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a b s t r a c t

In published literature of the vortex-induced vibration of a sphere, limited attention has
been devoted to spheres having three degrees of freedom (DOF) motion and the effect
on the vibration response. In this study, the vortex-induced vibration response of a 3-
DOF elastically-mounted sphere was examined numerically. The response of a sphere
allowed to oscillate in all three spatial directions (3-DOF motion) was compared with the
response of a spherewhosemotionwas restricted to only the transverse direction (1-DOF).
Simulations were conducted over the reduced velocity range U∗

≡ U/(Dfn) ∈ [3.5, 16],
using a sphere of mass ratio m∗

≡ ρs/ρ = 3, at a fixed Reynolds number of 2000,
where U is the free-stream velocity of the flow, fn is the natural frequency of the system,
ρs and ρ are the solid and fluid densities, respectively. When the sphere was allowed 3-
DOF movement, it was initially excited to vibrate along a linear path in the transverse
direction, synchronized with the two-sided shedding of vortex loops behind the sphere. As
the simulation time advanced, the sphere trajectory eventually converted into a circular
orbit with a spiralling wake behind it. The transition time between these two modes
was found to increase with decreasing Reynolds number. The vibration amplitude was
significantly smaller when the sphere motion was in all three spatial directions than when
it was restricted only to the transverse direction. Themaximum vibration amplitudes were
approximately 0.6 and 0.8 diameters, for 3-DOF and 1-DOF motion, respectively. In the
synchronization regime, the maximum time-averaged drag coefficient was approximately
100% greater than that of a stationary sphere, when the sphere had 3-DOF, similar to
previous observations for a tethered sphere. However, the maximum change to the time-
averaged drag coefficient was only 76% when the motion was restricted to the transverse
direction.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

A significant volume of research has been focused on vortex-induced vibration (VIV) over the past decades, owing to its
practical significance to many engineering fields. VIV of a bluff body is a periodic vibration state induced by vortex shedding
from the body leading to an oscillatory force on it. In particular, for a sphere, periodic or quasi-periodic vortex loops form
behind the body, exciting it to vibrate when the vortex shedding frequency is close to the natural frequency of the system. As
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this robust vibration state can be sustained for a long time, it can cause fatigue damage or even catastrophic failure. Therefore,
it is important to understand the nature of VIV at a deep level. Due to the complexity and non-linearity of vibration problems,
it is not possible to treat them analytically. Therefore, the fundamentals of vortex-induced vibration, and the more general
case of flow-induced vibration, have been disclosed through extensive experimental and computational studies examining
the response of generic bluff bodies. Major findings can be found in comprehensive reviews by Bearman (1984), Parkinson
(1989), Sarpkaya (2004), Williamson and Govardhan (2004, 2008), Wu et al. (2012) and Ern et al. (2012).

Due to their geometric simplicity and symmetries, cylinders and spheres are the most studied geometries that have
been used to investigate the fundamentals of flow-induced vibration. In particular, a vast amount of research has been
undertaken with freely vibrating circular (or square) cylinders, due to their practical importance and simplicity of setting
up such arrangements both experimentally and computationally. In contrast, only a relatively small amount of research has
been conducted on freely vibrating spherical bodies. Thus, the wake of an axisymmetric body, like a sphere, is less well
understood, and there are some important questions yet to be fully addressed.

A freely vibrating sphere was first examined in depth by Govardhan and Williamson (1997) and Williamson and
Govardhan (1997). They conducted experimentswith tethered spheres that revealed that the sphere also vibrates vigorously,
like a cylinder, when placed in a uniform flow field. The sphere vibratedwith amaximum amplitude as large as the diameter
of the sphere. The transverse oscillation frequency was half that of the streamwise oscillation frequency, despite the fact
that the natural frequency of a tethered body is independent of direction. This led the sphere to follow a path in the shape
of a ‘figure eight’, with a streamwise amplitude of 0.2 diameters. The streamwise amplitude was found to decrease with
increasingmass ratio, resulting in the typical sphere trajectory changing froma ‘figure eight’ to a ‘crescent’ shape (Govardhan
and Williamson, 1997; Williamson and Govardhan, 1997; Govardhan and Williamson, 2005; Jauvtis et al., 2001).

Based on the amplitude response curve (A∗ – U∗), Govardhan and Williamson (1997) identified two different sphere
responses in the reduced velocity range U∗

≈ [0, 20], which are known as modes I and II. Here, U∗
≡ U/(Dfn) and

A∗
≡

√
2Arms/D are the non-dimensional velocity of the flow known as reduced velocity and non-dimensional amplitude of

the sphere vibration, respectively, where U is the upstream flow velocity, D is the diameter of the sphere, fn is the natural
frequency of the system, and Arms is the r.m.s. of the sphere vibration amplitude. The experimental studies of Jauvtis et al.
(2001) and Govardhan and Williamson (2005) investigated these two modes further by varying the mass ratio, m∗

≡ ρs/ρ,
over a wide range, where ρs and ρ are the solid and fluid densities, respectively. The sphere showed a mode I response
over a small range of reduced velocities (U∗

≈ [5, 6]) before it gradually transitioned to a mode II response with increasing
U∗. Both of these modes are vortex-induced vibration responses, where the sphere vibrates in synchrony with the vortex
shedding frequency and the natural frequency of the system. Themode I response can be identified as the natural resonance,
which is more robust than the mode II response (Rajamuni et al., 2018b). Interestingly, the vibration amplitude of mode II
was found to be larger than the amplitude of mode I (nearly double) at high Reynolds numbers. Govardhan andWilliamson
(1997) observed a local peak in the amplitude response curve for mode I with light spheres (m∗ < 1). However, this peak
was obscured for heavy spheres (m∗ > 1), especially when mounted with elastic supports, leading to a smooth amplitude
response curve. Govardhan and Williamson (2005) reported that when the mass ratio and mass-damping parameter, m∗ζ ,
was systematically increased, then the synchronization regime narrowed, while the response amplitude decreased, ζ is the
damping ratio. Govardhan andWilliamson (2005) visualized thewake behind the sphere using PIVmeasurements and found
two trails of hairpin vortex loops for both mode I and II states.

