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A numerical and experimental investigation is reported for the flow around a rolling
sphere when moving adjacent to a plane wall. The dimensionless rotation rate of the
sphere is varied from forward to reversed rolling and the resulting wake modes are
found to be strongly dependent on the value of this parameter. Results are reported
for the Reynolds number range 100 < Re < 350, which has been shown to capture the
unsteady transitions in the wake. Over this range of Reynolds number, both steady
and unsteady wake modes are observed. As the sphere undergoes forward rolling, the
wake displays similarities to the flow behind an isolated sphere in a free stream. As
the Reynolds number of the flow increases, hairpin vortices form and are shed over
the surface of the sphere. However, for cases with reversed rotation, the wake takes
the form of two distinct streamwise vortices that form around the sides of the body.
These streamwise structures in the wake undergo a transition to a new unsteady mode
as the Reynolds number increases. During the evolution of this unsteady mode, the
streamwise vortices form an out-of-phase spiral pair. Four primary wake modes are
identified and a very good qualitative agreement is observed between the numerical
and experimental results. The numerical simulations also reveal the existence of an
additional unsteady mode that is found to be unstable to small perturbations in the
flow.

1. Introduction
This study reports the flows resulting from the combined effects of body rotation

and the presence of a nearby wall. It is relevant to the situation for which frictional or
lubrication effects cause spherical particles to roll or slide along a bounding surface.
Previously, only a limited number of studies have considered these combined effects
on the flow dynamics. In this study, particular attention is given to the effect of
body rotation and wall effects on the observed flow transitions and wake structures.
There are various motivations for this work. One is to try to better understand and
model particle–wall interactions for particle-laden flows, where there is some evidence
that spherical particles can roll forward or backwards near a wall depending on the
fluid rheology (see references below), and the forces on particles are an important
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component of bulk multiphase models. Another is from biological fluid dynamics, in
which rolling/tumbling mobile cells such as platelets and white blood cells interact
with surface endothelial cells to initiate a clotting or immune response (e.g. Woollard
et al. 2008; Jackson 2007).

When a rotational motion is imposed on the sphere, the non-dimensional rotation
rate may be defined as

α =
Dω

2U
, (1.1)

where ω is the angular velocity of the sphere and D is the sphere diameter. In the
frame of reference attached to the sphere centre, U is the velocity of the free-stream
fluid.

Previous studies have shown that at Reynolds number, Re =UD/ν = 210, where
ν is the kinematic viscosity, the axisymmetric wake behind the fixed sphere in an
unbounded flow undergoes a regular (steady–steady) transition to an asymmetric
flow via a supercritical transition (Ghidersa & Dušek 2000). The regular transition
leads to the development of a two-tailed wake and studies by Johnson & Patel (1999),
Ghidersa & Dušek (2000) and Thompson, Leweke & Provansal (2001) describe the
double tail as being composed of a counter-rotating vortex pair. These two vortices
impose an induced velocity on each other, which causes them to be convected away
from the streamwise centreline of the sphere. Johnson & Patel (1999) speculate that
the transition to a non-axisymmetric flow is due to the low pressure core of the
axisymmetric toroidal vortex becoming unstable, resulting in an azimuthal pressure
gradient that opens up the separation region behind the sphere and allows the flow
of fluid to pass through.

Experiments have observed a periodic undulation in the asymmetric wake just prior
to the onset of vortex shedding at 270 < Re < 280 (Taneda 1956; Magarvey & Bishop
1961; Sakamoto & Haniu 1995; Ormières & Provansal 1999). The stability analyses
also indicate that the unsteady flow emerges via a supercritical Hopf bifurcation in
this range of Reynolds number (Ghidersa & Dušek 2000; Thompson et al. 2001;
Schouveiler & Provansal 2002). For Re > 280, fully formed vortex shedding takes
place via the formation of hairpin vortices over one side of the fixed sphere and this
flow retains a planar symmetry until Re > 350 (Mittal 1999). Throughout this study,
the Reynolds number is restricted to the range over which the above transitions occur.
However, the nature of the transitions is in some instances significantly altered by the
introduction of rotation and a nearby wall.

In general, for an unconstrained sphere moving adjacent to a plane wall in a
Newtonian fluid, any observed rotation has been in the positive (normal) direction and
of a relatively low magnitude (Cherukat & McLaughlin 1990; Zeng, Balachandar &
Fischer 2005). However, in fluids with non-Newtonian properties and for spheres in a
strong shear flow or between nearby walls, the accelerating fluid away from the wall
can bring about a reversed rotation of the sphere. This type of rotation results in the
sphere translating down the wall but rotating as if rolling upwards (Humphrey &
Murata 1992; Liu et al. 1993).

One of the investigations to examine the free rotation of a near-wall sphere at
higher Re was that by Zeng et al. (2005). They carried out simulations for the flow
around a translating and rotating sphere for Re � 300. The sphere was positioned at
different distances to the wall. The smallest of these distances was equal to a gap
of 0.25 diameters. At moderate Re they observed small rates of positive rotation,
which aided the flow through the gap region. The small effect of rotation on the
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drag was consistent with the low Re findings of Cox & Hsu (1977) and Cherukat &
McLaughlin (1994). Furthermore, the lift coefficients up to Re = 100 agree well with
those of Takemura & Magnaudet (2003).

Overall, Zeng et al. (2005) found the effect of free rotation on the lift and drag
forces of the sphere to be small. However, near the wall, the drag coefficient is
increased above that occurring for an unbounded uniform flow. A limited number
of flow structures are also described, and the formation of a double-threaded wake
is reported. Prior to the formation of this double thread, the flow has an imposed
asymmetry due to the presence of the nearby wall. Furthermore, the transition to
the double-threaded mode occurs at Re lower than that for the regular bifurcation
behind an isolated sphere, and the Re of transition is found to depend on the wall
distance. Following this change in the wake structure, a dramatic increase in the
overall coefficient of the lift is observed, which is dominated by the pressure rather
than the viscous component.

Zeng et al. (2009) extended this research to examine gap ratios down to 0.005
sphere diameters, which is equal to the gap studied in this paper. Their main focus
was on the forces on a sphere in a shear flow in the steady regime, but they did
examine the forces on a particle moving at a uniform velocity near a wall, which is
one of the cases examined here. Indeed, this provides a useful validation case for the
current study.

