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For moderate Reynolds numbers, a sphere colliding with a wall in the normal direction
will lead to a trailing recirculating wake, threading over the sphere after impact and
developing into a complex vortex-ring system as it interacts with vorticity generated
at the wall. The primary vortex ring, consisting of the vorticity from the wake of
the sphere prior to impact, persists and convects, relatively slowly, outwards away
from the sphere owing to the motion induced from its image. The outward motion
is arrested only a short distance from the axis because of the strong interaction with
the secondary vorticity. In this paper, the structure and evolution of this combined
vortex system, consisting of a strong compact primary vortex ring surrounded by and
interacting with the secondary vorticity, is quantified through a combined experimental
and numerical study. The Reynolds-number range investigated is 100<Re < 2000. At
Reynolds numbers higher than about 1000, a non-axisymmetric instability develops,
leading to rapid distortion of the ring system. The growth of the instability does not
continue indefinitely, because of the dissipative nature of the flow system; it appears
to reach a peak when the wake vorticity first forms a clean primary vortex ring. A
comparison of the wavelength, growth rate and perturbation fields predicted from both
linear stability theory and direct simulations, together with theoretical predictions,
indicates that the dominant physical mechanism for the observed non-axisymmetric
instability is centrifugal in nature. The maximum growth occurs at the edge of the
primary vortex core, where the vorticity changes sign. Notably, this is a physical
mechanism different from that proposed previously to explain the development of the
three-dimensional flow of an isolated vortex ring striking a wall.

1. Introduction
When a rigid body collides with a surface, a layer of dust on the surface can be

resuspended, owing to the effects of two different mechanisms. The first is ballistic.
The collision breaks cohesive bonds between the dust particles and, if the kinetic
energy is sufficiently large, this can lead to the ballistic ejection of particles close
to the wall. For dust ejection by sand particles, experiments by Rice, Willetts &
McEwan (1996) and Shao, Raupach & Findlater (1993) related the mass-ejection
rate to the collision rate and the energy loss per collision. The second mechanism is
hydrodynamic and is the focus of the current study. For Reynolds numbers (based on
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impact speed U and sphere diameter D) in excess of approximately 100, the attached
recirculating wake flow following the rigid body threads over the sphere on impact,
and the resultant vortex structure(s) can cause significant fluid exchange near the
surface leading to dust resuspension or momentum and heat transfer to the wall.
In a previous experimental study, Eames & Dalziel (2000) examined the behaviour
in detail as a function of Reynolds number for 300 <Re < 3500. In that study the
analysis was primarily directed towards the resuspension characteristics of different
dust types and layer thicknesses rather than the fluid dynamics, which is of primary
concern here. Joseph et al. (2001) examined experimentally particle–wall collisions for
Reynolds numbers between 10 and 3000 and showed that the rebound was primarily a
function of the Stokes number. Both Joseph et al. (2001) and Gondret, Lance & Petit
(2002) determined the coefficient of restitution as a function of Stokes number and
showed that it reaches an asymptotic value, for high Stokes number, corresponding to
the value for ‘dry’ collisions (i.e., collisions where fluid forces can be neglected, as for
particle impacts in air). The vortex-ring system generated during the impact shows
similarities to that produced from the impact of an isolated vortex ring with a wall,
which has been examined by a number of authors including Walker et al. (1987), Lim,
Nickels & Chong (1992), Orlandi & Verzicco (1993), Swearingen, Crouch & Handler
(1995) and Naitoh, Banno & Yamada (2001). The similarities and differences will be
discussed.

Note that particle impacts with walls also have potential importance for other areas
of fluid mechanics such as the enhancement of heat transfer due to convection of fluid
towards and away from a surface and for the development of improved multiphase
models that include wall effects.

This article focuses on a number of aspects of particle–wall interactions. These
include: (a) the formation and evolution of the vortex-ring system associated with
an impact; (b) determination of the fluid forces during approach and impact; (c)
the vortex dynamics associated with rebound relative to the case of sudden arrest;
and (d) characterization of the three-dimensional instability and investigation of
its physical cause. The problem is investigated through a combined numerical and
experimental study. Preliminary results from this work, concerning mainly the vortex-
ring trajectories in axisymmetric flow conditions and first observations of the three-
dimensional instability, were presented earlier in two short publications (Leweke,
Thompson & Hourigan 2004a, b). The present paper gives a comprehensive overview
of the flow phenomena associated with particle–wall interactions at low Reynolds
numbers and includes the effects of variation of the different parameters involved.

2. Methods
We study the flow generated by a sphere which is impulsively started from rest,

travels a certain distance at constant speed in a direction normal to a solid wall and
then stops either in contact with the wall or at a small distance from it. We focus
our study on cases where the wake behind the sphere remains axisymmetric up to
the impact or stopping time; this requires running distances such that L/D � 7.5 (see
figure 1), as shown in the previous works by Eames & Dalziel (2000) and Leweke et al.
(2004a, b). For such short running distances, the sphere wake is not fully developed; it
is in a transient axisymmetric state and does not exhibit asymmetry and/or unstead-
iness in the form of vortex-loop shedding, which is known to occur (asymptotically,
for large times) at Reynolds numbers above 210 and 270, respectively. The numerical
and experimental tools used for this work are described in the following sections.
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Figure 1. Computational setup showing the main parameters. The sphere descends through a
running distance L at constant speed U , before stopping at a distance S above the tank floor.
The computational domain was specified by domain-size parameters Lz and Lr . Cylindrical
polar coordinates were used.

2.1. Numerical method

Simulations were performed using the spectral-element technique. Existing in-house
software (see e.g. Thompson, Hourigan & Sheridan 1996; Thompson, Leweke &
Provansal 2001a) was modified to perform direct numerical simulations (DNSs).
The movement of the sphere relative to the wall was treated using the arbitrary
Lagrangian eulerian (ALE) approach (see e.g. Hirt, Amsden & Cook 1974). As the
sphere moves towards the surface, the vertices of the mesh move with predetermined
specified velocities in such a way that the semicircular boundary of the sphere (in
the axisymmetric coordinate system) is maintained and the distortion of the mesh
is controlled. The velocity field satisfies the Navier–Stokes equations on the moving
mesh, which are

∂u
∂t

+ (u − v) · ∇u = − 1

ρ
∇P + ν∇2u.

Here P is the pressure, u is the fluid velocity, v is the spatially varying velocity of the
mesh, ρ is the fluid density and ν is the kinematic viscosity. In the direction of motion,
the velocity of the mesh varies linearly with distance from the top and bottom of the
sphere to the top and bottom computational boundaries, respectively. Mesh points
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lying within the axial extent of the sphere move with the speed of the sphere. This is
shown diagrammatically in figure 1. The computational domain size chosen for this
study was Lz × Lr =50D × 25D. This gives a blockage ratio of 0.04%.

It was necessary to remesh two or three times as the sphere approached the wall to
avoid excessive distortion of the spectral-element mesh. Interpolation between meshes
was done by using the same high-order polynomial interpolation used to represent
the velocity within elements, hence maintaining accuracy during the transfer process.
To ensure that interpolation from one mesh to another did not introduce significant
error, the flow was evolved past the point of interpolation with both the old and new
meshes. Typical system parameters, such as the pressure and viscous-force coefficients,
were found to agree to within a fraction of a percent in the overlap region.