The experimental studies of van Hout et al. (2010, 2013) over the Reynolds number ranges Re ≡ DU/ν ∈ [486, 5556]
and Re ∈ [493, 2218], respectively, and the computational study of Pregnalato (2003) at Re = 500, also reported highly
periodic VIV responses with tethered spheres in the mode I and II regimes, ν is the kinematics viscosity of the fluid. The
combined experimental and computational study of Lee et al. (2013) investigated the vibration response of a neutrally
buoyant (m∗

= 1) sphere, over a wide range of Reynolds numbers, ranging from 50 to 12 000, and identified seven distinct
flow regimes. They found that the sphere started to vibrate as a result of the onset of vortex shedding for Re ≳ 270.
Based on the sphere trajectories, they identified three distinct periodic vibration regimes over the Reynolds number range
270 ≤ Re ≤ 550. Moreover, the sphere showed an irregular motion for Re ∈ [550, 3000] and quasi-circular motion for
Re > 3000.

Mi and Gottlieb (2015) derived a Lagrangian-based model to estimate both structural and aeroelastic parameters, for
light spheres (m∗ < 1). Validation of the model was demonstrated by comparison of results with those of Govardhan
and Williamson (1997) and Constantinescu and Squires (2000). They revealed the existence of possible quasi-periodic and
non-stationary solutions consistent with previous findings of aerostats. Mi and Gottlieb (2016) derived a nonlinear initial
boundary value problem for a planar multi-tethered spherical aerostat system and observed super-harmonic periodic,
period-doubled, quasi-periodic and chaotic-like frequency responses. Mi and Gottlieb (2017) formulated a six-degree of
freedom multi-tethered rigid body spherical aerostat system. Their linear stability analysis revealed the existence of a
supercritical Hopf bifurcation with respect to the reduced velocity.

Besides the first two periodic modes (modes I and II), Jauvtis et al. (2001) observed another periodic vibration state
(mode III) and intermittent bursts of vibrations (mode IV) over the reduced velocity ranges U∗

∈ [20, 40] and U∗ > 100,
respectively,with high-mass-ratio spheres.Mode III is not a VIV response as the vortex shedding frequencywas three to eight
times higher than the sphere vibration frequency.Mode IV also not a VIV response, even though it is a flow-induced vibration
response. The recent computational study of Rajamuni et al. (2018b) of a tethered sphere, over the Reynolds number range
Re ∈ [500, 2000], claimed that mode III is an intrinsically unstable vibration state that can only be expected for high-inertia
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Table 1
Non-dimensional parameters. The streamwise direction is parallel to the x–axis, the y and z axis are
orthogonal to the flow and referred to as the transverse and lateral directions, respectively. Here, ρs and ρ

are the densities of solid and fluid, respectively; D is the diameter of the sphere; U is the upstream velocity;
ν is the kinematic viscosity of the fluid; f is the sphere vibration frequency; fn is the natural frequency of the
system (without the added mass effect); fvo is the vortex shedding frequency; Fd and Fl are the drag and lift
forces, respectively; and Ax,rms , Ay,rms and Az,rms are the r.m.s. of the sphere displacement signals in y and z
directions, respectively.
Parameter Symbol

Mass ratio m∗
= ρs/ρ

Reynolds number Re = DU/ν

Reduced velocity U∗
= U/(Dfn)

Amplitude ratios A∗
x =

√
2Ax,rms/D

A∗
y =

√
2Ay,rms/D

A∗
z =

√
2Az,rms/D

Drag coefficient Cd = Fd/(2ρU2π (D/2)2)
Lift coefficient Cl = Fl/(2ρU2π (D/2)2)
Frequency ratio f ∗

= f /fn
Strouhal number St = fvoD/U

spheres. Both Rajamuni et al. (2018a,b) observedmode IV type aperiodic response immediately following themode II regime,
at lower reduced velocities, for small-mass-ratio spheres.

The experimental study of Brücker (1999) examined freely rising air bubbles in water and found three different types of
bubble motion: spiralling, zigzagging, and rocking, during their rise. His results showed that zigzagging motion was coupled
to the generation of two-sided hairpin loops, while the spiralling bubble created a twisted pair of streamwise vortices that
were wound like a helix. The experimental study of Horowitz and Williamson (2010) revealed that a falling sphere always
moves without vibration, and a rising sphere vibrates only if its mass ratio was below a critical value. However, they did
not observe a helical or spiral trajectory. A series of experimental and computational studies conducted by Magnaudet and
Eames (2000) and Mougin and Magnaudet (2001, 2006) observed a bubble rise in the zigzagging path, sometimes followed
by a transition to a spiral path. Mougin and Magnaudet (2001) argued that a zigzag path always appears first, as its growth
rate is larger than that of the spiral path.

Behara et al. (2011) was the first to examine the vortex-induced vibration of a sphere mounted with elastic support in
all three spatial directions. This numerical study was conducted at a Reynolds number of 300 with a sphere of mass ratio
m∗

= 3.82 (reduced mass of 2) over the reduced velocity range U∗
∈ [4, 9]. They observed two distinct VIV responses at the

same reduced velocity, which they named as hairpin and spiral modes. In the hairpin mode, the sphere vibrated in a linear
path, as hairpin loops were shedding behind the sphere. In the spiral mode, the sphere vibrated in a circular orbit creating
a spiralling vortical structure behind the sphere. In each case, they observed a bell-shaped amplitude response curve with
a single peak with a maximum amplitude of ≈ 0.25 diameters, which is much smaller than that observed in experimental
studies at higher Reynolds numbers. Recently, Behara and Sotiropoulos (2016) extended this study by expanding the reduced
velocity range to 0 ≤ U∗

≤ 13. They identified that the sphere vibrates with a larger amplitude when it vibrates in a linear
path (hairpin mode) compared with a circular orbit (spiral mode). However, the hairpin mode was identified as an unstable
state, as it merged with the spiral mode at higher reduced velocities. They also provided some insight on the effects of
Reynolds number on VIV over the range 300 ≤ Re ≤ 1000, by fixing the reduced velocity at U∗

= 9. This study revealed
that the sphere response was strongly dependent on the Reynolds number.

