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A recent numerical study by Rao et al. (J. Fluid Mech., vol. 717, 2013, pp. 1–29)
predicted the existence of several previously unobserved linearly unstable three-
dimensional modes in the wake of a spinning cylinder in cross-flow. While linear
stability analysis suggests that some of these modes exist for relatively limited
ranges of Reynolds numbers and rotation rates, this may not be true for fully
developed nonlinear wakes. In the current paper, we present the results of water
channel experiments on a rotating cylinder in cross-flow, for Reynolds numbers
200 6 Re 6 275 and non-dimensional rotation rates 0 6 α 6 2.5. Using particle image
velocimetry and digitally post-processed hydrogen bubble flow visualizations, we
confirm the existence of the predicted modes for the first time experimentally. For
instance, for Re = 275 and a rotation rate of α = 1.7, we observe a subharmonic
mode, mode C, with a spanwise wavelength of λz/d ≈ 1.1. On increasing the rotation
rate, two modes with a wavelength of λz/d ≈ 2 become unstable in rapid succession,
termed modes D and E. Mode D grows on a shedding wake, whereas mode E
consists of streamwise vortices on an otherwise steady wake. For α > 2.2, a short-
wavelength mode F appears localized close to the cylinder surface with λz/d ≈ 0.5,
which is presumably a manifestation of centrifugal instability. Unlike the other modes,
mode F is a travelling wave with a spanwise frequency of St3D ≈ 0.1. In addition
to these new modes, observations on the one-sided shedding process, known as the
‘second shedding’, are reported for α = 5.1. Despite suggestions from the literature,
this process seems to be intrinsically three-dimensional. In summary, our experiments
confirm the linear predictions by Rao et al., with very good agreement of wavelengths,
symmetries and the phase velocity for the travelling mode. Apart from this, these
experiments examine the nonlinear saturated state of these modes and explore how the
existence of multiple unstable modes can affect the selected final state. Finally, our
results establish that several distinct three-dimensional instabilities exist in a relatively
confined area on the Re–α parameter map, which could account for their non-detection
previously.
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1. Introduction
The flow around a circular cylinder can be considered as a prototype of

incompressible bluff body flows. It has been studied for over a century (Bénard
1908; Kármán 1911), and many of its characteristics are well understood. Research
has been focused particularly on the wake behind the cylinder, which exhibits a range
of interesting phenomena. The wake develops a series of distinct regimes, depending
on the Reynolds number Re = dU/ν, with d being the cylinder diameter, U being the
free-stream velocity and ν being the kinematic viscosity of the fluid.

Common to all regimes above Re≈ 46–49 (Jackson 1987; Dusek, Le Gal & Fraunie
1994; Williamson 1996c; Le Gal, Nadim & Thompson 2001; Kumar & Mittal 2006)
is the shedding of spanwise vortices of alternate sign from the cylinder surface. Below
Re ≈ 190, these vortices are two-dimensional, and represent what is known as the
Bénard–von Kármán vortex street.

For higher Reynolds numbers, this double row of vortices serves as a base flow,
on which three-dimensional modes develop. Clearly identified since the work by
Williamson (1988), Zhang et al. (1995), Barkley & Henderson (1996), Thompson,
Hourigan & Sheridan (1996), Wu et al. (1996), Henderson (1997) and others, are
modes A and B. Both consist of pairs of secondary streamwise vortices, but have
different wavelengths and spatiotemporal symmetries. Mode A becomes unstable at
Re ≈ 190 with a spanwise wavelength of λz/d = 3–4 (Williamson 1988; Barkley &
Henderson 1996). Its streamwise vortices change sign every shedding period. There
is some evidence that this mode is the result of an elliptic instability of the forming
Bénard–von Kármán vortex cores (Williamson 1996b; Leweke & Williamson 1998a;
Thompson, Leweke & Williamson 2001). For Reynolds numbers above 220, energy is
gradually transferred to mode B, which dominates the wake completely at Re = 260
(Williamson 1996c). Its vortex pairs have a spanwise spacing of λz/d ≈ 0.8, and
maintain the same sign in each shedding period.

Besides these two modes, which grow on the natural symmetric wake, a third
mode has been observed by several researchers. Mode C was reported by Zhang
et al. (1995) for 170 < Re < 270, when a thin control wire was placed close
(downstream) to the cylinder surface. The wavelength was λz/d = 1.7 in simulations,
and λz/d ≈ 2 in experiments. Yildirim, Rindt & van Steenhoven (2013) extended these
experiments and demonstrated the period doubling of the main shedding cycle caused
by mode C. Sheard, Thompson & Hourigan (2003b, 2005a) observed a subharmonic
mode (λz/d = 1.9) in simulations, and experiments (Sheard et al. 2005b), in the wake
of a torus aligned normal to the direction of flow. Depending on the aspect ratio of
the torus, the mode became unstable at a Reynolds number lower than the well-known
modes A and B.

Common to these last two examples is the altered spatial symmetry of the base flow.
Placing a wire off-centre, close to the cylinder surface, breaks the planar reflective
symmetry of the geometry and the spatiotemporal symmetry of the base flow. The
latter symmetry corresponds to invariance on evolving the flow for half a period
combined with reflection about the centre plane. In the case of flow past a torus,
the otherwise infinite cylinder is curved to form a closed ring, which breaks the
geometrical reflective symmetry, and this also breaks the spatiotemporal symmetry.
Blackburn & Lopez (2003) showed that true subharmonic modes should not occur for
flows with the half-period shift/reflection symmetry such as occurs with the circular
cylinder wake.

Another way of breaking the flow symmetry is by spinning a circular cylinder about
its axis. In this case, the stagnation point is shifted off the streamwise symmetry plane,
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and the wake is deflected in the cross-stream direction, creating a lift force (Magnus
effect). The non-dimensional rotation rate α = Ωd/2U becomes the second control
parameter besides Re, where Ω is the angular velocity, d is the cylinder diameter and
U is the free-stream velocity. Note the scaling is such that the surface speed of the
cylinder matches the free-stream flow speed when α = 1.

The effect of rotation rate on the two-dimensional base flow has been well-
investigated. It is known that the wake-shedding frequency is a function of the
rotation rate (Stojković et al. 2003), and that shedding activity can be suppressed
altogether if the rotation rate is sufficiently high. Vortex-shedding suppression has
been demonstrated in two-dimensional computations by Mittal & Kumar (2003) for
Re = 200, and rotation rates 0 6 α 6 5. For α < 1.91, the Bénard–von Kármán vortex
street was observed. For increasing rotation rates, it became narrower, and was
deflected in the cross-stream direction. Shedding ceased beyond α ≈ 1.9, and the
wake became steady, developing a closed streamline around the cylinder (Luo, Chew &
Duong 2009).

When increasing the rotation rate further, the wake becomes unstable again for a
narrow range of rotation rates. Depending on Reynolds number, the wake resumes
shedding at α = 4–5 (Mittal & Kumar 2003; Stojković et al. 2003; El Akoury et al.
2008; Kumar, Cantu & Gonzalez 2011), but at a much lower frequency (second
shedding mode or mode II ). For these rotation rates, the shed vortices are of the
same sign, indicating an underlying physical mechanism different to that of the typical
Bénard–von Kármán wake (Pralits, Brandt & Giannetti 2010; Pralits, Giannetti &
Brandt 2013).

The described behaviour was confirmed experimentally by Kumar et al. (2011), who
observed the decay of vortex shedding at α ≈ 1.9, and its one-sided reappearance at
α ≈ 4.4. We will use aspects of that study for comparison and partial validation of our
experimental set-up in § 3.2.

