stable. As E decreases, the growth rates increase and the peak
wavenumber shifts to higher wavenumbers as well as increasing the bandwidth of
unstable wavenumbers. The shift in peak wavenumber with decreasing E is much
more evident in the negative-Ro regime compared to the positive-Ro regime. As the
base flows for the majority of the negative-Ro regime explored do not break its depth
independence, this mode peak is reflective of the barotropicity of the flow. That is, this
peak is representative of the mode I instability found in the positive-Ro regime, which
was determined to be barotropic. This observation supports the hypothesis that the
other mode peaks emerge due to the departure of highly vertical-independent motion.
Growth rates of a higher magnitude at Ro=−1.46 (relative to the positive-Ro regime)
shown in figure 16(b) demonstrate only the mode I instability even for small E. The
growth rates associated with k > 30 have been obtained, although they are not shown
here.

Linear stability analysis results for a constant E = 2 × 10−3 with varying Ro are
illustrated in figure 17. Two maxima in the σ–k data are evident. At small Rossby
numbers, only mode I is present, which is consistent with previous findings in the
positive-Ro regime. For cases of Ro 6 −1/A, mode II becomes present and eventually
dominates with sufficiently high |Ro|. This can be seen for Ro=−3.0 and Ro=−4.0.
Negative Rossby numbers of a larger magnitude have not been investigated, so it is
unknown whether additional instability modes exist (e.g. mode III).

5.2.2. Linear instability modes and visualization on horizontal planes
An illustration of the perturbation field structure is shown in figure 18(a) for

Ro = −0.167 and E = 4 × 10−4, which was most unstable to a wavenumber k = 6
(figure 16a). This flow condition only has the mode I instability. The perturbations
are largely vertical, with a pairing of positive and negative strands of vorticity. It
should be noted that an r–z plane at an arbitrary angle θ is shown, and that may not
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FIGURE 17. Growth rate σ as a function of wavenumber k for various Ro at E = 2 × 10−3.
Mode I and mode II branches are present. The dashed line represents the zero line where
points above and below symbolize stable and unstable modes, respectively.

represent flow structures at other azimuthal phase angles due to the non-axisymmetric
mode structure. Further elucidation of the azimuthal mode structure is provided by
superimposing this linear perturbation field onto the axisymmetric base flow (shown in
figure 18b). Similar to figures 13 and 14, the purpose of this field is to demonstrate
any flow alterations that occur as a result of the linear instability. A central hexagonal
structure is present surrounded by six closed contours of vorticity. The ring of vorticity
containing the six vorticity patches contains the highest vorticity in the flow. The
lowest vorticity is situated in the central region.

The instability structures of modes I and II differ between positive- and negative-Ro
regimes. Contour plots of axial vorticity in the perturbation fields for Ro = −3.0 and
E = 2 × 10−3 are shown in figure 19. For mode I, a pair of positive and negative
vertical vorticity strands still exist and remain bonded (even for Ro = −4.0). This is
different from its positive counterpart, as a region of neutral vorticity grows between
the strands with increasing Ro magnitude (figure 11). In addition to the vertical
strands, there are positive vorticity strands angled towards the interior. The angle is
similar to that observed in the base flow. The mode II structure also comprises a pair
of positive and negative vorticity, except that it does not extend the entire depth and is
localized to the horizontal boundaries. This localization was observed for positive-Ro
flows also. These strands are also angled in a similar nature to that of mode I and the
base flow (figure 3b ii).

5.2.3. Preferred azimuthal wavenumbers
Figure 20 shows the Ro–E regime diagram of the linearly unstable azimuthal

wavenumbers for negative Ro. Like figure 15, this diagram is also constructed only
from mode I wavenumbers, even if a flow is predicted to be dominated by a mode II
linear instability. The figure presents an overview of the linear stability results and
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(a)

(b)

FIGURE 18. (Colour online) Axial vorticity contours of the dominant linear instability mode
with azimuthal wavenumber k = 6 at Ro = −0.167 and E = 4 × 10−4. (a) The perturbation
field of the instability mode is plotted in the z–r plane, with contour levels as per figure 10.
(b) A linear non-axisymmetric flow constructed by superposing the axisymmetric base flow
and the azimuthal linear instability wavenumber as per figure 13. This flow field is not
representative of the three-dimensional non-axisymmetric flow since nonlinear effects are
omitted here. The slice shown was extracted at mid-depth, with contour levels as per figure 3,
and the orientation is such that the negative Ro causes the central region to rotate anti-
clockwise faster than the outer region.