Govardhan and Williamson (2005) showed that the VIV response of a sphere is (relatively) independent of the Reynolds
number in the range Re ∈ [2000, 12000]. However, the recent computational studies of Rajamuni et al. (2018a,b) reported
that the VIV response of a sphere highly depends on the Reynolds number for the range Re ∈ [300, 2000], especially over
the mode II range, regardless whether it is an elastically-mounted sphere with 1-DOF or a tethered sphere. Govardhan and
Williamson (2005) claimed that the motion of a tethered sphere with 2-DOF and an elastically-mounted sphere with 1-DOF
compared well for a similar mass-damping parameter. However, relatively little is known for the VIV of a sphere allowed to
move in all three spatial directions. While the studies of Behara et al. (2011) and Behara and Sotiropoulos (2016) explored
VIV of an elastically-mounted sphere with 3-DOF, those studies were mainly conducted on low Reynolds number flow. Even
though the study of Behara and Sotiropoulos (2016) provides some insight at somewhat larger Reynolds numbers (up to
1000), no clear picture has been drawn at higher Reynolds numbers. Therefore, this study focuses on exploring the nature
of the VIV of a sphere, mounted with elastic supports in all three spatial directions, at the Reynolds number of 2000, and
to compare the response with the responses of an elastically-mounted sphere whose motion is restricted to the transverse
direction (1-DOF) and a tethered sphere. The non-dimensional parameters employed in this study are listed in Table 1.

2. Numerical methodology and validation studies

The CFD package OpenFOAM developed based on a finite volume method was used for the numerical simulations. It
is an open-source CFD package released by OpenCFD Ltd for Unix operating systems. This package is capable of solving a
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Fig. 1. Schematic of the computational domain, where D is the diameter of the sphere. The flow is in the x direction, and the sphere is allowed to translate
in all three spatial directions.

wide variety of flow problems. It also has the capability of performing simulations using multiple processors in parallel.
Recent versions of OpenFOAM enable the solution of Fluid–Structure Interaction problems, with the help of dynamic grid
techniques. However, these methods are time-consuming and computationally costly, as the grid is deformed according to
the solidmotion at the end of each time step. Nevertheless, OpenFOAMallows the user to develop their own flow solvers and
libraries. We developed a fully-coupled FSI solver in the OpenFOAM framework to efficiently solve flow-induced vibration
problems of a single body. Previously, Blackburn and Henderson (1996), Leontini et al. (2006) and Lee et al. (2013) also
employed similar approaches in their numerical studies of flow-induced vibration problems. The FSI system and the FSI
solver are discussed in detail in the following two subsections.

2.1. Governing equations

To avoid mesh deformation, a moving reference frame attached to the centre of the sphere was used to model the fluid
flow. This is a non-inertial reference frame, as its velocity is not fixed. Therefore, the fixed-frame (momentum)Navier–Stokes
equations need to be adjusted accordingly, as given in Eq. (1). This can be done by adding the acceleration of the frame,
which is indeed the acceleration of the sphere, to the momentum equations, as a source term. The elastically-mounted solid
was assumed to be a rigid body, while its motion was assumed to behave as a spring–mass–damper system. The fluid was
assumed incompressible, Newtonian and viscous.

The coupled fluid–solid system can be described by the Navier–Stokes equations given by Eq. (1), and the continuity
equation given by (2), together with the governing equation for the motion of the sphere by Eq. (3):

∂u
∂t

+ (u · ∇)u = −∇P/ρ + ν ∇
2u − ẍs, (1)

∇ · u = 0, (2)
m ẍs + c ẋs + k xs = f l . (3)

Here, u = u(x, y, z, t) is the velocity vector field, P is the scalar pressure field, ρ is the fluid density, and ν is the kinematic
viscosity of the fluid, xs, ẋs, and ẍs are the sphere displacement, velocity, and acceleration vectors, respectively. In addition,m
is the mass of the sphere, c is the damping constant, k is the structural spring constant, and f l is the flow-induced integrated
vector force acting on the sphere due to kinematic pressure and viscous shear forces acting on the body surface.

2.2. Fluid-Structure Interaction (FSI) solver

A solver (named vivIcoFoam) was developed to solve the fully-coupled fluid–structure system defined by the Eqs. (1)–
(3) for laminar flows. This FSI solver is based on the pre-built icoFoam transient solver, which is implemented according
to the pressure implicit splitting of operators (PISO) algorithm introduced by Issa (1986). The vivIcoFoam solver employs a
predictor–corrector iterativemethod, which initially predicts the solidmotion, and corrects it in several corrector iterations.
In particular, the prediction and correction of the solid motion at the (n + 1)th time step can be elaborate as follows.
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Table 2
Comparison of computed time-averaged drag coefficient, Cd , and Strouhal
numbers, St-1 and St-2, at Re = 1000 with other studies.
Study Re = 1000

Cd St-1 St-2

Present 0.49 0.19 0.33
Morsi and Alexander (1972) 0.46 – –
Poon et al. (2014) 0.46 0.185 0.33
Poon et al. (2009) 0.46 0.2 0.34
Roos and Willmarth (1971) 0.472

0.483
– –

Tomboulides and Orszag (2000) – 0.2 0.35

At the predictor iteration, the acceleration of the solid body is explicitly predicted by a third-order polynomial
extrapolation using the values calculated in the previous three time steps by