Much less knowledge exists on the three-dimensional aspects of wakes of rotating
cylinders in a free stream. For high rotation rates, the flow becomes susceptible
to the centrifugal instability, as reported by Mittal (2004) for Re = 200 and α = 5.
Centrifugal instability was observed along the entire cylinder span as a row of closed
vortex loops, encircling the cylinder surface. Nevertheless, the wake remained steady
for the parameter pair investigated.

For a low rotation rate of α = 0.5, El Akoury et al. (2008) describe a three-
dimensional instability for Re > 220. The structure and wavelength of this mode
suggest that it is essentially mode A. The rotation of the cylinder has a stabilizing
effect on the flow, increasing the critical Reynolds number of this mode to 220.

The most extensive study on the three-dimensional stability of spinning cylinder
wakes was performed by Rao et al. (2013a). Using linear (for the steady flows)
and Floquet (for the periodic flows) stability analyses several new three-dimensional
modes were predicted that are distinctly different from the well-known modes A and
B. The findings of this numerical study will be discussed in more detail to explain
the motivation behind the experiments of the present paper. The present experimental
study seeks to confirm the existence of the predicted modes, and to explore their
possible interaction in the fully developed nonlinear state. The (Re, α) parameter map
of figure 1 will be used to guide the reader through the experimental findings.

Figure 1 shows the core results of Rao et al. (2013a) in form of neutral stability
curves in the (Re, α) parameter map. The map is divided into two regions by the
roughly horizontal dashed line through α ≈ 2. For rotation rates of the lower region,



570 A. Radi, M. C. Thompson, A. Rao, K. Hourigan and J. Sheridan

0
200 225175 250

Re
275 300 350325

0.5

1.0

1.5

2.0

2.5

Steady
Mode E

Mode C

Mode AUnsteady Mode B

Mode D

Mode F

FIGURE 1. Diagram showing the lines of marginal stability in the parameter space for
0 < α < 2.5 and 170 < Re < 350. The steady–unsteady transition is marked by a dashed
line. The solid lines indicate the marginal stability curves for modes A–F. The points in
the α–Re parameter space where experiments were carried out are marked by symbols:
empty diamonds for particle image velocimetry and filled triangles for flow visualization,
respectively.

the wake resembles the Bénard–von Kármán vortex street with periodic shedding,
whereas it is steady for rotation rates above the dividing line.

The three-dimensional transition scenario is similar to that of the non-rotating
cylinder for low rotation rates of α < 1. The two unstable modes are modes A and
B, whose critical Reynolds numbers increase with increasing rotation rates. However,
at higher rotation rates of α > 1, the three-dimensional scenario becomes increasingly
complex, with three new modes identified that bifurcate from the unsteady flow and
two modes that bifurcate from the steady flow.

The first new mode, mode C, becomes unstable in a closed region of the (Re, α)
plane, centred around Re = 260 and α = 1.7 (see figure 1). The mode grows with a
spanwise wavelength of λz/d ≈ 1, and has a purely real but negative Floquet multiplier.
This means that this mode is subharmonic, repeating over two cycles of the base
flow. We will confirm this property experimentally, yet show that mode C exists also
outside of its linearly unstable region, at rotation rates as low as α = 1. This surprising
observation will be discussed in § 4.1.

Mode D becomes unstable in the narrow region between the top boundary of
mode C and the steady–unsteady transition of the two-dimensional base flow, at
approximately α = 1.95. The mode grows with a characteristic spanwise wavelength of
approximately 2d. When the rotation rate is increased beyond α = 2, shedding ceases
and the wake becomes steady. Mode D is replaced by mode E, with the wavelength
remaining unchanged. Perturbation vorticity plots in Rao et al. (2013a) show that
both modes grow in the region between the highly strained standing vortices in the
wake, suggesting the hyperbolic instability as a plausible explanation for both modes.
Experimental results on modes D and E will be presented in § 4.3.

Linear stability analysis predicts a second three-dimensional mode on the steady
base flow, termed mode F. It grows at higher rotation rates (α > 2.25), with a
wavelength of 0.45d. This mode exists primarily in the wall-bounded shear layer
of the spinning cylinder, and in the near wake, pointing to a centrifugal instability as
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Mode data C D E F
Num. Exp. Num. Exp. Num. Exp. Num. Exp.

Wavelength [λz/d] 1 1.1 (1.8) 2 1.6–1.8 2 2.1 0.45 0.5
Period 2T 2T 1T 1T N/A 0.11a 0.1a

Spanwise
movement

Stationary Stationary Stationary Travelling

TABLE 1. Summary of the main characteristics of the newly observed three-dimensional
modes C–F. A comparison is made between numerical results (Num.) of Rao et al. (2013a)
and experimental measurements (Exp.) of this publication. (a‘period’ refers to the period T
of the two-dimensional periodic base flow. In the case of mode F, the reference is made
to the spanwise movement of the three-dimensional structures, expressed as a Strouhal
number St3D.)

its origin (Rao et al. 2013b). The Floquet multipliers for this mode occur in complex
conjugate pairs. This indicates that, while the two-dimensional base flow is steady,
transition to this mode marks a transition to three-dimensional flow and the onset
of time dependence. This observation will be confirmed by our experimental results
presented in § 4.4.

This section has presented only a short overview of the modes described in Rao
et al. (2013a), and we refer the reader to the original paper for an in-depth discussion
of mode characteristics and proposed physical mechanisms. For easier comparison
with numerical predictions, the (Re, α) map of figure 1 has been annotated with
symbols showing the parameter pairs used for the main experiments. A side-to-side
comparison of the main characteristics of the newly observed modes is presented in
table 1.

2. Experimental set-up and data processing
2.1. Experimental apparatus

The experiments were performed in the FLAIR open surface water channel facility.
Its test section is 0.6 m wide and 4 m long, with a water depth of 0.77 m. The
velocity range is 0.05–0.5 m s−1, with a free stream turbulence level 1–2 % depending
on tunnel velocity. The turbulence spectrum is dominated by a streamwise sloshing
mode with a frequency of 0.1 Hz. This frequency is at least an order of magnitude
smaller than cylinder shedding frequency over the range of tunnel speeds used for
these experiments. Filtering out this component results in a background turbulence
level of approximately 0.5 %.

As the minimum workable Reynolds number of the tunnel was too high for the
desired experiments, an internal structure was built to reduce the tunnel velocity
locally within part of the cross-section of the working section. It consists of two
parallel transparent acrylic plates (1 m wide, 0.85 m high, 0.36 m apart), which are
oriented vertically and in the streamwise direction, a bottom plate, and a perforated
screen at the downstream end (see figure 3). The (adjustable porosity) screen creates
a pressure drop, which reduces the flow velocity by 40–70 % inside this structure.
Effectively, we have built a ‘subchannel’ inside our main channel test section.

Extensive tests and active design improvements have insured that the flow inside
the subchannel is of high quality. The streamwise velocity profiles along the vertical
and horizontal directions are uniform within 2 % and 0.5 %, respectively. Overall, the
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FIGURE 2. For validation of the experimental setup, the shedding frequency of a non-
rotating circular cylinder is compared with literature data. The arrows mark the path through
the hysteretic discontinuity when increasing (arrow down) and decreasing (arrow up) the
Reynolds number.

turbulence intensity and spectrum remain effectively unchanged compared with the
main channel. The flow quality was also validated by measuring Strouhal numbers
in the wake of a stationary circular cylinder, which were in excellent quantitative
agreement with those from the published literature, as can be seen in figure 2. Note
that these runs were part of another study, in which suction tubes were employed
to manipulate the end conditions as proposed by Miller & Williamson (1994). More
details on the construction of the subchannel and all validation tests will be presented
in a separate publication.

