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A Floquet stability analysis of the transition to three-dimensionality in the wake of a
cylinder forced to oscillate transversely to the free stream has been undertaken. The
effect of varying the oscillation amplitude is determined for a frequency of oscillation
close to the natural shedding frequency. The three-dimensional modes that arise are
identified, and the effect of the oscillation amplitude on their structure and growth
rate quantified.

It is shown that when the two-dimensional wake is in the 2S configuration (which
is similar to the Kármán vortex street), the three-dimensional modes that arise are
similar in nature and symmetry structure to the modes in the wake of a fixed cylinder.
These modes are known as modes A, B and QP and occur in this order with
increasing Re. However, increasing the amplitude of oscillation causes the critical
Reynolds number for mode A to increase significantly, to the point where mode B
becomes critical before mode A. The critical wavelength for mode A is also affected
by the oscillation, becoming smaller with increasing amplitude. Elliptic instability
theory is shown also to predict this trend, providing further support that mode A
primarily arises as a result of an elliptic instability.

At higher oscillation amplitudes, the spatio-temporal symmetry of the two-dimen-
sional wake changes and it takes on the P + S configuration, with a pair of vortices
on one side of the wake and a single vortex on the other side, for each oscillation
cycle. With the onset of this configuration, modes A, B and QP cease to exist. It is
shown that two new three-dimensional modes arise from this base flow, which we
call modes SL and SS. Both of these modes are subharmonic, repeating over two
base-flow periods. Also, either mode can be the first to become critical, depending on
the amplitude of oscillation of the cylinder.

The emergence of these two new modes, as well as the reversal of the order of
inception of the three-dimensional modes A and B, leads to the observation that for
an oscillating cylinder wake there are four different modes that can lead the transition
to three-dimensionality, depending on the amplitude of oscillation. Therefore this type
of flow provides a good example for studying the effect of mode-order inception on
the path taken to turbulence in bluff-body wakes.

For the range of amplitudes studied, the maximum Re value for which the flow
remains two-dimensional is 280.

1. Introduction
It is known that the onset of three-dimensionality in a cylinder wake can be delayed

if the cylinder is forced to oscillate transversely to the free stream at moderate
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amplitudes. Experiments with an elongated cylinder by Berger (1967) showed that
suitable transverse oscillations extended the upper limit of the laminar shedding
regime, from the non-oscillating limit until Reynolds number 300 ∼ 350. Koopman
(1967) and Griffin (1971) both performed forced-oscillation experiments at Re � 300
on the assumption that a laminar shedding regime persist over this Re range. The
visualizations of vortex filaments shed from an transversely oscillating cylinder by
Koopman (1967) at Re= 200 showed no spanwise variation. This two-dimensionality
is assumed to be attributable to the oscillation, as the more recent work of Williamson
(1996b) and Barkley & Henderson (1996) has shown that the transition to three-
dimensional flow occurs prior to Re =200 for a stationary cylinder.

While the phenomenon of the delay of three-dimensionality for oscillating cylinders
is well known, it has not previously been quantified. The primary aim of this paper
is to evaluate the effect of transverse oscillations on the onset of three-dimensionality
in a circular cylinder wake.

The obvious reference case for such a study is provided by the limiting case of a
stationary cylinder. For the latter the transition from the two-dimensional Kármán
vortex street to three-dimensional flow occurs with the onset of the first three-
dimensional mode, aptly named mode A, at Re � 190, first described in detail by
Williamson (1988). It has been shown that this mode in a pure form breaks only the
translational and span-invariant reflectional symmetry of the two-dimensional flow;
it preserves the spatio-temporal symmetry of the two-dimensional base flow (Barkley
& Henderson 1996; Barkley, Tuckerman & Golubitsky 2000; Blackburn, Marques &
Lopez 2005).

Two other three-dimensional modes have been shown to be theoretically possible:
mode B, a second three-dimensional mode, which has a much shorter spanwise
wavelength than mode A and breaks the spatio-temporal symmetry as well as the
spanwise symmetry of the flow, and mode QP, which is quasi-periodic (hence the
designation QP) and consists of modulated travelling or standing waves.

Mode B is predicted to bifurcate from the two-dimensional base flow at Re � 260,
but experimentally it is observed at lower Re owing to the modification of the
two-dimensional base flow by mode A. As Re increases, the saturated mode-B state
is seen to dominate the three-dimensional flow, with evidence of mode-B vortical
structures still present at Re > 1000 (Wu et al. 1996). Mode QP has only recently
been identified and classified as quasi-periodic by Blackburn & Lopez (2003). Floquet
stability analysis shows that this mode becomes unstable at Re � 377. However, in
reality the wake at this Re is already highly three-dimensional and has descended into
spatio-temporal chaos (Henderson 1997), and mode B continues to dominate.

While the possible modes that can occur are now relatively well defined, the physical
nature of the instabilities that cause them is less well understood. Williamson (1996a)
proposed that mode A was due to an elliptic instability of the primary vortex cores
and that mode B was due to an instability of the braid shear layers. Subsequently,
Leweke & Williamson (1998) showed that elliptic instability theory predicted the
wavelength of mode A to within 25 %, and hypothesized that mode B was caused by
a hyperbolic instability of the braid shear layers. Later, the Floquet analysis and three-
dimensional direct simulations of Thompson, Leweke & Williamson (2001) showed
strong evidence that the transition to mode A could be interpreted as a cooperative
elliptic instability. The results of the current study add support to this theory.

Floquet stability analysis is well suited to establishing the Re value at which
a two-dimensional flow will first become three-dimensional. Barkley & Henderson
(1996) first used this method to predict the critical Re value and the wavelengths of
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(a) (b)

Figure 1. (a) The Kármán or 2S wake, with two single vortices shed per oscillation period:
A∗ = 0.6, Re= 240. (b) The P + S wake, with one pair of vortices plus one single vortex per
oscillation period: A∗ = 0.6, Re= 260. The loss in symmetry compared with the 2S wake is
evident.

both modes A and B for a fixed cylinder wake. Other bluff-body wakes have been
investigated using this method, including square cylinders (Robichaux, Balachandar &
Vanka 1999), normal flat plates (Julien, Ortiz & Chomaz 2004), elliptical leading-edge
plates (Ryan, Thompson & Hourigan 2005) and tori (Sheard, Thompson & Hourigan
2003). The same method is applied in the current study.

A primary difference between many other flows and that studied in this paper is
that most fixed bluff-body flows have only one independent parameter, Re, whereas
the oscillating cylinder flow considered here has up to three. They are Re =UD/ν,
A∗ = A/D and the non-dimensional oscillation frequency f ∗ = f/UD, where U is the
freestream velocity, D is the cylinder diameter, ν is the kinematic viscosity, A is the
amplitude of oscillation (resulting in a peak-to-peak transverse movement 2A of the
centre of the cylinder) and f is the frequency of oscillation. For the present study,
f ∗ was fixed and only the effect of varying Re and A∗ was considered. The study
of the flow past tori shares this feature of multiple control parameters, the second
independent parameter being the diameter ratio (the ratio of the ring diameter and
the cylinder cross-section diameter), as does the flow past elliptical leading-edge plates,
since the aspect ratio can be varied.