ẍ(n+1)
s = 3ẍ(n)s − 3ẍ(n−1)

s + ẍ(n−2)
s . (4)

At a corrector iteration, the solid acceleration is corrected with ẋs, xs, and f l calculated in the previous iteration by

ẍ(n+1)
s = −

c
m

(
ẋ(n+1)
s

)
−

k
m

(
x(n+1)
s

)
+

f l
m

. (5)

Afterwards, in each iteration, the solid velocity and displacement are calculated, by a third order Adams–Moulton by

ẋ(n+1)
s = ẋ(n)s +

δt
12

(
5ẍ(n+1)

s + 8ẍ(n)s − ẍ(n−1)
s

)
(6)

and

x(n+1)
s = x(n)s +

δt
12

(
5ẋ(n+1)

s + 8ẋ(n)s − ẋ(n−1)
s

)
. (7)

At the end of each iteration, the fluid equations given in Eqs. (1) and (2) are solved with the predicted or subsequently
corrected solid acceleration, and the fluid forces induced on the solid are calculated. The readers are referred to Rajamuni
et al. (2018a,c) for further details of the solver. The iterative processwas terminatedwhen the relative error of themagnitudes
of the solid acceleration and the fluid forces were less than a given error bound, ϵ. For the present study, ϵ = 0.001 was
chosen since it was found that further decreasing ϵ does not increase the accuracy of the solution. As for the fluid solver, the
overall vivIcoFoam solver is of second-order temporal accuracy.

The fluid domain was modelled in a moving frame of reference. This motion is acknowledged through the outer domain
velocity boundary conditions (except the outlet boundary). In this study, the velocity is prescribed on all the outer boundaries
except the outlet. Once the predictor–corrector iterative process has been completed, the velocity at the inlet boundaries is
updated according to the velocity of the solid body, ẋs, before proceeding to the next time step.

2.3. Validation studies

The flow past an stationary sphere was investigated at Re = 1000 to demonstrate the validity of the numerical method.
Table 2 compares the results obtained for the time averaged drag coefficient, Cd, and Strouhal numbers, St − 1 and St − 2
with the results of Morsi and Alexander (1972), Poon et al. (2014, 2009), Roos and Willmarth (1971) and Tomboulides and
Orszag (2000). As can be seen, the present results closely match values calculated in other studies.

Another set of simulations was conducted with a 2-dimensional cylinder, at the parameters chosen from the numerical
study of Leontini et al. (2006), to check the validity of the vivIcoFoam solver developed for VIV problems. The Reynolds
number, mass ratio, and the damping ratio were fixed at Re = 200,m∗

= 10, and ζ = 0.01, respectively, while the reduced
velocity was varied in the range U∗

∈ [3.5, 7]. Fig. 2 compares our results with observations of Leontini et al. (2006) for the
cylinder vibration amplitude, A∗, fluctuation amplitude of the lift coefficient, C ′

l , frequency ratio, f ∗, and the phase between
the cylinder vibration and the lift force, φ. As the figure shows, the results obtained are closely match with the findings
of Leontini et al. (2006). This provides validation of the new solver. This solver was also used for the computational study
of Rajamuni et al. (2018c) to examine the effect of transverse rotation on the flow-induced vibration of a sphere.

2.4. Computational detail

Fig. 1 shows a schematic of the fluid–structure system used for the simulations presented in this paper. A cubic domain
with a side length of 100Dwas chosen for the fluid, and the sphere was placed at the centre of it. As shown in the figure, the
spherewasmountedwith elastic supports, allowing to translate in all three spatial directions. The stiffness of the springswas
assumed to be identical in all three directions. To examine the nature of the VIV, a range of reduced velocities was obtained
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Fig. 2. Comparison of the VIV response of a cylinder at Re = 200, m∗
= 10, and ζ = 0.01 with the results of Leontini et al. (2006). (a) Maximum vibration

amplitude, A∗
max; (b) peak lift coefficient, C ′

l,max; (c) frequency ratio, f ∗
= f /fn; and (d) average phase between the sphere vibration and the lift force, φ in

degrees.

Table 3
Boundary conditions: U is the upstream velocity; η is the outward normal
vector at a corresponding boundary; and ẋs is the velocity of the sphere.
Boundary Velocity, u Pressure, p

Inlet u = (U 0 0) − ẋs ∇p · η = 0
Sphere u = (0 0 0) ∇p · η = 0
Outlet ∇u · η = 0 p = 0

Table 4
The sensitivity of the spatial resolution of the flow parameters of VIV of a sphere at Re = 2000, U∗

= 7, and m∗
= 3. Here,

Nr is the number of cells in the radial direction of a square frustum and Nt is the number of cells on the sphere surface. The
r.m.s. value of the sphere response amplitude ratios in y and z directions, A∗

y and A∗
z , respectively, the time-averaged drag

coefficient, Cd , the r.m.s. value of the drag coefficient, Cd,rms , and the frequency ratio, f ∗ , are listed.

Grid Nr Nt # Cells A∗
y A∗

z Cd Cd,rms f ∗

Grid 1 50 7 350 0.83 × 106 0.53 0.54 0.90 0.05 0.98
Grid 2 100 7 350 1.20 × 106 0.54 0.54 0.88 0.04 0.98
Grid 3 150 7 350 1.57 × 106 0.55 0.54 0.89 0.04 0.98
Grid 4 200 7 350 1.94 × 106 0.54 0.55 0.89 0.04 0.98

Grid 5 100 12 150 1.88 × 106 0.54 0.53 0.88 0.04 0.98
Grid 6 100 18 150 2.71 × 106 0.54 0.53 0.88 0.04 0.98
Grid 7 100 25 350 3.70 × 106 0.53 0.53 0.88 0.04 0.98

by varying the spring constant, k, according to the relation U∗
= 2π

√
m/k U/D. In the present study, the motion of the

sphere was considered as a spring–mass system with zero damping constant, to achieve the maximum possible oscillation
amplitude.

