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ABSTRACT 
 
Lungs have been imaged with high contrast at high spatial and 
temporal resolution using synchrotron phase contrast x-ray 
imaging. These images are analysed using techniques derived 
from the discipline of particle image velocimetry. This 
analysis yields 2D and 3D spatially resolved motion 
information of airway motion. It is likely that this information 
will result in the detection of airway damage and disease. 
 
1. BACKGROUND  
 
Many vital processes in the human body are mechanically 
dynamic; that is, they involve motion. It follows directly from 
the critical importance of these dynamic systems that scientists 
and clinicians have a keen interest in studying not just the 
anatomy of physiological systems, but also their function. In 
the history of the development of medical imaging systems, 
there is a consistent trend of adapting modalities originally 
designed to measure anatomical structure to systems capable 
of performing physiologically functional capabilities (Fouras 
et al. 2009) 
 
Most evident amongst the dynamic physiological processes is 
the motion of the diaphragm and lungs and the resultant flow 
of air. Additionally, diseases and dysfunction of this process 
result in one of the most significant medical problems of our 
time.  Pulmonary disease, leading to respiratory failure, is one 
of the greatest causes of morbidity and mortality in humans.  
Chronic obstructive pulmonary disease is the 5th leading 
cause of death in humans, is currently present in 10% of the 
population, and its incidence is increasing at a much greater 
rate than the other leading causes of death (Pauwels et al. 
2004).  Similarly, respiratory failure is the greatest cause of 
morbidity and mortality in newborn infants, particularly those 
born very preterm, with many of the survivors (30%) 
developing complications that have significant implications 
for the respiratory health of the individual throughout the 
remainder of their life.   
 
It is currently not possible to detect most forms of lung disease 
before it is clinically evident, making many of these diseases 
untreatable.  However, a relatively common feature of many 

lung diseases, such as emphysema and pulmonary fibrosis, is a 
regional alteration to the distal airway structure leading to 
marked regional changes in lung tissue compliance.  Thus, 
imaging techniques that are capable of detecting regional 
differences in tissue velocities across the lung during the 
respiratory cycle are likely to detect the early stages of lung 
disease. 
 
2. INTRODUCTION  
 
X-ray imaging is by far the most commonly used biomedical 
imaging modality. It is simple to use, has good spatial 
resolution (typically of the order of microns), and the resulting 
images are relatively easy to interpret. Unfortunately, 
conventional absorption X-ray images display poor contrast 
for soft tissues such as the lungs.  
 
Amongst organs of the body, the lung is unique as the volume 
of the air-filled lung predominantly comprises air: 
approximately 80% at the end of expiration. As a result, there 
is marked phase contrast between the air-filled airways and the 
surrounding tissue structures, which predominantly comprise 
water. This feature, which makes the lung so difficult to image 
by other imaging modalities (i.e., MRI and ultrasound), makes 
the lung ideally suited for phase contrast imaging.   
 
We gain additional image contrast by exploiting the coherence 
of synchrotron X-radiation. Light is refracted by the phase 
gradients that occur at the boundaries between objects, which 
interferes with non-refracted light, to produce a kind of in-line 
holographic image. This produces a characteristic edge 
enhancing effect with up to 100 more contrast than that of 
absorption contrast and spatial resolution of the order of 10 
microns. Figure 1 shows two X-radiographs of the lower left 
segment of a rabbit lung. Figure 1 (a) is a standard X-
radiograph (using absorption contrast) where the lung tissue is 
only just visible as a cloudy, bright region in the top and left 
of the image, created by the reduced absorption of the air in 
the lung relative to the surrounding tissue. A dramatic 
difference can be seen in Figure 1 (b) where fine details of the 
precise nature and position of the lung are clearly seen.  
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Figure 3. Preliminary results for phase contrast X-ray velocimetry data of the motion of mouse lungs for: (top) control 
mouse; (bottom) mouse with pulmonary fibrosis. Data are displayed in columns representing the same moment in the  
breathing cycle: (first col) 80ms; (mid col) 120ms and (right col) 320ms after start of inspiration.   
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