The introduction of a second variable greatly increases the complexity of the
bifurcation problem as well as allowing other types of generic bifurcation (Blackburn
et al. 2005; Marques, Lopez & Blackburn 2004). While the occurrence of different
three-dimensional modes is highly unlikely if the two-dimensional wake configuration
stays the same, different modes may be possible if the two-dimensional wake
symmetries change. Indeed, a change in the two-dimensional wake occurs in the
wake of an oscillating cylinder with the onset of the P + S wake configuration; this
breaks the spatio-temporal symmetry of the conventional Kármán wake (Williamson
& Roshko 1988). Blackburn & Henderson (1999) in a numerical simulation found
wakes in this configuration for the oscillating cylinder, even for values of A∗ as
low as 0.25. With the onset of this different two-dimensional wake, different three-
dimensional modes, such as subharmonics, become possible. Shown in figure 1 are
examples of the 2S wake (the notation indicates the two singular vortices that are
shed per oscillation period) and the P +S wake (the notation indicates a configuration
where a pair of vortices and one single vortex are shed per oscillation period).

In any bifurcation and stability analysis, symmetry and the symmetries broken
by bifurcation play a critical role (Iooss & Joseph 1990). Therefore, it is important
to know the symmetry group of the base flow when making this analysis. The
two-dimensional vortex street behind a fixed cylinder possesses a translational and
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reflectional symmetry along the span, hence it possesses O(2) symmetry. It also
possesses a spatio-temporal symmetry, which consists of a reflection about the wake
centreline plus a temporal evolution of half a period. This also gives it Z2 symmetry.
Therefore, the total symmetry group of the fixed cylinder wake is expressed as
Z2 × O(2).

At low amplitudes of oscillation, the oscillating-cylinder wake has the same
symmetry group for the base flow. Considering this, along with the fact that the extra
variable of cylinder oscillation allows different bifurcations, the following questions
arise.

• Which three-dimensional modes occur?
• In what order, with respect to Re and A∗, do these modes occur?
• How does the loss of spatio-temporal symmetry (of the base flow) at higher

amplitudes of oscillation affect the transition to three-dimensionality?
Resolved two-dimensional direct simulations and Floquet stability analysis are used
to answer these questions.

The structure of the paper is as follows. Sections 2–4 provide a brief overview
of the stability theory, numerical methods and validation and a concise description
of the problem being studied. The results are presented in § 5, beginning with an
Re–A∗ parameter map that provides an overview of the key regions and transitions.
Following this, the five instability modes are examined separately in more detail. We
then provide a broad overview of the main findings and results and conclude with a
recap of the most important points.

2. Numerical formulation
2.1. The spectral-element method

The simulations utilized a non-deformable mesh fixed to the cylinder, with an extra
non-inertial acceleration term added to the Navier–Stokes equations to account for
the acceleration of the cylinder across the flow. This approach is more efficient than
employing a deforming mesh to account for movement of the cylinder. The extra
term is simply added to the right-hand side of the Navier–Stokes equations as a time
derivative of the cylinder velocity. This renders the system to be solved as

∂u
∂τ

= −(u · ∇)u + ∇P +
1

Re
(∇2u) − ∂ucyl

∂τ
(2.1)

where u is the velocity vector field, τ is the non-dimensional time variable, P is the
scalar pressure field and ucyl is the cylinder velocity vector.

The simulations were performed using a spectral-element method for the spatial
discretization. This method is described in detail in Karniadakis & Sherwin (2005),
and the implementation used here follows that of Thompson et al. (1996). The
spectral-element method is based on the Galerkin finite-element method, employing
high-order Lagrangian-polynomial shape functions within each element. The node
points of these Lagrangian polynomials coincide with the Gauss–Lobatto–Legendre
quadrature points. This leads to efficient and accurate integrations over each element.
This same spatial discretization was used for the base flow and for the evolution of
the perturbation fields.

Time advancement was dealt with using a high-order three-step time-splitting
scheme. The three steps account for the advection and cylinder-movement pressure
terms, the term and the diffusion term of the Navier–Stokes equations. This allows
different integration methods to be employed for the linear and nonlinear terms. The
nonlinear advection term, including the additional term for the cylinder acceleration
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in (2.1), was treated explicitly using a third-order Adams–Bashforth method. The
pressure field was evaluated by taking the divergence of the equation for pressure,
thus forming a poission equation, and enforcing continuity at the end of the substep.
Finally, the diffusion term was evaluated using a Crank–Nicholson scheme applied
to the Helmholtz equation. Further details of this time-splitting scheme can be found
in Thompson et al. (1996), Karniadakis, Israeli & Orszag (1991), and Karniadakis &
Henderson (1998).

The boundary conditions in the non-inertial frame were such that the velocity was
zero at the cylinder wall and, at the external boundaries of the domain, the crossflow
component was equal to the negative of the cylinder velocity. To obtain the pressure
boundary conditions, it was assumed that the normal component of the velocity at
the end of the pressure substep was equal to the normal component of the freestream
velocity, which included the contribution from the cylinder oscillation. This resulted
in a first-order Neumann boundary condition for the pressure (Karniadakis et al.
1991).

2.2. Floquet stability analysis

Linear Floquet stability analysis is a method for determining the stability of periodic
solutions. It has been successfully employed for the wakes of bluff bodies, including
cylinders (Barkley & Henderson 1996; Blackburn et al. 2005), perpendicular plates
(Julien et al. 2004), tori (Sheard et al. 2003) and elliptical leading-edge plates (Ryan
et al. 2005). The implementation used for the current study has been shown to be
effective by Thompson, Leweke & Williamson (2001), Sheard et al. (2003) and Ryan
et al. (2005). Explanations of the basic method can be found in Iooss & Joseph (1990)
and Seydel (1994).

In effect, the approach is as follows. Equations that describe the perturbation field
are formed by substituting U(x , y, t) + u′(x , y, z , t) for u(x , y, z , t) in the Navier–
Stokes equations, where u is the two-dimensional base-flow velocity vector and u′ is
the three-dimensional perturbation velocity vector. A similar expansion is followed
for the pressure. The original equations describing the two-dimensional base flow
are then subtracted, and what is left are equations describing the evolution of the
perturbation field. The equations are then linearized, since perturbations must grow
from low amplitudes where nonlinear terms are negligible. Even though the resulting
linear equations describe the perturbation-field evolution only, these equations still
rely on the base-flow fields.