Generally, the sphere was stopped at S/D = 0.005 to avoid the development of a
mesh singularity when the sphere is in contact with the wall. Both experimental and
computational tests were conducted to verify that this had a negligible influence on
the predictions. In general, the good agreement of the numerical and experimental
results established later in the paper indicates that the details of the particle contact
and the rapid deceleration at contact can be neglected when considering the evolution
of the surrounding flow.

Numerical simulations were repeated with different-order intra-element polynomial
interpolation to verify that the flow field was fully resolved for each Reynolds
number. For the simulations requiring the highest resolution, Re= 1500, the maximum
difference in drag coefficient over full evolution, for a mesh using nx × ny = 8 × 8 and
nx × ny =9 × 9 nodes per element, was less than 1%. The initial mesh was constructed
of 1168 macro-elements with considerable compression towards the sphere, wall and
centreline. The final mesh at impact consisted of 856 macro-elements. A close-up of
the mesh at impact in the vicinity of the sphere is shown in figure 2.

The numerical results found in § § 2 and 3 are from axisymmetric computations,
and those in § 4 are from full three-dimensional simulations. Section 4 also contains
predictions from three-dimensional linear stability analysis.

2.2. Experimental method

A parallel experimental study was undertaken, complementing the numerical program.
The experimental setup is shown in figure 3. The experiments were carried out in
water in a 600 × 500 × 500 mm3 glass tank. A brass sphere 19.02 mm in diameter (D)
was attached to a fine thermally fused twisted stretch-resistant thread. Care was taken
to ensure that the attachment was as clean as possible to avoid the introduction of
extraneous disturbances to the flow during the experiments. The thread passed over a
pulley and was wound on a threaded reel driven by a high-resolution (50 800 steps per
revolution) computer-controlled stepper motor. This mechanism allowed the sphere to
be lowered through the water at a specified uniform speed U , thereby allowing selec-
tion of the Reynolds number. During the experiments, there were no noticeable oscilla-
tions of either the sphere or supporting thread. Presumably this was partly achived by
the relative high density of the brass relative to water. A false floor made of plexiglas
was placed above the bottom of the tank; this acted as the impact surface. Its elevation
above the tank bottom facilitated the capture of photographs and videos. Fluorescein
dye was used to highlight the vortical structures in the flow, both during descent and
after impact. An aqueous solution of the dye was painted onto the sphere and allowed
to dry before the sphere was lowered through the water surface. Care was taken to
remove bubbles attaching to the surface, using a pointed object as necessary. After
this, the sphere was lowered to the starting position very slowly to avoid the release of
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Figure 2. Close-up of the mesh in the neighbourhood of the sphere at the point of impact.
Only macro-elements are shown. Within each macro-element, the mesh is subdivided into
nx × ny nodes. Typically, nx = ny = 5–10, depending on the Reynolds number.

too much dye during the descent. This turned out to be a very delicate process. By
trial and error, the optimal dye concentration, drying time and resident time in
the tank were established for relatively clean dye visualizations during the actual
experiments. In addition, it was important for the tank contents to be in close
thermal equilibrium with the surroundings, as small thermal convection currents in
the tank had a noticeable impact on the quality of the dye visualizations. Light from
an argon-ion laser was passed through a cylindrical diverging lens to create a light
sheet which was used to visualize the flow structures. In addition, a white-light source
was used in some experiments, especially to highlight the three-dimensional evolution
of the vortical ring structures.

The sphere impacts were recorded with a MiniDV video camera equipped with a
20 × zoom lens onto tape cartridges for later analysis. The camera operated at the
PAL frame rate of 25 fps. This provided sufficient temporal resolution to resolve the
details of all phases of the impact. To capture still images, a 2.2 megapixel digital
camera was used. The movies on tape were downloaded to a personal computer and
converted to movie files using commercial software. These files were then analysed
frame-by-frame to extract details of the interaction, especially the trajectories of the
primary and secondary vortex rings. This was achieved with the help of image-analysis
tools from the MATLAB package.

2.3. Controlling parameters and flow regimes

The important parameters controlling the interaction are the impact distance L/D,
where L is the initial distance between the bottom of the sphere and its final resting
position; S/D, where S is the remaining distance to the wall; and the Reynolds
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Figure 3. Experimental setup showing the main features. Details are provided
in the main text.

number, Re =UD/ν. In the experiments, all three parameters were varied. In addition,
the effect of a rebound was also investigated; in this case the sphere did not stop until
it had moved around 20D away from the wall. The numerical simulations mainly
concentrated on the variations of the Reynolds number; most simulations were made
with L/D = 5, S = 0 and without rebound.

The experiments of Eames & Dalziel (2000) and Leweke et al. (2004a, b) showed
that above a Reynolds number of a few hundred, a well-defined vortex-ring system
develops from the initially trailing separated region at the rear of the sphere. They
found it difficult to guarantee an axisymmetric pre-impact flow field for running
distances greater than approximately L/D = 7. We found a similar effective limit and
so mainly restricted the experimental study to impact distance ratios L/D = 5. The
actual time taken for the flow to lose axisymmetry must depend on the background
noise level in the fluid, since the non-axisymmetric instability mode leading to shedding
in the wake must amplify from this low-level noise. More well-controlled experiments
presumably could use larger running distances. The shedding period for the time-
dependent wake of an isolated sphere suggests a useful lower limit for the wake to
lose axisymmetry, leading to an equivalent-distance estimate L/D � 1/St , where St is
the Strouhal number. This argument was suggested by Eames & Dalziel (2000). Close
to the onset of shedding at Re= 270, the Strouhal number is approximately 0.12–0.14,
as given by a number of authors, e.g. Tomboulides & Orszag (2000) and Johnson
& Patel (1999) and experimentally by Ormières & Provansal (1999). This gives an
equivalent-length scale L/D = 5–10, consistent with the starting length chosen by
Eames & Dalziel (2000) and with our choice.

It appears that increasing the running distance has a similar effect to increasing
the Reynolds number; this is discussed in more detail below. In the experiments, at
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Figure 4. Experimental dye visualizations and numerical particle tracers, both initially located
at the sphere surface. Re= 500, L/D = 5, S/D = 0. Relative to the time of impact, the times
shown are (a) τ = −0.25, (b) τ = 1.50 and (c) τ = 3.80.

Reynolds numbers above the order of 1000 the vortex-ring system becomes three-
dimensional after impact. A mechanism potentially causing the instability is discussed
in the following sections.

2.4. Experimental validation of the numerical simulations

Figure 4 shows, for comparison, the experimental dye and numerical passive-tracer
visualizations at times before and after impact. The system parameters for this case are
Re = 500, L/D = 5 and S/D = 0. For the results shown in this and subsequent figures,
the time t has been non-dimensionalized according to τ = tU/D, τ = 0 corresponding
to the time of impact or stopping of the sphere. For the numerical simulations, tracer
particles are placed randomly in a layer extending out to radius 1.02 (D/2). New
particles are introduced every few time steps as the particles are convected away from
the surface. Clearly, there is a close match between the experimental results and the
numerical predictions, including the fine details of the secondary separations. For this
Reynolds number, a well-defined vortex ring forms from the wake vorticity, impacts
the wall and spreads radially away from the sphere owing to induction by the image
vortex ring on the opposite side of the wall.