Table 3 shows the boundary conditions applied at the inlets, outlet, and sphere boundaries. Five inlet faces of the cubic
fluid domain have velocity prescribed on them, with the zero-gradient pressure condition. The downstream side of the
cubic domain is an outlet with zero pressure. The sphere boundary was treated as a wall and assumed to satisfy the no-slip
condition. The upstream flow (in the fixed frame) was taken to be aligned with x direction, as indicated in Fig. 1.

2.5. The computational grid and resolution study

Ansys-ICEM-CFD was used to generate a hexahedral cell grid for the fluid domain. The grid was created such that it
was concentrated towards the sphere surface. To achieve this, a cubic block, with a side length of 5D, was placed around
the sphere. This block was decomposed into small cells with uniformly distributed nodes in the tangential directions, and
exponentially distributed nodes in the radial direction. A large number of cells were assigned in the downstream direction to
resolve the wake structures behind the sphere. For more detail of the grid structure, please refer to Rajamuni et al. (2018a).
A series of finer grids were generated by changing the number of cells in the radial and tangential directions, Nr and Nt ,
respectively, to observe the sensitivity of the computed solution on the spatial resolution. In each grid, the minimum cell
thickness in the radial direction was fixed at 0.002D. The VIV response of the sphere was examined at Re = 2000, U∗

= 7,



Please cite this article as: M.M. Rajamuni, M.C. Thompson and K. Hourigan, Vortex-induced vibration of elastically-mounted spheres: A com-
parison of the response of three degrees of freedom and one degree of freedom systems. Journal of Fluids and Structures (2019),
https://doi.org/10.1016/j.jfluidstructs.2019.02.005.

M.M. Rajamuni, M.C. Thompson and K. Hourigan / Journal of Fluids and Structures xxx (xxxx) xxx 7

Fig. 3. Time histories of the sphere response amplitudes against the non-dimensional time, τ = tU/D at U∗
= 9 and Re = 500, 800, 1000 and 2000. The

amplitudes in the transverse direction (y) are shown by the orange (light) curve, while the amplitudes in the lateral direction are shown by the black (dark)
curve. At each case, the sphere initially vibrates linearly in the transverse direction, and eventually, it vibrates in a circular orbit orthogonal to the flow. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and m∗
= 3 with the sequence of grids. For these parameter values, the sphere was found to vibrate in a circular orbit

with nearly equal amplitudes in both y and z directions. Table 4 compares the effect of grid refinement on the results for
sphere response amplitudes, A∗

y and A∗
z ; time-averaged and fluctuating drag coefficient, Cd and Cd,rms, respectively, and the

frequency ratio, f ∗. As can be seen, the results obtained from grids 2–7 are in a good agreement with one another, with less
than 2% variation in the prediction. Grid 2 was used to obtain all the results presented in this paper, as the increment of Nr or
Nt only affected the prediction weakly. The time step used for all of the simulations presented in this paper was 0.005U/D,
corresponding to approximately 1000 timesteps more per shedding period.

3. Results

3.1. The sphere response for varying Reynolds numbers

Vortex-induced vibration of a sphere allowed to translate in all three spatial directions was examined over the Reynolds
number range Re ∈ [300, 2000] with a sphere of mass ratiom∗

= 3.82 (equivalent to the reduced mass of 2 used by Behara
et al. (2011) and Behara and Sotiropoulos (2016)), by fixing the reduced velocity at U∗

= 9. These m∗ and U∗ values were
chosen for the present study, to later compare the predictions with those of Behara and Sotiropoulos (2016), who examined
the effect of Re for the same parameter values. At each Reynolds number, the sphere initially commenced to vibrate in the
transverse direction, synchronized with alternatively shed vortex loops from the opposite sides of the sphere. However,
the sphere gradually began to vibrate in the lateral (z) direction as time progressed. In its asymptotic state, the vibration
amplitudes in both transverse and lateral directions became nearly (effectively) equal, with the sphere orbiting in a circular
trajectory orthogonal to the flow.

On one hand, the present results match well with the findings of Mougin and Magnaudet (2001), who examined the
path of rising bubbles. Mougin and Magnaudet (2001) found a freely rising bubble that initially followed a zigzag motion,
sometimes transitioned to a circular helixmotion. In the literature on rising bubbles, the zigzagmotionwas always observed
first and then the helix motion, but not vice verse. Mougin and Magnaudet (2006) extended the study of Mougin and
Magnaudet (2001) by examining the wake-induced forces and torques experienced by the bubble. They revealed that the
wake-induced effects are balanced by added-mass effects to enable the existence of both zigzag and helical motions. On the
other hand, the present results are somewhat different from the findings of Behara et al. (2011) and Behara and Sotiropoulos
(2016), who observed two different sphere responses (linear and spiral) for the same reduced velocities at Re = 300.

Fig. 3 shows time histories of the vibration amplitude in the transverse and lateral directions at four different Reynolds
numbers. Consistent with the observation of Mougin and Magnaudet (2001), the sphere vibration amplitude reduced as it
transitioned from a linear path to a circular orbit. Behara and Sotiropoulos (2016) also observed a larger amplitude for the
hairpinmode than for the spiral mode. At low Reynolds numbers, it takes a long time for the vibrations to grow in amplitude
towards the asymptotic state. At Re = 300, the response neared the asymptotic state around non-dimensional time τ ≈ 550
(not shown in the graph). However, as the Reynolds number increased, the transition time shortened and the sphere quickly
began to vibrate in a circular orbit. Moreover, the sphere vibration was purely sinusoidal at lower Reynolds number, but it
was slightly less sinusoidal at higher Reynolds numbers, as a result of the wake becoming more complex.

The wake behind the sphere was visualized using the Q -criterion. Fig. 4 shows the wake structures observed at the initial
and final states for Re = 500, 1000 and 2000. In the initial state, two trails of interlaced hairpin vortex loops were found in
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Fig. 4. Wake structures observed at the initial and final stages of the sphere vibration at Re = 500, 1000, and 2000. The wake structures were visualized
by the Q -criterion (Q = 0.001). Flow is from left to right.