(b)(a)

FIGURE 19. (Colour online) Contours of axial vorticity of the three-dimensional perturbation
field of a given azimuthal wavenumber depicted on the r–z plane. Perturbation fields
of the most unstable wavenumbers from (a) mode I and (b) mode II for conditions of
(Ro,E)= (−3.0, 2× 10−3). Contour levels are as per figure 10.
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FIGURE 20. (Colour online) The same as figure 15 except for negative Ro. The black filled
diamonds represent flow conditions that are mode II dominant.

suggests a decrease in unstable wavenumbers for decreasing Ro or increasing E. This
is in contrast to the trend observed for the positive-Ro regime, where the preferential
wavenumber is dependent on both Ro and E in specific regions. In considering just the
mode I dominant region, the negative- and positive-Ro regimes are comparable. The
unstable azimuthal wavenumbers have a greater dependence on E rather than Ro, with
no shift in parameter dependence. If more data for negative-Ro flows dominated by
mode II were obtained, it may indeed suggest a greater Ro dependence on preferential
wavenumbers like that seen in the positive-Ro regime.

Building upon the earlier assumption that mode II instabilities promote time-
dependent flows, this type of flow would not be observed unless the disks and tank
were counter-rotating. However, experimental work by Früh & Read (1999) described
irregular and period-doubled flows for flows with disks rotating slower than the tank
(not shown in figure 20). Irregular flows were primarily located at very low values
of E < 5 × 10−5. The flow conditions numerically investigated here do not cover this
lower-E space, so no direct comparisons can be made. However, there are no signs
in any of the σ–k data obtained in this study to indicate the presence of other mode
instabilities. While the linear stability analysis conducted here implicitly considers only
azimuthal Fourier modes, other instabilities such as Taylor vortices on the z–r plane
would be observable in the axisymmetric base flows. No indications of such structures
were observed in the simulations reported, despite being seen experimentally (Früh &
Read 1999). Preferential wavenumbers associated with mode I were obtained for more
than 100 different negative-Ro flow conditions, which is used to construct the negative
Ro–E regime diagram.
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Empirically fitting Ro and E data points corresponding to zero growth yields the
relationship |Roc| = 19.76E0.777 for negative-Ro data. Referring back to the asymptotic
result of |Roc| ∝ E3/4 and the experimental result of |Roc| ∝ E0.72, the numerical
relationship is quite similar. Again, the higher coefficient is due to the horizontal
shifting of the threshold line towards higher Ro given that the exponent does not
differ greatly. A possible explanation was given in the positive-Ro results section.
Despite the difference in exponents of E for the instability threshold between positive-
and negative-Ro regimes (Roc = 16.877E0.758 and |Roc| = 19.76E0.777, respectively), the
lines are indistinguishable on the log–log plot. Therefore, a stability threshold has been
determined that uses both positive- and negative-Ro data. This concept is supported
by experiments of Hide & Titman (1967) and Früh & Read (1999), which found
no differences in the onset of instability between positive- and negative-Ro flows.
The threshold using both regimes is given by |Roc| = 18.11E0.767. As can be seen in
both regime diagrams (figures 15 and 20), this threshold line fits the positive- and
negative-Ro data very well.

5.3. Internal Reynolds number and characterization of preferred wavenumber regime
diagrams

The internal Reynolds number is known to play an important role in characterizing
the stability of the Stewartson layers generated in this and similar previous studies.
The various definitions of internal Reynolds number appearing in the literature share a
common dependence between Rossby and Ekman numbers, namely Ro/E3/4, differing
only by constant factors arising from the choice of characteristic length and velocity
scales (e.g. whether half or the full velocity differential across the shear layer,
etc.). Unravelling the quoted critical internal Reynolds numbers from the literature
shows a striking consistency. The theoretical analysis of Niino & Misawa (1984)
yields a critical internal Reynolds number of 11.7, while from experiments van de
Konijnenberg et al. (1999) determined Rei,c = 16.6. The line of best fit that Früh
& Read (1999) employed to determine a critical internal Reynolds number yielded
approximately 24, though their figure 8 demonstrates that they found unstable flows
down to Rei ≈ 10.9. The linear stability analysis conducted in this study returns a
critical internal Reynolds number of 22.4 ± 0.8 across the considered range of Ekman
numbers. However, dividing each of these values through by the respective prefactors
to Ro/E3/4 employed in each definition of Rei yields the critical values listed in
table 1. As can be seen, these show a remarkable consistency across the analytical,
experimental and numerical methods employed in the studies, all producing a critical
threshold within the range 15.4< Ro/E3/4 < 16.6. Note that the difference between the
critical Ro/E3/4 = 15.8 and the coefficient of 18.1 in the Roc relationship (figures 15
and 20) is due to the difference in powers of Ekman number (namely E3/4 and E0.767 in
the respective relations).

