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ABSTRACT

An analysis of vector averaging and correlation averaging
processes in Particle image velocimetry (PIV) has been
conducted. This study has revealed the performance of
correlation averaging as a function of the effective number of
seed particles in an interrogation window. An optimised method
of processing images for obtaining averaged measurements
is introduced which utilises a combination of correlation and
vector averaging processes to obtain time-averaged velocity
measurements with improved accuracy. Synthetic images with
varying particle densities and image noise were generated
and processed using the new technique. Comparisons were
made on the measurement accuracy of the optimised averaging
technique with current techniques and show that at moderate
seeding densities, optimised averaging is favourable.

NOMENCLATURE

σPIV st. dev. of the PIV error (pixels)
σR st. dev. of the error on the correlation plane
σ1

R st. dev. of correlation error for single image pair
R(i, j) exact correlation value at (i, j)
Rm,(i, j) measured correlation value at (i, j)
ε(i, j) error of correlation value at (i, j)
um, ue measured and exact velocity components
εu error of the velocity components
M number of image pairs in an image set
N number of image pairs in a correlation average
Q number of vector averages for given M and N
En percentage of image noise
np particle seeding density over entire image
ρi average number of particle images in an

interrogation window contributing to the
correlation function, after i averages

R median vector rejection level
Nave number of averages in an averaging operator

1. BACKGROUND

Particle Image Velocimetry (PIV) is a non-intrusive optical
technique that has been used for over two decades to obtain
displacement measurements for a given flow [1]. Modern PIV
techniques use high speed cameras and pulsed lasers to obtain
the displacement information of seed particles over a time
period. The accuracy of measurements rely on post-processing
algorithms that are performed to statistically determine the
displacement of the particles within an image [8].

In PIV, the velocity measurements are obtained via
interrogation procedures where a set of images are divided into
interrogation windows and cross-correlation is applied between
successive image pairs. The resulting cross-correlation function

consists of background image noise and the particle image pairs
in the interrogation window [2]. With the correlation function
being a probability density function (PDF), the location of
the maximum peak defines the most probable location of
the displacement vector and is determined via a sub-pixel
interpolation technique.

Microscopic PIV (µPIV) [7], was introduced due to the
increase in interest in biological flows and studying flows at
a microscopic scale. A feature of µPIV [7] is the use of
volume illumination, which causes a significant percentage
of the particle images to be out-of-focus [4, 5]. This effect
causes a distortion of the computed correlation function and
reduces its signal-to-noise ratio (SNR) [8], leading to erroneous
displacement measurements.

Conventional vector averaging methods work via averaging the
instantaneous vector fields through the data series to yield an
averaged velocity field. In cases of correlation functions with
low SNR such as in µPIV, the inclusion of erroneous vectors to
the averaging operator failed to yield exceptional results [3, 6].
The correlation averaging technique was developed for (µPIV)
applications [3] as a means of increasing the correlation signal
strength via averaging the instantaneous correlation functions
to yield an averaged correlation function. Peak detection
performed on the higher SNR correlation peaks resulted in
more accurate displacement measurements.

This paper discusses an amalgamation of correlation averaging
and vector averaging to introduce a novel algorithm.
Performance analysis on this optimised averaging algorithm
highlights the limitations of correlation averaging and vector
averaging to derive a conclusion on the choice of technique
depending on the quality of an image data set.

2. INTRODUCTION

The simplest form of obtaining time averaged measurements is
vector averaging. Vector averaging averages the instantaneous
vector fields through the image data series to obtain the
averaged velocity field. The measurement error of vector
averaging is inversely proportional to the square root of the
number of averages

√
Nave. However, if vector averaging is

performed over a vector field with erroneous vectors [6], the
averaged measurements obtained will be biased.

To examine the performance of vector averaging and correlation
averaging techniques, a series of computer generated synthetic
images were used as the raw data set. The synthetic images
were of resolution 1024× 1024 pixels. Noise was added to
these images by generating a random number with Gaussian
distribution (σ = En = 0.5% of the maximum pixel intensity).
A median level vector rejection was performed post processing
with a threshold of R = 0.2 pixels. ρi is defined as the number
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Figure 1: Comparison of the measurement accuracy versus
the number of averages for current averaging techniques
applied to the same series of images (low seeding density).
Correlation averaging performs better at lower Nave due to
the exponential increase in SNR of the correlation function.
The accuracy of vector averaging over M pairs approaches the
correlation averaging accuracy as more vectors are included in
the averaging operator.

of particle images in an interrogation window which contributes
to the instantaneous correlation function after i averages. The
particle seeding density per image, np, was varied to effectively
vary the absolute number of particle images per interrogation
window, ρ1, which is for a single pair (i = M). ρ1 is varied
from 0.0625 particles up to 16 particles per window. For each
value of ρ1, the series consisted of M = 1024 image pairs
and was used to vary the averaging parameters in the different
techniques.