The linear perturbation equations can be solved in all three spatial dimensions
directly; however, the partial differential equations are linear and have constant
coefficients with respect to z, and hence the z (spanwise) dependence for each
perturbation field can be expressed as a sum of Fourier modes. Moreover, the
solution corresponding to each Fourier mode can be calculated independently.

Floquet theory then looks for solutions of the (two-dimensional) perturbation fields
for each spanwise wavelength λ in the form

r ′(t + T , x, y) = exp(σT ) r ′(t, x, y). (2.2)

Here, r ′ represents any of the perturbation fields (Floquet modes), t is time and
T is the period of the base flow. A Floquet mode is effectively a solution of the
perturbation equations with the prescribed spatial wavelength. As the above equation
is effectively an eigenvalue problem, there are infinitely many modes that may exist for
a given spatial wavelength. However, in general, only the mode that grows the fastest
is of interest, as it is this mode that will come to dominate the solution over time. The
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exponential coefficient in the above equation is often written as µ = exp(σT ), where
µ is termed the Floquet multiplier. If |µ| > 1, the corresponding perturbation field
grows exponentially from one period to the next and hence the base flow is linearly
unstable to perturbations of the selected spatial wavelength in the z-direction.

To implement this scheme numerically, the following steps are taken. The initial
perturbation field is taken to consist of random noise, for a selected spanwise
wavelength. From these initial conditions, the perturbation equations are integrated
forward in parallel with the base-flow equations. The spatial discretization and time-
integration schemes used for this study were the same as those employed for the
base-flow calculations. To obtain a measure of the Floquet multiplier µ, the L2 norm
of a perturbation field (any of the fields will suffice) is taken, and the perturbation
field is then normalized by this value. The base-flow and perturbation equations are
then integrated forward one base-flow period T , the L2 norm evaluated again and the
perturbation field again renormalized. The L2 norm is the ratio of the perturbation-
solution magnitudes for one period and the next. After many base-flow periods,
only the fastest growing (or slowest decaying) Floquet mode remains and, at this
stage, the L2 norm corresponds to the magnitude of the largest Floquet multiplier for
the selected wavelength. For this study, convergence to three significant figures was
obtained within from 10 to 60 base-flow periods.

This method works very effectively for Floquet modes that have the same period as
the base flow, or a period that is a multiple of the base flow (i.e. subharmonic modes).
However, modes can exist that have periods incommensurate with the base flow
periods. These are called quasi-periodic modes and have been found to occur in the
wakes of some bluff bodies and other fluid flows (see for instance Blackburn & Lopez
2003; Marques, Lopez & Blackburn 2004; Blackburn et al. 2005). For these modes,
the true Floquet multiplier will be a complex quantity and its imaginary component
is not directly resolved by the method described above. However, this imaginary
component causes an underlying sinusoidal time variation in the perturbation field,
and hence the L2 norm will also oscillate in time. Therefore, with inspection of the
history of the returned Floquet multiplier and careful inspection of the perturbation
fields, the existence of quasi-periodic modes can be deduced. It was also shown by
Blackburn & Lopez (2003) that the magnitude of the complex Floquet multiplier is
the mean value over time of the quantity returned using the L2-norm ‘power’ method
employed for this study.

2.3. Discerning the critical values

To discern where the Floquet modes become critical, the above method is applied
over a range of wavelengths and Reynolds numbers, and |µ| is calculated. For each
Reynolds number the multipliers must vary quadratically about each local maximum.
After identifying the approximate location of any peaks of these curves, a parabolic fit
can be used to determine the coordinates of each local maximum. Next, these points,
for a range of Reynolds numbers, are used to determine the |µ| = 1 crossing. In this
way, the critical values of Re and λ can be found. For this study, steps ∆Re= 5 and
a maximum ∆λ=0.1 were employed. This process was repeated for each value of A∗.
For this study λ is a non-dimensional quantity, the wavelength being normalized by
the cylinder diameter.

3. Definition of the problem studied
The focus of this study is to determine the effect of the oscillation amplitude on the

stability of a cylinder wake, for the case where the wake and the applied oscillation
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Figure 2. Synchronization boundaries for Re= 200 and Re = 300. The shaded box shows the
region covered by the Floquet simulations, and the solid lines in this box mark increments
in the Reynolds number ∆Re=50. The reason that f/fSt varies with Re is that fSt increases
nonlinearly with increasing Re. It can be seen that all the simulations fall inside the
synchronization region.

are locked. To reduce the complexity of the problem slightly, the non-dimensional
frequency, f ∗ = f U/D, where f is the frequency of oscillation, was held fixed at 0.20
for all simulations. This value was chosen because it is close to the middle of the range
of the Strouhal number for a fixed cylinder, over the range of Reynolds numbers
where transition occurs. According to the three-term fit given by Williamson &
Brown (1998), over the Reynolds-number range 180 <Re < 350, the Strouhal number
St spans the range 0.193 < St < 0.215. Therefore, the value f ∗ = 0.20 is shown to be
close to the fixed-cylinder Strouhal number for all the simulations conducted.

Keeping the oscillation frequency close to the fixed-cylinder Strouhal frequency
ensures that the wake is synchronized with the cylinder oscillation, or ‘locked-on’.
This means that the wake is changed from its natural frequency to match the
frequency of oscillation of the cylinder. This synchronization occurs over a wider
range of frequencies as the amplitude is increased (Leontini et al. 2006; Williamson
& Govardhan 2004). However, at amplitudes where A∗ < 0.1 synchronization does
not occur and the wake is not periodic, both the oscillation and Strouhal frequencies
being present. Since Floquet stability analysis requires a periodic base flow, no
stability results are shown for amplitudes A∗ < 0.1 (except for A∗ = 0, where the results
correspond to a fixed cylinder that is shedding at the natural Strouhal frequency).

Figure 2 shows synchronization boundaries in the (A∗, f/fSt )-plane, where fSt is
the Strouhal frequency, along with an indication of the region where the simulations
for this study fall. It can be seen that all the simulations performed for the Floquet
analysis fall inside the synchronization boundaries. The fact that f/fSt varies, even
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Figure 3. The macro-element meshes employed throughout this study. The mesh on the
right was employed for simulations where A∗ � 0.7.

though f was held constant, is due to the nonlinear increase in fSt with increa-
sing Re.

4. Validation
Two spectral-element meshes were employed for this study. These meshes are

illustrated in figure 3. The first has previously been shown to resolve accurately the
base flow (Leontini et al. 2006). The second mesh shown, which has more elements
in the wake region, was used at higher amplitudes of oscillation, where the wake
becomes very wide. The extra resolution further away from the cylinder was required
to resolve accurately the finer structures present in the perturbation field. Care was
taken during the construction of this mesh to ensure adequate resolution. This was
then further checked by varying the order of the interpolating polynomials of the
spectral elements. It was found that increasing the polynomial order from p = 8 to
p = 10 changed the value of the Floquet multiplier returned by less than 0.1%. From
this result, it was concluded that the meshes employed, using a tensor product of
eighth-order polynomials within elements, provided sufficient resolution to resolve
accurately the finer-scale structures associated with the Floquet modes.