Revisiting figure 15 in the context of the importance of Rei on the shear layer, it
can be seen that the lines of constant preferred azimuthal wavenumber respond to
changes in Rei. For instance, the preferred wavenumbers exhibit a steady increase with
increasing Reynolds number to Rei ≈ 49, beyond which the contours turn downwards.
Eventually (beyond Rei & 194), the lines of constant azimuthal wavenumber are
approximately vertical, demonstrating that the stability of the flow (at least in
terms of the dominant azimuthal wavenumbers of the instabilities) is independent
of Ekman number. Hence the flow can be divided into three regimes: Rei . 49, for
depth-independent (barotropic) flows; 49 . Rei . 194, representing a transitional zone;
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Study Rei,c Rei,c/(Ro/E3/4) Critical
Ro/E3/4

Niino & Misawa
(1984)

11.7 1/
√

2 16.5

van de Konijnenberg
et al. (1999)

16.6 1 16.6

Früh & Read (1999) 10.9 (lowest point) 1/
√

2 15.4

Present study 22.4± 0.8
√

2 15.8± 0.57

TABLE 1. Critical internal Reynolds numbers quoted by various studies, the factors by
which each definition of Rei differ, and the corresponding critical value of Ro/E3/4 found
in each study.

and Rei & 194, an Ekman-number-independent regime. These are not precise threshold
criteria; rather, they are determined approximately by inspection.

It turns out that the preferred wavenumbers obtained in the ‘barotropic’ positive-Ro
regime for Rei . 49 are consistent with those obtained in the negative-Ro regime
(i.e. figure 20) if the data are plotted against |Ro|. This motivated a search for a
grouping of |Ro| and E that might universally collapse the data onto a single curve.
Recasting the preferred azimuthal wavenumbers k as azimuthal wavelengths λθ = 2π/k,
an optimization procedure was used to maximize the correlation coefficient (r2) of
a power-law fit to the data when plotted against |Ro|αEβ , where exponents α and
β were variables in the optimization process. A highly optimal pair of exponents
giving a correlation coefficient r2 = 0.989 was found to be α = 1 and β = −2.
Using |Ro|/E2 as an independent variable, the universal power-law fit describing the
preferred azimuthal wavelength of the mode I instability is given by

λθ = 11.4(|Ro|/E2)
−0.167

, (5.1)

and this universal fit is plotted in figure 21(a). Interestingly, the exponent in this
expression is almost precisely −1/6, which if substituted produces λθ ∼ E1/3/|Ro|1/6
through a rearrangement of (5.1). Given the appearance of E1/3 in this expression, it
is highly likely that the instability wavelength scales with the E1/3 Stewartson layer.
This may have implications for the validity of quasi-geostrophic models of these flows,
which do not capture the E1/3 layer.

In the Ekman-number-independent stability regime, the preferred azimuthal
wavelengths vary only with Rossby number. Our analysis determined that a convenient
universal collapse of the data in this regime could be obtained by adopting ω/Ω as the
independent variable. The resulting best fit of a power-law relationship to the data with
Rei > 194 was found to be

λθ = 1.97(ω/Ω)0.497, (5.2)

which is plotted in figure 21(b). This fit achieved a correlation coefficient of
r2 = 0.9764. The 0.497 exponent is within 0.6 % of the exponent describing a square-
root relationship. Therefore, in this regime it is proposed that the preferred azimuthal
wavelengths follow λθ ∼√ω/Ω .

It is stressed that the relationships developed here for the preferred azimuthal
wavelengths of the shear-layer instability are based on a linear stability analysis of
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FIGURE 21. (Colour online) Regressions of the preferred azimuthal wavelength of the
mode I instability. (a) Plot of log10(λθ ) against log10(|Ro|/E2). The data are shaded by
Rei, with dark shading showing Rei . 49. This captures the regime of depth-independent
axisymmetric flows, and a linear collapse of the data is seen. (b) Plot of log10(λθ ) against
log10(ω/Ω). Here dark shading identifies Rei & 194, which captures the regime of Ekman-
number-independent instability wavelengths at high Ro and low E. The expressions obtained
by least-squares power-law fitting to the data are included in each plot.

the axisymmetric shear-layer solutions. It is expected that nonlinear effects will play a
role in modifying (reducing) the eventual azimuthal wavenumbers that would be seen
in a physical experiment after the instability grows sufficiently to break into a ring of
well-defined vortices (Früh & Read 1999; Aguiar 2008; Aguiar et al. 2010).