The synthetic images were analysed using the two different
techniques while varying the number of averages Nave to study
the effect on the error in measurement accuracy σPIV (Figure
1). Correlation averaging converges more rapidly to a more
accurate answer with a lower Nave due to its peak strength
improvement characteristics. Vector averaging converges to
accuracies close to correlation averaging but at a slower rate
than correlation averaging.

By definition, adding i additional images to the correlation
average there is a corresponding increase in ρi such that ρi =
iρ1. This effective increase in peak strength is the advantage
of correlation averaging in cases of low seeding density. The
vector accuracy is also improved with increasing the number of
particles in an interrogation window due to its direct effect on
the correlation function. This concept was evaluated through a
Monte-Carlo simulation with synthetic images and is illustrated
in Figure 2.

In Figure 2, σPIV is plotted as a function of ρi for i = 1 to M.
Image series with different seeding densities (absolute number
of particles in an interrogation window 0.0625 < ρ1 < 16)
were correlation averaged from Nave = 1 to Nave = M, with
increments in the number of averages included in the correlation
average. It is evident that the plots of varying ρ1 collapse
for the low noise ratio case of En = 0.5% and it is clear the
effect that increasing the number of correlation averages has
on the measurement accuracy. Initially, increasing the number
of averages, especially at lower and moderate ρi the effect of
the rate of return on the decrease in error through increasing
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Figure 2: A plot of the standard deviation of the error in the
velocity measurement (σPIV ) as a function of the number of
particle images in an interrogation window (ρi) as i is varied
from i = 1 to M. Image series with absolute number of particles
in a window (ρ1) was varied from 0.0625 particle images per
window to 16 particle images per window. We can see that the
relationship is ρM = ρ1×Nave, since all plots overlap regardless
of ρ1.

the number of averages (effective seeding density) is immense.
However, as ρi > 8, this rate of decrease in the error diminishes.

We can deduce from Figure 2 that increasing the number
of averages, Nave, increases the number of particles in an
interrogation window, ρi, and hence increases the measurement
accuracy of correlation averaging. For varying seeding densities
and for low noise conditions, the measurement accuracies
obtained are similar for a given ρi. Therefore, we can deduce
that ρM = ρ1×Nave.

3. OPTIMISED AVERAGING ALGORITHM

An optimised averaging algorithm is presented that combines
both vector averaging and correlation averaging processes to
achieve optimal results based on the signal-to-noise ratio of
the instantaneous correlation function. The algorithm used to
perform this optimised averaging technique on an image set is
shown in Figure 3.

This algorithm performs a correlation average over only a
sub-set N, of the instantaneous correlation functions. Peak
detection is then performed on the averaged correlation
functions and the resulting vector fields are vector averaged.
The sub-set number of pairs in a correlation average, N, is
varied from N = 1, which signifies complete vector averaging
where the number of vector averages Q = M, to N = M
for complete correlation averaging where Q = 1. Any other
value for N in between 1 and M defines an optimised
averaging which uses a ratio of correlation averaging to vector
averaging. The inclusion of complete vector and correlation
averaging for values of N enable us to perform comparisons
on how varying optimized averages perform again vector and
correlation averaging.

From Figure 2, we deduced that σPIV ∝ 1√ρi
from the

performance analysis on correlation averaging. Varying the
number of pairs in a correlation average, N, in optimised
averaging has a similar effect on the effective seeding density



Figure 3: Graphical representation of the optimised averaging algorithm. The technique is applied to an image series of M image pairs
whereby a subset N is correlation averaged. The resulting M/N pairs (Q) are then vector averaged to obtain the averaged velocity
measurement.

and hence the correlation function quality. A study was
performed on synthetic images for cases of 1 < N < M and
0.0625 < ρi < 16384.

As ρ1 < 0.5, correlation averaging proves that it can yields
the optimal results as shown in Figure 4(a). Increasing the
number of pairs in a correlation average, and thus reducing
Q, minimises the error in the PIV measurement. This is
because of the effect of the peak strengthening characteristics
of correlation averaging, on correlation peaks with low signal
strength inherent at low seeding densities. Figure 4(a)
illustrates the case in which σPIV is not a function of N as N >>
16. As ρ1 > 8, vector averaging produces a vector measurement
with the least error as shown in Figure 4(c). Since ρi > 8,
the stronger correlation function peaks yield more accurate
vectors and peak detection is dominant over peak strengthening.
For cases of 0.5 < ρ1 < 8, correlation averaging to a certain
point followed by vector averaging works better compared to
correlation averaging alone.

Figure 4c illustrates that as the number of images pairs in
a correlation average N increase above a certain threshold,
the signal strength is high enough for vector averaging to be
performed and has a diminished effect on σPIV . However, the
optimised averaging method performs better than correlation
averaging for the intermediate seeding density cases.