The methods employed throughout this study have been used previously and
shown to give accurate results (Sheard et al. 2003; Ryan et al. 2005; Thompson 2006).
However, a validation study was conducted to ensure that the current implementation
produced results in agreement with standard test cases. The natural case against which
to validate was that of a fixed cylinder. The modes present and the critical values of
λ and Re are well established, and the basic structures of the modes are available in
the literature.

Simulations were run for Re= 190, and the stability of a mode with λ=4.0 was
tested; these values are very close to the critical values for mode A reported by Barkley
& Henderson (1996), which were Re = 188.5 and λ=3.96. A Floquet multiplier
µ =1.0155 was calculated, indicating that the mode was only just supercritical, as
expected.

Similarly, simulations were run for Re = 260, and a mode with λ= 0.8 was tested
for stability. The critical values for mode B are Re =259 and λ=0.822 (Barkley &
Henderson 1996). Using these almost-critical values, a Floquet multiplier µ =1.0336
was obtained, confirming that the method employed also correctly resolved this
finer-scale mode.



Three-dimensional transition of the oscillating cylinder wake 87

(a) (b)

(c) (d)

Figure 4. (a) Spanwise and (b) streamwise vorticity for mode A in the wake of a fixed cylinder;
Re =190, λ= 4.0. The mode has just become unstable. (c) Spanwise and (d) streamwise vorticity
for mode B in the wake of a fixed cylinder; Re= 260, λ= 0.80. Again, the mode has just become
unstable. These results are very close to those in figures 10 and 11 in Barkley & Henderson
(1996).

Further confirmation of the ability to resolve mode-A- and mode-B-type structures
is found in figure 4. This figure shows the spanwise and streamwise perturbation
vorticity fields for both the validation cases outlined here. These plots compare
favourably with those obtained by previous researchers (Barkley & Henderson 1996;
Ryan et al. 2005).

To ensure that the method could also predict accurate critical values for quasi-
periodic modes, simulations were run to establish the critical Re and λ values for
mode QP for a fixed-cylinder wake. While the method used does not automatically
return the total complex Floquet multiplier, it has been shown that the magnitude of
µ is equal to the mean value returned over a number of base-flow periods (Blackburn
& Lopez 2003). Using this method, Floquet runs were performed over a wavelength
range 1.5 � λ� 2.0, and a Reynolds number range 370 � Re � 380. From these results,
the critical Re for mode QP was estimated to be about 377 and the critical λ to be
about 1.8. These values are the same as those reported by Blackburn et al. (2005).
It was therefore concluded that if care is taken in the interpretation of results, the
method utilized can resolve quasi-periodic modes and distinguish them from true
subharmonic modes.

5. Results
5.1. Wake modes and three-dimensional transitions

In the case of a fixed cylinder, only one variable, Re, governs the wake behaviour.
Stability and bifurcation analyses therefore proceed by slowly varying Re and assessing
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Figure 5. A transition diagram, showing the curves of criticality for mode A, mode B, mode
QP, mode SL and mode SS as a function of A∗. Also shown, by a line of dots, is the boundary
defining the transition from a 2S to a P +S wake configuration. The shaded grey area indicates
that the flow is two-dimensional. The hatched area denotes where the P + S base flow is
present.

when the two-dimensional base flow becomes unstable to the three-dimensional modes.
However, in the case of the oscillating cylinder a second variable exists, the amplitude
of oscillation. Therefore, instead of there existing a single critical value of Re for
a given mode, the critical Re is now a function of A∗. To determine the functional
variation, the critical Re for a given mode was first found for a set value of A∗.
The latter was then incremented, and the critical Re again found. This process was
repeated until the parameter space was spanned. By performing the analysis in this
way, a map showing the criticality of all the modes and transitions present in the (A∗,
Re)-plane can be constructed.

Such a map is presented in figure 5. This figure shows various lines defining
different transitions. A line of dots dividing the plane approximately vertically defines
the transition from the 2S to the P + S wake mode. This line shows explicitly that
this wake-mode transition of the base flow has an Re-dependence, the value of A∗ at
the transition varying inversely with Re; similar results have previously been shown
implicitly for two-dimensional flow (Leontini et al. 2006). The transition to three-
dimensional flow differs markedly for the two different base flows lying on either side
of this transition.

The base flow to the left of this transition (i.e. at lower A∗ values) is the 2S wake
mode. From this base flow, three-dimensional modes are seen to bifurcate. These
correspond to mode A, mode B and the quasi-periodic mode QP. These three modes
share features similar to the corresponding modes in a fixed-cylinder wake. The details
of each mode is provided in the subsequent sections.

At low amplitudes of oscillation, for A∗ < 0.3, the order of criticality of the three
modes is the same as for a fixed cylinder. With respect to Re, mode A becomes critical
first, then mode B and finally mode QP. Increasing A∗ has the effect of increasing the
critical Re for all the modes. However, this effect is much more pronounced for mode
A than for mode B or the other modes. The net result is that at A∗ � 0.3 the critical
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Re for mode A matches that of mode B, and for A∗ > 0.3 the order of inception of
modes A and B with respect to Re is reversed, mode B now becoming critical before
mode A.

Previous studies have also shown that, by varying a second parameter, the order
of onset of the modes can change. This was observed by Ryan et al. (2005). As
they varied the aspect ratio of elliptical leading-edge plates, the order of inception
of what were called mode A and mode B′ was reversed (the prime indicates that the
spatio-temporal symmetry was the same as for the mode B as described here but
that features such as the critical wavelength and near-wake structure were different).
However, this is the first time, to the authors’ knowledge, that a ‘pure’ mode B has
been observed to become critical before mode A, without the explicit suppression of
mode A. It has been shown that if mode A is suppressed, by restricting the spanwise
domain size, a nonlinear development of mode B can lead to a period-doubling
cascade and thence to turbulence (Karniadakis & Triantafyllou 1992). This suggests
that for an oscillating-cylinder wake the transition to turbulence may take a different
route depending on the amplitude of oscillation. This same observation was made for
the elliptical leading-edge plate by Thompson (2006).

For an oscillating cylinder, mode QP was found always to become critical at
Reynolds numbers greater than those for both modes A and B, at least for the
frequency of oscillation used here. This suggests that the mode QP plays a minimal
role in experimental flows, as the flow will already be strongly three-dimensional and
chaotic for the Reynolds numbers required for its positive growth. Like the fixed
cylinder, this leaves modes A and B as the two most physically relevant modes.

