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• The two- and three-dimensional wake structure behind a circular cylinder 
has been computed using a high-order spectral element technique. For the 
two-dimensional computations the predictions are compared with accurate 
experimental results and agree to within experimental uncertainty for the 
Strouhal number and base pressure coefficient. For the three-dimensional 
simulations, the two modes of three-dimensional instability, designated as 
modes A and B, both found experimentally but not previously computation- 
ally, have been captured. Mode A appears first at a Reynolds number 
slightly less than 200. As the Reynolds number is increased, there is a 
transfer of energy to mode B, which has a wavelength approximately 
one-fourth that of mode A. 
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I N T R O D U C T I O N  

Despite the fact that the flow past a circular cylinder has 
been studied for well over 100 years, and the geometrical 
configuration is a particularly simple one, this problem is 
still under intensive investigation today. Indeed, within the 
last 10 years, due to the efforts of many research groups 
(Williamson [1-3], Hammache and Gharib [4], Norberg 
[5], Eisenlohr and Ecklemann [6]), the experimental rela- 
tionship between Strouhal and Reynolds numbers has 
been determined to within 1%, at least within the two- 
dimensional shedding regime. The previous discrepancies 
between different experimental teams seem to have 
stemmed from various factors including small aspect ratio 
cylinders, end effects, and oblique modes. The new "uni- 
versal" results represent a challenge for computationalists 
who in the past have relied on the variation in experimen- 
tal results to justify their predictions. 

At a Reynolds number of approximately 180, the two- 
dimensional periodic Strouhal vortex wake undergoes a 
transition to three-dimensionality. This was observed by 
Roshko [7, 8] in the form of irregularities in the wake 
velocity fluctuations. Recent experiments undertaken by 
Williamson [1,9] demonstrated that the transition to 
three-dimensionality involves two modes of formation of 
streamwise vorticity in the near wake. The two modes are 
dominant over different Reynolds number ranges. 

When the wake first becomes three-dimensional, at 
Re ~ 180 (Re = 2u~R/u ,  where v is the kinematic vis- 
cosity, R is the cylinder radius, and u~ is the free-stream 
velocity), mode A vortex shedding appears. This is charac- 
terized by regular streamwise vortices appearing in the 
wake, with a spanwise wavelength of  approximately 3 

cylinder diameters. At  Re = 230, a second mode (mode B) 
appears, consisting of a more irregular array of stream- 
wise vortices with a mean spanwise wavelength of about 1 
cylinder diameter. Between Re = 230 and Re = 260, there 
is a gradual redistribution of energy between the modes. 
At Re = 230, mode A dominates, while at Re = 260, 
mode B structures contain more energy. In this range 
both modes coexist. At each of these transitions, a discon- 
tinuity in the Strouhal number versus Reynolds number 
curve occurs. The appearance of mode A is hysteretic, 
while that of mode B is not. 

Until recently there have been few numerical studies 
published on the three-dimensional wakes due to the 
significant computational resources required to properly 
resolve the flow structures. One investigation undertaken 
by Karniadakis and Triantafyllou [10] concentrated on the 
stability of the wake of a circular cylinder over a Reynolds 
number range up to 500 rather than a detailed study of 
the different modes that appear. The emphasis was on 
examining the route to fully turbulent flow followed by 
this (and similar) flows. Computational restrictions led 
them to use a fairly coarse mesh with a spanwise domain 
size that was too short to capture mode A. They suggest 
that the route to wake turbulence is via period-doubling. 

In this paper, some preliminary results from numerical 
experiments examining both two- and three-dimensional 
flows are presented. The results of the simulations are 
compared with experimental results. 

PROBLEM F O R M U L A T I O N  

The governing equations are the incompressible time- 
dependent Navier-Stokes equations in primitive variable 
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form. The equations are discretized using a time-split 
spectral/spectral element method as described by Karni- 
adakis and Triantafyllou [10] and Tomboulides et al. [11] 
and references cited therein. Consequently only a brief 
overview is presented here. 

T i m e - S t e p p i n g  Scheme 

The momentum equations are integrated forward in time 
by a three-step procedure. The steps account for the 
convection, pressure, and diffusion terms, respectively. 
The equation treating the convection term is treated ex- 
plicitly because of its nonlinear nature. The equations for 
diffusion and pressure are treated implicitly. If memory is 
available, the matrices involved can be inverted in a 
preprocessing step. Otherwise, efficient iterative tech- 
niques for symmetric problems can be used (i.e., conjugate 
gradient methods). For the calculations described in this 
paper, only direct solvers were used. 