When unsteady flow commences, the shedding takes the form of hairpin vortices
and loops, as for the single-sided shedding observed behind an isolated sphere. The
asymmetry of the geometry fixes the plane of symmetry normal to the wall and the
force resulting from the shedding is also in the wall-normal direction.

Zeng et al. (2005) found that the proximity of the wall has two competing effects
on the flow. The viscous effects act to delay the onset of unsteady flow, while the
asymmetry produced in the wake can enhance it. This is reflected in the critical Re of
transition. As the sphere is located increasingly closer to the wall, the Re of transition
to unsteady flow decreases to values below that observed for the isolated sphere but
always remains above 250. However, as the sphere moves from a gap ratio of 0.5 to
0.25, the critical Re rapidly increases to above 300.

An additional effect of the near-wall flow is the possibility for a thin lubrication
layer to appear in the fluid near the contact region. Furthermore, the low pressure
that forms in this contact region can drop below the vapour pressure of the fluid,
leading to the development of cavitation bubbles in the flow. The presence of these
bubbles can affect the relative motion of the body and cause a slipping action that
prevents normal rolling (Prokunin 2007).

Having observed cavitation experimentally between the sphere and the wall,
Prokunin (2004, 2007) developed a theoretical model to describe the motions of
a sphere with cavitation. It is found that when the cavitation force pushing the sphere
away from the wall is greater than the wall-normal particle weight, a contactless
steady sphere motion may be observed. A rotation rate of α =0.2 is predicted for a
wide range of wall inclinations. This was less than 30 % of the value of α predicted
when cavitation was not taken into account. Ashmore, del Pino & Mullin (2005)
observed a similar trend in α when lubrication effects were present for a sphere
moving along a wall at low Re. Although α does reach a value of unity (indicating
normal rolling), the majority of results appear to asymptote to α ≈ 0.2 for increasing
wall angles. Furthermore, results by Seddon & Mullin (2008) with a sphere placed
inside a rotating drum also found α values to lie between 0.2 and 0.25 when cavitation
was present.
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Figure 1. Schematic of the problem under consideration.

This study aims to extend the knowledge on the flow structures that result when a
rotating sphere is adjacent to a wall. The rotation rates chosen vary from the normal
‘no-slip’ motion to sliding and a combination of the two. Reversed rotation rates have
been considered not only because they are of fundamental interest but also following
reports that this type of motion is observed in shear flows and non-Newtonian fluids.
Furthermore, useful information may be gained on the effect of such reversed rotation
on the drag force and the stability of the wake.

2. Problem definition and methodology
A schematic of the problem under consideration is shown in figure 1. The frame of

reference is attached to the centre of the sphere and the inlet flow and lower boundary
are moving from left to right at constant velocity, U . The x-axis is aligned to the
streamwise direction and the flow is defined in terms of the Reynolds number

Re =
UD

ν
, (2.1)

where ν is the kinematic viscosity of the fluid. The second key parameter used
throughout this study is the rotation rate, as defined in (1.1). Positive α is in the
direction shown in figure 1, and the selected values of rotation rate range from no-
slip rolling in the intuitive sense (α = 1) to reversed rolling (α = −1). The investigation
focuses on five discrete values of the rotation rate, being α = 1, 0.5, 0, −0.5 and −1,
although some smaller intermediate values are also reported.

Values of the coefficient of drag, CD , and the Strouhal number, St , have also been
reported throughout this study. These have been defined according to

CD =
8FD

ρU 2πD2
, (2.2)

where FD is the drag force resulting from the pressure and viscous forces acting on
the sphere surface, and St = f D/U , where f is the wake frequency.

2.1. Numerical method and validation

This numerical scheme solves the viscous, incompressible Navier–Stokes equations.
These comprise the equations governing momentum transfer:

∂u
∂t

= −(u · ∇)u − 1

ρ
∇P +

1

ρ
∇ · μ∇u (2.3)

and continuity,

∇ · u = 0, (2.4)
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Figure 2. Orientation of the axisymmetric geometry with the mesh plane shown in grey (a)
and a sample of the macro-element mesh in the region near the sphere (b).

in the fluid flow. Equations (2.3) and (2.4) are given in vector form, where
u(x, y, z, t)= (u, v, w) is the velocity vector, ρ is the fluid density, P is the scalar
pressure field and μ is the dynamic viscosity.

The numerical scheme uses a spectral-element method with iterative time-
splitting, and the scheme has previously been validated with flows around a variety
of geometries including cylinders and spheres (Sheard, Thompson & Hourigan
2004; Ryan, Thompson & Hourigan 2005, 2007; Thompson et al. 2006; Leontini,
Thompson & Hourigan 2007). The iterative time-stepping allows a relaxation of
the time-step constraints that are associated with the present geometry (specifically
the small elements in the near-contact region between the sphere and the wall) and
enhances the stability of the scheme. Results of the simulations are presented in the
non-dimensional form with the relevant variables normalized by the body diameter
and the free-stream velocity. Likewise, the time is non-dimensionalized according to
τ = tU/D.

A fractional-step method, first developed by Chorin (1968), is used for the temporal
discretization. The approach adopted here follows closely that given by Karniadakis,
Israeli & Orszag (1991). The method consists of separating the Navier–Stokes
equations into convection, pressure and diffusion terms, and integrating these terms
in separate sub-steps. Using this method, the errors typically associated with time-
splitting techniques have been reduced and the method provides second-order time
accuracy for the velocity field. The fractional-step method forms the inner loop of the
iterative temporal integration scheme described in Thompson et al. (2006).

To construct the three-dimensional space, the two-dimensional mesh is expanded
into 128 Fourier planes around the symmetry axis located perpendicular to the wall,
as indicated in figure 2, where the grey region indicates a sample plane corresponding
to the two-dimensional mesh. A section of the mesh showing the increased resolution
of the macro-elements near the sphere surface is also shown in figure 2 and this
resolution was maintained for a distance of 30D downstream.