Fig. 5. The sphere response amplitudes (A∗
y–transverse and A∗

z–lateral) as a function of Reynolds number. The solid symbols (marked as P) are the current
results, while the hollow symbols (marked as B) are the results of Behara and Sotiropoulos (2016).

the wake, as the sphere vibrates along a linear path. In the final state, a spiralling wake was found behind the sphere, as it
vibrates in a circular orbit. The wake structures we observed at Re = 500 in the initial and final states, strongly resemble the
observations of Behara et al. (2011) at their hairpin and spiral modes, respectively. The wake is modified with the addition
of small-scale structures, as the Reynolds number is increased, especially in the final state.

Fig. 5 compares the sphere response amplitude with that observed by Behara and Sotiropoulos (2016) for the Reynolds
number range Re ∈ [300, 2000]. As can be seen, the sphere response amplitude was found to increase with increasing
Reynolds number. In comparison with our results, Behara and Sotiropoulos (2016) observed relatively smaller amplitudes
in both the transverse and lateral directions. In addition, they reported various sphere responses depending on the Reynolds
number, while the sphere was found to always move in a circular orbit in its asymptotic state in the present study. It is
perhaps possible that the asymptotic state was not reached in the simulations of Behara and Sotiropoulos (2016).

3.2. The sphere response at Re = 2000

Vortex-induced vibration of an elastically-mounted sphere was examined for a sphere of mass ratio m∗
= 3, over the

reduced velocity range3.5 ≤ U∗
≤ 16, by fixing theReynolds number atRe = 2000. Two sets of simulationswere conducted:

in one case, the sphere was allowed to translate in all three spatial directions, and in the other case, the sphere motion was
restricted to only move in the transverse direction.

When the sphere is mounted with elastic supports in all three spatial directions, it was excited to vibrate beyond U∗
= 4,

and it showed synchronized vibrations up to the highest reduced velocity considered (U∗
= 16). In each case, the sphere

initially vibrated in a linear path and eventually it transitioned to a circular orbit, as observed for different Reynolds numbers
at U∗

= 9. Fig. 6 clearly indicates this transition by plotting the absolute value of the sphere displacement in the y–z plane,
|A∗

yz |, versus non-dimensional time, for U∗
= 7, 9, 11, and 13. In each case, |A∗

yz | highly oscillates until τ ≈ 150 and beyond
that it remains almost constant with a small variation, as the sphere vibrates in a circular orbit.

Fig. 7 shows the variation of the sphere response amplitudes in the streamwise (x), transverse (y) and lateral (z) directions,
over the reduced velocity range 3.5 ≤ U∗

≤ 16, when the sphere was allowed to translate in all three spatial directions. The
sphere vibrated with large and nearly equal amplitudes in the transverse and lateral directions, while it showed a negligible
amplitude (A∗ < 0.03) in the streamwise direction. Over the entire U∗ range investigated, the vibration can be classified as
vortex-induced vibration, where the sphere vibrates at the vortex shedding frequency, fvo, and close to the natural frequency
of the system (see Fig. 8(b)).

The periodicity of the sphere vibration, λA, was obtained by the ratio between the r.m.s. amplitude and the maximum
amplitude. In particular, λA,y =

√
2Ay,rms/Ay,max and λA,z =

√
2Az,rms/Az,max are the periodicities of the sphere response in

the transverse and lateral directions, respectively. According to these definitions, the periodicity takes values between 0 and
1, where λA = 1 represent the sinusoidal response. As Fig. 8(c) shows, all of the synchronized vibrationswere highly periodic
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Fig. 6. Absolute value of the sphere displacement in the y–z plane, |A∗
yz |, as a function of non-dimensional time, τ , at Re = 2000 for U∗

= 7, 9, 11, and 13.

Fig. 7. Comparison of the sphere response amplitude curves at Re = 2000 for three different mounting methods; 3D – a sphere of m∗
= 3 mounted with

elastic supports in all three spatial directions: 1D – elastically-mounted sphere of m∗
= 3 whose motion is restricted to the transverse (y) direction; and

T– results of Rajamuni et al. (2018b) with a tethered sphere of m∗
= 0.8. Here, A∗

x , A
∗
y and A∗

z are the amplitudes in the streamwise, transverse and lateral
directions, respectively.

in both the transverse and lateral directions, similar to the highly periodic mode I and II vibrations observed by Williamson
and Govardhan (1997), Govardhan and Williamson (1997, 2005), Jauvtis et al. (2001), Rajamuni et al. (2018a,b), and the
highly periodic synchronized vibrations observed by van Hout et al. (2010), Behara et al. (2011) and Lee et al. (2013) for both
tethered and elastically-mounted spheres. The sphere trajectories at five reduced velocities (U∗

= 5, 7, 9, 11 and 15) in the
y–z plane are shown in Fig. 9. As can be seen, the sphere vibrated in a circular orbit in a plane orthogonal to the flow.

Fig. 7 also compares the response of an elastically-mounted sphere with 3-DOF with the response of an elastically-
mounted sphere whose motion is restricted to the transverse (y) direction. Even though the sphere showed highly periodic
vibrations in each case, it vibrated with a larger amplitude when the motion was restricted to the transverse direction
compared to the 3-DOFmotion. Allowing the sphere tomove in all spatial directions seems to reduce the vibration amplitude
as it vibrates in a circular orbit compared to a linear path under 1-DOFmotion. Consistently, the studies of Behara et al. (2011)
and Behara and Sotiropoulos (2016) with an elastically-mounted sphere of 3-DOF at Re = 300 observed a smaller amplitude
when the sphere moved in a circular orbit (spiral mode) than when it moved along a linear path (hairpin mode).

