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Abstract

Following previous experimental and computational studies, this article further investigates the applicability of the
Landau equation to describe the Hopf bifurcation occurring for flow past a circular cylinder. It is shown that when the am
variable is taken as the transverse velocity component at a point in the wake, the so-called Landau constant varies co
with position and importantly is generally far from constant during the saturation phase of wake development. The varia
downstream distance is quantified. However, it is found that the Landau constantat saturationis indeed a position-independe
constant and this value is close to that generally measured previously both experimentally and numerically. It is shown
amplitude variable is taken as the lift coefficient of the cylinder (a global variable) then the same Landau constant is m
at saturation and the zero amplitude Landau constant corresponds to that for the transverse velocity at the back of th
These findings are used to interpret the wake behaviour of a transversely oscillating circular at subcritical Reynolds n
 2003 Elsevier SAS. All rights reserved.

1. Introduction

The complex Stuart–Landau equation has been widely used to model supercritical bifurcations occurring in flow
when a control parameter exceeds a critical value. Typical examples include: the transition from steady flow to vortex
(i.e., the Hopf bifurcation) in the wake of a circular cylinder [1–6], the regular bifurcation (i.e., steady to steady) of a sphe
leading to the beautiful two-tailed structure as shown by Margarvey and Bishop [7,8] (see also, e.g., [9,10]); the Hopf bif
of the sphere wake [9,11,12]; and the transition to three-dimensionalmode Bshedding of a two-dimensional circular cylind
wake [13]. However, not all flow transitions are governed by the cubic form of the Stuart–Landau model, for instance, th
three-dimensional transition of a circular cylinder wake from the two-dimensional Bénard–von Karman wake issubcritical
and hence requires the retension of at least quintic terms to model the approach to the saturated state [14]. In pra
is indicated by the observation that the transition is hysteretic, or through a discontinuous change in flow parame
as Strouhal number or the drag coefficient [15,16]. These successes have been achieved despite an incomplete m
foundation for the Stuart–Landau model.

A key reason for studying the (Stuart–)Landau model is that, because it is amenable to straight-forward math
analysis, it can predict the behaviour of, and provides important insight into, complex flow systems. For instance,
models can be coupled together to describe the wake dynamics of interacting cylinder or sphere wakes [17,18]. The m
provides a starting point for the Ginzburg–Landau model describing aspects of the two-dimensional shedding from a
cylinder, such as phase transitions, oblique shedding and chevron patterns [19–21]. The model can be extended t
interacting wake modes such as the two initial three-dimensional circular cylinder wake modes [22]. In theory, it can
extended to wake flows from forced or freely-oscillating bodies. For example, it was applied to predict the asymptot
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states of a circular cylinder wake under transverse forcing by Le Gal et al. [23]. Note that for forced Hopf oscillators, a complete
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mathematical analysis of the different solutions has been provided by Gambaudo [24].
The aim of the present paper is to re-examine the application of the Stuart–Landau model to the Hopf bifurcatio

circular cylinder wake. The work of Dusek et al. [1] showed that the model accurately describes the observed respo
the Reynolds number is restricted to be within 10% of the critical value. These authors used the transverse velocity on
centreline as the Landau model variable. For points on the wake centreline, the transverse velocity is zero prior to trans
hence this provides a direct measure of the growth of the instability. Importantly they found that theLandau constantindeed
appeared to be a constant at all sampled points in the wake. (Interestingly, it will be shown later in this paper that the
is somewhat more complicated). Zielinska and Wesfried [6] showed universal global mode behaviour with Reynolds nu
the transverse velocity component on the centreline, provided the velocity is normalised by its (Reynolds-number de
maximum value and position is rescaled by the length to the position of the velocity maximum. The applicibility of the
could then be extended to approximately to 30% in excess of the critical value. While this is advantageous in terms o
of the model, it is restrictive in that the maximum velocity and its position are not known a priori. Another possible
for the Landau variable is to associate it with a global measure of the perturbation amplitude. This is also problematic
generally this requires an integration over a near-infinite domain; difficult to achieve both experimentally or numeric
this paper, we initially focus on the local measure of the transverse velocity component at different points in the wake
examine the predictions for a global variable: the lift coefficient.