The rotating cylinder model was mounted vertically in the centre plane of the
structure described, positioned one-third downstream of its entrance. The hollow shaft
of an archery arrow of 5.82 ± 0.01 mm outer diameter and 800 mm length was used.
These arrows are designed for Olympic competition, which effectively guarantees a
high degree of straightness and stiffness. The wall material was carbon fibre, with an
aluminium mantle and a smooth enamel finish. With a solid blockage of just 1.6 %,
no velocity correction was performed on the collected data. The cylinder rotation was
driven directly by a stepper motor, whose rotation rate was monitored by an optical
encoder.

The end conditions were the channel floor at bottom and the free water surface at
top. This resulted in an aspect ratio (cylinder diameter to wetted length) of 130. All
coordinates and directions refer to a right-hand Cartesian system, in which the x-axis
is aligned with the oncoming flow, the y-axis points in the cross-stream direction and
the z-axis coincides with the cylinder axis, pointing upwards.

To quantify its eccentricity of rotation (‘wobbling’), the cylinder was spun in its
final configuration outside the water channel and the deflection was measured with
a mechanical deflection gauge at several points along its axis. It was found that the
deflection distribution is bow-shaped, with minimum deflection amplitudes close to the
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FIGURE 3. (Colour online) Schematic of the setup for the flow visualization experiments.
The PIV camera has been included to show its later position: (a) view in downstream
direction; (b) side view. The perforated screen holes are not to scale.

cylinder’s two fixed points, and maximum amplitudes at the mid-length of the cylinder.
Here, the largest measured half-amplitude was 0.15 mm, equivalent to 2.5 % of the
cylinder diameter. Moderate amplitudes of up to 5 % of cylinder diameter can be
assumed acceptable, since according to Mittal (2001), who investigated the eccentric
cylinder rotation numerically (for α = 5), amplitudes between 0.005 and 0.05d did
not change the mean flow. Thus, the two-dimensional wake flow can be assumed
to be relatively insensitive with respect to disturbances caused by imperfect cylinder
rotation.

The maximum deflection due to fluid loading was estimated to be 0.15 mm for the
case α = 5 at Re = 200, using force coefficients from Mittal & Kumar (2003). This
deflection is in the same order of magnitude as the bowing due to eccentricity, and is
the result of the lift force. The value is highly dependent on rotation rate, and can be
expected to be 1/4 of the stated value at α = 2.

A 50 µm platinum wire of 500 mm length was positioned upstream, and parallel
to the cylinder axis, for hydrogen bubble flow visualizations. The frame that was
holding the wire was attached to a tiltable platform (Melles–Griot R© kinematic tilt
mount 07 MEA 505), which allowed a very accurate alignment of the wire parallel
to the cylinder axis. A potential of 50 VDC was sufficient to produce a dense sheet
of bubbles. No additional electrolytes were added to the tunnel water. As the water
channel was seeded with 10µ particles for particle image velocimetry (PIV) recording,
these particles are visible in some flow visualization pictures. The maximum Reynolds
number based on the platinum wire diameter was 2.5, meaning steady flow around the
wire.

It was observed during the experiments that the best visualization results were
achieved when the wire was placed at a certain distance from the x–z symmetry
plane. The optimum distance varied with free-stream velocity and rotation rate α,
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such that it had to be adjusted for each run. The streamwise location was chosen
conservatively with x/d = −5, to reduce the risk of a possible interaction between the
wire and cylinder wakes. It is known that a thin wire is capable of modifying the wake
and forcing new modes, if placed too close to the cylinder (see Zhang et al. 1995;
Yildirim, Rindt & van Steenhoven 2010).

A continuous laser was used to illuminate the bubble sheet. Shining from below,
through the tunnel glass floor, the beam was spread into a sheet of 2–3 mm thickness
and aligned parallel to the x–z plane. A Nikon R© D7000 camera with 50 mm and
105 mm lenses was used to record still images from a 90◦ side perspective. In all flow
visualizations, the sense of rotation of the cylinder is such that the cylinder surface
seen by the observer is moving up. An IDT R© Y4 high-speed camera was used for
video recordings, operating at a rate of 30–50 frames per second. The data were 8-bit
greyscale BMP pictures, which could be directly processed in MATLAB R© (see § 2.2).

PIV data were recorded in the x–y plane with a PCO R© 4000 camera in double-
shutter mode fitted with a 200 mm lens. The camera was mounted under the tunnel,
viewing up. The pulsed laser sheet was directed through the tunnel glass wall,
perpendicular to the cylinder main axis. An interrogation window size of 32 × 32
pixels with 50 % overlap resulted in a spatial resolution of 0.35 mm, i.e. 0.06d. Cross-
correlation and vorticity field calculations were performed with an in-house code
(Fouras, Lo Jacono & Hourigan 2008).

The free-stream velocity was measured with a laser Doppler velocimetry (LDV)
system 15d upstream of the cylinder. At this location, the measured value differed by
less than 0.5 % for a rotation rate of α = 5, compared with a stationary cylinder. The
uncertainty of the Reynolds number, Strouhal number and rotation rate was ±3 % at
a confidence level of 95 % (for Re = 200). This value was dominated by the random
error of the velocity measurement, due to the relatively high noise levels of the LDV
at such low velocities.

2.2. Data processing

Algorithms that were coded in MATLAB R© extract information on spatiotemporal
symmetry, wavelengths of three-dimensional modes and the Bénard–von
Kármán shedding frequency from the recorded flow visualization sequences.

To gain information on spatiotemporal symmetry, space–time (s–t) diagrams were
created. In this context an s–t diagram shows the temporal evolution of the flow at
a fixed location in space, by plotting some chosen quantity as a function of time.
To investigate the temporal behaviour of the three-dimensional modes, we used the
brightness distribution in our flow visualization images at a fixed downstream location
in the wake. For this purpose, a 10 pixels wide band, parallel to the cylinder axis,
was selected at the same downstream location in each picture. This location had to be
adjusted for each Reynolds number and rotation rate, to adapt to changes of the flow
field. At each point along the span, the band was averaged over its width to form a
brightness distribution along the span. The bands of all pictures, plotted as a function
of time, formed a space–time diagram.

A windowed (8d wide, 50 % overlap) fast Fourier transform (FFT) was performed
on each band of the s–t diagram to calculate the instantaneous spanwise wavelength
spectrum. To decrease finite-length effects, a Hamming function was applied to each
window. The spectra of all bands were averaged, and the result plotted as a function
of wavelength λz. The highest peak (besides possible long-wavelength noise) was
considered as the mode’s spanwise wavelength.
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FIGURE 4. (Colour online) Hydrogen bubble flow visualizations of the non-rotating cylinder
wake: (a) oblique shedding on the right is observed simultaneously with a section of
developing mode A in the left half of the picture at Re = 170. (b) Mode A at Re = 175,
with a spanwise wavelength of λz/d ≈ 3.4. The platinum wire is placed at 6.5d downstream
of the cylinder. (c) Mode B at Re = 275. The average spanwise wavelength is λz/d ≈ 0.96.
The platinum wire is not visible in (a) and (c), being 5 cylinder diameters upstream of the
cylinder. The scaling is the same for (b,c). The cylinder can be seen at the bottom edge of all
pictures. The flow is from the bottom up.

To estimate the Strouhal number St of the two-dimensional base flow, a (windowed)
FFT in time was performed on all averaged bands. The resulting spectra typically
showed a clear peak at the Bénard–von Kármán shedding frequency. A Gaussian
normal distribution was fitted on this peak to improve the spectral resolution. The
shedding frequency was defined as the mean of the Gaussian fit; the standard deviation
could be used as an estimate of the peak width.

3. Validation of the set-up
The current experimental set-up was validated by comparing results of two

experiments to published data. First, a flow visualization study was undertaken for
the case of a non-spinning cylinder (α = 0) to estimate the critical Reynolds numbers
and to measure the characteristics of the well known modes A and B (Williamson
1988; Barkley & Henderson 1996). Second, the process of vortex shedding suppression
was compared to PIV data of Kumar et al. (2011).