6. Conclusions
The structure of axisymmetric base flow of a rotating flow in a cylindrical container

with differential rotation forcing at the boundaries and its linear stability has been
investigated numerically. The dimensions of the numerical model are based on the
laboratory apparatus used in Früh & Read (1999).

A variety of axisymmetric steady-state base flows were obtained, which are
characterized by the governing parameters of Rossby and Ekman numbers. Results
of both positive and negative forcing were obtained, with several distinct base
flow features displayed. For small values of |Ro|, the flow remained highly two-
dimensional following predictions from the Taylor–Proudman theorem. The depth-
independent velocity and vorticity profiles were analysed to determine the relationships
and thickness scalings of the Stewartson layers. The results agree well with theoretical
predictions in the limit of small Ro. Universal relationships for δ/E1/3 and δ/E1/4

have been developed and demonstrate a linear dependence against ω/Ω for negative-
and small-positive-Ro flows. As |Ro| is increased, negative-vorticity strands are seen
stemming from the disk–tank interface, which demonstrates a disruption to the two-
dimensionality of the flow. This breaking of two-dimensionality occurs at a much
lower |Ro| for positive Ro compared to negative Ro. A possible explanation for this
may be given by the sign of the axial vorticity generated at the disk–tank interface.
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The breaking of the flow’s axial invariance was seen to affect the nature of its
linear stability. For base flows illustrating barotropic features, a single mode peak
was present, which is associated with barotropic instability. When superimposed onto
the base flow, the barotropic leading instability mode demonstrates vorticity forming
polygonal structures such as triangles, pentagons and hexagons. The combination of
several instability modes and nonlinear effects are likely to alter such linear patterns in
real-world cases. A second and third mode peak were also observed at high Ro and
low E, the same conditions where the depth independence of the base flow is broken.
Modes II and III exhibited highly localized and irregular instabilities, respectively,
which are atypical of barotropic instability. These instability modes also favoured
higher wavenumbers. A compilation of the results corresponding to mode I were used
to construct Ro–E regime diagrams.

The empirical relationship of the stability threshold for negative and positive Ro
was obtained. Both were in good agreement with asymptotic predicted exponents
obtained by Busse (1968), and little differences were observed between the threshold
of positive- and negative-Ro flows. Consequently, the exponent for the relationship
between |Ro| and E correspond to a constant |Rei|. Although the stability of the flow
can be described by |Rei,c| alone, the preferential wavenumber state requires both
|Ro| and E to be known. Empirical fits of the preferential azimuthal wavenumber as
functions of |Ro|/E2 and ω/Ω have been determined for depth-independent (Rei . 49)
and depth-dependent (Rei & 194) flows, respectively.

In comparison to the stability threshold obtained by Früh & Read (1999),
similarities were observed in the exponent, with differences seen in the leading
coefficient. This is caused by the stability onset occurring at higher Ro values,
and therefore at higher Rei. This dissimilarity may be explained by experimental
observation limitations. In addition, the discrepancy observed between the values of
Rei,c determined in previous literature and this study is due to the different length and
velocity scales used. Compensating for these differences, consistent threshold values
of 15.4 . Ro/E3/4 . 16.6 are found across the theoretical, laboratory and numerical
studies of Niino & Misawa (1984), Früh & Read (1999), van de Konijnenberg et al.
(1999) and the present simulations. The Ro–E regime diagrams depict a different
trend from those obtained experimentally by Früh & Read (1999) and Aguiar et al.
(2010). The primary reason for the differences in trends may be explained by the
nonlinearity associated with these experimental flows. Future work will be devoted to
study numerically nonlinear shear-layer instability, and to compare to results presented
in this work.

The linear stability results of the Stewartson layer presented here suggest a
potential for short-wavelength instabilities to exist near the end-plate interfaces for
flow conditions beyond Rei ' 200. Thus, the internal Rei may be a critical parameter
when designing configurations for the experiments in relation to solving the nonlinear
stability of Keplerian flow. In addition, the E-independent thicknesses at high Rei may
provide a quantity for the number of split rings required.
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