3. Axisymmetric flow
3.1. Reference case: Re = 800, L/D = 5, S/D = 0, no rebound

Initially, results will be shown for Re = 800, which will provide a benchmark for
further comparison. This Reynolds number is sufficiently high that a well-defined
ring system develops and is sustained for a considerable time before diffusion causes
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Figure 5. Experimental dye visualizations of the flow generated by the impact of a sphere
with a solid surface, for a reference case with Re= 800 and running distance L/D = 5. The
times are (a) τ = 0, (b) τ = 1, (c) τ = 2, (d) τ = 3, (e) τ = 5, (f ) τ = 10, (g) τ = 20 and (h) τ = 40.

its eventual exponential decay. However, for Reynolds numbers in excess of about
1000, the vortex ring becomes three-dimensional.

Figure 5 shows a sequence of experimental dye visualizations for times τ = 0, 1, 2,
3, 5, 10, 20 and 40. The passage of the vortex ring originating from the separated
region at the back of the sphere is clearly shown as it passes the sphere, impacts
with the wall and convects outwards. The formation and shedding of vorticity of
opposite sign from the surface of the sphere, owing to the proximity of the primary-
ring vorticity as it passes, is also clearly shown. After approximately τ = 20, the
outward radial movement of the primary ring effectively stalls, because of diffusion
of vorticity into the wall, cross-annihilation with opposite-sign vorticity generated at
the wall and the induced velocity due to the secondary vorticity lifted from the wall.
The movement of the primary ring will be quantified from the results of numerical
simulations discussed in the following sections. The opposite-sign vorticity generated
at the wall is not apparent in these visualizations because dye from the sphere surface
preferentially highlights the behaviour of the primary-ring vorticity.

The trajectories of the primary and secondary vortex rings, from both the
experiments and numerical simulations, are shown in figure 6(a). These plots were
obtained by extracting the position of the centre of the dye spiral from experimental
visualizations and the centre of the passive-tracer-particle spiral from the numerical
results. There is clearly good agreement between the two sets of results, given the slight
arbitrariness in defining the centre. The primary-ring structure appears to bounce off
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Figure 6. (a) Trajectories of the primary and secondary vortex rings as given by the centroid
of the dye spiral (experiments) or the centroid of the tracer particles (numerical simulations).
(b) Variation in radial and axial coordinates of the primary ring with time, also showing
asymptotic projections. Re =800, L/D = 5.

the wall and move away from the wall axially as it moves outwards radially. This
is somewhat different from the apparent bounce of a vortex ring striking a wall
normally (see Lim et al. 1992). In that case the initial bounce is transitory, before the
ring resumes a slight motion towards the wall after recovery. However, the behaviour
may be a function of the Reynolds number.

In figure 6(b) the radial and axial coordinates of the primary ring are provided
as a function of time. This figure appears to indicate that both the axial and radial
positions continue to increase indefinitely at large times. In order to analyse this
somewhat surprising result, we give in figure 7(a) the radial and axial evolution of
the primary vortex ring for two different methods of tracking its movement in the
numerical simulation. In addition to the trajectories obtained from following the
centre of the particle spiral as before, this figure also shows the position of maximum
vorticity. These two indicators start to diverge for τ � 20, owing to the different
diffusion coefficients for dye and vorticity. Whereas the particle spiral indicates that
the radial position of the vortex ring continues to increase indefinitely, the vortex
centre shows that the latter does not move outwards very much past its position at
τ = 20. Figure 7(b) is an image from a numerical simulation showing the difference
in the positions at τ = 60. The difference in the asymptotic predictions of these two
methods of tracking is more substantial for other Reynolds numbers, as discussed
below. The results in figure 7 illustrates the limitations of which one has to be aware
when attempting to extract precise quantitative results from dye visualizations of fluid
flow.

3.2. Effect of Reynolds number on particle trajectory

The trajectories of the primary vortex ring as a function of Reynolds number are
shown in figure 8. These were obtained from frame-by-frame image analysis of dye
visualization videos. For Re � 200, the trajectories of the primary vortex rings follow
a similar path, although there are some differences after impact. In particular, the
bounce and recovery after impact is larger for the lower Reynolds numbers. For
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maximum vorticity (inner sets of results). Both sets of results were obtained from numerical
simulations. Re =800 and L/D = 5. (b) Image showing the differing vorticity and particle
centres after a long time, τ =60. Here, the black semicircular area shows the location of the
sphere and the grey areas indicate concentrations of vorticity.
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Figure 8. Effect of Reynolds number, as observed by experimental dye visualizations: (a) the
trajectories of the primary vortex ring; (b) the radial position of the primary ring as a function
of time.

Re � 800, the paths are almost identical to within the accuracy of the method used
to obtain the positions from the video images. The experiments indicate that at lower
Reynolds numbers the primary vortex-ring centre propagates further from the wall
after impact. However, it propagates furthest radially for Re ≈ 800 (Leweke et al.
2004b). Since the radial advection is due to the image vortex on the other side of the
wall, for equal circulations, if the ring is further from the wall then the radial velocity
will be smaller. This would suggest a priori that the higher-Reynolds-number rings
should propagate further. The reduced radial propagation actually seen at higher
Reynolds numbers may be due to a combination of factors, including the stronger
vorticity dynamics at higher Reynolds numbers. Numerical investigations indicate
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Figure 9. (a) Trajectories of the vorticity maximum of the primary vortex ring after impact
(2.5 <τ < 52) obtained from axisymmetric numerical simulations. Paths corresponding to
different Reynolds numbers are marked. (b) Post-impact evolution of the primary-ring peak
vorticity as a function of Reynolds number.

that the normalized circulation of the total wake at impact is similar to within 10%
for Reynolds numbers between 10 and 1500. Hence the nascent primary vortex ring
starts out with a strength relatively independent of the Reynolds number.

Figure 9 shows the vortex-ring trajectories after impact obtained from axisymmetric
numerical simulations for 2.5 <τ < 52. As discussed before, there are some differences
between the paths obtained from the dye visualizations and the paths obtained from
following the vorticity maximum. As with the experimental trajectories, the maximum
radial propagation occurs for Re= 800. In fact, for all the other Reynolds numbers
studied in the range 100–1500, the initial outward radial propagation of the vortex
ring reverses for long times. At Re= 800, the asymptotic trajectory is almost vertical.
For large Reynolds numbers, the eventual contraction of the primary vortex ring is
presumably due to the action of secondary vorticity, stripped off the sphere and wall by
the induced velocity of the primary ring. At long times (τ > 20), a significant amount
of secondary vorticity collects above the primary ring; the effect of this vorticity
and the associated vorticity of the image is to induce a velocity at the primary-ring
centre directed back towards the axis. At Re= 800, the secondary vorticity does not
propagate as far around the primary ring as for the higher Reynolds numbers, hence
the induced velocity is primarily axial rather than radial. These ideas are supported
by the vorticity fields shown in the next section.