In the following sections we briefly review the theory, describe the numerical approach adopted and analyse the n
data in terms of the Landau model.

2. Theory

2.1. The Stuart–Landau equation

The complex Stuart–Landau equation is given by

dA

dt
= (γ + iω)A − (cR + icI )|A|2A + · · · , (1)

in which A is a complex-valued function of timet and the parametersγ , ω, cR and cI are all real. The Landau constan
usually denoted byc, is given byc = cI /cR in this formulation. The equation is generally truncated after the cubic term
the usual case for supercritical transitions since the cubic term is nominally sufficient for limiting the initial exponential
and causing saturation. This is the case for the Hopf bifurcation, i.e., the transition to periodic shedding in the circular
wake. Importantly, the real part of the cubic coefficient is positive so that this term is responsible for saturation. Also n
only odd terms in the (complex) amplitude can appear on the right-hand side [25].

Eq. (1) represents the normal form of the Hopf bifurcation which occurs at the critical value of the parameterγ = 0. For
γ < 0, the null solutionA = 0 is a stable solution. For a circular cylinder, the flow corresponds to steady flow with att
eddies at the rear of the cylinder. Forγ > 0, this base state loses its stability and the solution settles down to a time-pe
state (corresponding to Bérnard–von Karman vortex shedding). If only the linear and cubic terms are considered, the
amplitude is given by|A| = (γ /cR)1/2, and the angular frequency at saturation is given byω − γ c. The time-scale for the
transient to leave the null solution is given byγ −1 (e.g., [1]).

In general, the parameters in this equation may be a function of Reynolds number although it is hoped that the de
is weak, except forγ which changes from negative to positive at transition. Also, ifA is taken as a local quantity, such as t
transverse velocity component, the coefficients may be function of position. It is found thatγ andω are independent of positio
close to transition, this can be justified both from measurements and on theoretical grounds according to the fact that a
instability appears and lets a global mode to take place in the flow. For the analysis presented here we take the coefficR

andcI to depend on|A|2. This is equivalent to including higher-order terms in the equation but allows us instead to fo
the constancy of these parameters during the exponential growth and saturation phases of the transition. To reitera
analysis presented in this article we explicitly truncate Eq. (1) to include only linear and cubic terms. The effect of high
terms is then implicitly included by allowing the real and imaginary cubic coefficients to depend on|A|2. Note that in terms
of this truncated model, the real and imaginary cubic coefficients at zero amplitude correspond to the cubic coefficien
original (untruncated) expansion.

To proceed with the analysis of the Landau model, it helps to writeA(t) in the form

A(t) = ρ(t)eiφ(t), (2)
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whereρ(t) = |A(t)| is the real and non-negative amplitude of the complex functionA, and φ(t) is its phase (also real).
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Substitution into Eq. (1) results in the pair of equations

d logρ

dt
= γ − cR(ρ2, ζ )ρ2 (3)

and

φ̇ = ω − cI (ρ2, ζ )ρ2. (4)

Again note that the cubic coefficients are now written as explicit functions of the time-dependent amplitude (ρ = |A|). They
are also a function of position (ζ = x/R) if we use the transverse velocity component as the Landau complex amplitude va

If ρsat(ζ ) is the amplitude at saturation at any point, then from Eq. (3), this can be written in terms of the model par
asρ2

sat= γ /cR(ρ2
sat(ζ )). In addition, if we make the physically reasonable assumption that the flow islockedat all points once

that flow has reached the saturated state (see later for verification), and ifφsat is the position-independent saturated angu
frequency, theṅφsat= ω − cI (ρ2

sat, ζ )ρ2
sat(ζ ). Using the previous result,

�ω = φ̇ − ω = cI (ρ2
sat, ζ )

cR(ρ2
sat, ζ )

γ = csatγ. (5)

Here,�ω represents the shift in angular frequency from that during the linear phase. Sinceω, γ and φ̇sat are all position
independent (due to the initial flow locking and locking at saturation),csat(ρ

2
sat, ζ ) ≡ (cI (ρ2

sat, ζ ))/cR(ρ2
sat, ζ ) must be position-

independent. Using numerical experiments, Dusek et al. [1] found that the Landau constant was approximately
however, the present analysis indicates that very simple and reasonable assumptions, i.e., initial and final flow loc
no quadratic dependence in Landau model, effectively require the Landau constant at saturation to be independent o
This will be examined numerically in the results section. Note that this analysis says nothing about the behaviour of the
constant during the initial growth phase of the instability.