For the spatial discretization, Lagrange polynomials of order N − 1 are used to
represent the solution variables within each macro-element of the mesh, leading to a
set of N × N internal node points. Dirichlet boundary conditions are used to specify
the velocity at all external boundaries and on the sphere surface. For α = 0, when the
sphere has no rotation, a no-slip condition is defined, in which all velocity components
reduce to zero at the body surface. Due to numerical constraints, i.e. the potential
collapse of the macro-element immediately adjacent to the axis beneath the sphere,
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Re = 50, α = 1 Re = 50, α = −1 Re = 200, α = 1 Re = 300, α = −1

N CD St CD St C̄D St C̄D St

4 1.818 – 2.132 – 0.9168 0.1131 0.8806 0.1630
5 1.820 – 2.135 – 0.9232 0.1133 0.8847 0.1643
6 1.824 – 2.138 – 0.9267 0.1133 0.8845 0.1646

Table 1. Spatial resolution for the flow around the sphere with α = ±1.

it is necessary to impose a small displacement ( < 1 % of the diameter) between the
sphere boundary and the wall. The width of this gap is fixed at 0.005D and the effect
of variations in this small distance is discussed later.

The convergence of the drag coefficient and the Strouhal number was tested and
results are reported for the upper and lower limits of Reynolds numbers at the two
extremes of the rotation rate. These limits are Re =50 and 200 for α = 1 and Re = 50
and 300 for α = −1. The high Re flow results in two different unsteady wake modes,
while at the lower Re limit the flow remains steady.

The mesh used throughout this study consists of 320 macro-elements with
dimensions of x = 100D from the sphere centre to the inlet/outlet boundary and
y = 150D to the transverse boundary. Increasing these dimensions by a further 50D
in each direction was found to result in a variation in CD of less than 1 % for Re = 50.
Likewise, for the higher Reynolds number limits, the Strouhal number and the mean
drag coefficient, C̄D , of the unsteady flow vary by less than 1 % in each case. The flow
is therefore considered to be insensitive to the boundary placement in this case.

To check for the convergence of the simulations with respect to the spatial
resolution, the order of the interpolating polynomials is varied from third to fifth
order. Values of the resulting drag and the Strouhal number are shown in table 1.
Increasing the polynomial order from N = 4 shows a small monotonic increase in
St . However, for all values of N tested, the Strouhal number was within 1 % and
the spatial resolution was found to be sufficient. All future simulations are therefore
run with N � 4. Since N = 6 provides the highest resolution but does not lead to
prohibitive run times, it is therefore used for the remainder of the simulations.
The difference in St values for α = 1 and −1 in table 1 reflects the fact that two
different wake modes occur. The form of these modes are discussed in more detail
in § 3.3.

As mentioned above, the gap distance between the sphere and the plane wall was
fixed at 0.005D. This was near the lower limit of what was required for successful
computations. A series of sensitivity studies for different values of α were carried out
with a gap ratio of 0.004D for the unsteady flow regimes at the upper Re limits. In
those cases, the 20 % reduction in gap ratio resulted in a less than 0.2 % change in St .
In addition, lubrication theory predicts that there is a weak logarithmic dependence
of the drag coefficient on gap ratio, even at finite Reynolds number. This was checked
at Re =50 for gap ratios of 0.004, 0.005 and 0.010 for the non-rotating sphere case.
The logarithmic dependence was indeed observed, and all the drag values were within
3% of the approximate fit supplied by Zeng et al. (2009). Note that while there
may be a weak drag singularity as the gap ratio approaches zero, both numerical
and experimental observations suggest that the wake structure is not sensitive to
gap ratio. Hence, it is assumed that a gap ratio of G/D =0.005 gives an adequate
approximation for the flow around the sphere in contact with the wall.
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Figure 3. Test section of the water tunnel showing the sphere mount location adjacent to
the moving floor and upstream boundary-layer suction.

2.2. Experimental method

In conjunction with the numerical simulations, an experimental study was also
undertaken. The experiments were carried out in a water tunnel equipped with a
moving floor and boundary-layer suction. A schematic of the experimental set-up
is shown in figure 3. A sphere of diameter 9 mm was supported mid-stream by a
supporting rod of diameter 1.5 mm and the rotation of the sphere was driven from one
side using a stepper motor. The choice of the rod thickness was a compromise between
structural stability and minimizing the effect on the sphere wake. Since shedding
begins at a Reynolds number of 47, this means that shedding from the cylindrical
rods should not be expected except for Re � 280. This is towards the upper limit
of Reynolds numbers studied experimentally. The moving floor was independently
controlled by a separate stepper motor and two continuous flow pumps were used for
the boundary-layer suction and free-stream flow. The speed of the moving floor and
the boundary-layer suction were both carefully calibrated to match the free-stream
velocity.

At the upstream end of the moving floor, a small velocity deficit is present that
has developed following the boundary-layer suction. However, the combined effects
of the moving floor and the free-stream velocity rapidly act to eliminate this deficit
prior to the flow reaching the sphere. More details of velocity profiles throughout the
test section may be found in Stewart (2008).

A fluoresceine dye was injected into the flow upstream of the sphere, either on the
moving floor or through a narrow tube positioned in the free stream far from the
sphere. The dye was then illuminated with the light from an argon laser, allowing
visualization of the wake either as a volume or in a plane. Videos of the unsteady
flows were also obtained, allowing the Strouhal number to be calculated. For the set
of experiments, the Reynolds number was varied between approximately 80 and 350.
For the rolling case, the sphere was actually in contact with the surface, while for the
other cases, it was positioned as close as possible to the surface without touching.
This was done by adjusting the vertical position until the sphere just touched the
surface and then backing off the adjustment mechanism slightly until it was no longer
touching. It was difficult to determine the exact gap but a reasonable estimate is that
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(a) Re = 50. (b) Re = 100. (c) Experimental results at Re = 100.

Figure 4. Structures in the wake of the forward-rolling sphere as determined by simulations
(a) and experiments (b). Surface contours in (a) and (b) show the zero contour of λ2 (Jeong &
Hussain 1995) and are shown from above (top) and from the side (bottom). (c) shows an
experimental volume dye visualization of the wake.

it was within 2 % of the diameter. More details of the experimental method can be
found in Stewart et al. (2008).