3.1. Non-rotating cylinder
A two-dimensional Bénard–von Kármán vortex street was observed for Reynolds
numbers up to Re = 160. Most of the time, the vortices were shed under an
angle of up to 12◦ with respect to the cylinder axis (oblique shedding), a value
which varied with time and along the spanwise direction (figure 4a). This is not
surprising, as only careful manipulation of the cylinder end conditions can assure
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parallel shedding (see Williamson 1996b). For higher Reynolds numbers, irregularities
and deformations of the shed vortices appeared (vortex dislocations; see Williamson
1996a). At Re ≈ 175, the wake developed a fully three-dimensional character, known
as mode A (Williamson 1988). Stability analysis predicts the critical Reynolds number
to be approximately 190 (Barkley & Henderson 1996); however, the transition is
hysteretic and finite-amplitude perturbations can cause premature onset for Reynolds
numbers down to approximately 180 (Henderson 1997). Visualization of this mode in
our water channel with the technique employed turned out to be challenging, and the
hydrogen bubble wire had to be placed in the wake to provide the picture seen in
figure 4(b). The wavelength of the spanwise modulations in this image is λz/d ≈ 3.4.
The preferred wavelength from Floquet stability analysis is 3.96d, although the mode
is unstable over a reasonably wide wavelength band (Barkley & Henderson 1996).

For Reynolds numbers above 200, mode B developed gradually and dominated the
wake for Re > 270, in good agreement with the careful experiments of Williamson
(1996b). Figure 4(c) shows a flow visualization at Re = 275. Streamwise vortices
of mode B are clearly distinguishable. Numerical processing of a sequence of 1000
pictures, as described in § 2.2, gives an average spanwise wavelength of λz/d ≈ 0.96.
Floquet analysis predicts the most unstable wavelength as 0.822d (Barkley &
Henderson 1996). The Strouhal number is St = 0.194, in good agreement with values
found in the literature (e.g. St ≈ 0.202 in Norberg (1987)).

3.2. Rotating cylinder
PIV data were recorded to validate our setup for the case of a rotating cylinder. Six
rotation rates between α = 0 and α = 2.0 were chosen at Re = 200. For rotation rates
above α ≈ 2 and Reynolds numbers above 100, the Bénard–von Kármán vortex street
can be fully suppressed, resulting in a steady laminar double shear layer wake. This
unsteady to steady transition region is marked by the dashed line in figure 1.

Kumar et al. (2011) demonstrated this phenomenon experimentally for Reynolds
numbers Re = 200–400, and rotation rates 0 < α 6 2.1. Their figure 6 shows the
decay of vortex shedding at α ≈ 1.95 for Re = 200. We repeated these experiments,
and our results are shown in figure 5; the same flow behaviour was observed. The
flow resembled the typical Bénard–von Kármán vortex street for low values of
α. For increasing rotation rates, the double-row of vortices was deflected in cross-
stream direction. At the same time, the shedding became weaker, as indicated by the
decreased peak vorticity values. For α = 1.85, the vortices were highly stretched, and
the wake resembled a snake-like pattern. For α = 1.90, shedding ceased completely,
and the steady wake consisted of the merger of the two separated shear layers. This
wake showed some intermittent ‘flapping’, probably due to slight variations of free
stream velocity. This rotation rate marks the critical value separating the shedding and
non-shedding regimes. For all of the higher rotation rates investigated at this Reynolds
number, 1.9< α 6 2.10, the wake remained steady.

Compared with experiments by Kumar et al. (2011), the restabilization happened
in our case at a slightly lower value of α = 1.9. However, this is consistent with the
linear stability analysis by Rao et al. (2013a), and two-dimensional simulations by
Mittal & Kumar (2003), which estimate the critical value to be α = 1.91.

In summary, these results show the reliability of our set-up. As a result of the
novel modification of our water channel, we were able to reproduce several established
flow phenomena of stationary and rotating cylinders. In the following sections, the
results of our main experiments are presented, which investigate the structure of newly
observed three-dimensional wake instabilities.
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FIGURE 5. (Colour online) Instantaneous PIV vorticity fields in the x–y plane at Re = 200
for the marked clockwise rotation rates. Vorticity is non-dimensionalized as ωzd/U, with
solid lines representing positive values. Vortex suppression is observed beyond α ≈ 1.9. This
figure should be compared directly with figure 6 of Kumar et al. (2011). The grey areas mask
spurious vectors in the obstructed region of the laser sheet.

4. Results and discussion
The main experiments consisted of flow visualizations at Re = 250 and Re = 275,

with subsequent numerical analysis of the digital images. For rotation rates 0 6
α < 2.5, all modes predicted by the linear stability analysis of Rao et al. (2013a)
were observed. In addition to the well-known mode B for α = 0, these were: the
subharmonic mode C; mode D and its non-shedding version mode E; and for rotation
rates above α = 2.3, a short-wavelength mode F on the cylinder surface. The modes
differ in their wavelengths, spatiotemporal symmetries and underlying base flows.
Evidence will be presented of mode F being a travelling wave mode. See table 1
for a comparison of mode properties between the linear stability analysis predictions
and experimental measurements.

4.1. Mode C
Mode C is described for Re = 275 and α = 1.7. As seen in figure 1, this parameter
combination lies in the centre of the region of the parameter space occupied by
this linearly unstable mode. Here, the linear amplification rates can be expected to
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FIGURE 6. (Colour online) The subharmonic mode C at Re = 275. (a) Large-field view of
the wake (70d × 12d), showing the strict spanwise periodicity at α = 1.2. (b) Close-up view
of the near wake at α = 1.7: a row of streamwise double vortices is shown in the flow
visualization on the left, and the corresponding wake cross-section is seen on the right (both
views are to scale). In the picture on the right, instantaneous vorticity contours are overlaid
on the PIV snapshot. The hydrogen bubbles create the dark streakline. The flow is from the
bottom to the top.

be highest, which should make the detection of this mode in experiments easier.
Nonetheless, the visibility of this mode was very dependent on the correct positioning
of the hydrogen bubble wire. Cross-stream movements of the wire of ±1 mm
made this mode invisible and created the impression of only slightly disturbed two-
dimensional laminar shedding. Once the correct wire location was found, the mode
could be visualized reliably for a wide range of rotation rates. However, this difficulty
in detection is an indication that the saturated state of the mode does not lead to
strong distortion of the otherwise two-dimensional nature of the wake, at least at this
Reynolds number.

Figure 6(a) shows the strict periodicity of mode C along a span of 70d. The flow
structures will be described with the help of the close-up views in figure 6(b). The
photograph on the left is a flow visualization in the x–z plane similar to figure 6(a),
whereas the picture on the right shows the wake cross-section in the x–y plane. The
latter picture shows the first frame of a PIV double exposure (inverse colour), overlaid
with ωz-vorticity contours calculated for this vector field. The non-dimensional contour
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levels range from −3 to +2.5 excluding 0, in steps of ±0.5, with solid lines denoting
positive vorticity. The hydrogen bubble wire upstream of the cylinder was switched on
during the recording, such that the bubble sheet cross-section can be seen as a dark
streakline. The black speckles are PIV seeding particles. The two views in figure 6(b)
were not recorded simultaneously, but represent the same stage of the shedding cycle.
The approximate location of the laser sheet used for flow-visualization is marked in
the picture on the right.