3. Results

In this section we examine the Hopf bifurcation in some detail attempting to quantify the model coefficients as th
undergoes transition, the instability grows linearly and finally reaches saturation.

3.1. Numerical methodology

We describe a series of simulations which extend the work of Dusek et al. [1]. The spectral-element method is
simulate the flow at post-critical Reynolds numbers. The specific implementation is described in Thompson et al. [2
implementation achieves second-order time accuracy and spectral spatial convergence as the number of nodes per
increased, as is common for global spectral methods [27]. The software has been successfully used on a number
problems, e.g., flow past plates, and three-dimensional circular cylinder wake transition [26]. Care has been taken to v
both the grid resolution and domain size are sufficient to obtain accurate results, even though, as pointed out by Dusek
the similar results are achieved for less refined meshes and smaller domains. The domain size has the following cha
dimensions: inflow length= distance to side boundaries= 50D, and outflow length= 85D. Resolution and domain size studi
indicate the accuracy of the predictions is better than 1%.

The behaviour of the flow is monitored by recording the velocity components at fixed points downstream along th
centreline, and by recording the lift and drag force on the cylinder. Both the transverse component of the velocity a
wake centreline and the lift coefficient (per unit length) are zero in the pre-transition state. In the following sections th
for the transverse velocity are discussed first.

The saturated wake state atRe= 48 is shown in terms of the vorticity field in Fig. 1. This is only about 3% above the cri
Reynolds number ofRe= 46.4 found for the present simulations. The exact transition Reynolds number is slightly depe
on domain blockage; Dusek et al. [1] found a critical value ofRe= 46.1.

Fig. 1. Vorticity field in the wake atRe= 48.



222 M.C. Thompson, P. Le Gal / European Journal of Mechanics B/Fluids 23 (2004) 219–228

ions

r, for the
The

noise
ds
ing
enterline:
rence in
to evaluate
quadratic
observed

es
tion of
n be seen
as exact,

from an
nstability

). Clearly
f
arly, those
ts of the

ch
ependent
ntially in

d
f position
Landau

timate
ds to a
positions

contrast,
Fig. 2. Left: variation of d log(ρ)/dt with ρ2; right: variation ofφ̇ with ρ2. The different curves correspond to the different sampling posit
on the wake centreline as described in the text. The initial and final values of both d log(ρ)/dt andφ̇ are both position independent.

3.2. Simulations at slightly post-critical Reynolds numbers

Simulations were performed at a number of Reynolds numbers exceeding the critical Reynolds number, howeve
purpose of the present discussion we will focus on theRe= 48 case, which is representative of the general behaviour.
transition takes place naturally, from initiation through computer round-off error, without the need to add a random
component. At this Reynolds number the shedding period is 16.48R/U∞ , hence it takes approximately two-hundred perio
to grow from low levels to saturation. Note that the timestep was 0.01R/U∞, corresponding to 1648 timesteps per shedd
cycle. For the analysis described below, the transverse velocity was recorded at the following positions on the wake c
ζ = x/R = 1.3, 2, 4, 7, 10.5, 14, 17.5, 21, 24.5, 28, 31.5, 35, 38.5, 42, 45.5, 49, 52.5, 56. Because of the distinct diffe
timescale between the shedding period and the instability growth timescale, these signals can be accurately analysed
the Landau model coefficients. To do this, the times and amplitudes of all local peaks and troughs are extracted using
interpolation. Note that these total amplitudes are very closed to the amplitudes of the fundamental modes as it can be
in Figs. 6 and 4 of Dusek et al. [1]. This provides direct measures ofρ(t) andφ(t). Next the derivatives on the left-hand sid
of Eqs (3) and (4), d logρ/dt andφ̇, are evaluated by central differences. This provides two sets of derivatives as a func
ρ2 and time. From these data, a fourth-order least-squares fit is performed. The functional variation is not strong as ca
from Figs. 2 (a) and (b), and a fourth-order fit captures the variation accurately. Note that if the cubic Landau model w
only a first-order fit would be required.