3. Results and discussion
3.1. Steady flow

For all rotation rates studied, the wake remains steady at the lower Reynolds number
limit and the structure varies continuously with α. The wake of the forward-rolling
sphere (α > 0) is characterized by a compact recirculation zone immediately behind
the body, and the resulting wake structures for α = 1 are shown in figure 4. The
vortical structures in the numerical simulations have been visualized by plotting
the zero-value isosurface of the λ2 field defined in Jeong & Hussain (1995). The
structure of the wake is in good agreement with what is observed in experiments
(figure 4c); however, the simulations reveal additional detail that is not apparent in
the experimental visualization. Figure 4(a) and (b) shows that the recirculation zone
behind the sphere forms into two streamwise vortices at a short distance downstream.
These structures are quite weak at Re = 50 but increase in strength with increasing Re.
When viewed from the side, the numerical results also show that the wake is displaced
away from the wall and towards the top of the sphere. The twin-tailed structure in the
wake of figure 4(b) is similar to the asymmetric wake observed behind a sphere in an
unbounded flow for 210 <Re < 270 (Johnson & Patel 1999; Ghidersa & Dušek 2000;
Thompson et al. 2001). In this instance, the nearby wall acts to break the symmetry
of the flow and fix the orientation of the wake.

The wake of the sphere undergoing reversed rolling (α = −1) has a different structure
to that described above, although it may be the result of a continuous, rather than
discontinuous, change in wake structure as the rotation rate is varied. When α < 0, the
motion of the sphere assists the flow passing over the top of the body and two regions
of swirling flow are created at either side of the sphere. This forms a counter-rotating
streamwise vortex pair that remains stable as it travels downstream. This structure
is observed in both numerical simulations and experiments and differs significantly
from the wake reported above for α > 0. Examples of the numerical and experimental
results are shown in figure 5. It can be seen that the compact recirculation zone
immediately behind the sphere is absent and the streamwise centreline of the wake
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Figure 5. Results for the steady sphere wake at Re = 100 and α = −1, showing the presence of
two streamwise vortices that form around the sides of the sphere. The isosurfaces are the same
as defined for figure 4. Comparisons from the numerical simulations (a) with the experimental
flow visualization (b). The counter-rotating trailing pair is such that the self-advection is
towards the wall.
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Figure 6. Numerical (a) and experimental (b) results for the steady wake behind the
non-rotating sphere at Re = 200. This wake has similarities to those occurring behind the
sphere during both forward and reverse rolling. The counter-rotating trailing pair is such that
the self-advection is towards the wall.

is characterized by a region of relatively undisturbed flow. Unlike for the forward-
rolling sphere, the streamwise vortices in this instance remain adjacent to the wall
and separate slightly as they move downstream. This is primarily due to a reversal
in the direction of rotation of the streamwise vortices that shall be discussed in more
detail later.

The wake of the non-rotating sphere is a combination of the two modes described
above and is shown in figure 6 at Re = 200. When α = 0, the vorticity is generated over
the entire sphere surface, rather than being concentrated at the sides of the sphere,
as is the case for non-zero rotation rates. A recirculation zone forms immediately
behind the sphere (shown in figure 7) but the streamwise vortices are similar to those
observed in the wake when α is negative in that they remain adjacent to the wall and
do not merge as they travel downstream. Again, a good agreement is shown between
the numerical and experimental flow visualization.

Pressure contours have been plotted in the streamwise centreplane of the sphere
for Re = 100 and results are shown in figure 8 for the two extremes of rotation rate
(α =1 and −1) and for the non-rotating sphere with α = 0. In each case the sphere
develops a region of high pressure in the upstream gap region, with a negative pressure
gradient directed clockwise around the sphere surface. In figure 8(a), the magnitude
of the centreplane pressure continues to decrease in the clockwise direction around
the sphere surface, until a minimum pressure is reached near the downstream wall.
For the non-rotating and the reversed rolling spheres (figures 8b and 8c, respectively)
a region of lower pressure develops near the top of the sphere that creates an
acceleration of the fluid passing over the top of the sphere. The pressure contours
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Figure 7. Particle traces and velocity vectors showing flow on the symmetry plane for the
non-rotating sphere at Re = 200.
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(a) α = 1. (b) α = 0. (c) α = –1.

Figure 8. Pressure contours in the z = 0 symmetry plane at Re = 100 for three different
rotation rates.

given in figure 8(b) show a very good agreement with those reported by Zeng et al.
(2005) for the translating sphere at larger distances from the wall.

Within the steady flow regime, the drag coefficient varies with both the rotation
rate and the Reynolds number. The viscous and pressure components of the drag
are shown in figure 9, along with the total drag coefficient in each case. The viscous
component of the drag varies proportionally to the rotation rate at a given Reynolds
number and decreases from a maximum at α = −1 to a minimum at α = 1. The
pressure component of the drag displays a more complex relationship with α, where
CDp is higher for α = 1 but decreases and approaches a constant value at a given
Reynolds number for α � 0. This is a reflection of the fact that the minimum pressure
contours of figure 8 are located near the top, rather than at the back, of the sphere for
α � 0, and therefore have only a relatively small impact on the value of the streamwise
pressure drag.

At all Reynolds numbers considered in this study, the viscous component of the
drag force dominates for α > 0. However, the values of CDv and CDp are comparable
for α � 0. These two components of the drag force result in an overall drag coefficient
that decreases from a maximum at α = −1 to a minimum at α ≈ 0 and then increases
slightly as the rotation rate reaches positive values. For all rotation rates, the coefficient
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Figure 9. Drag coefficient components for the steady flows at various rotation rates.

of drag shows a steady decrease with increasing Reynolds number. Zeng et al. (2009)
provide an approximate fitting formula for the drag on spheres at various distances
from the wall for the non-rotating case. This fit is shown in figure 9. The current
predictions lie within 3 % of this fit over the entire range. Zeng et al. (2009) indicate
that their approximate fit is accurate within 6 %; hence, this provides a useful
validation test for the force predictions.

Figure 10 shows the variation of the lift coefficient with Reynolds number for
selected values of α in the steady wake regime. As for the drag, Zeng et al. (2009)
provide an approximate fit for the lift for the non-rotating case. The lift predictions
are within their fitting accuracy. Of interest for α < 0.3 is that the lift is positive, while
for greater values it is negative, and significantly so for α = 1. The transition value of
α � 0.3 corresponds approximately to the case at which the trailing vortex pair shown
in figure 4 disappears.