To the right of the 2S to P + S transition in figure 5 (at higher A∗ values), the base
flow is the P + S wake mode. With the onset of this two-dimensional wake mode,
modes A, B and QP cease to exist. Instead, two new three-dimensional modes, here
called mode SL and mode SS, are present. The first character, S, indicates that the
modes are true subharmonic modes and the second character, L or S, indicates long
or short wavelengths, respectively.

It is reasonable to expect subharmonic modes to arise from a base flow that does
not possess Z2 symmetry. Such a modified base-flow symmetry group is known to
allow true subharmonic modes, as discovered in the wake of tori by Sheard et al.
(2003). In the case of tori, a subharmonic mode is the first to become critical with
respect to Re for diameter ratios Ar in the range 4 � Ar � 8. For the case of the
oscillating cylinder presented here, the subharmonic modes are the first to reach
criticality once the base flow takes on the P + S configuration.

Focusing on the transition scenario where the base flow is in the P + S configuration,
some interesting observations can be made. First, for amplitudes where A∗ � 0.67,
mode SL is shown to grow for all Re where the P + S wake exists. After A∗ � 0.67,
there is a region where the base flow takes on the P + S pattern, in which three-
dimensional modes do not grow. This finding predicts that a two-dimensional P + S

wake is physically realizable, as has been shown by the flow visualization at low Re
of Williamson & Govardhan (2004). However, it has also been stated (Williamson
& Roshko 1988) that the P + S wake mode is not observed (until much higher
A∗) at Re > 300 in experiments, where the flow has, until now, been assumed to
be three-dimensional. Therefore, if mode SL relies on the P + S wake mode to
materialise, it is unlikely that it will be observed in a physical experiment even though
it may instigate the breakdown to three-dimensionality. It seems that the path to
turbulence in which mode SL is the first three-dimensional transition will be very
complex.
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A∗ range Mode inception order (with increasing Re)

A∗ < 0.3 A, B, QP
0.3< A∗ < 0.55 B, A

0.55 � A∗ � 0.67 (P + S), SL
0.67 � A∗ � 0.72 P + S, SL

A∗ > 0.72 P + S, SS

Table 1. Mode inception order with increasing Re for successive ranges of A∗. For the ranges
indicated, four different three-dimensional modes occur first. The parentheses around P+ S
denote that in the corresponding range the P+ S two-dimensional mode is inherently unstable
to three-dimensional perturbations.

Second, the two-dimensional P +S wake mode is observed to be inherently unstable
to mode SL for 0.55 � A∗ � 0.67. As the Re value at the 2S to P + S transition
varies inversely with A∗, this effectively means that the Re value at the transition
to three-dimensionality also varies inversely with A∗. This is an important finding,
as it had been thought that the oscillation of the cylinder would delay the onset of
three-dimensionality; yet here, for a range of A∗, the opposite is predicted to occur.

For amplitudes where 0.67 � A∗ � 0.72, there is a small region for low Reynolds
numbers where the P + S mode exists without mode SL growing. For this range,
mode SL is still the first three-dimensional mode to become critical. Increasing the
amplitude further, beyond A∗ � 0.72, has the result that mode SL will never become
critical. This phenomenon is elaborated on in § 5.7. The ‘dying-out’ of mode SL leaves
mode SS as the first three-dimensional transition, and hence there is a sudden jump
in the critical Re. Further increases in A∗ sees the critical Re drop again.

How the behaviour of these subharmonic modes will be manifested physically is
yet to be seen. The fact that the P + S wake mode is not observed once the flow is
three-dimensional suggests that there is a complex nonlinear interaction between the
Floquet mode and the two-dimensional base flow, to the point where the unstable
three-dimensional mode modifies the two-dimensional topology that it depends upon
for growth. There may be strong hysteretic effects present. In short, while the findings
of this linear stability analysis are very interesting and novel, it seems that three-
dimensional simulations or carefully controlled experiments are required to complete
the picture for the wake flow in this region of the parameter space.

However, the linear analysis clearly renders some interesting points that can be used
to guide such an investigation. One such point is that, for the oscillating cylinder, there
are four different three-dimensional modes that become critical first, over successive
ranges of A∗. Mode A is the leading three-dimensional mode for A∗ < 0.3 and mode
B for 0.3 <A∗ < 0.55. Following the transition to the P + S wake mode, mode SL is
the first to become critical for 0.55 <A∗ < 0.72, and finally mode SS for A∗ > 0.72.
The order of inception of the different modes is summarized in table 1. This variation
in the leading mode suggests that multiple routes to turbulence may be possible in
the wake of an oscillating cylinder, depending on A∗.

In the following sections, details of each of the three-dimensional modes are
presented. These include the symmetries, similarities and differences in the modes
when compared with those of other bluff-body wakes and also some discussion of
their physical causes and instability types.
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(a) (b)

Figure 6. (a) Spanwise perturbation vorticity for mode A, where A∗ =0.3, Re= 280, and
λ= 2.8. This pattern is very similar to that for mode A for a fixed cylinder. (b) Streamwise
perturbation vorticity for the same conditions. The spatio-temporal symmetry is the same as
that for mode A for a fixed cylinder.

5.2. Mode A

The mode-A instability of an oscillating cylinder is very similar in character to that
for a fixed cylinder. In particular, mode A retains the spatio-temporal symmetry of the
base flow (in terms of the velocity field). Mode A still appears to be an instability of
the primary vortex cores. This, along with the symmetry of the mode, is confirmed by
an inspection of figure 6, which shows the perturbation-field streamwise and spanwise
vorticities for mode A at A∗ = 0.3, Re= 280 and λ= 2.8D, the latter being close to the
fastest growing wavelength. The spanwise vorticity shows that the forming primary
vortex at the rear of the cylinder contains both positive and negative regions of
perturbation vorticity, and then a high amplitude of the perturbation field in the
high-strain region between vortices. Further downstream, the perturbation is most
concentrated in the primary vortex cores. This perturbation field is very similar to that
for the wake of a fixed cylinder, as shown by Thompson et al. (2001). In their case, the
perturbation-field arrangement was interpreted as consisting of a cooperative elliptic
instability close to the rear of the cylinder and a downstream elliptic instability in the
shed-vortex cores. The results here suggest the same mechanisms apply to mode A for
the oscillating cylinder. The streamwise perturbation vorticity further highlights the
spatio-temporal symmetry of mode A, the streamwise vorticity changing sign every
half-period (which corresponds to the reflection of the velocity field, and therefore a
change in sign of the y-component of velocity, on opposite sides of the wake).