The flow visualization on the left (and similarly in figure 6a) can be interpreted the
following way: the bubble sheet passes the rotating cylinder on the side facing away
from the observer. The bubbles enter the near wake and cross the laser sheet at the
location marked by I. The bubble sheet moves out of the plane of the paper where
it is illuminated and creates the bright wavy line. Approximately at this location the
sheet splits up into a section that is moving upstream (marked as II) and is being
wrapped around the forming vortex core (A), and a section that is moving downstream
(III). Already at this stage, the bubble sheet is deformed with a periodic spanwise
modulation. The upstream-moving part consists of a series of U shapes, where the
missing sections have been ‘folded out’, and move in the downstream direction. These
sections form the stems (III) leading to the mushroom shapes at IV. These shapes are
typically created by a row of counter rotating double vortices. The laser sheet cuts
through these streamwise vortices at IV.

It is evident that sections III experience strong stretching between the forming
vortex (A) and the downstream moving vortex (B), which leads to amplification of
streamwise vorticity. Furthermore, it is suggested that the bubble sheet entrains the
near wake in the vicinity of an instantaneous saddle point (Délery 2001), close to
marker I. This would explain the splitting of the sheet into upstream and downstream
moving sections. These observations lead to the conclusion that the mode C instability
develops within 1–2 cylinder diameters downstream of the cylinder, its streamwise
double vortices reside in the braid region and get amplified through stretching of this
braid region between consecutive Bénard–von Kármán vortices.

To investigate the temporal development of mode C, space–time diagrams have
been created using the technique described in § 2.2. Figure 7(a) shows a space–time
diagram at Re= 275 and α = 1.7, created from pixel data at x/d = 3. At this location,
the streamwise vortices are visible as mushroom shapes. The subharmonic nature of
mode C can be inferred from the arrangement of these patterns, each of which is
repeated every second shedding cycle. Equivalently, every ‘valley’ of the pattern is
aligned with a ‘peak’ of the successive shedding cycle.

Figure 7(b) shows the spanwise wavelength spectrum, created by performing an
FFT analysis of the space–time diagram. The peak shows the dominant spanwise
wavelength of λz/d = 1.1. A small side peak can be seen at the first higher harmonic
(half the wavelength), and the spectral power rises again for larger wavelengths due to
larger-scale spanwise irregularities of the wake.

4.2. Co-existence of modes B and C
The wake of a stationary cylinder (α = 0) at Re = 275 exhibits an (almost) pure
mode B wake. A rotating cylinder at the same Reynolds number, but at α = 1.7,
leads to pure mode C, as shown in the previous section. It follows that a transition
from one mode to the other has to take place somewhere between these two rotation
rates. According to the neutral stability curves in figure 1, the following observations
should be expected: mode C is linearly unstable only above the critical rotation
rate αcrit ≈ 1.5; for slightly lower rotation rates, the wake should exhibit purely two-
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FIGURE 7. (a) Space–time diagram at x/d = 3 and (b) time-averaged spanwise wavelength
spectrum of mode C at Re = 275 and α = 1.7. The dominant spanwise wavelength is
represented by the peak in the spectrum at λz/d ≈ 1.1. The subharmonic nature of mode
C is revealed in (a) by the interchange of peaks and valleys every shedding period.

dimensional shedding; for rotation rates α . 1.1, mode A becomes unstable, before
mode B develops for α . 0.5. It will be tested whether this rather complex transition
scenario really takes place in the experiment.

The same type of experiments as in the previous section (flow visualizations, with
subsequent numerical analysis) were performed for 0 < α 6 1.7, at Re = 275. In
contrast to the scenario outlined above, mode C was found to dominate the wake
for rotation rates far below αcrit ≈ 1.5. Its flow structures and subharmonic nature
were observed at α = 1.0, and traces remained visible even at α = 0.7. Unlike the
linear prediction, the wake never lost its three-dimensionality, meaning that no purely
two-dimensional shedding was observed. In addition, no traces of mode A could be
found in flow visualizations for 0.5 . α . 1.1.

The spanwise wavelength of mode C was found to be dependent on the rotation
rate. Figure 8(a) shows that in the linearly unstable region (to the right of the dashed
vertical line), the wavelength was λz/d ≈ 1.1, in good agreement with predictions
by Rao et al. (2013a). For rotation rates below αcrit ≈ 1.5, the wavelength of mode
C increased steadily as α was decreased, and almost doubled for α = 0.5 (round
symbols). For rotation rates below α ≈ 1.0, the flow became increasingly irregular.
Neither the wavelength, nor the subharmonic nature of mode C could be clearly
observed. The three-dimensional flow patterns were changing randomly with time, and
lacked spatial coherence. This leads us to conclude, that this marked the practical
transition from mode C to B.

Some chosen wavelength spectra are shown in figure 8(b) for a series of rotation
rates. The identified peaks of mode B and C are marked by round and square symbols,
consistently with figure 8(a). The smaller second peaks at α = 1.0 and 1.5 are higher
harmonics, caused by a slight square wave appearance of the flow structures moving
through the sampling region in the flow visualization pictures. The origin of the
smaller peak at α = 0.7 is ambiguous, as the flow has lost its spanwise periodicity
at this rotation rate. It can likely be attributed to mode B, as structures with this
wavelength are intermittently present in the flow visualizations.
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FIGURE 8. Co-existence of modes B and C at Re = 275 is shown in terms of spanwise
wavelengths. (a) Wavelength as function of rotation rate. Circular symbols depict mode C,
square symbols are associated with mode B. To the right of the dashed vertical line, mode C is
linearly unstable, according to Rao et al. (2013a). (b) Wavelengths spectra for chosen rotation
rates show a gradual transition to mode C for increasing α. The spectra are shifted with
respect to each other in vertical direction for clarity. The spectra are based on measurements
at x/d = 3–5, depending on α.

The spectra of figure 8(b) can be interpreted as follows. Mode B exists in a
spanwise incoherent flow (α = 0). Its peak is small, and hardly dominates the long-
wavelength background noise that is the plateau at λz/d > 1. Out of this noise, the
peak of mode C rises, when α is increased. For very small rotation rates, it is centred
around a wavelength of two cylinder diameters, but shifts to lower wavelengths as
α is increased, reaching its terminal value of λz/d ≈ 1.1 at α > 1.5. Throughout this
process, the peak becomes narrower and higher, soon dominating the background
noise. This is caused by the flow becoming more coherent in the spanwise direction;
the flow reaches a high degree of regularity already at α = 1.0.

To support the conclusions drawn from the wavelength spectra, figure 9 shows
mode C flow structures at α = 0.7 and 1.7. At the lower rotation rate, the spanwise
wavelength is λz/d ≈ 1.8, whereas at the higher rotation rate, the wavelength decreases
to λz/d ≈ 1.1, consistent with the linear predictions by Rao et al. (2013a).

One should bear in mind that the wavelength spectra are a statistical representation
of the flow. They have been extracted from flow visualizations that depend on the
position of the hydrogen bubble wire and the laser sheet. In addition, the streamwise
location in the pictures from which the wavelength spectra were created, influenced, to
some degree, the relative strengths of the two peaks representing modes B and C. In
this sense, the data of figure 8 should be treated as a rough sketch of the transition
process between these two modes. A more robust experimental technique is needed to
investigate this transitional region in more detail.

The observation of mode C below the critical rotation rate of αcrit ≈ 1.5, stands
out as the greatest difference between linear stability analysis and experiment. An
explanation for this unexpected behaviour might be the initial conditions in the
experiments. Each point on the parameter map was approached from α = 0, by quickly
spinning up the cylinder from rest. This way, the initial condition at Re = 275 was
a fully developed mode B. Within a few seconds, the cylinder was spinning at its
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FIGURE 9. Change of wavelength of mode C with rotation rate at Re= 275. (a) The average
wavelength is λz/d ≈ 1.8 at α = 0.7. (b) The wavelength decreases to λz/d ≈ 1.1 at α = 1.7.
Each picture is 7d wide.

terminal rotation rate, and any new mode would have to grow on this base flow. This
excludes a possible hysteresis effect of mode C, which may have been observed if the
rotation rate was changed continuously. Instead, it is speculated that the presence of
mode B triggers mode C, forcing it outside its predicted instability region to lower
values of α.