For each figure all curves start at the same point on the vertical axis. This indicates that the parametersγ andω are indeed
constants independent of position as expected. The wake can be viewed globally as undergoing a linear transition
unstable base flow. Initially, a single mode corresponding to a single frequency becomes amplified and since the i
initially grows linearly the growth rate will be identical everywhere.

For both figures the sets of curves end at a constant ordinate after the flow saturates (as required by saturation
d logρ/dt → 0 and dφ/dt → ωsat (the position independent angular frequency at saturation) asρ → ρsat. The gradients o
these curves correspond to the local values of the real and imaginary cubic parameters of the Landau equation. Cle
parameters are strongly dependent on position (as pointed out by Dusek et al. [1]). Unlike for Fig. 2(a), the gradien
curves in Fig. 2(b) are relatively strong functions of amplitude.

The data can be further analysed to evaluate the Landau constant. This can be determined by plottingc(ρ2) = (d logρ/dt −
γ )/(dφ/dt − ω) againstρ2 for each point on the wake centreline. Hereγ andω are derived from a least-squares fit at ea
point. Fig. 3 shows this variation. Clearly, this plot shows that the Landau constant indeed approaches a position-ind
constant as the flow saturates as is indicated by the theoretical analysis (Eq. (5)). When the flow is growing expone
the linear regime, the Landau constant is a strong function of position, varying between approximately−3 [19] close to the
back of the cylinder to approximately−1 far downstream. At saturationcsat= −2.708. This is consistent with the value foun
by Dusek et al. [1]. However, these authors found the Landau constant was only close to a constant independent o
and amplitude. The difference between the result here and the previous finding results from the different ways the
constant was evaluated. Dusek et al. [1] evaluated the Landau constant by performing a linear least-squares fit to escR

and cI with a long time series of data including a considerable period of time after the flow had saturated. This lea
biasing of the parameters to their saturated values. Hence their estimated Landau constants at different downstream
were close to the saturated position-independent value found here. Numerically they found a variation of about 3%. In
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Fig. 3. Variation of theLandau constantwith ρ2 and position. The different curves correspond to different downstream positions on the
centreline as given in the text. The curves end on the dashed line; they-coordinate corresponds tocsat. The curves are ordered with the positi
closest to the cylinder having the most negative initialc.

Fig. 4. Variation of the oscillation angular frequency with time at different points in the wake.

from the current numerical results, it is found that the Landau constant at saturation is position-independent to withi
over the range (1.3R < x < 56R). This is within numerical error associated with the finite-differencing required. Of inte
at approximately 10R downstream the cylinder, the Landau constant remains approximately constant throughout linear
and saturation. This explains in particular why experimentalists have been able to determine the Landau constant
velocity measurements during transients. Indeed, because of practical reasons, the highest velocity fluctuations wer
with probes usually located between the cylinder and 10R downstream.

Fig. 4 shows the oscillation frequency (dφ/dt ) as a function of time at different points in the wake. This graph cle
shows the wake is locked during the linear growth phase, in line with theoretical analysis. In addition, since the os
frequency can be associated physically with the convection of the vortex street downstream, after saturation the w
also be locked to a single frequency. This conclusion is also borne out by this figure, since post-saturation the vel
all points are again oscillating at the same angular frequency. During the saturation phase, there is a some minor va
the oscillation frequency with position. This does not indicate that the wake loses coherence, but rather that readju
required to transform from one state (amplitude distribution) to another. This is probably due to several factors. The fir
the perturbation mode shape changes considerably during development from the linear phase to the saturated phase.
is that the convection velocity variation with downstream distance also changes considerably between the linear and
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Fig. 5. Variation of initial Landau constant (c0) with downstream position and Reynolds number.