Increasing the amplitude of oscillation also affects the fastest growing wavelength
of mode A. The fastest growing wavelength at the critical Re versus the amplitude
of oscillation is plotted in figure 7. What is shown is that the critical λ decreases as
A∗ increases. This decrease is almost linear. One possible explanation is that as the
amplitude increases, the vortices shed into the wake become increasingly compact,
effectively reducing the diameter of the vortex cores. As the mode-A wavelength
presumably scales with the vortex-core diameter (Leweke & Williamson 1998), this
wavelength is reduced for the narrower cores. This narrowing of the shed-vortex cores
is shown in figure 8. Vorticity plots of the base flow close to where mode A becomes
critical are shown for A∗ = 0.1 and A∗ = 0.5. It is clear that the vortices are much
more highly strained, and narrower, for the higher amplitude of oscillation. In fact,
the negative vortex about to be shed when A∗ = 0.5 is approximately 0.69 the width
of the same vortex when A∗ = 0.1. The critical λ when A∗ = 0.5 is approximately 0.73
times that at A∗ =0.1. An agreement such as this is not conclusive but is consistent
with such a hypothesis for the linear decrease in λ.
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Figure 7. Fastest-growing wavelength for modes A and B at criticality plotted against A∗.
Mode A has its wavelength shortened by an increase in amplitude, whereas the mode-B
wavelength is almost unchanged.

(a) (b)

Figure 8. The base-flow vorticity when mode A becomes critical for (a) A∗ =0.1 and
(b) A∗ = 0.5. It is clear that the shed vortices narrow with increasing A∗.

The elliptic instability theory developed by Landman & Saffman (1987) has been
applied to fixed-cylinder wakes by Leweke & Williamson (1998) and Thompson et al.
(2001) and predicts a fastest growing wavelength for mode A of � 3D. From Leweke
& Williamson (1998), the fastest growing wavelength can be predicted using the
formula

λ = D

(
2

1 − β

)1/2

tan θ, (5.1)

where β is the eccentricity parameter at the centre of the vortex and θ is the angle
of the wave vector to the z-axis. Values of θ were found from the numerical results
presented in Landman & Saffman (1987). For validation, the method was employed
on the wake of a fixed cylinder at Re = 190 and a wavelength λ= 2.9D was recovered,
in close agreement with the value ∼ 3D found in Leweke & Williamson (1998).

The results for the wavelength prediction for the oscillating cylinder at a series
of amplitudes are shown in figure 9. It is shown that the theory predicts shorter
wavelengths for the oscillating cylinder than for the fixed cylinder. It also predicts
that, on the whole, the critical wavelength should decrease with increasing amplitude,
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Figure 9. Critical-wavelength variation with amplitude, as predicted by elliptic instability
theory. The theory predicts shorter wavelengths as the oscillation amplitude is increased.

as indicated by the least-squares line fit and accords with the Floquet analysis, as
seen in figure 7.

The predicted wavelength at A∗ = 0.5 seems to break the trend of decreasing critical
λ with increasing A∗. However, it should be noted that as the eccentricity becomes
high (i.e. where the vortices become more elliptical), the predicted wavelength becomes
very sensitive to the value of β , as is clear from inspection of (5.1). For A∗ =0.5,
the value of β calculated was β = 0.95, near the upper limit, β =1, for elliptical flow.
This accounts for the large error bars at this point. The error bars at all points
were estimated by assuming an accuracy of ±0.025 for the eccentricity β and an
accuracy of ±π/48 for θ . Even so, the overall trend of the theory shows a reduced
wavelength with increasing amplitude, which is consistent with the Floquet analysis.
This is further evidence that mode A is (primarily) caused by an elliptic instability
(Leweke & Williamson 1998; Thompson et al. 2001).

5.3. Mode B

As with the mode-A instability, mode B was found to be analogous in structure to
mode B for a fixed cylinder. The symmetry of the mode is the same in both cases,
the streamwise vorticity repeating every half base-period rather than every period
as occurs for mode A. This results in what appears to be a continuous tube of
streamwise vorticity being formed that connects the successive, but opposite-signed,
base-flow vortices. A plot of the streamwise vorticity is shown in figure 10. This
clearly shows a connecting ‘tube’ of vorticity between the base-flow vortices.

Also shown in figure 10 is a plot of the spanwise perturbation vorticity for mode B.
Leweke & Williamson (1998) presented results which indicated that mode B for a
fixed cylinder was a hyperbolic instability of the braid shear layers between the
primary vortices, partly due to the high amplitude of the instability in these regions.
Evidence was also presented by Ryan et al. (2005) that a centrifugal instability plays
a role. Comparison of the spanwise perturbation vorticity presented in figure 10 with
that for mode B of a fixed cylinder (Barkley & Henderson 1996; Ryan et al. 2005)
shows that the two are very similar. It is therefore proposed that the same mechanism
causes mode B for an oscillating cylinder as for a fixed cylinder.
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(a) (b)

Figure 10. (a) Spanwise perturbation vorticity for mode B, where A∗ = 0.3, Re= 280 and
λ=0.85. This pattern is very similar to that for mode B for a fixed cylinder. (b) Streamwise
perturbation vorticity for the same conditions. The spatio-temporal symmetry is the same as
mode B for the fixed cylinder.

Unlike mode A, the critical wavelength of mode B is hardly affected by the
oscillation amplitude, maintaining a nearly constant value of λ� 0.8. This effect is
illustrated by plotting the fastest-growing wavelength for mode B at criticality versus
the amplitude of oscillation as in figure 7. Interestingly, Sheard et al. (2003) also
observed an almost constant value for the fastest growing mode-B wavelength in the
wake of various different tori. The issue of mode-B wavelength selection is still under
investigation.

5.4. Mode QP

Mode QP is influenced by the amplitude of oscillation in two different ways, as can
be deduced from an inspection of figure 5. It had previously been established that
mode QP for a fixed cylinder becomes critical at Re � 377 (Blackburn et al. 2005).
This result is confirmed by the validation study reported in § 4.

The first effect of the oscillation is to reduce this critical Re quite significantly,
to Re � 305 for an amplitude of oscillation A∗ = 0.1, which is close to the lowest
amplitude at which synchronization of the base wake flow and the cylinder oscillation
can be obtained (Koopman 1967). However, this trend is not continued as A∗ is
increased further. For A∗ > 0.1, increasing the amplitude of oscillation causes the
critical Re for mode QP increase, to until it reaches Re � 345 for A∗ = 0.3. Note that
the sudden drop in the critical Reynolds number from A∗ =0 to A∗ = 0.1 may be due
to the shift in wake frequency from the natural Strouhal shedding frequency of the
two-dimensional base flow to the applied frequency, f = 0.2.