The evolution of the peak vorticity in the primary ring is shown in figure 9(b).
While vortex stretching causes the vorticity to increase as the radius of the vortex
ring increases, after impact the mechanism is overpowered by diffusion and cross-
annihilation, so that there is a net decrease with time even for the highest Reynolds
numbers. Note that the vortex stretching described here comes about from the increase
in circumference of the ring as it increases in radius. This is perhaps different from
the common picture of vortex stretching, in which vortex filaments are stretched by a
velocity gradient aligned with the vorticity axis. Nevertheless, the physical effects of
both mechanisms are the same.

3.3. Vorticity dynamics for axisymmetric flow

Figure 10 shows a series of images depicting the evolution of the vorticity field
for Re = 100, 200, 400, 800, 1200 and 1500. The images show contour plots of the
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Figure 10. Vorticity contours showing the evolution of vortex structures from formation,
threading over the sphere and impact with the wall. Contours are shown for Re =100, 200,
400, 800, 1200 and 1500. At larger times the contour ranges are reduced for better depiction
of the vorticity-field structure. However, for each time value the contour levels are the same.

vorticity field for each Reynolds number at times τ = 0 (impact), 1, 2, 4, 8 and 16. At
Re= 200 a very weak primary vortex ring forms, which is not strong enough to lift
appreciable secondary vorticity from the wall. In this case, the separation bubble from
the sphere prior to impact is also weak and has not formed a vorticity maximum
away from the separating shear layer, as it does for the higher-Reynolds-number
flows. At Re = 800, the primary ring is compact and well defined up to the final time
shown. As the trailing wake passes over the sphere, secondary vorticity is generated
at the surface; this is also shed from the sphere as the nascent primary ring moves
towards the wall and outwards radially. At τ = 2, a vortex-ring dipole has formed
from the combination of these two vorticity sources. This secondary vorticity from
the sphere is stretched out as it combines with secondary vorticity generated at the
wall from the influence of the primary ring. As time increases, it is lifted from the
surface to encircle the stronger primary ring. It forms a relatively persistent annulus
that continues to surround the primary rings as it is slowly neutralized by diffusion
and cross-annihilation. On the wall region further out from the radial position of
the primary ring the vorticity again reverses sign, which indicates the presence of
a separation point on the wall; this would lead to dust ejection from the wall in
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Figure 11. Vorticity contours showing the long-time-evolution vortex structures for Re= 1500.
(a) τ = 8, (b) τ = 16, (c) τ = 32, (d) τ = 52. For each image the contour levels have been adjusted
to show all the vortex structures present. Note the net movement of the primary vortex ring
back towards the axis.

the investigations of Eames & Dalziel (2000). At higher Reynolds numbers the flow
becomes more complex, with the generation and release from the walls of tertiary
vorticity. This is seen clearly in the images for τ = 4. Not surprisingly, the primary
vortex ring remains stronger and more compact for longer times. At Re = 1500,
the secondary vorticity that surrounds the primary-vortex-ring core has started to
fragment just as it does for an isolated vortex ring striking a wall, as seen in the
experiments of Walker et al. (1987) and Naitoh et al. (2001), and in the simulations
of Orlandi & Verzicco (1993) and Swearingen et al. (1995). The experiments indicate
that the ring structures following a sphere-impact develop strong three-dimensional
instabilities at Re � 1000 (Eames & Dalziel 2000; Leweke et al. 2004b). This occurs
before strong fragmentation of the secondary annulus, and so the proposed instability
mechanism of Swearingen et al. (1995), which models the base flow as a secondary
ring orbiting the primary ring, may not apply to this case, as discussed below.

For Re= 1500, the predicted movement of the vortex structures for long times is
shown in the sequence of images in figure 11. This figure shows the vorticity field
for times τ = 8, 16, 32 and 52. The reversal of the radial motion and encasement
of the primary ring by secondary vorticity is clearly apparent. The maximum radius
achieved by the primary ring as a function of Reynolds number is shown in figure 12.
Both experimental results and numerical predictions are shown. Experimentally it
appears that there are two distinct regions: Re< 900 and Re > 900. Note that the
lines connecting the points are only a visual guide. The critical Reynolds number
corresponds approximately to the value at which the ring structures develop three-
dimensionality. Although it is likely that the onset of three-dimensionality has an effect
on the spreading of the primary vortex ring, the same qualitative behaviour is seen in
the numerical results, obtained for purely axisymmetric flow. In fact, the approximate
value Re = 900 marks the point where the secondary vorticity is strongly entrained
into an annular structure surrounding the primary core, and this secondary vorticity
makes the combined ring structure unstable to three-dimensional perturbations. At
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Figure 12. Maximum ring radius as a function of Reynolds number. The experimental results
are shown by the squares and numerical predictions by the circles. The connecting lines act as
a visual aid. The difference between the experimental results and the numerical predictions is
due to the different ways of defining the ring position, as discussed in the text, and the fact
that the flow is three-dimensional for Re> 1000 in the experiments.

Figure 13. Instantaneous streamlines and vorticity field for Re =1500 at τ = 8, well after the
development of the separation point at the outer edge of the primary vortex ring.

the same time this secondary vorticity also limits the radial propagation of the primary
ring, through its induced velocity, as discussed above.

3.4. Flow separation at the wall and dust ejection

The lifting and entrainment of the secondary vorticity at the wall by the primary vortex
core leads to the development of a separation point at the wall just beyond the radial
position of the primary ring. This occurs at approximately τ = 4, at the stage when
a strong well-defined primary vortex ring has formed. Figure 13 shows instantaneous
streamlines for Re = 1500 at τ = 8, well after the flow separation develops. These are
overlaid on the vorticity field showing the relative positions of the vortex structures
in the flow at this time. The strong primary recirculation together with the existence
of the separation point means that the fluid under the primary ring near the wall
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Figure 14. Experimental dye visualizations of the flow for Re= 800 at τ = 25 for different
running distances. The images correspond to (a) L/D = 1, (b) L/D = 2, (c) L/D =5 and
(d) L/D = 10.

is pulled up and over the ring. This flow state is associated with the dust ejection
observed by Eames & Dalziel (2000) and others. This figure also shows a number
of other reattachment and separation points (in three dimensions, curves) along the
wall, although they are associated with lower fluid fluxes.

Up to this point, we have analysed the axisymmetric flow resulting from a genuine
sphere impact (stopping distance S/D = 0) with a running distance of L/D = 5, at
different Reynolds numbers. In the remaining paragraphs of this section, we will
briefly discuss the effect of varying the running and stopping distances, as well the
effect of a rebound of the sphere after impact.

3.5. Effect of running distance

The effect of varying the running distance L is shown in figure 14 through a series of
dye visualizations taken at τ =25. The figure shows dye patterns for L/D =1, 2, 5 and
10, at Re= 800. As mentioned before, for L/D � 7 it is difficult to prevent the wake
developing non-axisymmetrically prior to impact, and hence results for L/D > 10 are
not shown. Naturally, longer running distances are associated with increased wake
vorticity, which leads to the development of a stronger primary vortex ring. At least
up to L/D = 5, this has the result that the ring propagates further radially before it
is diffused. For τ = 10, the situation is a little more complex and the evolved vortical
ring structure(s) occupy a larger region. Closer inspection of the left-hand side of the
image in figure 14(d) indicates that, as well as the primary ring, there is a secondary
structure above.