Fig. 6. Left: variation of d log(ρ)/dt with the scaled squared amplitudeρ̂2. Right: variation ofφ̇ with ρ̂2. The different curves correspond
the different sampling positions.

phases. Finally, any change in the oscillation frequency in the near wake is effectively convected downstream. This w
in a time lag between the near and far wake behaviour. However, Fig. 4 indicates that the frequency shift first occurs
in the wake further downstream, hence the last factor certainly cannot dominate.

Fig. 5 shows the variation of the Landau constant during the initial linear growth phase (i.e.,c0(ζ ) ≡ c(ρ2 = 0, ζ )) as a
function of downstream distance and also for a number of different post-critical Reynolds numbers. This data has been
by performing a fifth-order least-squares fit to the curves shown in Fig. 3 to extract they-intercept. This shows explicitly th
considerable spatial dependence ofc0 with position. Recall thatc0 corresponds to the (zero-amplitude) Landau constant o
semi-infinite Stuart–Landau model expansion, i.e., the model including higher-order terms not merely the third-order t

Fig. 2(a) shows there is considerable variation of d logρ/dt with position, however, in terms of the scaled squared amplit
(ρ̂2 = ρ2/ρ2

sat), there is very little variation. This is shown in Fig. 6(a). Here, for each point, the amplitude is scaled
value at saturation. All of the 18 curves are almost coincident. On the other hand, the same is not true for dφ/dt , as is shown in
Fig. 6(b). In this case there is considerable variation.

From Eq. (3), and using the resultρ2
sat= γ /cRsat, we can derive an equation for the scaled amplitude (ρ̂)

d logρ̂

dt
= γ

(
1− ĉR

(
ρ̂2, ζ

))
ρ̂2. (6)

Here,ĉR ≡ cR/cRsat; i.e., it is the scaled real cubic coefficient. The formal dependence onρ̂2 andζ have been made explicit i
Eq. (6), however, Fig. 6(a) shows that the dependence on both variables is weak. Note thatĉR is just the local gradient of eac
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saturation is about 10% and the variation at different downstream positions is within 5% of the mean.
Now, Eq. (6) can be applied at any point (at least on the wake centreline), and the numerical results indicate that the

ĉR(ρ̂2) varies by less that 10% between points close to the back of the cylinder and up to at least 30D downstream. Given th
functional variation of̂cR , this equation could be solved explicitly to giveρ̂2 = f (t), wheref is almost position-independen
The differential equation also has the property that it is invariant to arbitrary shifts in time. This means that the d
constants of integration at different points merely shift this near-universal function in time. This is demonstrated fr
numerical results by plottinĝρ2 against time for the different downstream locations as shown in Fig. 7. The analysis ind
that each curve should be close to self-similar, but merely shifted in time. This is demonstrated clearly in this figure.

Next, the implications of Eq. (5) can be further revealed by writing it in the form

�ω = φ̇ − ω = γ
cI

cR

cR

cRsat
ρ̂2 = c

(
ρ̂2)

ĉR

(
ρ̂2)

ρ̂2. (7)

Here, the dependence of the Landau constantc is explicitly written as a function of̂ρ2, as is explicitly shown in Fig. 3. Fig. 4
shows that there is only slight variation in the change in the frequency of oscillation at different points in the wake at leas
the period when the cubic terms are becoming important. (From Fig. 4 this occurs fort > 3500.) Thus, at different points, w
expect that�ω will be approximately constant. Taking this assumption, and the empirical finding thatĉR is also approximately
constant, Eq. (7) can be used to approximately relate the Landau constants at different points (say,ζ1 andζ2)

c
(
ρ̂2, ζ1

)
/c

(
ρ̂2, ζ2

) � ρ̂2(ζ2)/ρ̂
2(ζ1). (8)

Thus within the framework of the cubic Landau model, the Landau constant must vary with amplitude because of t
deformation which occurs during saturation and this effect is substantial.

Table 1 summarises the key parameters at different Reynolds numbers.