A similar relationship exists between modes A and B of a stationary cylinder.
Mode A becomes linearly unstable through a subcritical bifurcation at Re ≈ 190
(Henderson 1997). The critical Reynolds number for the onset of linear instability of
mode B is Re ≈ 260. This number is derived assuming a purely two-dimensional base
flow. In spite of this, mode B has been experimentally and numerically observed by
many researchers for Reynolds numbers below this critical value, some of them as low
as Re = 220 (Williamson 1988; Zhang et al. 1995; Thompson et al. 1996). Henderson
(1997) and Barkley, Tuckerman & Golubitsky (2000) explain this observation by a
nonlinear interaction of these modes, in which mode A has a destabilizing effect on
mode B, and mode B has a stabilizing effect on mode A, with a resulting mixed-mode
state emerging from Re ≈ 230 on. Sheard, Thompson & Hourigan (2003a) extended
this further using a coupled Landau model again showing that in practice the transition
from mode A to mode B occurs over the Reynolds number range 230 6 Re 6 260.
Remarkably, once the Reynolds number exceeds the critical value of Re ≈ 260, this
mixed-mode state gives way to what appears to be a much more ‘pure’ mode B wake.

A similar nonlinear interaction may be at play at the transition of mode B to C,
with rotation rate α as the control parameter. Confirmation of this conjecture, and the
general influence of initial conditions on mode C, need further investigation.

4.3. Modes D and E
Once the rotation rate was increased above α ≈ 1.85, two new modes, termed here as
modes D and E, develop in rapid succession on further increasing the rotation rate.
As they have very similar characteristics, both modes will be discussed in this section.
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FIGURE 10. (Colour online) Flow visualizations of (a) mode D and (b) mode E at Re= 250,
α = 1.9 and α = 2.1, respectively. The flow is from bottom up.

Note that the following experiments were performed at a slightly lower Reynolds
number of Re= 250.

Linear stability analysis predicts mode D to exist for a narrow band of rotation
rates, approximately 1.85 < α < 1.95. At these rotation rates, the cylinder wake is
on the verge of undergoing transition from a shedding state to a laminar steady
double-shear layer wake, as discussed previously in § 3.2. Mode D consists of
uninterrupted streamwise vortices that wind around the (now weakened) Bénard–von
Kármán vortices, resembling a serpentine pattern. Figure 10(a) shows a plan view of
this wake at α = 1.9. The hydrogen bubble sheet is wrapped around the streamwise
vortices of mode D, and becomes illuminated when these cross the laser sheet. The
streamwise distance of the illuminated sections in this image is dictated by the
separation of the Bénard–von Kármán vortices.

Figure 10(b) shows the wake at a slightly higher rotation rate of α = 2.1, for which
the two-dimensional Bénard–von Kármán shedding no longer occurs. Superimposed on
this steady wake, steady streamwise vortices can be seen, with a spanwise spacing
similar to that of mode D. Owing to the different base flow, this mode is referred to as
mode E.

The temporal behaviour of both modes can be seen in the space–time diagrams of
figure 11. Figure 11(a) shows that mode D is periodic in time (with St = 0.206) and
space. Mode E is periodic in the spanwise direction, but steady in time, exhibiting
only slight variations due to a small amount of unsteadiness of the wake. In particular,
the diamond shaped cells connecting the vertical traces in figure 11(c) are formed by
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FIGURE 11. Space–time diagrams of (a) mode D at α = 1.9; and (c) mode E at α = 2.1 (both
created at x/d = 9.2). The time-averaged wavelengths are λz/d ≈ 1.7 and λz/d ≈ 2.1, as seen
in wavelength spectra (b,d), respectively.

a remnant shedding oscillation of the double-shear layer. The reason for the changing
linking between the longitudinal vortices at 0 < z/d < 4 is not clear, but is probably
caused by a slight flow disturbance.

The spanwise wavelengths are λz/d = 1.7 for mode D, and λz/d = 2.1 for mode E,
as can be seen in the wavelength spectra of figure 11(b,d). It must be emphasized
that these values are an average over the measured space and time domains. The
space–time diagrams of figure 11 show only a small spanwise section of the collected
data, and also for a particular time window. Particularly for mode D, the full data set
shows a slow change in wavelength, which decreases from λz/d = 1.8 to 1.6 over a
time period of 45 s (68 shedding periods).

One concern regarding the use of qualitative flow visualization over extended
streamwise domains, as in case of modes D and E (figure 10), is the streakline
effect with its spatially integrated view of the flow patterns. Combined with vortex
stretching and the slow diffusion of the hydrogen bubbles as a passive scalar (Smits &
Lim 2000, chap. 3.5), this effect can lead to an misinterpretation of the existence and
strength of vorticity (this is shown impressively in Cimbala, Nagib & Roshko (1988)).
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FIGURE 12. (Colour online) Inverse colour photographs of streakline patterns of mode E
when the hydrogen bubble wire is placed at increasing distances downstream of the cylinder
(Re = 250, α = 2.1). The location of the cylinder is marked with ‘c’, all wire positions are
marked with ‘w’. The insert on the lower right shows non-dimensional streamwise vorticity
obtained from time-averaged PIV data in the y–z plane (the view is in upstream direction;
vorticity is non-dimensionalized as ωxd/U; negative vorticity is denoted by broken lines
and solid lines represent positive values). The PIV recording location is marked in the first
photograph on the left with the dashed line (shown in green online) at x/d = 3.

An estimate of the strength of the streakline effect is given in figure 12 for mode E.
Following Cimbala et al. (1988), the hydrogen bubble wire was placed at increasing
distances downstream of the cylinder. The photographs show that the bubble sheet is
deformed periodically along the span as far as x/d > 30, meaning that the streamwise
vortices of mode E exist at least up to this distance. It can be concluded that the
streakline effect plays a minor role in our visual data, and the photographs show a
good estimate of the true location and strength of streamwise vorticity.

To support our flow visualizations and to confirm the spanwise periodicity of
mode E, PIV data in the y–z plane at x/d = 3 were recorded. For this plane orientation,
the streamwise vortices ‘pierce’ the laser plane almost perpendicularly and create a
periodic in-plane fluid motion. The vortices were strictly stationary, such that a time
average of 500 PIV snapshots (1 s apart) could be calculated. The insert on the lower
right of figure 12 shows vorticity contours of this time-averaged vector field. Counter
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FIGURE 13. (Colour online) Comparing PIV and flow visualizations of modes D (a,c) and
E (b,d) at Re = 250, α = 1.9 and 2.1, respectively. The PIV data show the instantaneous
vorticity fields in the x–y plane, and the flow visualizations are recorded from a side
perspective in the x–z plane. The horizontal dashed lines in (a,b) show approximate locations
of the laser sheet used to illuminate the hydrogen bubbles. The images have the same scale,
but were not taken simultaneously. The colour maps have been inverted to better show the
flow structures. (The flow is from left to right; vorticity is non-dimensionalized as ωzd/U.)

rotating vortex pairs can be clearly distinguished with a spanwise spacing of 2.05d,
confirming the visual data and the space–time diagram.

Returning to the comparison of modes D and E, it has been mentioned that the
transition between these modes is dominated by the gradual decay of the main vortex
shedding. This makes it difficult to determine a precise critical rotation rate separating
these two modes. Considering the similar wavelengths and spatiotemporal symmetries,
we speculate that these modes result from the same physical mechanism, but grow
on different but related base flows. As shown by PIV data in § 3.2, shedding decayed
for Re = 200 and rotation rates beyond α = 1.9. As the critical rotation rate of this
process is only weakly dependent on Reynolds number, the wake can be expected to
undergo transition back to steady flow at a rotation rate in the range 1.9< α < 2, even
for Reynolds numbers above 200. This would explain the striking similarity between
modes D and E.