The situation is clarified through numerical simulations. Figure 15 shows the
total circulation contained in the wake of a sphere started impulsively from rest in
an infinite medium, as a function of time for different Reynolds numbers. These
results were obtained from axisymmetric simulations and hence are not subject to
the development of non-axisymmetric flow even for large times. Clearly, even for
very low Reynolds numbers the wake does not reach an equilibrium state by τ = 25,
five times longer than the running time used in the experiments. Indeed, for the
Reynolds numbers investigated in this study, the circulation increases almost linearly
for the entire integration period. Hence, doubling the running distance effectively
doubles the circulation in the separation bubble, which forms the primary vortex
ring. Furthermore, this means that at impact, the primary ring will be approximately
twice as strong and as a consequence will be able to generate and entrain more
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Figure 15. Circulation contained in the axisymmetric wake from a sphere started
impulsively from rest as a function of time, for different Reynolds numbers.
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Figure 16. Development of the vorticity field for different running distances and for Re=500,
obtained from numerical simulations. For each figure, the left- and right-hand parts depict the
vorticity field for L/D = 5 and 25 respectively. Note that the vorticity contour levels are the
same for all images.

secondary vorticity from the sphere and wall. The effect is clearly seen on comparing
the evolution of the vorticity field for L/D =5 and the evolution for L/D = 25, shown
in figure 16. For L/D = 25, the primary vorticity is much stronger initially, and this
situation persists through the evolution sequence. The entrained secondary-vorticity
fragments form secondary ring structures which orbit the primary ring, reminiscent
of the behaviour at higher Reynolds numbers shown in figure 10. For the lower
running distance ratio, the entrained secondary vorticity remains as a smooth annular
structure throughout the evolution.
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Figure 17. Trajectories of the primary (black line) and secondary (grey line) structures
at Re =800 and L/D = 5, for different stopping distances. (a) S/D = 0, (b) S/D = 0.2,
(c) S/D =0.5, (d) S/D = 1, (e) S/D = 3, (f ) S/D = 5.

3.6. Influence of stopping distance

The effect of stopping the sphere prior to impact with the wall is shown in figure 17.
These trajectories were obtained experimentally. The influence on the trajectory of the
primary vortex ring is not strong. In contrast, the path of the much weaker secondary
vortex structure shed from the sphere as the primary ring passes (see figure 2) is more
substantial. For S/D = 0.2 and then for all higher values of the stopping distance,
the path of the secondary structure, while initially following that of the S/D =0
case, eventually forms a loop and reaches a considerable distance from the wall. For
S/D = 0, this secondary vortex structure combines with the wall vorticity and does
not persist as a separate rolled-up vortex.

For higher stopping distances (S/D = 3, 5, and more), one observes a decoupling
of the interactions of the primary-wake vortex ring with the sphere and with the
wall. Right after the passage of the sphere, the ring of secondary vorticity orbits the
primary vortex once, after which its motion dies out close to the sphere. The primary
ring, however, continues its trajectory up to the wall, where it again spreads out
radially.

3.7. Effect of rebound

Figure 18(a) is an experimental visualization of the ring system when the sphere
rebounds, for the reference case Re= 800 and L/D = 5. For this experiment, the
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Figure 18. (a) Experimental dye visualization of the flow at τ = 2 after sphere impact with
rebound. Re= 800, L/D = 5. (b) Trajectory of the primary vortex with and without rebound
for the same parameters.

rotation direction of the stepper motor controlling the sphere motion was reversed
at touchdown (a numerical simulation of the rebound case was not attempted). The
trajectory of the primary vortex ring, obtained from the dye visualization, is given in
figure 18(b), where it may be compared with the trajectory without rebound. As the
rebounding sphere moves back upwards through the primary wake ring, the latter
expands to let the sphere through and then re-contracts to almost the same diameter
that it had before the sphere impact. The ring then spreads out radially along the
wall, reaching a maximum radius of slightly over one sphere diameter, as compared
to 1.5 diameters in the case without rebound.

It was seen in figures 5 and 10 that the vorticity of opposite sign generated at the
surface of the sphere during passage of the primary ring forms a secondary vortex-
ring structure, which propagates axially and then radially before being stretched out
and merged with the vorticity generated at the wall. In the presence of a rebound,
this secondary vorticity from the sphere forms the separation bubble attached to the
sphere as it recedes from the wall. It is taken away from the wall and does not
contribute to the dynamics of the primary vortex-ring interaction with the wall.

4. Three-dimensional flow
4.1. Observations

The experimental results of Eames & Dalziel (2000) and the present authors
indicate that the flow becomes three-dimensional for Reynolds numbers in excess
of approximately 1000. In the experiments, for Re = 1500 the instability appears to
develop rather rapidly for τ � 5, presumably due to exponential amplification of
noise. By τ � 10 the growth rate is very much reduced. A typical experimental dye
visualization is shown in figure 19. These images were taken from below the glass
floor of the tank using a white-light source.

The number m of azimuthal wavelengths (i.e. the mode number) is approximately
24, although the variation around the azimuth is substantial, indicating that the
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(a) (b)

Figure 19. Dye visualization showing the three-dimensional structure of the vortical ring
system for Re = 1500 and L/D = 5. (a) τ = 4, (b) τ =9.

Figure 20. Top and side views of positive and negative isosurfaces of the perturbation
azimuthal vorticity surrounding the primary vortex ring, highlighted by a pressure isosurface.
The sphere is also shown. The isosurface values are not provided or relevant because the
perturbation growth is still linear at this time. Re =1200, τ = 10.Note that the azimuthal
vorticity isosurfaces partially obscure the pressure isosurface, which takes the form of an
annulus in the projection on the left.

instability is relatively broadband. The distortion appears to be greatest in the region
surrounding the primary-vortex core.

Figure 20 shows an isosurface plot of the perturbation azimuthal vorticity obtained
from a direct numerical simulation at Re = 1200 for τ = 10. The figure also shows a
pressure isosurface marking the position of the primary vortex ring to indicate where
the perturbation field is greatest. To perform the three-dimensional simulations,
the axisymmetric velocity field at impact was transferred from the axisymmetric
code to the three-dimensional code (see e.g. Sheard, Thompson & Hourigan 2003;
Ryan, Thompson & Hourigan 2005) and was seeded with a low-level white-noise
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perturbation (amplitude ||�u|| � 10−4) in order to initiate the development of the
instability. Typically, 64 Fourier modes, i.e. 128 Fourier planes, were used in the
azimuthal direction, which is sufficient since the non-axisymmetric component of
the flow remained relatively small even at the end of the simulation period (τ = 10).