The convection equation is integrated forward in time 
by the third-order Adams-Bashforth method, and the 
diffusion equation is treated by the Crank-Nicholson 
scheme. In the second step, the pressure is evaluated. A 
Poisson equation is formed by taking the divergence of 
the equation for the pressure substep, and continuity is 
enforced at the end of the substep. Second-order overall 
time accuracy is achieved by using a higher order pressure 
boundary condition as described in Karniadakis et al. [12]. 

S p a t i a l  D i s c r e t i z a t i o n  

The spectral element technique [10] is employed for the 
two-dimensional (streamwise) flow (i.e., the xy planes). A 
typical (two-dimensional) spectral element mesh is shown 
in Fig. 1. It consists of K = 60 macroelements. Each 
element is mapped into a computational square, and 
high-order Lagrangian polynomial interpolants are used 
to approximate the solution variables in each direction. 
The Galerkin finite-element method is applied to form 
equations for the solution variables at the nodal points. 
The integrals of the flow equations multiplied by the local 
weighting functions are (approximately) evaluated by 
Gauss-Legendre-Lobatto quadrature. This approach is 
particularly economical computationally in that only a 
limited number of element nodes contribute to the equa- 
tions formed at a particular node. For example, the "mass" 
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matrix is diagonal in this case; this would not occur if 
Gauss-Legendre quadrature was used, for example. Fur- 
ther economy is gained by using static-condensation tech- 
niques. This method relies on the fact that the equations 
for the internal nodes of each element depend only on the 
boundary nodes, and hence the matrix equations can be 
decoupled into two sets, one involving the element bound- 
ary nodes and the other, K small matrix equations for the 
internal nodes of each element. The latter K equations 
can be evaluated after the first (larger) matrix equation is 
solved. A bandwidth minimization scheme can reduce the 
bandwidth (and hopefully overall size) of the matrices, and 
sparse matrix solvers are used to solve the large systems of 
equations involved. Due to the form of the splitting 
scheme, the matrix inversions need to be performed only 
at the beginning of the calculations. 

A Fourier spectral discretization is employed in the 
spanwise direction. This has significant computational 
benefits. The equations for each Fourier mode decouple, 
leading to small matrix equations for each mode rather 
than a large coupled matrix equation with a large band- 
width that would be much more computationaUy expen- 
sive. An efficient implementation can be achieved on 
parallel architecture machines due (in part) to this decou- 
piing. For the work described here, though, the computa- 
tions were performed in double precision on a serial 
Silicon Graphics workstation rated at about 12 megaflops 
with 12 megawords of main memory. 

TWO-DIMENSIONAL STUDIES 

As mentioned previously, experimental studies indicate 
that the wake becomes three-dimensional at a Reynolds 
number of ~ 180. Two-dimensional simulations below 
this Reynolds number should adequately reproduce the 
results of experimental measurements that are believed to 
be within 1% for the Strouhal number [2, 13]. At higher 
Reynolds numbers, two-dimensional computations can 
provide a comparison for three-dimensional computations 
and experiments. 

S t r o u h a l  N u m b e r  

In previous computational studies, an often-quoted test of 
accuracy for cylinder flow computations has been the 
variation of Strouhal number with Reynolds number. 
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F i g u r e  1. Two-dimensional view of 
three-dimensional mesh system 
showing the spectral element dis- 
cretization. This mesh has K = 60 
elements. 
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Williamson [2, 13] has given a least-squares fit to the 
universal Strouhal number curve for the low Reynolds 
number regime as 

A 
S t =  + B + C R e ,  (1) 

Re 

where A = -3.3265,  B = 0.1816, and C = 0.00016. 
The three-dimensional computations require a consid- 

erable amount  of  CPU time and memory, and hence for 
this preliminary study at least, the three-dimensional runs 
were done on a small mesh. The aim of  this section is to 
verify that the computational scheme can reproduce two- 
dimensional experimental results to within experimental 
error and to establish the effect of using a domain smaller 
than desirable. 