Govardhan and Williamson (2005) compared the motion of an elastically-mounted sphere free to move only in the
transverse direction with the motion of a tethered sphere allowing 2-DOF (xy motion). They also observed that the sphere
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Fig. 8. The vortex-induced vibration response of a sphere with 3-DOF at Re = 2000 and m∗
= 3 over the reduced velocity range 3.5 ≤ U∗

≤ 16: (a) the
sphere response amplitudes A∗

y and A∗
z ; (b) the frequency ratios f ∗

y and f ∗
z ; and (c) the periodicities of the sphere vibration λA,y and λA,z . Here, the symbols

and □ represents the quantities calculated with the transverse (y) and lateral (z) components of the sphere response.

Fig. 9. The sphere trajectories in the y–z plane at Re = 2000,m∗
= 3 and U∗

= 5, 7, 9, 11 and 15.

vibrates with a slightly larger amplitude when the motion is restricted to the transverse direction. Moreover, they claimed
that the motion of the tethered sphere and a hydroelastic sphere (y only) compare well for the same mass damping
parameter, as they observed similar response curves. Nevertheless, the shape of the amplitude response curve when the
sphere is allowed to translate in all three spatial directions (3-DOF) differs from that of a sphere allowed to move only in
the transverse direction (1-DOF), as Fig. 7 shows. The response curve for 1-DOF shows a local peak in mode I beside the
global peak in mode II. However, the response curve for 3-DOF motion has only a single peak around U∗

= 8.5, and the
amplitude shows a slightly increasing trend beyond the peak for U∗ > 11. No clear indication of modes I and II was visible
from the amplitude response curve. However, the analysis of force measurements revealed that the sphere shows mode I
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Fig. 10. Variation of the total phase, φt , and the vortex phase, φv , over the reduced velocity range 4 ≤ U∗
≤ 16. The total phase shift from 0◦ to 180◦ as the

frequency ratio crosses the f ∗
= 1 line around U∗

= 8.5. This figure was generated with the lateral components of the sphere response and the lift force.
A similar observation was found for the traverse component as well.

type response up to U∗
= 8.5 and mode II type response for U∗ > 8.5, albeit it is moving in a circular orbit when mounted

with elastic supports in all three spatial directions.
Fig. 7 also plots the response curve of a tethered sphere observed by Rajamuni et al. (2018b) at the sameReynolds number,

with a sphere of mass ratio m∗
= 0.8. The response of the tethered sphere compares well with the elastically-mounted

sphere of 1-DOF rather than with the elastically-mounted sphere of 3-DOF. Both tethered spheres and those elastically-
mounted in the transverse direction vibrated with identical amplitudes in mode I. However, the tethered sphere showed
significantly larger amplitudes over the mode II range. This may be because of the relatively small mass ratio of the tethered
sphere.

3.2.1. Force measurements
Previous experimental and numerical studies revealed that a tethered sphere or a sphere elastically-mounted in the

transverse direction shows two different VIV modes (namely, modes I and II). Govardhan and Williamson (2005) and
Rajamuni et al. (2018a,b) studied the differences between these two modes by analysing the phase between the sphere
vibration and the lift force. The total force acting on the sphere, Ft , can be conveniently split into two components;
a potential force component, Fp, related to the potential added mass and a vortex force component, Fv , related to the
dynamic vorticity, as suggested by Lighthill (1986). The study of Govardhan and Williamson (2000) on the VIV of a cylinder
observed a shift in the total phase, φt (the phase between the total force and the body displacement) or the vortex force,
φv (the phase between the vortex force and the body displacement), as the cylinder motion transitioned between two
branches. Consistently, Govardhan andWilliamson (2005) and Rajamuni et al. (2018a,b) observed a shift in φv , as the sphere
transitioned from mode I to mode II.

For the case of an elastically-mounted sphere with 3-DOF motion, the existence of different modes of vibrations has not
been studied. Moreover, the sphere response curve we observed at Re = 2000 and the response curves observed by Behara
et al. (2011) and Behara and Sotiropoulos (2016) at Re = 300 provide no evidence on different modes of vibrations, as
each response curve has only a single peak. However, the transition between modes I and II is smooth for a sphere, and the
amplitude response curve does not necessarily have a peak at mode I, especially for elastically-mounted spheres and high-
mass ratio spheres (Govardhan and Williamson, 2005; Rajamuni et al., 2018a,b). Therefore, we analysed the variation of φt
and φv with the reduced velocity, to investigate whether a sphere with 3-DOF motion shows different modes of vibration,
analogous to previously determined vibrationmodes.We found that the total phase shifted from0◦ to 180◦ aroundU∗

= 8.5,
while the vortex phase remained at 180◦ throughout the synchronization regime, as Fig. 10(b) shows. Based on this analysis,
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Fig. 11. Plots of (a) the time-averaged drag coefficient, Cd , and (b) the fluctuation component of the lift force in the y direction as a function of reduced
velocity. The symbol △ represent the values calculated when the sphere was allowed to move in all three spatial directions and the symbol represent
when the sphere motion was restricted to the transverse direction.