At amplitudes higher than A∗ � 0.3, the critical values of Re and λ for mode QP
become harder to determine, because the method currently employed to detect the
Floquet modes returns only the fastest growing mode and, at these higher amplitudes,
mode A becomes the fastest growing mode at increasingly shorter wavelengths, which
intrudes on the range of wavelengths that mode QP covers. This is illustrated in
figure 11. Plotted is the magnitude of the Floquet multiplier for the fastest growing
mode over a range of wavelengths that encompasses modes A, B and QP. The
amplitude and Reynolds number are fixed at A∗ = 0.3 and Re = 350, respectively. It
is shown that the data points representing mode QP have no turning point – no peak
that can be identified for the fastest growing wavelength. It should be noted that the
point presented as critical at A∗ = 0.3 in figure 5 was obtained by extrapolating a
quadratic function fitted to the data with a least-squares method.
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Figure 11. Floquet multiplier vs. wavelength when A∗ = 0.3, Re= 350. Mode QP is just
becoming critical, but the growth rates of both mode A and mode B are much higher. The
range of wavelengths covered by mode A encroaches on that of mode QP, meaning that no
turning point can be defined with interpolation.

Figure 11 also shows that while mode QP is close to critical for these conditions,
mode B and mode A both have far higher growth rates, which suggests again that it
is these two modes that are physically the most relevant.

The existence of mode QP was deduced from the oscillation in the growth rate
and observation of the perturbation fields. The magnitude of the complex Floquet
multiplier was deduced by taking the mean value over the period of oscillation of the
Floquet multiplier (Blackburn & Lopez 2003).

Shown in figure 12 is a series of images of the perturbation field taken one base-flow
period apart, for A∗ = 0.3 and Re = 350. The series of images spans approximately
one period of oscillation of the Floquet multiplier. It is seen that the perturbation
field almost repeats over two base periods. That it is not quite periodic is manifested
by the gradual growth and decay of the perturbation field on a much longer time
scale.

This is highlighted, for instance, by focusing on the initially positive region (shown
in white) of perturbation vorticity inside the vortex at the immediate rear of the
cylinder in the first image. Scanning down the page, comparing images two base
periods apart, shows that this region gradually weakens and eventually changes sign.
This illustrates that the mode is truly quasi-periodic and as such it repeats with a
period incommensurate with the base flow.

As the mode is quasi-periodic, the Floquet multiplier is seen to oscillate over time
when it is calculated as the growth rate from one base flow period to the next.
While noting that the period of this oscillation is directly related to the period of the
three-dimensional mode, the associated frequencies are not reported in this paper.

This period was found to be relatively stable with respect to the amplitude of
oscillation and Re, but it varies considerably over a band of wavelengths. This
is illustrated in figure 13. The time history for a series of wavelengths is plotted
for A∗ = 0.3 and Re =350. It is clear that the period of oscillation is increasing
with increasing wavelength. This variation makes it difficult to hypothesise about
the possible physical mechanisms behind this instability, owing to the fact that the
maximum occurs at different places at different times.
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Figure 12. Streamwise vorticity of the quasi-periodic mode, when A∗ = 0.3, Re= 350 and
λ=1.8. Images are set at one base-flow period apart and should be read left to right, top to
bottom. It is seen that the mode almost repeats every two base periods, except for the growth
and decay of the modes in the free-shear layers connecting the base-flow vortices. The plot in
the bottom right-hand corner shows the oscillation in the Floquet multiplier over time. The
series of images covers approximately one period of this oscillation.
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Figure 13. History of the Floquet multiplier for the quasi-periodic mode, when A∗ = 0.3 and
Re =350. The period of the oscillation becomes longer with increasing λ, until at λ� 1.9, it
appears that the oscillation has almost disappeared.

5.5. Mode SL: the first subharmonic mode

The first subharmonic mode detected after the transition to the P +S shedding mode
has been called mode SL. Here, the ‘S’ designates as the mode subharmonic and the
L indicates that this mode has a longer wavelength than the second subharmonic
mode, to be discussed later. An example of the spanwise perturbation vorticity of this
mode is shown in figure 14. Four images are shown, taken at half-period intervals (the
cylinder is at its zero displacement position in each image). As well as illustrating where
the mode grows, the subharmonic nature of the mode is highlighted by comparing
the images that are separated by a full period, i.e., by comparing the top images
and the bottom images. It is seen that over one period the structure of the mode is
the same except for a sign change of the perturbation field.

Inspection of figure 14 shows that the mode originates in the region between the
forming vortices in the near wake. However, this does not happen every half-cycle,
but instead occurs only in the half during which the strong vortex of the pair of
vortices in the P +S wake (the vortex that does not split) is shed. This coincides with
the ‘up’-stroke in the images of figure 14 and is demonstrated by the high levels of
perturbation vorticity in the leftmost images in this figure. As this vortex proceeds to
roll up and is shed into the wake, the perturbation is transferred to the vortex core,
as demonstrated by the perturbation vorticity in the rightmost images of figure 14.
After this, the mode appears to be quickly dissipated downstream.

A true subharmonic was found in the wake of tori by Sheard et al. (2003); it was
later demonstrated to lead to a period-doubling bifurcation, in Sheard et al. (2005).
While even the two-dimensional wake topology is different in the ring wake and the
oscillating cylinder, comparison of the perturbation fields seems to indicate that mode
C in the wake of the torus and mode SL in the wake of the oscillating cylinder are
similar in some respects. However, this similarity is not enough to deduce that they
are attributable to the same or similar physical mechanisms, at this stage. This is so
despite a fairly close agreement in the fastest growing wavelength of the two modes:
mode C in the torus wake grows fastest at around λ= 1.6 and mode SL described
here grows fastest at around λ= 1.4.
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Figure 14. Spanwise perturbation vorticity for mode SL, when A∗ =0.70, Re= 205 and
λ= 1.4. The images are taken half a period apart and should be read left to right.

5.6. Mode SS: the second subharmonic mode

The second subharmonic mode has been called mode SS. Here, the first ‘S’ designates
the mode as subharmonic and the second ‘S’ signifies that the mode has a shorter
wavelength than mode SL, discussed previously. Its near-wake structure, in terms
of the perturbation spanwise vorticity, is shown in figure 15. The spanwise vorticity
clearly shows where the mode is at its strongest. Again, the subharmonic nature of
the mode is illustrated by comparing the top images and the bottom images and
observing that over one period the mode structure is the same except for a change in
sign.

Figure 15 also shows that mode SS appears to originate in the forming stronger
vortex of the pair of vortices in the P + S configuration (the vortex that does not
split), during the up-stroke of the examples shown in figure 15. However, the mode
does not stay focused in this vortex. It is stretched out and transferred to the forming
vortex of the next half-cycle (the vortex that does split), during the “down”-stroke.
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Figure 15. Spanwise perturbation vorticity for mode SS when A∗ =0.75, Re= 260 and
λ= 0.70. The images are half a period apart, reading left to right.

During the splitting process, the vortex becomes highly strained and very narrow. It
is in this region of the flow that the mode is strongest, as can be deducd from the
high levels of perturbation vorticity in this region in all the images of figure 15.

This is a distinguishing feature between the two subharmonic modes, mode SL and
mode SS. Mode SL is supported primarily by the vortex that does not split, whereas
mode SS is supported by the vortex that does split. The critical wavelength of mode
SS is quite short, around λ= 0.75. This wavelength could be linked with the very
narrow, highly strained, vortex structure of this splitting vortex in the P + S wake.