3.3. Stuart–Landau model results for the lift coefficient

During the simulations the lift coefficient per unit length was also recorded. This allows us to investigate how the
Landau model applies to an alternative amplitude variable. Prior to transition the lift is identically zero, hence this can

Fig. 7. Variation ofρ̂2 with time at different downstream positions. Each curve has approximately the same shape but is shifted in

Table 1
Key parameters of the Stuart–Landau model for the cylinder wake transition

Re csat γ ω

46.7 −3.04 0.000613 0.37135
48 −2.71 0.003307 0.37227
50 −2.48 0.007271 0.37352
52 −2.36 0.011030 0.37457
54 −2.29 0.014594 0.37545
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Fig. 9. Left: predicted resonance curves. The symbols denote resonance points determined by the numerical simulations. From lowes
the curves correspond to forcing levels ofUpert/U∞ = 0.025,0.05 and 0.1%. Also shown are the corresponding predicted resonance c
from the forced Landau model. The amplitude corresponds to the transverse velocity component at 7D downstream of the cylinder. Righ
predicted resonance curves from the forced Stuart–Landau model as a function of downstream distance using measured local va
parameters in the Landau equation.

as a direct (and perhaps global) measure of the growth of the instability. The identical analysis to that described a
applied to the force measurements. The analysis shows thatγ , ω andcsat are identical to within roundoff error. The variatio
of the Landau constant withρ2 is given in Fig. 8. The Landau constant for small amplitudes is similar to that recorded f
transverse velocity immediately at the base of the cylinder. Thus, perhaps not surprisingly, the response of the lift m
response of the wake in the immediate vicinity of the back of the cylinder.

3.4. Forced Stuart–Landau model applied to a transversely oscillating cylinder at subcritial Reynolds numbers

Le Gal et al. [23], and Thompson and Le Gal [25] examined the response of the circular cylinder wake due to an
transverse sinusoidal oscillation at the side boundaries at Reynolds numbers slightly below the critical value for she
this case, the Stuart–Landau model can be extended to include a forcing term [23] modelling the effect on the wa
transverse oscillation. It is possible to predict the detailed wake response using mathematical analysis. A key finding
wake should exhibit hysteresis above a critical oscillation amplitude provided the Landau constant is less than the crit
of ccrit = −√

3. Thus, if the wake respondsglobally according to the forced Stuart–Landau model a hysteretic wake resp
should be observed if the forcing frequency is slowly increased and then decreased across the hysteretic range. Despit
for this hysteresis effect both experimentally and numerically, it could not be found [23,9]. However, tantilisingly, the re
curves showed the characteristic hysteretic loop shape except that the hysteretic frequency range was absent. This b
shown in Fig. 9(a).
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constantsingle Landau constant. The results in this paper indicate that Landau constant varies with position in the wa
to saturation and it is only at saturation that the Landau constant is identical everywhere. This is really a constraint im
imposing the cubic Landau model. On the other hand, if a forcing term is added to the model so that the governing eq

dA

dt
= (γ + iω)A − (cR + icI )|A|2A + F exp(iΩt), (9)

then a similar analysis to that given above gives

0 = γ − cRρ2
sat+

F

ρsat
cos(δ), (10)

Ω = ω − cI ρ2
sat+

F

ρsat
sin(δ). (11)

Hereδ is the equilibrium phase lag, i.e.,(Ωt − φ), the difference between the forcing and response phases. This equati
be rearranged to give:

c = cI

cR
= −Ω + ω + (F/ρsat)sin(δ)

γ + (F/ρsat)cos(δ)
. (12)

The phaseδ varies with downstream distance. Consider two points in the wake with different downstream positio
with the same phase and hence the sameδ. SinceΩ , ω, γ and F are position-independent, but the saturated amplitud
not position-independent (within the framework of the Landau model) this equation indicates that these two points m
different Landau constants (even at saturation). Since the hysteretic frequency range of the response curve depends o
of the Landau constant, if it varies with downstream distance, then the hysteretic ranges at different downstream po
not match, and if there is no common overlap, then hysteresis should not be expected.