Karniadakis and Triantafyllou [10] found in their nu- 
merical experiments that, over a limited number of tests, 
the Strouhal number (1) increased with decreasing inflow 
length, (2) was insensitive to the outflow length (between 
36 and 70 cylinder radii), and (3) increased with decreas- 
ing domain width. They also confirmed that the level of  
resolution they used was sufficient by showing that in- 
creasing the resolution per element did not affect the 
Strouhal number. 

The domain is described by three main parameters: the 
number of  elements (K),  inflow length and domain width 
(Xi), and outflow length (Xo). In addition, the distribution 
of  elements within the domain also will strongly influence 
the overall accuracy of  the results. The mesh used for the 
three-dimensional calculations is shown in Fig. 1. This has 
X i = 7R and X o = 24.5R. Some larger meshes were used 
to try to reproduce the two-dimensional results as accu- 
rately as possible. This mesh (with K = 60 elements) was 
used as a basis together with either or both (1) an expand- 
able layer of  elements to extend the inflow length and 
domain width and (2) elements extending the outflow 
length. 

The effect of the number of nodes per element in each 
direction ( N )  is shown in Table 1. (Note that the order of 
the interpolating polynomial is N - 1.) For a calculation 
at Re = 200 on the mesh shown in Fig. 1, the Strouhal 
number has converged to better than 0.1% by N = 9. 

The Strouhal number is sensitive to the size of the 
domain. An accurate determination (to within the error in 
the experimental values) requires the outer boundary to 
be placed approximately 30R from the cylinder. The in- 
flow and outer boundary conditions will obviously affect 
this conclusion. For the present computations, the inflow 
and outer boundary conditions are taken from the poten- 
tial flow solution. Also, the outflow boundary conditions 

Table 1. Dependence of Strouhal Number on Polynomial 
Order for Small Mesh at Re = 200 for a Constant 
Time Step of 0.01 a 

Element Size (N x N) Strouhal Number 

5 x 5 0.2036 
7 x 7 0.2101 
9 x 9 0.2107 

11 x 11 0.2107 
13 X 13 0.2108 

a T w o - d i m e n s i o n a l  s imula t ion .  

0.22 

0.20 

0.18 

St 0.16 

0.14 

0.12 

0.10 

O 0 0 0  ~ 

OflOOO0 

J - /  
/ 

0 50 1 O0 150 200 250 300 

Re 

Figure 2. Variation of Strouhal number with Reynolds num- 
ber. The square symbols indicate results for large domain 
(106 [9 x 9] elements, X i = 50R, X o = 42.5R), and the 
rounded symbols are for the small mesh used for the 3D 
calculations (60 [9 x 9]) elements. The solid curve is the 
experimental fit given in [13]. 

are taken to be a v / a n  = 0 and p = 0. For all these runs 
the shedding becomes truly periodic at the Strouhal fre- 
quency, with no other identifiable frequency components. 

Figure 2 shows computations of the S t - R e  relationship 
for two different mesh systems: the mesh shown in Fig. 1 
(round symbols) and a mesh corresponding to a larger 
domain ( X  i = 50R, K = 106, X o = 42.5R) (square sym- 
bols). Each mesh has 9 x 9 nodes per element. The curve 
of best fit to the experimental data, given by Eq. (1), is 
shown for comparison. The results for the large domain 
are within 1% of the experimental values for the two- 
dimensional shedding range. (Strouhal numbers were cal- 
culated for a series of meshes with different X i up to 
5OR. Extrapolation indicates that the Strouhal number for 
the mesh with X i = 50R is within about 0.5% of the 
infinite domain width result.) For the smaller mesh, the 
results are within about 7%. Calculations were done for 
several meshes of intermediate size to ensure that the 
results for the large domain are close to the asymptotic 
result. It is believed that the restricted domain should not 
alter the essential physics underlying the development and 
interaction of the three-dimensional structures although it 
might influence variables such as the Reynolds number at 
which three-dimensionality first occurs. 

Other  Tests 

Although spectral e lement/spectral  methods possess the 
property of exponential convergence (i.e., converging faster 
than any power of  the number of nodes), in practice this 
asymptotic convergence rate may have little relevance. 
Unless the number of nodes per element is large enough 
that flow features can be resolved by the functional repre- 
sentation, these methods can be worse than using much 
lower order methods. A recent case in point is found in 
Kaiktsis et al. [14], which presents results for flow past a 
backward-facing step and predicts unsteady behavior at 
Re = 800. This prediction appears to be a result of inade- 
quate resolution. Most other computations using different 
methods indicate that the flow is steady, and calculations 



using a very similar spectral element code with more 
nodes per element also indicate a steady flow [15]. 