3.2. The transition between modes

The steady flow wake structures shown above indicate several significant differences
between the forward-rolling sphere flows and those observed for α < 0. In Stewart
et al. (2008), a conceptual regime boundary was defined for 0 < α < 0.5 to account for
the differences observed in the experimental flows at these rotation rates. Figures 4
and 5 indicate that differences in the wake flows are closely linked to the rotation
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Figure 10. Lift coefficient variation with Reynolds number at various rotation rates.

rate of the body. In particular, the numerical simulations indicate that the sphere
rotation affects the formation of a recirculation zone immediately behind the body
and the development of the streamwise vortex pair. As described above, the wake
of the non-rotating sphere has similarities in its placement and the sign of vorticity
to that observed when α < 0. Consequently, numerical simulations in the range of α

between 0 and 0.5 are now used to examine in more detail the apparent transition
between modes. These results are shown in figure 11 for the steady flows at Re = 150.

Figure 11 shows that as the rotation rate of the sphere is varied from α = 0.1
to 0.5, the streamwise vortices that are observed at low and negative rotation rates
gradually decrease in strength until α = 0.4, when evidence of the streamwise vortices
has almost disappeared. At the same time, the recirculation zone directly behind the
sphere grows in size. Further increase in the rotation rate to α = 0.5 (figure 11e) shows
a renewed growth in the streamwise vortices but this time the structure is similar to
that of figure 4; the wake lifts away from the wall and the sign of the streamwise
vorticity changes. To show the change in the flow more clearly, the velocity vectors
in the x–y plane at a distance of one diameter downstream of the sphere centre are
shown in figure 12.

The vector fields given in figure 12(a–e) correspond to successive wake visualizations
in figure 11. The view in figure 12 is looking upstream, towards the sphere, and the
length of the vectors reflects the magnitude of the in-plane velocity. Figure 12(a)
shows a counter-rotating vortex pair with negative vorticity to the left (directed out
of the plane) and positive vorticity to the right. This dipole has an induced motion
that causes it to migrate towards the wall. Upon reaching the wall, the vortices
separate slightly, according to the manner described by Ersoy & Walker (1985),
and this increased lateral displacement reduces the cross-diffusion of vorticity in the
downstream wake. This is representative of the flow structures observed for all α � 0.
As the rotation rate of the sphere increases from 0.1 to 0.3, the in-plane velocity
in figure 11 reduces and the swirling flow behind the sphere almost disappears for
α = 0.3.

The centre of each vector field in figure 12 corresponds to the point directly
downstream of the sphere centre. Figure 12(b–c) shows that the velocity of the fluid
immediately behind the sphere is directed downward, towards the wall. Figure 12(c)
is close to the transition case where the rotation rate of the sphere has increased
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(a) α = 0.1.

(b) α = 0.2.

(c) α = 0.3.

(d) α = 0.4.

(e) α = 0.5.

Figure 11. View from above of the wake at intermediate rotation rates and Re = 150. The
plotted isosurface is the same as in figure 4.

sufficiently to change the sign of the streamwise vorticity in the wake. As the rotation
rate of the sphere increases to 0.4, the flow in the sphere wake changes direction to
match the imposed motion of the sphere. At higher rotation rates, the flow moves
away from the wall and weak vortices form near the top of the sphere. These vortices
have a sense of rotation opposite to that described previously, with the left-hand
vortex in figure 12(d ) being positive and the right-hand vortex being negative. This
dipole now has an induced motion towards the free-stream and the weak vortex pair
is maintained for only a short distance downstream.

The above results indicate that while the sphere is undergoing rotation rates between
0 and 0.5, a continuous change occurs in the wake. The streamwise vortices either
form a dipole that propels towards the wall, where they separate and stabilize, or
they form a dipole that moves away from the wall where they rapidly cross-diffuse.
The sign of vorticity in these structures can therefore be used to classify the steady
flow regime. In the work of Zeng et al. (2005), a two-tailed wake is reported for
the non-rotating sphere at a fixed distance from the wall. Agreement between their
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(a) α = 0.1.

(d) α = 0.4. (e) α = 0.5.

(b) α = 0.2. (c) α = 0.3.

y

z

Figure 12. Velocity vectors tangent to the plane positioned perpendicular to the flow and
located one diameter downstream of the sphere centre. Each viewing frame shows a square of
side length one diameter, centred on the sphere.

pressure contours and flow visualization with those of the present study indicates that
the same wake mode is observed in both cases when α = 0.

3.3. Unsteady wake modes

As the Reynolds number of the flow increases, the flow becomes unsteady. Depending
on the rotation rate of the sphere, the flow undergoes an unsteady transition in two
distinct ways. These are either by the roll-up and shedding of vorticity over the top
of the sphere that results in the formation of hairpin vortices (as observed behind the
fixed sphere in an unbounded flow), or by the destabilization of the streamwise vortex
pair, resulting in a transverse oscillation of the wake downstream of the sphere. The
former occurs when the sphere is undergoing forward rolling and the latter occurs
for α � 0. Both of these modes were detected during experiments and numerical
simulations and are discussed in the following sections.

3.3.1. The symmetric mode

The unsteady wake of the sphere that is observed when α > 0 is shown in figure 13,
with three hairpin vortices that have formed over the top of the sphere and been
shed into the wake. The presence of the wall fixes the orientation of the wake and a
planar symmetry is present. For this reason, this shedding regime shall be referred to
henceforth as the symmetric mode. Numerical wake contours reveal a structure that
is very similar to those reported by Johnson & Patel (1999) for the unsteady wake
behind a sphere in a free stream and by Zeng et al. (2005) for the non-rotating sphere
moving in the vicinity of a wall. This latter study provides an interesting comparison
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(a)

(b)

Figure 13. Unsteady wake at Re = 200 and α = 1 showing the shedding of hairpin vortices.
Views are from above (a) and the side (b), with the isosurfaces as defined for figure 4.

with the present investigation as the unsteady symmetric mode is observed by them
when α = 0 for the sphere in the proximity of a wall. In both the experimental results
outlined by Stewart et al. (2008) and the present numerical simulations, the wake at
α = 0 remains steady until Re > 300; only in the experimental results is a slight cross-
stream undulation of the wake observed. This unsteady flow is not characteristic
of the onset of the symmetric mode described above, but rather is typical of the
antisymmetric mode that shall be discussed in § 3.3.2.