The predicted response curves at different downstream monitoring points obtained from the forced Stuart–Landau
shown in Fig. 9(b). To obtain these curves, the unforced cylinder wake at a Reynolds number of 47 was evolved at unti
its equilibrium periodic state. At that stage the Reynolds number was reduced toRe= 44, below the critical value for the Hop
bifurcation atRecrit = 46.4, and the flow was subsequently evolved while the wake oscillation decayed. It was found th
approximately one hundred periods, the initial transients decayed and the Landau constant at different downstream
slowly relaxed to the zero-amplitude values. At each monitoring point, the variation of the Landau constant with loca
amplitude was fitted using a Padé approximant. Next these functional fits were used to predict the resonance curves
Fig. 9(b). These clearly show that the hysteretic frequency range depends on downstream position and furthermore
is no common overlap region. Thus, the hysteresis range is effectively smoothed out as at some downstream poin
amplitude flow state is predicted, while at others, a low-amplitude state is predicted. However, at higher and lower freq
the predicted wake state is single-valued and hence away from the virtual hysteresis range the response curves re
theoretical response curves as shown in Fig. 9(a).

4. Discussion and conclusions

Accurate numerical simulations have been used to analyse the applicability of the Stuart–Landau model to the ini
bifurcation of the wake of the circular cylinder. While previous numerical and experimental results have indicated that th
appears to work remarkably well, a closer examination reveals that the story is more complex. For example, Dusek
found that, if the Landau model variable is taken as the transverse velocity on the centreline, the Landauconstantis position
independent to within about 3% over a range of different positions in the wake. We find that the value they found corr
to what we have called the Landau constant at saturation (csat). Here we focus on the truncated cubic Stuart–Landau mode
allow higher-order terms to be accounted for by allowing the complex cubic coefficient to be a function of amplitude.
case, simple analysis, with a few physically realistic assumptions (mainly phase-locking during the linear growth ph
after saturation), indicate thatcsat must be a constant independent of position (although still dependent on Reynolds nu
The numerical results bear this out to within numerical error. On the other hand, the initial Landau constant (c0), i.e., the value
straight after the linear growth phase when cubic terms start to be important, is far from constant and is found to v
position by a factor of approximately 3. Importantly, this parameter is really the mathematical Landau constant corres
to the semi-infinite Stuart–Landau model containing odd terms in the amplitude that has been treated previously anal

The results have enabled us to analyse near universal (i.e., position-independent) behaviour of the wake. It is s
the oscillation frequency shows only very minor variation with position at any time during the growth and saturation
instability. In addition, while the real (cR ) and imaginary (cI ) coefficients of the cubic term in the model vary considera
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with position, if cR is scaled by its value at saturation (cRsat), then that function (̂cR) is almost position-independent and only
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weakly dependent on scaled squared amplitude (ρ̂ ). The results also show that the variation of the scaled squared amp
(ρ̂2) with time at different positions shows a universal behaviour, with curves corresponding to different positions only
in time. This can be explained by the theory given the empirical invariance ofĉR . Finally, we show that the variation of th
initial Landau constant (c0) with position, is (at least) partially associated with the mode deformation which occurs betwe
linear and post-saturation phases.

These results apply to a local wake variable (the transverse velocity) rather than a global variable (as perhaps t
was suggested for). To investigate the applicability of these results to a global variable, the Stuart–Landau model was
also using the lift coefficient per unit length of the cylinder as the Landau model variable. In so far as the local result
carried across, they apply to the analysis using the lift coefficient. For example, post-saturationcsat is the same constant as f
the local analysis. There is also non-negligible variation of the Landau constant with amplitude during the saturation
there was for the transverse velocity. The near constancy of the real coefficientĉR is maintained, as is the universality of th
variation of scaled amplitude with time. Interestingly, the variation ofc(ρ̂2) with ρ̂2 follows the variation for the transvers
velocity component close to the base of the cylinder, (rather than the mean behaviour). Finally, an interpretation of th
of the Landau equation when used to model the forced wake is given. We show that it is the variation of the Landau
with the amplitude of the velocity oscillations in the wake that changes the shape of the resonance curves for each do
position. Thus, whereas hysteretic loops are locally permitted, this effect is smoothed out by the spatial coherence of
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