5.7. Behaviour of the subharmonic modes with increasing A∗

From amplitudes where the 2S to P + S transition occurs, until A∗ � 0.7, mode SL is
the first three-dimensional mode to become critical. In fact, for values of A∗ � 0.67,
mode SL is predicted to grow for all values of Re where the P + S shedding mode is
observed. In other words, it is predicted that, for A∗ � 0.67, the P +S shedding mode
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Figure 16. Floquet multiplier vs. wavelength when A∗ = 0.7, Re= 205. One continuous curve
is resolved over the range 0.5 < λ< 2.0. This curve is representative of mode SL. For λ> 2.0,
another quasi-periodic mode is resolved.
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Figure 17. (a) Streamwise and (b) spanwise perturbation vorticity when A∗ =0.7, Re= 205
and λ= 0.70. Comparison with figures 14 and 15 shows that this is in fact mode SL.

will never be observed as a pure two-dimensional shedding mode experimentally,
regardless of Re. It is expected that as soon as the P + S mode of shedding develops,
mode SL will begin to grow, introducing three-dimensionality into the flow.

Also, for A∗ � 0.7, mode SL is the only subharmonic mode resolved using our
current method, as it is faster growing than mode SS over all wavelengths tested (see
§ 2.2 for an explanation of how modes are resolved for a particular wavelength). This
effect is highlighted in figure 16. It is shown that one continuous curve of multipliers
is returned over the wavelength domain 0.5 < λ< 2.0 when A∗ =0.70. This fact, along
with careful inspection of the perturbation field at the lower wavelengths, where mode
SS might be expected to be observed, confirms that mode SL is the fastest growing over
this entire range of λ. An example perturbation field at λ= 0.7 is shown in figure 17.
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Figure 18. Floquet multiplier vs. wavelength when A∗ =0.75 and Re= 230. Two subharmonic
modes are clear; mode SS occupies the bandwidth 0.5 < λ< 0.9 and mode SL occupies
1.0 < λ< 2.2.

A comparison of this figure with figure 14 shows that it is indeed mode SL, and not
mode SS, that dominates even at these low values of λ.

For λ> 2.0, a seemingly quasi-periodic mode exists. This mode seems to have a
highly variable period that is dependent on A∗, Re and λ. However, like mode QP
emanating from the 2S wake mode, it seems to play a secondary role physically, as it
never becomes critical before either mode SL or mode SS. It is possible that the role
this mode plays increases in importance for other oscillation frequencies.

Increasing the amplitude to A∗ = 0.75 causes the growth rate of mode SL to
decrease enough to allow the resolution of mode SS over the short wavelength
range 0.5 < λ< 0.9. Mode SS is clearly present, the relevant change in perturbation-
field structure occurring over this wavelength range. The magnitude of the Floquet
multiplier is plotted for all wavelengths for this amplitude at Re = 260 in figure 18.
A comparison with figure 16 shows clearly the emergence of mode SS at this slightly
higher amplitude.

The development of each subharmonic mode progresses rapidly over a very small
amplitude range, from A∗ = 0.7 to A∗ = 0.75; by then the situation has changed
dramatically. The major change is that whereas mode SL was completely dominant
before, it now ceases ever to reach a critical state and is therefore predicted never to
grow. This suggests that, physically, mode SL will have no effect for amplitudes where
A∗ > 0.75. Also, while mode SS still becomes critical, this happens at a significantly
higher Re value than for mode SL, at amplitudes only slightly smaller. This effect
is made clear through reference to figure 5. A sudden jump in the curve, defining
the transition from two-dimensional to three-dimensional flow, is seen to occur at
A∗ � 0.72.

The fact that mode SL never becomes critical at A∗ = 0.75 is demonstrated by
plotting the highest value of µ returned for a given Re, for mode SL at A∗ = 0.75.
Such a plot is shown in figure 19. This shows that initially the growth rate of mode
SL increases with increasing Re. However, this trend slows and eventually reverses.
Therefore, for Re > 225, the growth rate of mode SL decreases with increasing Re.
This trend continues so that, at much higher values of Re, mode SL is not resolved
at all.



102 J. S. Leontini, M. C. Thompson and K. Hourigan

0.80

0.84

0.88

0.92

0.96

1.00

205 210 215 220 225 230

|µ|max

Re

Figure 19. Maximum growth rate for mode SL vs. Re when A∗ = 0.75. It is clear that, for
Re> 225, the growth rate decreases with increasing Re. It is also clear that the mode never
becomes critical.

Further increases in the amplitude of oscillation have the result that mode SL
becomes even weaker, leaving mode SS as the only mode that becomes critical.
However, increasing A∗ has the effect of decreasing the critical Re of mode SS. This
is a somewhat non-intuitive result; it seems natural that an increased amplitude of
oscillation should have the effect of aligning the wake vortices with the span of
the cylinder, strengthening the former and therefore delaying the onset of three-
dimensionality. This has been shown to be the case for the 2S shedding mode above.
However, it does not hold for the P + S shedding mode, and mode SS is seen to
become critical at a lower Re as A∗ is increased, at least over the range of amplitudes
investigated here.

6. Conclusions
Several contributions towards an improved understanding of wakes from oscillating

bodies are presented in this paper. Most importantly, the effect of transverse oscillation
on the transition to three-dimensionality in the wake of a cylinder has been quantified.
It was found that locked oscillation at close to the natural shedding frequency can
delay the onset of three-dimensionality until the Reynolds number reaches 280.
Furthermore, for A∗ > 0.3 the transition occurs through a linear mode (mode B)
different from for the fixed cylinder (mode A), which possibly strongly affects the
transition to fully turbulent flow. This change occurs owing to a damping effect on
the initial linear mode due to changes in the scale of the wake vortices.

At higher oscillation amplitudes (A∗ > 0.55) the two-dimensional base flow changes
from a 2S to a P + S wake. This alters the three-dimensional transition completely,
since modes A and B are bifurcations from the 2S state. In fact two new three-
dimensional modes arise, modes SL and SS, both of which are subharmonic. For
amplitudes where A∗ � 0.67, the P + S wake is inherently unstable to mode SL,
implying that a two-dimensional P +S wake mode cannot be physically realized over
this amplitude range without artificially imposing the restriction to two dimensions.
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For amplitudes A∗ up to 0.72, mode SL becomes critical first. However, mode SL
ceases to become critical for A∗ > 0.72, leaving mode SS as the first-appearing three-
dimensional mode.

Thus four different three-dimensional modes have been shown to lead the transition
to three-dimensionality, including two previously unidentified modes, depending on
the amplitude of oscillation over the range of amplitudes tested. This may have a
profound influence on the routes to turbulence in the different regimes.
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