The Strouhal number may not be a very sensitive indi- 
cator that a particular mesh system has sufficient resolu- 
tion to adequately resolve the flow field. It may, for 
instance, depend more on the grid resolution in the neigh- 
borhood of  the cylinder and not the downstream resolu- 
tion. An  alternative test is to look at the variation of  the 
velocity field at a point some distance downstream of the 
cylinder. Figure 3 shows the dependence of  the extremes 
of  the u component  of  the velocity on the element order 
N. These values are taken at a point 7R downstream of 
the cylinder at Re = 200. Clearly, the curves are begin- 
ning to flatten out at N = 9. 

As a final validation, the base pressure coefficient 

c r .  = ( p  - p o ~ ) l ( l l 2 p u ~ )  

was computed for several Reynolds numbers and com- 
pared with the experimental measurements of  Williamson 
and Roshko [16]. The predictions are approximately 2 - 3 %  
below the measurements for parallel shedding for the 
Reynolds number  range 100-180. The base pressure co- 
efficient is much more difficult to measure accurately than 
is the Strouhal number, and the discrepancies between 
sets of  experimental data are considerably greater [5, 16]. 
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Figure 3. Dependence of the extremes of u(7, 0) on polyno- 
mial order N for the K = 60 element mesh at Re = 200. 

T H R E E - D I M E N S I O N A L  SIMULATIONS 

Numerical simulations of the onset of  three-dimensional- 
ity have been reported previously by Karniadakis and 
Triantafyllou [10] and Tomboulides et al. [11]. In their 
studies, emphasis was placed on the stability analysis and 
transition to turbulence. In the current study, the focus is 
on the appearance of  the two three-dimensional instability 

Figure 4. Alternative views of isosur- 
faces of pressure (p  = -0 .4 ,  black) 
and streamwise vorticity (rex = + 0.4). 
The cylinder is also shown (light 
gray). The views on the left are for 
R e =  200 (mode A shedding), and 
those on the right for Re = 250 
(mode 13 shedding). The top diagrams 
are perspective views with the flow 
from left to right. The bottom dia- 
grams show (orthographic) plan views 
of the two shedding modes, for which 
the flow is from the bottom to the 
top. The pressure isosurfaces mark 
the position of the predominantly 
two-dimensional spanwise Strouhal 
vortices. For reasons of clarity, the 
cylinder span length displayed is 4~rR, 
twice the computational span length. 
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modes, A and B, and the redistribution of energy between 
the two modes as the Reynolds number is increased. 
The topology of the three-dimensional structures is also 
examined. 

Simulation at Re = 250 

To investigate the development of the three-dimensional 
instability, a computation was performed at Re = 250, 
with 24 Fourier terms and a spanwise periodicity length of 
27rR. This span length was chosen from the observations 
of Williamson [1], who measured the spanwise wavelength 
for mode A to be approximately 6R. The computation 
was started from the periodic field taken from a two- 
dimensional simulation. The initially zero w velocity com- 
ponent was perturbed by a random amount at each point 
(at a level of 10 -4) to accelerate development of the 
three-dimensionality. After six Strouhal shedding cycles, 
plots of isosurfaces of the streamwise vorticity clearly 
show the appearance of coherent three-dimensional struc- 
tures with a spanwise wavelength of 27rR. The magnitude 
of the streamwise vorticity is very low at this time. The 
maximum value over the field is about 0.02. After 15 
cycles, the structures are much stronger still with a wave- 
length of 6R. At 25 cycles, the structures have almost 
reached maximum strength [max(%t - ~ x  2 + oJ 2 ) = 3]. 

There also appears to be some finer scale structure devel- 
oping at this time. 

After about 40 Strouhal periods from initiation of the 
three-dimensional disturbance, the three-dimensional 
structures change in character. Figure 4 (right) shows the 
isosurfaces at that time. The spanwise wavelength has 
been reduced to zr/2R. This is more typical of the mode 
B shedding observed experimentally. 