We wanted to confirm this process at Re= 275, and link the flow fields in the wake
cross-section (x–y plane) to visual observations from a side perspective. Figure 13
shows instantaneous PIV vorticity fields in the x–y plane, and flow visualizations in
the x–z plane. As expected, the PIV data confirm the shedding decay in the range
1.9 < α < 2.1. Flow visualizations of the shedding wake show mode D structures,
periodic in the spanwise and streamwise direction (figure 13c). Once the wake
becomes steady, the spanwise periodicity persists, as seen in figure 13(d), whereas
the structures now resemble streamwise vortices in a plane parallel to the x–z plane
(mode E).
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FIGURE 14. Time-averaged streamlines (PIV data) at Re = 250 showing the location of
the hyperbolic point (dashed circle) in the wake of the cylinder rotating at α = 1.90. The
approximate coordinates of this point are (x, y) = (1.52d,−0.66d). The flow is from left
to right.

The approximate location of the laser sheet, which creates these flow visualizations,
is indicated in the PIV vorticity fields as a dashed line. The cut through the serpentine
wake at α = 1.9 creates the interrupted patterns seen in figure 13(c), whereas the
cut through the steady wake at α = 2.1 appears in figure 13(d) as steady streamwise
structures.

The PIV data of figure 13 give clues on the physical mechanism behind these two
modes. Up to x/d ≈ 4, the wakes of both modes are practically identical, consisting of
a steady double-shear layer. Only further downstream, the wake develops an oscillation
for α = 1.9. An enlarged view of the time-averaged near-wake for Re = 250 and
α = 1.90 is shown in figure 14. The two prominent features of this flow field are
a single closed recirculation region (rather a focal point), and a hyperbolic point at
(x, y) = (1.52d,−0.66d). The flow field of mode E at α = 2.10 is not shown, but
displays the same characteristics, with the hyperbolic point moved slightly upstream to
(x, y)= (1.19d,−0.68d).

The hyperbolic stagnation point is characterized by local acceleration of fluid and
rapid stretching of vortices, resulting in amplification of vorticity perturbations. As
shown by Kerr & Dold (1994) and Leblanc & Godeferd (1999), hyperbolic instability
can lead to formation of counter-rotating vortices (‘ribs’), whose axes lie parallel to
the direction of the diverging flow. This mechanism has been proposed by Williamson
(1996b) and Leweke & Williamson (1998b) as reason for mode B in the wake of
a stationary cylinder. (For an alternative viewpoint on the nature of mode B, see
Ryan, Thompson & Hourigan (2005).) They argued that mode B scales on the smaller
dimensions of the braid shear layer, which explains its comparable small wavelength
of 1d. In the case of mode D and E, the maximum streamwise vorticity occurs
on the dividing streamline passing through the hyperbolic point, consistent with this
hypothesis. Further discussion on this point can be found in Rao et al. (2013a).
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1d

FIGURE 15. (Colour online) Flow visualization of mode F on the surface of the spinning
cylinder, at Re = 275 and α = 2.3. The average spanwise wavelength is λz/d ≈ 0.5. The flow
is from bottom up. The sense of rotation is such that the cylinder surface seen by the observer
is moving up.

4.4. Mode F
The last instability investigated was the short-wavelength mode F, appearing at
rotation rates above α ≈ 2.2, at Re = 275. Its flow structures formed on the cylinder
surface, with an average spanwise spacing of λz/d ≈ 0.5. These structures consisted
of streamwise vortex filaments, partly wrapping around the cylinder and extending
into the near wake, as seen in the flow visualization in figure 15. Considering the
relatively high rotation rates and small length scales, a centrifugal instability seems to
be the most likely explanation for this mode. Similar structures have been observed
in the three-dimensional computations by Mittal (2004) at Re = 200 and α = 5, and
were linked to the centrifugal instability mechanism. Further analysis of this proposed
mechanism to this case can be found in Rao et al. (2013a).

Unlike the previously discussed modes of this study, the streamwise vortices of
mode F were not stationary, but wandered along the cylinder span. This can be seen
in the space–time diagram of figure 16 (created at x/d = 1), which shows a consistent
pattern of almost parallel inclined lines. These are oriented along the direction bottom
left to top right, and are intersected by another group, orientated along bottom right to
top left. A two-dimensional autocorrelation of the full space–time diagram (only a 15 s
segment is shown here) displays two correlation maxima in directions indicated by
the two white lines. The inverse slopes of these lines are the average phase velocities
±cph (in units of cylinder diameters per second) of mode F structures moving in
positive and negative spanwise directions. Estimations of frequency (f = cph/λz) and
spanwise Strouhal number (St3D = fd/U) of this mode are shown in table 2. The
three-dimensional Strouhal number is in good agreement with predictions by Rao et al.
(2013a) (0.11).

These results suggest that mode F is a travelling wave. Rao et al. (2013a) reported
a change in sign of streamwise vorticity within one perturbation field period. After a
half period, the perturbation field was identical but of opposite sign. It was speculated
that mode F is subharmonic, although the present experimental results support the
travelling wave explanation.

Furthermore, there are signs of coexistence and nonlinear interaction of modes E
and F. This is evident from the parameter space in figure 1, which shows an overlap
region of these two modes for Re > 290 and α > 2.2. Our experiments confirm the
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FIGURE 16. (a) Space–time diagram and (b) time-averaged wavelength spectrum of mode F
at Re = 275, α = 2.3. White lines in (a) show principal directions of movement of mode F
structures.

−z direction +z direction Mean

Phase velocity (d/s) 0.42 0.52 0.47
Frequency (Hz) 0.76 0.95 0.85
St3D 0.09 0.11 0.10

TABLE 2. Characteristics of spanwise movement of mode F.

existence of structures similar to mode E in the far wake, even at slightly lower
Reynolds numbers. Figure 17 shows the cylinder wake at Re = 275 and α = 2.4 (for
better clarity and contrast, the wire is positioned downstream of the cylinder). There
is a striking visual similarity to mode E of figure 10(b). The dominant spanwise
wavelength at this rotation rate lies between 1.6 and 2 cylinder diameters, compared
with λz/d ≈ 2.1 of the ‘pure’ mode E.

Despite the visual similarity, two characteristics distinguish this flow regime
from mode E: first, the streamwise structures visible in figure 17 are moving
in the spanwise direction. Numerical processing shows that the phase velocity is
cph ≈ ±0.5 d/s, similar to that of mode F. This is the first sign of a possible
interaction between these two modes. The second difference is the appearance of
‘loop-like’ structures in the far wake, some of which are marked by dashed circles.
This phenomenon has not been observed in the case of pure mode E. Preliminary
experiments indicate that these structures are created in the vicinity of the cylinder by
ejection of large hairpin vortices (of the order of 2d) into the near wake. Nevertheless,
the physics involved is not clear at this stage and should be investigated in future
work.

4.5. Second shedding
Although outside the main scope of this paper, we would like to add a short note
on the subject of second shedding, as reported by Mittal & Kumar (2003), Stojković
et al. (2003), El Akoury et al. (2008) and Kumar et al. (2011). It is remarkable
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5d

FIGURE 17. (Colour online) Flow visualization at Re = 275 and α = 2.4, showing
streamwise structures similar to mode E. Not visible in this picture, due to the chosen
hydrogen bubble location, is mode F on the surface of the cylinder, similar to figure 15.
Dashed circles mark ‘loop-like’ structures that distinguish this flow regime from the pure
mode E. The flow is from the bottom up.

that all evidence of this phenomenon presented in these publications are either two-
dimensional computations, or experimental data (PIV and flow visualizations) of the
wake cross-section. Stunningly, some studies report the absence of this phenomenon
altogether (Luo et al. 2009). To our best knowledge, no published data exist that show
this process in three dimensions. Without such data, the question arises how strictly
two-dimensional this process is in reality. In other words, it is not clear whether the
one-sided vortex detaches simultaneously along the whole cylinder span, or whether it
happens as a three-dimensional process. In addition, recent numerical investigations by
Rao et al. (2013b) showed the onset of the mode E instability prior to the onset of
mode II shedding.