Fig. 12. Comparison of the direction of the sphere (solid blue colour line) and the direction of the fluid forces applied on the sphere (dashed red colour
line) in y–z plane for five oscillation cycles of 3-DOF configuration. The sphere vibrates synchronously with the lift forces applied on it.

the sphere showed two different modes of vibrations similar to modes I and II. As Fig. 10(c) shows, the shift of φt occurs as
f ∗ crosses the f ∗

= 1 line, consistent with the finding of Govardhan and Williamson (2000).
Fig. 11(a) and (b) compares the variation of time-averaged drag coefficient, Cd, and the fluctuation amplitude of the

lift coefficient in the y direction, Cly,rms, when the sphere was allowed to have 3-DOF and 1-DOF motion. In each case, the
drag coefficient increased suddenly as the sphere began to vibrate, similar to the previous experimental and computations
findings. At the beginning of the synchronization regime, Cd was nearly doubled when 3-DOF motion was allowed for the
sphere. Moreover, the increment of Cd from the value observed for a stationary sphere was significantly higher when the
sphere vibrated in a circular orbit (3-DOF) than when it vibrated along a linear path (1-DOF). The time-mean lift coefficient
was negligible in each case, as the Reynolds number of the flow was 2000. The fluctuation amplitude of the lift coefficient
was also found to increase as the synchronized vibration commenced, in each case. A smaller increment in Cl,rms was found
for the 3-DOF case than for the 1-DOF case. This is consistent with the comparatively smaller response amplitude observed
for the 3-DOF case. Interestingly, for the 3-DOF case, the sphere vibrated with a maximum amplitude when the Cl,rms was
minimum at U∗

= 8.5.
In the case of 3-DOF, the lift forces applied on the sphere in the y–z plane was compared with the sphere vibration in the

y–z plane. The directions of the sphere and the forces in the y–z plane were compared for five oscillation cycles, Tc , as shown
in Fig. 12 at Re = 2000, and U∗

= 5. The sphere clearly vibrated in synchrony with the direction of the forces applied on it.

4. Conclusions

The nature of the vortex-induced vibration of an axisymmetric body has been less understood, compared with VIV of a
cylindrical body, perhaps partially due to the increased complexity of setting up such an arrangement both experimentally
and computationally. Therefore, this numerical study aims to enhance knowledge of VIV of an elastically-mounted spherical
body. A series of simulations were conducted using a sphere mounted with elastic supports in all three spatial directions
over the reduced velocity range 3.5 ≤ U∗

≤ 16, by fixing themass ratio and the Reynolds number atm∗
= 3 and Re = 2000,

respectively. The sphere response, force measurements and the wake behind the sphere were examined and compared with
an elastically-mounted sphere whose motion was restricted to the transverse direction over the same parameter set. The
major findings of this study can be summarized as follows.

The sphere vibrates in a circular orbit orthogonal to the flowwhen it is allowed to have 3 DOF.When the spherewasmounted
with elastic supports in all three spatial directions, initially it was excited to vibrate along a linear path in the transverse
direction synchronized with the hairpin vortex loops shed behind the sphere. Gradually, it began to vibrate in the lateral
direction as well, presumably assisted by loss of centerplane mirror symmetry of the wake (Mittal, 1999). In the asymptotic
state, the sphere vibration amplitudes in both the transverse and lateral directions were nearly equal, leading the sphere



Please cite this article as: M.M. Rajamuni, M.C. Thompson and K. Hourigan, Vortex-induced vibration of elastically-mounted spheres: A com-
parison of the response of three degrees of freedom and one degree of freedom systems. Journal of Fluids and Structures (2019),
https://doi.org/10.1016/j.jfluidstructs.2019.02.005.

M.M. Rajamuni, M.C. Thompson and K. Hourigan / Journal of Fluids and Structures xxx (xxxx) xxx 13

to orbit in a circular trajectory orthogonal to the flow. The transition time was found to increase with decreasing Reynolds
number for the range Re ∈ [300, 2000]. In the literature of rising bubbles, a transition from a zigzagging path to a helical path
has been observed for some parameter sets, similar to the present findings. In addition, the finding of a circular trajectory at
high Reynolds number is consistent with the observations of Lee et al. (2013) for a tethered neutrally buoyant sphere.

The sphere vibrates with the smallest amplitude when mounted with elastic supports in all three spatial directions. The sphere
was found to show a highly periodic VIV response over the range 4 ≤ U∗

≤ 16 when allowed to translate in all three
spatial directions. As the sphere vibrated in a circular orbit when 3 DOF motion was allowed, its vibration amplitude was
significantly smaller than that of a sphere whose motion was restricted to the transverse direction only. The maximum
amplitude observed with 3-DOF was ≈ 0.6 diameters while it was ≈ 0.8 diameters with 1-DOF. With similar parameters,
a tethered sphere shows the largest vibration amplitude (0.9 ∼ 1.0 diameters) although this was for a lower mass ratio.
With these observations, we can draw the following conclusion. The nature of the VIV response of a sphere strongly depends
on the mounting method (elastically mounted or tethered) and the degrees of freedom allowed when mounted with elastic
supports. In particular, when 3-DOF motion is allowed to a elastically mounted sphere, it vibrates in a circular orbit and
its vibration amplitude is significantly lower than that of a sphere whose motion is restricted to the transverse direction.
However, a tethered sphere has 3-DOF and mostly it vibrates along a linear path, similar to a 1-DOF elastically mounted
sphere.

The drag coefficient is almost doubled with synchronized vibrations. The time-averaged drag coefficient was found to
increase by roughly 100% at the beginning of the synchronization regime for the 3 DOF sphere, similar to the observations
of Williamson and Govardhan (1997) and Rajamuni et al. (2018b) for tethered spheres. However, the increment of the
drag coefficient was significantly smaller for an elastically-mounted sphere whose motion was restricted to the transverse
direction (approximately 76%).

A helical wake is formed behind the sphere when it orbits in a circular path. At the initial stage of the sphere vibration, two
trails of hairpin loops form the wake. This wake was modified and turned into a helical structure as the sphere transitioned
to a circular orbit. The structure of this helical wake was found to depend on the Reynolds number of the flow. Two vortex
tubes were present at low Reynolds number; one vortex tube was wound around the other one, strongly resembling the
wake observed by Behara et al. (2011) for their spiral mode. At relatively high Reynolds numbers, there was only one major
vortex tube, combined with small-scale structures that spiralled synchronously with the sphere vibration.

Based on the above discussion, we can draw the following general observation: the VIV response of a sphere is strongly
dependent on themountingmethod; in particular, when it ismountedwith elastic supports in all three spatial directions, the
nature of the response is considerably different to that of a tethered sphere or a sphere elastically-mounted in the transverse
direction only.
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