The simulation was continued for approximately 100 
Strouhal cycles and did not show any sign of reaching a 
steady periodic state. The u and w velocity traces at 
(1.88, -0.69) are shown in Fig. 5. (The Strouhal period is 
approximately 10.) There is no obvious indication of the 
period doubling found by Karniadakis and Triantafyllou 
[10] and Tomboulides et al. [11], who used a span length of 
only half of that used for the present simulations and 
therefore could not resolve mode A. Computations using 
the smaller spanwise domain (TrR) do indicate period 
doubling at this Reynolds number, in line with the results 
from these papers. It is not clear whether the period 
doubling exists when the two modes are present together. 
Indeed, to some extent, at this Reynolds number it ap- 
pears that the three-dimensional structures seem to alter- 
nate between the two different modes. This is consistent 
with the experimental findings for the transition region 

between the two shedding modes. In this Reynolds num- 
ber range (230 < Re < 260), experimental results show 
two peaks in the frequency spectrum, presumably corre- 
sponding to the coexistence of the two modes [2]. 

Simulation at Other Reynolds Numbers 

A computation at Re = 200 was carried out starting from 
a fully developed three-dimensional velocity field from the 
simulation at Re = 250. After a transition period, the 
velocity field settles down to a periodic state correspond- 
ing to mode A shedding. A simulation at Re = 210 gives a 
similar result, but in this case the streamwise vortex 
structures are more pronounced. 

Visualization of the Three-Dimensional Structures 

The two different shedding modes are characterized in 
Fig. 4. The different views show isosurfaces of streamwise 
vorticity (~o x "= + 0.4, dark gray), isosurfaces of pressure 
(p = -0.4,  black) and the position of the cylinder (light 
gray). The pressure isosuffaces mark the position of the 
Strouhal vortices. The visualizations on the left show the 
mode A shedding pattern at Re = 200, Similar visualiza- 
tions for the mode B shedding regime at Re = 250 are 
shown on the right. The cylinder section displayed is twice 
the actual computational domain span length. The span- 
wise wavelength is 2zrR, which is close to the experimen- 
tally observed wavelength for mode A shedding. 

At Re = 200 (close to the onset of mode A shedding), 
the strength of the streamwise vortex structures is about 
half of the peak vorticity of the Strouhal vortices in the 
near wake. The peak streamwise vorticity is approximately 
1 u~/R unit, while the vorticity in the spanwise vortex 
structures is approximately 2. These numbers will vary 
with position and should be taken as only a guide to the 
relative magnitudes. At Re = 250, in the mode B shed- 
ding regime, the measured peak vorticity was similar for 
the streamwise and spanwise structures at typically 2 
u J R  units. 

These isosurface plots demonstrate the main features of 
the two shedding modes. Mode A shedding is periodic, 
with the streamwise vortex structures aligned from one 
Strouhal cycle to the next. Mode B shedding is less 
regular, with less alignment of the vortices. For that mode 
the streamwise vortex structures are not all of the same 
strength and can grow or decay relative to their neighbors 
as they move downstream. The difference in spanwise 
wavelength between the two shedding modes is clearly 
visible. 

As a comparison, experimental visualizations of the two 
modes are shown in Fig. 6. The picture on the left shows 

Figure 5. Time evolution of the u 
(left) and w (right) velocity compo- 
nents at position (1.88,-0.69) at 
Re = 250. 
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the mode A streamwise structures at Re = 180, and the 
one on the right is a similar depiction for mode B shed- 
ding at Re > 230, both to the same scale. These flows 
were visualized with laser light, and fluorescein dye washed 
off the cylinder as it was towed along a (towing) tank. 
Obviously, streamwise vortex structures cannot be directly 
compared with dye visualizations; however, the experi- 
mental and computational results appear to be consistent 
for each mode in a number of features. In particular, the 
different visualizations are similar in the spanwise wave- 
length of the streamwise vortex "loops" for each mode 
and in the regularity (for mode A) and decrease in regu- 
larity (for mode B) of the structures from one cycle to the 
next. 

Effect of Span Length 

To test the preferred spanwise wavelength of mode A, a 
computation was performed with a domain span length of 
4~rR and 48 Fourier terms at Re = 250. As before, a 
perturbed two-dimensional velocity field was used to begin 
the simulation. The results were similar to those found 
with the narrower domain, with the mode A wavelength 
again equal to 2¢rR. 