Initially, we hoped to observe this phenomenon under conditions reported by other
researchers. For example, Kumar et al. (2011) presented instantaneous PIV vorticity
maps in the wake cross-section at Re = 200 and α = 4.45 that showed the detachment
of a one-sided vortex from the rotating cylinder. For these conditions, we did not
observe anything comparable in our flow visualizations. The near wake was in a
permanent chaotic state. In addition, a centrifugal instability (mode F) was present
on the cylinder surface, adding to the disruption of the near wake. This is consistent
with observations by Mittal (2004), who reports small structures along the span of the
cylinder. Nevertheless, large-scale vortical structures could be observed being ejected
at random intervals into the wake in our experiment, containing large amounts of
vorticity. This process can be seen in the online supplementary movie ‘Movie2.mp4’
accompanying this article (available at http://dx.doi.org/10.1017/jfm.2012.486).

The closest phenomenon resembling second shedding was observed only when
we significantly reduced the Reynolds number. This had two effects: the wake
became more stable; and the centrifugal instability was suppressed due to the lower
rotation rates. In this ‘clean’ wake, we made the observation of a single-sided vortex
detachment at Re = 100 and α = 5.1. Against expectations, this process was very
localized, initiating from random ‘detachment points’ along the cylinder span in an
unpredictable fashion.

http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486
http://dx.doi.org/10.1017/jfm.2012.486


Three-dimensional modes in the wake of a rotating cylinder 591

5d

FIGURE 18. (Colour online) Flow visualization of one-sided shedding at Re = 100 and
α = 5.1 (video snapshots taken from the first few seconds of ‘Movie3.mp4’). The detaching
vortex forms a horse-shoe shaped vortex bend, which peels slowly off the cylinder. The
rotating cylinder can be seen at the bottom edge; the hydrogen bubble wire is positioned
downstream of it. The flow is from the bottom up. The contrast has been enhanced for clarity.

Figure 18 shows three video snapshots cropped around one of these points. The
overall wake is initially steady. The first picture shows the start of detachment, as
the vortex passes the hydrogen bubble wire. The vortex wraps the bubble sheet into a
horse-shoe shaped tube. As this peeling process continues, the base of the ‘horse-shoe’
structure widens, its two end points moving apart in the spanwise direction. In most
cases, the process stops only when one of these base points reaches the base point of
a neighbouring vortex bend. The full detachment sequence of this, and several other
vortex bends, can be seen in supplementary movie ‘Movie3.mp4’.

No further data were collected on this phenomenon, and at this point it can
only be speculated on the reasons for the described behaviour. Is the observed
three-dimensionality due to end effects of the finite cylinder, the imperfections of
the experimental setup (free-stream turbulence and unavoidable (but small) cylinder
vibrations), or is this process inherently three-dimensional? Previously published
observations in the cross-sectional plane might be the result of an opportune
positioning of the recording plane. A cut parallel and close to the symmetry plane
of one of these vortex bends would appear in planar PIV vector fields as a single
spanwise vortex moving downstream.

On the other hand, PIV recordings by Kumar et al. (2011) confirm one-sided
shedding at Re= 200, a Reynolds number at which no coherent shedding was visually
perceivable in our experiments. One explanation for this might be the interaction of
centrifugal instability and second shedding. One-sided shedding may be present in
our flow, but visually masked by the flow disruptions caused by centrifugal instability.
The previously mentioned ejection of large-scale vortical structures at this Reynolds
number might in fact consist of actual vortex bends, disrupted and deformed by the
interaction with mode F. For now, these claims are of a speculative nature and further
thorough investigation is needed to address these issues.

5. Conclusions
The results presented here are the first to show experimentally a new set of three-

dimensional modes in the wake of a rotating cylinder. These match the modes first
found in the numerical work based on linear stability analysis of Rao et al. (2013a).
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First, the experimental setup was validated for cases of a non-spinning and a
spinning cylinder. Modes A and B were observed in the wake of a non-spinning
cylinder at Re = 175 and 275, respectively. In the case of a rotating cylinder, PIV
results by Kumar et al. (2011) were reproduced for Re = 200. Shedding decayed once
the rotation rate passed the critical value of α ≈ 1.9, and the wake developed into a
steady double-shear layer.

During the main experiments, several new three-dimensional modes were
investigated for Reynolds numbers 250 and 275. First, a subharmonic mode C was
observed for rotation rates 1.0 . α 6 1.85. Its nominal spanwise wavelength was
λz/d ≈ 1.1 at α = 1.7, but increased significantly with decreasing rotation rate. This
mode has similar characteristics to the subharmonic mode C observed in the wakes of
a torus (Sheard et al. 2005a), and of a cylinder disturbed by a thin wire (Zhang et al.
1995; Yildirim et al. 2013). Furthermore, a complex interaction with mode B took
place for α . 1.0. This nonlinear interaction could not be predicted by linear stability
analysis.

Two modes with a wavelength of λz/d ≈ 2 appeared in close succession at Re= 250.
For rotation rates above α = 1.85, mode D consisted of continuous streamwise vortices
in a shedding wake. Mode E was observed at a slightly higher rotation rate of α > 2.1.
It appears that this mode is a continuation of mode D, but on a henceforth steady
wake. This is supported by the observation of a smooth transition between these two
modes, as the wake changes gradually from a shedding to a steady state. Both modes
are attributed to an hyperbolic instability of the mean wake.

The fourth mode, mode F, was observed on the cylinder surface for Re = 275 and
rotation rates above α ≈ 2.2. It consisted of ring-like vortices at an average spanwise
spacing of λz/d ≈ 0.5. Similar structures with a spanwise wavelength of one cylinder
diameter were observed in three-dimensional computations by Mittal (2004) for α = 5.
It is speculated that this mode is the result of centrifugal instability. However, in
our experiments, the three-dimensional structures moved along the span, resembling a
travelling wave of St3D ≈ 0.1. In addition, while mode F was fully developed on the
cylinder surface, streamwise structures similar to mode E were observed in the wake
for rotation rates α > 2.3. There is indication of a nonlinear interaction between these
two modes that needs further investigation.

One-sided shedding (second shedding mode) was visualized for Re = 100, α = 5.1
(see supplementary movie ‘Movie3.mp4’). Unlike the current assumption of a two-
dimensional vortex parallel to the cylinder axis, the observed shedding created
localized horse-shoe shaped vortex structures peeling off the cylinder. The detachment
was initiated at randomly distributed ‘detachment points’ along the span, giving this
process a fully three-dimensional character.

In summary, the presented experimental results largely confirm the linear stability
analysis of Rao et al. (2013a). The predicted modes C–F have been observed
experimentally, with a good agreement in terms of spanwise wavelengths and
spatiotemporal symmetries. All modes are shown in sequence at Re = 275 in the
supplementary movie ‘Movie1.mp4’, which can be found online.

The largest discrepancy concerns the observation of mode C at rotation rates
significantly below its linearly unstable range. A possible cause might be the fully
developed mode B as the initial condition in the experiment. This does not seem to
play a role for α > 1.0, but leads to a complex interaction of these two modes for
α . 1.0, which should be investigated in future work.
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