4. STATISTICAL ANALYSIS

An extensive error analysis was performed to better define the
error measurement variables. The equation for a three-point
estimator at the sub-pixel level used to determine the peak
location in the correlation function is based on a parabolic peak
fit estimator [6] as shown in Eq: 1.

ue =
R(i−1, j)−R(i+1, j)

2R(i−1, j)−4R(i, j) +2R(i+1, j)
, (1)

where R(i, j) is the peak correlation value in the correlation
plane.

The exact correlation values, R, are based on an ideal correlation
function obtained through auto-correlation of an ideal synthetic
image with image noise En = 0%, and high seeding density,
where ρ1 >> 8 to ensure ideal correlation SNR. The correlation
function of the measurements has an error ε(i, j) associated
where the measured correlation values is defined by Rm,(i, j).

Rm,(i, j) = R(i, j) + ε(i, j), (2)

An error term in the peak signifies an error term in the velocity
measurement. This velocity measurement error, εu, is the
difference between the measured velocity component and the
exact velocity component from the exact peak (Eq: 3).

εu = um−ue, (3)

σPIV describes the error in measured velocity components
due to the variation of the measured correlation function
and is defined as the standard deviation of the error in the
velocity component, εu. The measured value for the velocity
component, um, is obtained by subtituting Eq: 2 into Eq: 1.
Upon substituting the resulting equation for um into Eq: 3, the
result is expanded and resolved through neglecting terms of
least significance.
By use of a statistics manipulation for two linearly dependent
variables, the expanded equation of Eq: 3 can be converted to
an equation such that we can relate the standard deviation of
the velocity component, σPIV , to the standard deviation of the
error in the correlation function, σR.

σPIV = K×σR, (4)

where the proportionality constant for the correlation peak, K,
is defined as shown in Eq: 5.

K =

√
2(R2

(i−1, j) +R2
(i, j) +R2

(i+1, j))

D
, (5)

and D = 4[(R(i−1, j) +R(i+1, j))2+
4R(i, j)(−R(i−1, j) +4R(i, j)−R(i+1, j)),

Let the standard deviation of the correlation value error for a
single pair of images (M = 1), be defined as σ1

R. Given a set
of image pairs (M), the post-processing method may involve N
correlation averages. Based on M and N, the number of vector
averages involved in the processing stage is Q = M

N .
As M > 1, the error in the correlation peak values, σR, decreases
since the correlation peak is strengthened as more pairs are
correlation averaged in the technique.

σR =
σ1

R√
N

, (6)

From Eq: 4:

σ1
PIV = K

σ1
R√
N

, (7)
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Figure 4: Plots of the standard deviation of the velocity
measurement error (σPIV ) as a function of the absolute seeding
density of an image series (ρ1). Image noise constant at En =
0.5%. Depending on ρ1, the different averaging techniques
perform differently. In cases of a ρi < 1 (TOP), correlation
averaging performs much better than vector averaging. In
cases of high seeding density, ρ1 > 8 (BOTTOM), complete
vector averaging performs better than complete correlation
averaging. In the case of images with moderate seeding
densities, 1 < ρ1 < 8 (MIDDLE) the optimized averaging with
both correlation/vector averaging over 1024 pairs performs over
complete correlation averaging by 13.67%.

Likewise, the increase in vector averages would have a similar
effect on the velocity measurement error σPIV . Simplifying Eq:
7, further using Q = M

N , we obtain Eq: 8.

σPIV = K
σ1

R√
Q
√

N
= K

σ1
R√
M

, (8)

Eq: 8 shows that σPIV is no longer a function of N, as evident
in figure 4 when N is increased. As N is increased, the error
in the peak is minimised and the measurement accuracy is not
affected by the discrepancies in peak detection. Therefore, the
standard deviation of the vector measurement is no longer fully
modeled by sub-pixel interpolation. The velocity measurement
accuracy is dependent on the right location and strength of the
correlation peak.

5. CONCLUSION

An optimised averaging algorithm was proposed that uses
both vector averaging and correlation averaging techniques
to better utilise the effective ρi. A study of the optimised
averaging technique was conducted by using synthetic images
that simulate PIV experimental images under low noise levels.
Optimised averaging is based on increasing the number of
correlation averages until the optimal correlation function signal
strength is reached before performing a vector average. The
effective ρi determines the technique required for optimal
results. The results showed that vector averaging performed
better in cases with high seeding densities, while correlation
averaging performed better in cases of low seeding densities.
However, in cases where 0.5 < ρ1 < 8 the optimised averaging
technique showed improved accuracy with accuracies up to
15% better than correlation averaging.

This optimised averaging technique shows great promise in
better utilising vector averaging and correlation averaging
algorithms to obtain the most accurate velocity measurements
for cases where time averaged measurements are required.
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