Within the symmetric shedding regime, the presence of the wall prevents the
formation of hairpin vortices on the lower (wall) side of the wake. Furthermore,
an unsteady flow is observed at lower Reynolds numbers than that for the sphere
in unbounded flow, where the critical Reynolds number of transition is commonly
quoted at being just above 270 (Magarvey & Bishop 1961; Natarajan & Acrivos 1993;
Schouveiler & Provansal 2002). In this way, the imposed rotation acts to enhance
the instabilities in the flow. The combined wall vicinity and sphere rotation also acts
to vary the Strouhal number of the wake. The sphere in an unbounded flow has a
Strouhal number of approximately 0.137 at Re = 300 (Johnson & Patel 1999), with
Zeng et al. (2005) finding values up to 15 % higher when the sphere is at a distance
of one diameter from the wall. Results of this study indicate St values in the range
0.110–0.125 for the sphere moving with positive α for Reynolds numbers between 175
and 225. The reduction in the Strouhal number may in part be due to the lower Re

at which the flows are recorded, with another possible explanation being the effect of
the imposed sphere rotation. A 7 % decrease in St is recorded at Re = 200 when the
rotation is increased from α = 0.5 to 1.

The unsteady wake observed for α = 1 remains perfectly periodic over the range
of Re studied, with a single frequency present in the wake. This is not true for all
rotation rates considered. When α = 0.5 and Re increases beyond 210 in the numerical
simulations, a second low-frequency component develops. This is illustrated by the
two frequency spectra given in figure 14. At α = 0.5 and Re = 212.5 (figure 14a),
the wake is ordered and periodic, with a Strouhal number of 0.120. Increasing the
Reynolds number causes a low-frequency mode to grow in the wake, with St ≈ 0.045.
At Re = 225 (figure 14b), this mode has become the dominant frequency in the wake.

The two frequency components of figure 14(b) result in a low-frequency modulation
in the wake that affects the strength of the hairpin vortices that are shed from the
sphere. This is apparent in the time history of the wake-induced drag force on the
sphere. Figure 15 gives the variation in CD for α = 0.5 over several periods of the low-
frequency mode and the variation in the value of the local maximum drag indicates
the shedding of hairpin vortices of varying strength.
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Figure 14. Frequency power spectra for α = 0.5 showing the development of a low-frequency
component as Reynolds number increases.
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Figure 15. Drag-time history for the sphere at α = 0.5 and Re = 225, showing the effect of
multiple frequencies on the wake. The marked symbols indicate selected times corresponding
to the isosurface plots in figure 16.

To understand better the effect that the frequency modulation has on the structures
in the wake, a series of images has been taken, corresponding to local extrema
in the drag force of figure 15. These wake images are given in figure 16 at the
sequence of times indicated by the symbols on the drag trace of figure 15 and
show the development of the wake over one period of the low-frequency mode. The
size and strength of newly formed vortex structures vary considerably with time.
As the structures progress downstream, the difference in strength becomes apparent
and is reflected in the differing displacements of the vortices from the wall (not
shown). A global maximum in the drag occurs at the time of the fifth image in
the sequence and the hairpin vortex forming and being shed has a greater strength
than those shed before or after. The same structure is shown as the downstream-
most vortex structure in the final image, which is almost a repeat of the wake
structure given in the first image of the sequence. A similar modulation in the
vortex shedding was observed previously during the experimental investigation but
at that stage it was unclear whether it was a natural evolution of the wake or a
transition brought about by small irregularities in the sphere motion, as described by
Stewart et al. (2008).
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Figure 16. Irregular shedding as viewed from the side for α = 0.5 and Re = 225. Times
correspond to those marked in figure 15. The plotted isosurface is the same as in figure 4.

3.3.2. The antisymmetric mode

In contrast to the shedding of hairpin vortices described above, a different unsteady
mode develops when the sphere is rotating with α < 0. This mode manifests itself as a
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(a) Steady wake at Re = 200.

(b) Antisymmetric wake after a perturba-

tion has been introduced.

Figure 17. Planar-symmetric and sinuous wake modes observed at α = −1 and Re = 200.
The plotted isosurface is as per figure 4.

periodic undulation of the streamwise vortices, with a preferred antisymmetric form.
Henceforth, this mode shall be referred to as the antisymmetric mode. During the
numerical simulations at higher Re, the unsteady antisymmetric wake mode develops
following the introduction of random noise to the three-dimensional velocity field.
At a lower Re, this perturbation to the flow has no overall effect and decays rapidly
to the steady solution. When this perturbation is added to a steady flow at a higher
Re, the unsteady mode develops and converges to a regular periodic wake. Figure 17
shows the two wake modes obtained during simulations at Re = 200, both with and
without this perturbation to the flow.

Simulations that are allowed to develop from rest without any additional noise
exhibit flow that remains steady with a planar symmetry, at least for a considerable
time, as shown in figure 17(a). This represents an unstable solution, and the addition of
random noise accelerates the development of the unsteady mode given in figure 17(b).
It is possible that the antisymmetric mode of figure 17(b) may develop naturally
in the simulations if enough time was allowed to elapse. However, the computing
requirements needed to test this theory are prohibitive. The flows obtained via the
introduction of random noise closely match those observed in experiments, where
a low level background turbulence is unavoidable. The positions of the vortical
structures at the front and sides of the sphere do not change in figures 17(a) and
17(b). It is only in the near wake that the disturbance of the vortices in the periodic
wake becomes apparent.

Initially, the perturbation added to the flow of figure 17(a) appears as a transverse
undulation in the wake, similar to that observed behind a freely falling sphere in an
unbounded flow (Magarvey & Bishop 1961). While the wake of figure 17(b) has lost
its symmetry, the deformation over time is still relatively small and the major motion
of the streamwise vortices lies in a plane parallel to the wall. The resulting sinuous
motion of the wake creates a net transverse force on the sphere, the coefficient of
which is defined in a manner similar to the drag coefficient and is denoted by CZ .
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(a) Unstable symmetric wake mode at

Re = 300.

(b) Stable antisymmetric wake mode fol-

lowing a perturbation to the flow.

Figure 18. Wake modes for α = −1, Re = 300, showing the two possible unsteady modes that
exist prior to, and following, a white noise perturbation to the flow. The plotted isosurface is
as per figure 4.