The azimuthal mode number m of the perturbation observed in figure 20 is
about 21, which is close to the value obtained from the experimental visualization
at the slightly higher Reynolds number. The perturbation wavelength along the
ring is approximately 0.4D but varies considerably at different azimuthal positions.
Importantly, this is much smaller than the typical instability wavelength associated
with vortex–ring–wall interactions (Swearingen et al. 1995). In the latter case the
instability was attributed to the rapid distortion of the secondary (orbiting) vortex
ring (formed by fragmentation of the entrained encircling secondary vorticity) by
the stronger and more stable primary vortex ring. In the present case, at least at
lower Reynolds numbers where the instability first becomes apparent, the encircling
secondary vorticity surrounding the primary ring does not strongly fragment into
orbiting secondary rings but rather maintains a relatively smooth distribution
(Re =1200 in figure 10). At higher Reynolds numbers the fragmentation is stronger
and occurs more rapidly (Re = 1500 in figures 10 and 11). However, at least for
the Reynolds-number range studied experimentally (Re < 2000), it appears that the
preferred instability wavelength remains short.

4.2. Stability analysis

To investigate the azimuthal modes further, a linear stability analysis was performed,
in a quasi-static approach, on a series of ‘frozen’ axisymmetric base flows at different
times after impact. ‘Frozen’ means that the flow field at a given time, obtained from
axisymmetric DNS, is artificially held stationary and serves as a base flow for a
three-dimensional stability analysis. The latter was achieved by directly integrating
the linearized Navier–Stokes equations forward in time, using a modified version
of the spectral-element software, in order to capture the fastest growing instability
mode. Periodically, the linear velocity field and pressure were rescaled to prevent
divergence due to exponential growth. The integration was continued until the growth
rate stabilized and only the fastest growing mode remained. For some azimuthal
wavelengths, the spatial (i.e. non-exponentially growing) component of the linear
eigenmode became periodic rather than steady. The time-mean-amplitude multiplica-
tion factor per unit time was determined as a function of azimuthal wavenumber.
The predicted amplitude multipliers are shown in figure 21 for a series of discrete
times up to τ = 10. The maximum amplification rate occurs at approximately τ = 4
for azimuthal wavenumber m =19. This corresponds to the time when a strong
compact primary vortex ring first forms close to the surface. The growth-rate curves
are broadband, which is consistent with both the experimental and DNS variations in
the selected wavelength. In addition, the selected wavelength is consistent with both
the DNS simulations and the dye visualizations.

These curves can be used to construct an overall amplification factor for each
azimuthal mode by integrating over time. The total amplification over the time
period 2 � τ � 10 is given in figure 22 as a function of mode number. The lower
limit of this time interval is approximately when the vortex ring first encounters the
wall (see figure 6a). This prediction is compared with the measured amplification
factor from the direct three-dimensional numerical simulation of the same flow. For
this simulation, a random perturbation was added to each velocity component at
τ = 0, as described in the previous section. The perturbation modes decay rapidly
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Figure 21. Amplification factor per unit time, µ, associated with the frozen axisymmetric
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Figure 22. Amplification factor of azimuthal perturbations as function of mode number
for the period 2<τ < 10. The symbols indicate the total amplification factor calculated by
temporally integrating the quasi-steady amplification rates from the previous figure. The line
gives the growth of each mode number obtained directly from a DNS calculation.

until about τ � 2, when exponential growth begins to occur at least for the fastest
growing modes. The two results are in reasonable quantitative agreement, which
supports the validity of the method of integrating instantaneous growth factors. The
maximum amplification occurs around m = 20, a value that is again close to the
observed dominant mode in both the numerical simulation and experiments. Part of
the difference between the measured growth factors from DNS and those predicted
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Figure 23. Right-hand half of image: the structure of the perturbation azimuthal vorticity
field corresponding to the dominant eigenmode for Re = 1200, L/D = 5, m= 20 and τ = 4.
The left-hand half shows the frozen azimuthal vorticity field of the base flow. The contours
of the azimuthal vorticity showing the positions of the primary vortex ring and the encircling
secondary vorticity are overlaid on the perturbation field.

from the stability analysis based on the frozen flow may be due to the rather coarse
reconstruction of the time-dependent amplification rate for each mode, using spline
interpolation of amplification rates from only a few discrete times. In particular, there
is a large change in the amplification-rate curves between τ = 2 and τ = 4.

The maximum amplification factor is about 30 over the time period considered.
Figure 21 indicates that the growth rate has dropped considerably by τ = 10, hence
this value is a good indication of the overall amplification. Presumably, at higher
Reynolds numbers the total amplification will be considerably larger, but three-
dimensional simulations have not been performed to verify this. However, although
the experiments clearly show stronger and more rapid growth at higher Reynolds
numbers, they do not allow the growth rates to be quantified.

A typical image of the perturbation azimuthal vorticity field of the (pseudo-)
eigenmode is shown in figure 23 for τ = 4 and m =20. These time and wavelength
values correspond approximately to the maximum growth predicted by the stability
analysis. The positions of the primary vortex-ring core and the surrounding secondary
vorticity are overlaid, and the vorticity field of the base flow is reproduced in the
left-hand half of the image. The perturbation amplitude is strongest at the edge of the
core where the vorticity changes sign but also has a considerable amplitude within
the primary core. In fact, for this wavelength the stability mode is not stationary but
revolves with the core. The instability field within the core grows fastest when the
axis of the perturbation field aligns with the principal strain direction of the elliptical
core, i.e. when the perturbation is aligned at 45◦ to the ellipse axes, as is apparent in
this figure. While the perturbation within the core grows, the perturbation field at the
edge of the core, where the vorticity changes sign, also increases in amplitude. This
occurs as the field is advected around the core towards the top. Importantly, this figure
clearly shows that, at the time of maximum growth, the secondary vorticity is not
fragmented but forms a smooth (semi-)annular structure encasing the core. As noted
previously, this is different from the situation analysed by Swearingen et al. (1995)
for an isolated vortex ring striking a wall. In that case the secondary vorticity formed
into relatively compact orbiting rings, which were unstable to the strain field induced
by the primary vortex ring. For the flow situation analysed here, the perturbation
field within the core is consistent with the predicted perturbation-field distribution
for an elliptical instability of a strained isolated elliptical vortex. According to the
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Figure 24. Perturbation vorticity distribution of the mode m= 20 for Re =1200 and L/D = 5
at τ = 10, obtained from the three-dimensional simulation. Contours of the azimuthal vorticity
field (m= 0) are overlaid to show the location of the primary vortex ring and the secondary
vorticity. Note that the vorticity field varies sinusoidally in the azimuthal direction.

theory of elliptic instability (see e.g. Kerswell 2002), the preferred wavelength should
correspond to approximately twice the diameter of the invariant stream tube, which
is defined by the closed path where the perturbation amplitude of the vorticity drops
to zero. While this amplitude does not strictly drop to zero in the present case, it
reaches a relatively low level just inside the contour marking where the vorticity of
the primary ring drops to zero, as shown in figure 23. Measurement of the mean tube
diameter indicates that the selected mode should be m ≈ 20, which is consistent with
the observed wavelength for this mode. However, both the analytical theory (Le Dizès
2000), which includes the viscous correction to the growth rate, and numerical stability
analysis of the velocity field associated with the vorticity of the primary vortex core
only show that the predicted growth rate is substantially negative. Hence, on its
own the idealized elliptical-instability mechanism does not appear to be sufficient to
explain the observed growth.