Effect on Base Pressure Coefficient 

Table 2 shows the effect of the three-dimensional shed- 
ding on the base pressure coefficient for the 60-element 
mesh. The values are affected by blockage due to the 
narrowness of the domain, but the relative difference 
between the two- and three-dimensional results is signifi- 

Table 2. Effect of Three-Dimensional Shedding on the 
Base Pressure Coefficient for the Mode A 
Reynolds Number Range 

Reynolds 2D Base Pressure 3D Base Pressure 
Number Coefficient Coefficient 

190 - 1.252 - 1.252 
200 - 1.270 - 1.250 
210 - 1.289 - 1.219 

Figure 6. Experimental visualiza- 
tions using fluorescein dye and laser 
light of the two shedding modes. 
The picture on the left shows mode 
A shedding for Re = 200, and the 
one on the right is typical of mode 
B shedding. The latter is for Re = 
285 and is representative of pat- 
terns observed for Re > 230. (Visu- 
alizations courtesy of C. H. K. 
Williamson.) 

cant. At Re = 210, the base pressure coefficient is about 
6% less than the prediction from the two-dimensional 
simulation. The decrease in base pressure suction is con- 
sistent with the experimental results of Williamson and 
Roshko [16] and Norberg [5]. 

PRACTICAL SIGNIFICANCE/USEFULNESS 

Recent comparisons of two- and three-dimensional com- 
putations of flows past bluff bodies indicate that only the 
three-dimensional computations produce acceptable pre- 
dictions of the aerodynamic forces [17]. However, three- 
dimensional simulations are very demanding of computa- 
tional resources and are presently possible only for low 
Reynolds numbers and simple body shapes. One aim of 
the present work is to eventually be able to investigate the 
physics underlying the three-dimensional flow structures 
to understand their role in modifying aerodynamic quanti- 
ties such as lift and drag. 

As a first step in this task it is important to verify 
computations against available experimental observations 
and data. The predictions of the current computations do 
seem to satisfy this requirement. It is anticipated that a 
better understanding of the physics behind these flows will 
result from the interaction of experimental and computa- 
tional research. 

An important application of this and further research 
will be in predicting pressure coefficients and lift and drag 
coefficients of bluff bodies. It is found that fully resolved 
two-dimensional simulations do not produce accurate 
pressure distributions for flows once they become three- 
dimensional [10]. This is consistent with the current set of 
results, which show that once the shedding becomes 
three-dimensional the base pressure coefficient from 
three-dimensional simulations deviates considerably from 
the two-dimensional prediction. 

CONCLUSIONS 

Three-dimensional simulations of the flow past an infinite, 
two-dimensional circular cylinder show features similar to 
those found experimentally. In particular, the computa- 
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t ions predic t  the two shedding  modes  that  occur  for  dif- 
f e ren t  Reyno lds  n u m b e r  ranges  and give spanwise wave-  
lengths  consis tent  with the expe r imen ta l  values.  T h e r e  are  
indicat ions  that  the two m o d e s  can coexist  for in te rmedi -  
ate Reyno lds  number s  (i.e., R e  = 250), which is also con- 
sistent  with exper iments .  

C o m p u t a t i o n s  are  current ly  unde r  way using larger  and 
m o r e  ref ined meshes  to try to unders tand  the t ransi t ion 
process  m o r e  fully. 
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N O M E N C L A T U R E  

K n u m b e r  of  (spectral)  e lements ,  d imens ionless  

N n u m b e r  of  nodes  in each  d i rec t ion  in an e lement ,  
d imens ionless  

R cyl inder  radius, (m) 

R e  Reyno lds  n u m b e r  (--- 2 u ~ R / ~ , ) ,  dimens ionless  

St S t rouhal  n u m b e r  (-= 2 f R / u ~ ) ,  dimensionless  

X i d o m a i n  inflow length,  (m) 

X o domain  out f low length,  (m) 

f vor tex  shedding  f requency  (5 i) 
p pressure,  ( N / m 2 ) ,  

u~ f r ee - s t r eam velocity,  ( m / s )  

v fluid velocity,  ( m / s )  

Greek Symbols 
u k inemat ic  viscosity, ( m 2 / 5 )  

to vo r t i c i ty (5  1), 

wst two-d imens iona l  vort ici ty magni tude ,  (5 -1 )  

w x s t reamwise  vort ici ty c o m p o n e n t ,  (5 l) 
p fluid density, ( K g / m  3) 
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