When the Reynolds number of the simulations increases further for α = −1, an
interesting discovery is made. The flow undergoes a bifurcation to an unstable solution
branch that is not detected in the experiments. In the simulations, when allowed to
develop in the absence of any noise, the reversed rolling wake develops into an
unsteady symmetric mode. This mode remains planar symmetric for many cycles;
however, when this wake is fully developed, the introduction of a small perturbation
is enough to cause the transition to the antisymmetric mode observed in experiments.
Presumably, the symmetric wake state is weakly unstable and it would naturally
undergo transition to the sinuous state given sufficient time, even without the applied
perturbation. Figure 18 shows the structure of these two unsteady modes with the
planar symmetry clearly apparent in figure 18(a).

Figure 18(a) shows a distinctive symmetric kinking in the wake, while figure 18(b)
displays the antisymmetric mode observed in experiments. It is interesting to note that
the kinking of the wake similar to that in figure 18(a) has been repeatedly observed
in the asymmetric wake behind a sphere in an unbounded flow (Sakamoto & Haniu
1995; Ormières & Provansal 1999; Schouveiler & Provansal 2002) and has been
described as the initial stages of the unsteady wake prior to the shedding of hairpin
vortices. Compared with the sinuous wake at Re = 200 (figure 17b), the antisymmetric
wake at Re = 300 develops a significant motion in the direction normal to the wall,
with alternating sides of the wake lifting away from the boundary. In the simulations
of Zeng et al. (2005), a symmetry condition was imposed along the streamwise
centreplane of the sphere, thereby preventing the development of any antisymmetric
wake modes. However, the symmetric kinking mode of figure 18(a) was also absent in
their simulations, and it is likely that this form only develops within a certain critical
distance close to the wall and when α < 0.
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Figure 19. Section of the drag and transverse force–time histories for α = −1, Re = 300.

The development of the antisymmetric mode at Re = 300 is shown in the force–time
histories of figure 19, following the introduction of the perturbation to the flow at
τ = 150. This leads to the development of an oscillatory cross-stream force. As the
amplitude of CZ grows, the amplitude of the fluctuating drag rapidly decreases. The
frequency of the unsteady drag force also alters until it is twice that of the transverse
force when the antisymmetric mode is fully developed.

When the sphere has no net rotation, the steady, streamwise vortex pair is observed
in the wake. This wake structure lends itself to the antisymmetric type of instability,
rather than the symmetric mode observed by Zeng et al. (2005) when the sphere
is positioned farther from the wall. However, no unsteady flow was detected in the
numerical simulations at the upper Reynolds number limit of Re =300. Experimental
results showed an unsteady undulation in the wake that is first apparent at Re ≈ 300,
as reported by Stewart et al. (2008).

From potential flow theory, the two streamwise vortices near a wall can be
considered as part of a four vortex system. The two visible vortices have an induced
motion from each other, as well as from the effect of their image vortices located
on the wall. Such systems have been analysed in the wake of aircraft and have been
found to lead to a range of possible instabilities with various wavelengths (Crouch
1997; Fabre, Jacquin & Loof 2002; Jacquin et al. 2003). Following observations of the
antisymmetric mode in the direction perpendicular to the wall, it is concluded that
the streamwise vortices do not remain oriented in a single, inclined plane. Rather, it
is apparent that alternating sides of the wake lift away from the wall and the point of
maximum lateral displacement is not the same as the location of maximum vertical
displacement. This fact, in conjunction with the sinuous motion observed from above,
leads to the conclusion that the wake is composed of two spiral vortices that wind in
opposite directions and are out of phase by half a wavelength.

3.3.3. Experimental comparison of the unsteady wake

When compared with the experimental results, the simulations show a good
agreement as to the structures observed in the sphere wake. Numerical results are
shown, along with dye visualizations from the experiments in figures 20 and 21 for
the unsteady flow regimes. Figure 20 shows the shedding of hairpin vortices behind
the forward-rolling sphere at Re = 200. The visualization method of Jeong & Hussain
(1995) used in the simulations shows the vortical structures to be upright and almost
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(a)

(b)

Figure 20. Forward-rolling sphere at Re = 200.

(a) (b)

Figure 21. Reversed rolling sphere at Re =300 (a) and 200 (b).

perpendicular to the wall, in contrast to the experimental dye method, which does
not capture as accurately the regions of vorticity downstream.

Of the two instabilities predicted in the numerical simulations for the reverse
rolling sphere wake, only the antisymmetric mode is observed in experiments. The
antisymmetric wake mode is shown in figure 21 behind the reverse rolling sphere with
α = −1. The experimental results are shown at Re = 200, while the numerical flows are
at Re = 300. During the numerical simulations, the onset of an unsteady flow appears
to be delayed compared with the experiments and at Re = 200 the simulations indicate
a flow that is just above the critical Reynolds number of transition to the unsteady
flow. The spiral motion of the streamwise vortices is more clearly distinguished in the
experimental dye visualization of figure 21.

The Strouhal number obtained from the unsteady numerical simulations is plotted
in figure 22. Experimental data taken from Stewart et al. (2008) are shown for
comparison and the dashed lines indicate the trend for each set of numerical
results. When α < 0 (figures 22a and 22b), the simulations show that decreasing
the magnitude of rotation decreases the wake frequency. This trend is also present in
the experimental results. However, the numerical data consistently overestimate the
experimental results. Numerical simulations indicate that this difference is unlikely to
be due to differences in the gap ratio during simulations and experiments. A series
of simulations was run with a gap ratio equal to 5 % of the diameter. This value is
thought to more accurately reflect the gap ratio present in experiments when α < 0.
However, the simulations at this larger gap ratio reveal a decrease in St of less
than 1 % for α = −1. A more likely explanation for the lower experimental Strouhal
numbers is therefore that the difference in Strouhal number is due to the effect of
the supporting rod in the experiments, which has been shown to alter the Strouhal
number for the wake of a sphere in an unbounded flow.

Both the numerically predicted and the observed values of St in figures 22(a)
and 22(b) appear to be fairly independent of changes in Re. However, the critical
Reynolds number of transition to unsteady flow differs, and at Re =225, the numerical
simulations provided a steady flow solution for α = −0.5, even following the addition
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Figure 22. Comparisons of the experimental (+) and numerical (�) wake frequencies for the
four nonzero rotation rates. Dashed lines represent the trends of the numerical data.

of noise to the solution. The transition to unsteady flow in the simulations takes place
at higher Re than that in the experiments.