Figure 24 shows the perturbation azimuthal vorticity field of the m =20 mode
at τ = 10 from the three-dimensional simulation described in the previous section.
Consistently with the isosurface plots of figure 20, the perturbation field attains its
maximum amplitude at the outer edge of the primary vortex-ring core, where the
vorticity changes sign. In addition, the field becomes larger for increasing anticlockwise
angle moving from the wall to the top of the core. At a greater angle the perturbation
field decays, corresponding to where the secondary vorticity decreases in magnitude.
This behaviour appears to be broadly consistent with a centrifugal-type instability.
In the following section, we investigate this aspect further, from a more theoretical
point of view.
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Figure 25. Analysis of the flow field for Re= 1200 and L/D = 5 at τ = 4. (a) azimuthal
vorticity distribution. Profiles of (b) circumferential velocity and (c) vorticity of the primary
vortex, averaged over ϕ.

4.3. Centrifugal instability theory

Bayly (1988) presented a generalized theory of centrifugal instability in flows with
closed streamlines, in particular, in axisymmetric flows. We use his results here to
obtain a theoretical prediction concerning centrifugal instability in the impacting-
sphere flow.

As in the previous section, we consider the flow for Re = 1200 and L/D = 5 at τ =4.
The azimuthal (in the frame of reference of the sphere) vorticity distribution of the
flow at this stage is shown again in figure 25(a). On defining local polar coordinates
r , ϕ centred on the location of the peak vorticity of the primary vortex ring (see
the labels in figure 25a), one obtains average radial profiles for the circumferential
velocity vφ and the vorticity ω, as shown in figures 25(b) and 25(c). For inviscid
flow, a sufficient condition for a three-dimensional centrifugal-type instability in an
axisymmetric flow is that the so-called Rayleigh discriminant, defined as

Φ(r) =
1

r3

∂

∂r

(
r2v2

ϕ

)
, (4.1)
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Figure 26. (a) Local inviscid growth rate s = (−Φ)1/2 and (b) global viscous growth rate as
functions of the azimuthal wave number m, for the flow field in figures 25b and 25c, according
to (4.4).

becomes negative somewhere in the flow. A ‘local’ inviscid growth rate s is then given
by s = (−Φ)1/2. The distribution of this latter quantity for the present case is shown
in figure 26(a). As expected, a region of unstable flow is found for r > 0.15, which
corresponds to the region where the vorticity changes sign with respect to the vortex
centre (see figure 25c).

An estimate for the global growth rate σ of the flow can now be obtained,
following Bayly (1988), by considering two additional effects attenuating the inviscid
local growth. One effect is linked to the finite radial extent of the unstable region.
Perturbations associated with centrifugal instability only ‘fit’ into this region if their
characteristic radial scale is not too large. Since the radial and axial scales are
linked, this implies an attenuation and eventually a cut-off for low values of the axial
wavenumber k, which is a function of the azimuthal mode number m and the overall
radius Rv of the primary vortex (see figure 25a): k = m/Rv . If the profile of s can
be approximated by an inverse parabola (which is sufficiently verified in the present
case; see figure 26a), with maximum s0 and half-width w, the modified inviscid global
growth rate is then found as

σi = s0[1 − Rv/(mw)]. (4.2)

The second effect is due to the influence of viscosity, which attenuates perturbations
at high wavenumbers. In dimensional units, the attenuation of the growth rate can
be estimated as −cνk2, where ν is the kinematic viscosity and c is a constant of O(1).
For the present case, the non-dimensional attenuation is therefore expressed as

−cm2
/(

R2
vRe

)
. (4.3)

In summary, a theoretical estimate of the global viscous growth rate of the flow is
given by

σ = s0

[
1 − Rv/(mw) − cm2

/(
R2

vRe
)]

. (4.4)

The parameters appearing in this expression can be evaluated from the numerical
results shown in figures 25 and 26. The following values are obtained s0 = 2.57,
Rv =1.25, w =0.1. The constant c should have the value unity if the wavenumber
used for the estimation of the viscous damping term is the norm of the three-
dimensional wave vector of the perturbation mode. In the present analysis we only
consider the axial wavenumber k; however, a non-negligible contribution from the
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radial wavenumber is also to be expected, owing to the localized nature of the
perturbations. Therefore a value of c greater than unity is likely to represent the true
viscous attenuation as expressed in (4.3).

The final result of the growth-rate curve σ (m) for the flow considered here is
displayed in figure 26(b) for c = 2. For this value, the predicted most amplified mode
number and maximum growth rate are mmax = 25 and σmax =0.57, respectively. This
combination is in very good agreement with the experimental and numerical results
shown above. The observed azimuthal wavenumber was m = 24 in the experiments
(figure 19) and m = 21 in the direct numerical simulation (figure 20). In addition, the
stability analysis of the flow with the same Re and L/D, frozen at τ = 4, gives also
very similar values (see figure 21), mmax = 19 and σmax = 0.53.

This good overall agreement of centrifugal-instability-theory predictions with
experimental and numerical results, together with stability analysis, leads to the
conclusion that the three-dimensional instability observed in the flow generated by
the impact of a sphere on a solid wall is indeed of the centrifugal type. It is caused
by the wrapping-up of secondary vorticity of opposite sign around the primary-
wake vortex ring that was spreading out along the wall. For the particular set of
parameters at which the instability first occurs, the secondary vorticity forms a more
or less uniform band around the vortex, instead of rolling up into concentrated
secondary vortices. This particularly favours a centrifugal-type instability, which
occurs in vortices whenever the vorticity changes sign as the radial distance from the
axis increases, in a more or less axisymmetric way. The work of Eames & Dalziel
(2000) suggested that the impacting-sphere instability was caused by a mechanism
similar to the one occurring in the flow generated by an impacting vortex ring alone,
where a concentrated secondary vortex formed from the wall vorticity develops an
azimuthal instability (Orlandi & Verzicco 1993; Swearingen et al. 1995). The facts that
the flow considered here does not form strong and discrete secondary vortex rings,
at least for the Reynolds numbers at which the instability first becomes apparent,
and that the azimuthal wavenumbers of the impinging vortex-ring instability are in
the range 5–10, i.e. substantially smaller than in the present observations, strongly
suggest that this latter instability is not acting in the present flow.

The reason that the three-dimensional flow development in our experiments
apparently differs from those of Eames & Dalziel (2000) is not entirely clear. The
visualization of the three-dimensional instability in the Eames and Dalziel paper is for
Re= 3100. This is considerably higher than the highest Reynolds number studied in
the present paper, for either the experiments or the numerical simulations. It is possible
that the instability shown in the images of Eames and Dalziel is not the same as
that occurring at lower Reynolds numbers, despite the fact their is this assumption.
In addition their starting distance is slightly different, 7.5D versus 5D. The two-
dimensional simulations in the present paper suggest that the enveloping secondary
vorticity tends to fragment as the Reynolds number increases. The semidiscrete
structures formed from the fragmenting secondary vorticity appear to be unstable
to the lower-mode-number impacting-vortex-ring instability of Orlandi & Verzicco
(1993) and Swearingen et al. (1994). However, at lower Reynolds numbers in the
current simulations, a higher-mode-number instability dominates, apparently due
to the centrifugal mechanism. Both these instabilities are transitory, growing from
background noise for a limited time. At higher Reynolds numbers, the fragmentation
of the secondary vorticity may lead to considerable magnification of the shorter-
wavelength mode; however, the mode that dominates the transition from two-
dimensional to three-dimensional flow depends on the initial background-noise level
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and the overall growth of each instability, which are in turn dependent on the Reynolds
number and the starting distance from the wall. This is under further investigation.

5. Conclusions
The flow dynamics associated with the normal impact of a sphere with a wall have

been investigated both numerically and experimentally. The experiments indicate that
the collision remains essentially axisymmetric for Re < 1000, which is consistent
with a previous experimental study of dust ejection by Eames & Dalziel (2000). In
essence, in terms of vorticity dynamics the situation is very similar to the collision of
a vortex ring with a wall, previously studied by a number of authors including Lim
et al. (1992), Walker et al. (1987), Orlandi & Verzicco (1993), Swearingen et al. (1995)
and Naitoh et al. (2001). A primary vortex ring forms from the separated flow at
the rear of the sphere prior to impact, which threads over the sphere before moving
towards the wall and then radially outwards. The presence of the sphere influences
the dynamics in a number of ways. In particular, it forces the ring to rapidly expand
radially just after impact, and the passage of the ring leads to the generation of
secondary vorticity of opposite sign on the surface of the sphere. This secondary
vorticity is then pulled out and entrained by the primary ring as it moves away.
Both the numerical simulations and the experiments show that the outwards radial
movement of the ring ceases after a relatively short time (τ � 10). The maximum final
radial distance of the ring from the axis is about 1.5D. This occurs for Re =800, but
the distance is relatively insensitive to Reynolds number, as is the observed overall
trajectory. The numerical simulations show that in most cases the radial motion is
reversed. This is not seen in the experiments using dye, because the dye fails to follow
the primary-vortex core at large times owing to the effects of vorticity diffusion.

At higher Reynolds numbers, the ring structure becomes unstable three-
dimensionally. The wavelength of the instability in the azimuthal direction (along
the primary vortex ring) is much shorter than has typically been observed for isolated
vortex rings colliding with a wall. For an isolated ring, the interaction with a wall
typically leads to the generation of relatively discrete secondary rings orbiting the
primary ring. Analysis of the strain field of the flow shows that the secondary rings
are unstable to a longer-wavelength instability induced by the strain field of the much
stronger primary vortex ring (e.g. Swearingen et al. 1995). For the situation here,
the secondary vorticity field surrounding the primary ring is relatively smooth and
continuous, at least for small times (τ < 10) and low Reynolds numbers (Re � 1000),
when the instability first appears. An analysis of the instability has been presented in
this paper, suggesting that it can be considered primarily a centrifugal instability. A
stability analysis of the ‘frozen’ flow at different times, incorporating the centrifugal
instability theory of Bayly (1988), was able to accurately reproduce the preferred
wavelength and growth rate obtained in the experiments and numerical simulations. It
is possible that the vortex-straining mechanism of Swearingen et al. (1995) contributes
at higher Reynolds numbers and/or longer times, where the secondary vorticity
fragments into semidiscrete rings orbiting the primary vortex ring.

The authors wish to thank the Australian Research Council for support under a
Linkage International Grant, and the Victorian Partnership for Advanced Computing
(VPAC) and the Australian Partnership for Advanced Computing (APAC) for
supplying computing resources for this project.



148 M. C. Thompson, T. Leweke and K. Hourigan

REFERENCES

Bayly, B. J. 1988 Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows.
Phys. Fluids 31, 56–64.

Eames, I. & Dalziel, S. B. 2000 Dust resuspension by the flow around an impacting sphere. J. Fluid
Mech. 403, 305–328.

Gondret, P., Lance, M. & Petit, L. 2002 Bouncing motion of spherical particles in fluids.
Phys. Fluids 14, 643–652.

Hirt, C., Amsden, A. & Cook, J. 1974 An Arbitrary Lagrangian Eulerian finite element method
for all flow speeds. J. Comp. Phys. 14, 227–253.

Johnson, T. A. & Patel, V. C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid
Mech. 378, 19–70.

Joseph, G. G., Zenit, R., Hunt, M. L. & Rosenwinkel, A. M. 2001 Particle-wall collisions in a
viscous fluid. J. Fluid Mech. 433, 329–346.

Kerswell, R. R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83–113.

Le Dizès, S. 2000 Non-axisymmetric vortices in two-dimensional flows. J. Fluid Mech. 406, 175–198.

Leweke, T., Thompson, M. C. & Hourigan, K. 2004a Touchdown of a sphere. Phys. Fluids 16, S5.

Leweke, T., Thompson, M. C. & Hourigan, K. 2004b Vortex dynamics associated with the collision
of a sphere with a wall. Phys. Fluids 16, L74–L77.

Lim, T. T., Nichols, T. B. & Chong, M. S. 1992 A note on the cause of the rebound in the head-on
collision of a vortex ring with a wall. Exps. Fluids 12, 41–48.

Naitoh, T., Banno, O. & Yamada, H. 2001 Longitudinal vortex structure in the flow field produced
by a vortex ring impinging on a flat plate. Fluid. Dyn. Res. 28, 61–74.

Orlandi, P. & Verzicco, R. 1993 Vortex rings impinging on walls: axisymmetric and three-
dimensional simulations. J. Fluid Mech. 256, 615–646.

Ormières, D. & Provansal, M. 1999 Transition to turbulence in the wake of a sphere.
Phys. Rev. Lett. 83, 80–83.

Ryan, K., Thompson, M. C. & Hourigan, K. 2005 Three-dimensional transition in the wake of
elongated bluff bodies. J. Fluid Mech. 538, 1–29.

Rice, M. A., Willetts, B. B. & McEwan I. K. 1996 Wind erosion of crusted solid sediments. Earth
Surface Processes Landforms 21, 279–293.

Shao, Y., Raupach, M. R. & Findlater, P. A. 1993 Effect of saltation bombardment on the
entrainment of dust by the wind. J. Geophys. Res. 98, 12719–12726.

Sheard, G. J., Thompson, M. C. & Hourigan, K. 2003 From spheres to circular cylinders:
classification of bluff ring transitions and structure of bluff ring wakes. J. Fluid Mech. 492,
147–180.

Swearingen, J. D., Crouch, J. D. & Handler, R. A. 1995 Dynamics and stability of a vortex ring
impacting a solid boundary. J. Fluid Mech. 297, 1–28.

Thompson, M. C., Hourigan, K. & Sheridan, J. 1996 Three-dimensional instabilities in the wake
of a circular cylinder. Expl. Therm. Fluid Sci. 12, 190–196.

Thompson, M. C., Leweke, T. & Provansal, M. 2001a Kinematics and dynamics of sphere wake
transition. J. Fluids Struct. 15, 575–585.

Thompson, M. C., Leweke, T. & Williamson, C. H. K. 2001b The physical mechanism of transition
in bluff body wakes. J. Fluids Struct. 15, 607–616.

Tomboulides, A. G. & Orszag, S. A. 2000 Numerical investigation of transitional and weak
turbulent flow past a sphere. J. Fluid Mech. 416, 45–73.

Walker, J. D. A., Smith, C. R., Cerra, A. W. & Doligalski, T. L. 1987 The impact of a vortex
ring on a wall. J. Fluid Mech. 181, 99–140.