For α > 0, the magnitude of St from the numerical simulations shows a reasonable
agreement with the experiments and the numerical data fall within the experimental
range. However, the simulations indicate that the onset of unsteady flow again
occurs at higher Re than that in experiments. For α = 1, this onset occurs at
125 <Re < 150 and for α = 0.5, the transition takes place when 175 <Re < 187.
Unlike the experimental data, which show an increasing trend with Re, the numerical
simulations for the forward-rolling sphere provide St values that are nearly constant
and lie in the region of St ≈ 0.12, independent of the rotation rate. This is somewhat
lower than the values of 0.136 and 0.137 obtained by Tomboulides & Orszag (2000)
and Johnson & Patel (1999) for the wake of a sphere in an unbounded flow at
Re = 300.

Zeng et al. (2005) found an increase in St as the sphere approaches the wall;
however, no gap ratios below 25 % of the diameter were considered in their study
and no conclusions were reached as to how St may vary in the region very close to
the wall. Although the investigation of Zeng et al. (2005) focuses on the non-rotating
sphere, they find that the unsteady wake involves the shedding of hairpin vortices
in the symmetric mode at a gap ratio of 0.5D. During this shedding process, they
calculate a Strouhal number of approximately 0.15 at Re = 270. This is in reasonable
agreement with the St values plotted in figures 22(c) and 22(d ), but varies quite
differently to those for α < 0, for which a different mode is observed.



Numerical and experimental studies of the rolling sphere wake 159

400

350
Unsteady

Steady

300

R
e

250

200

150

100

50

0
–1.0 –0.5 0

α

0.5 1.0

Figure 23. Transition map of the four different wake modes predicted by the simulations.
The dashed curves indicate the approximate regime boundaries as determined by experiments
and published in Stewart et al. (2008). Filled symbols indicate unsteady flow and open symbols
indicate steady flow. In addition, the circles indicate the trailing counter-rotating vortex pair
self-advects towards the wall, and the diamond symbols indicate that the pair has swapped
sign so that self-advection is away from the wall.

3.4. Regime diagram

The parameter space given in figure 23 indicates the regions in which the different
wake modes are observed in the numerical simulations. Steady modes are shown
by open symbols and the transition to unsteady flow (closed symbols) occurs as
Re increases. The dashed curves in figure 23 represent the mode limits determined
from experimental results, as published by Stewart et al. (2008), and the vertical line
indicates a generalized boundary between the wake modes as determined from the
numerical simulations at intermediate rotation rates. Figure 23 shows some differences
to the experimental parameter space identified by Stewart et al. (2008) and it appears
that the Reynolds number threshold for instability decreases slightly due to the
presence of the supporting rod in the experiments. The same wake modes have been
detected in each case, although the numerical simulations show a delay in the onset
of unsteady flow to higher Reynolds numbers.

The two separate steady flow regimes are the result of the changing sign of
streamwise vorticity in the wake. The mode observed when α > 0 is the least stable,
with a transition to unsteady flow occurring at Re < 150 for α = 1. A change in the
steady wake mode occurs for α ≈ 0.35, and for negative values of α the steady wake
may develop into the unsteady antisymmetric mode at higher Reynolds numbers. The
sliding sphere with α = 0 displays the most stable configuration, and the transition to
unsteady flow is not observed in the simulations. This is true for Reynolds numbers
up to 350, even following the introduction of a perturbation to the flow. In contrast,
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the sphere in a free-stream flow undergoes a transition to unsteady flow at Re ≈ 270
(Thompson et al. 2001). For the larger magnitude, negative values of α, the transition
Re reduces to Re ≈ 185 for α = −1.

4. Conclusions
A good qualitative agreement has been found between the experimental and

numerical wake formations behind the rolling sphere. Four distinct wake modes are
identified: two steady and two unsteady. These wake modes are strongly dependent
on the rotation rate of the sphere. Furthermore, the steady modes observed maintain
a planar symmetry that is fixed perpendicular to the wall and passes through the
sphere centre. Forward rolling of the sphere creates a compact zone of recirculating
fluid that undergoes a transition to the shedding of hairpin vortices as the Reynolds
number increases. When reversed rolling is imposed, the wake takes the form of a
streamwise vortex pair that originates at the sides of the sphere for α < 0, and at
the rear of the body for α = 0. These streamwise vortices undergo a transition to an
antisymmetric wake mode as Re increases.

The unsteady, antisymmetric wake mode occurring behind the sphere for α < 0 is
a new mode. From observations and images of the flow, it is concluded that the
wake is composed of two spiral vortices that wind in opposite directions and are half
a wavelength out of phase. This motion results in a sinuous motion of the vortex
cores when viewed from above. The axes of these spirals are not quite parallel in the
streamwise direction, as there is a slight divergence of the wake downstream.

Numerical simulations provide additional information about the structure of these
steady and unsteady wake modes. Visualizations of the vorticity for α > 0 show that
the wake has a structure that closely resembles the double tail, although on a reduced
scale and displaced farther from the wall. A numerical examination of intermediate
rotation rates between 0.1 and 0.5 indicates that the two steady modes undergo a
smooth and continuous transition. The steady streamwise structures in the wake form
a counter-rotating pair, but the sign of vorticity changes depending on the magnitude
of the sphere rotation.

In addition to the wake modes described above, the numerical simulations reveal
an unstable bifurcation in the solutions for the unsteady wake at α < 0. When
the flow develops with no background turbulence or external perturbation, a
symmetric mode is possible. This unstable symmetric mode displays a kinking of
the streamwise vortices in the wake. The introduction of a small perturbation to
this flow brings about a transition to the antisymmetric wake mode observed in
experiments.

From this study it has been possible to extend the current knowledge of bluff body
wake transitions when under the influence of a nearby wall and body rotation. During
the present investigation these two effects act in competition, with the wall acting to
stabilize the flow while increasing sphere rotation acts to destabilize it. From here,
it is intended that this work shall be extended to lower Reynolds numbers, where
further applications exist in the study of biological fluid flows.
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