
Enhancing heat transfer in a high Hartmann number
magnetohydrodynamic channel flow via torsional oscillation of a cylindrical
obstacle
Wisam K. Hussam, Mark C. Thompson, and Gregory J. Sheard 
 
Citation: Phys. Fluids 24, 113601 (2012); doi: 10.1063/1.4767515 
View online: http://dx.doi.org/10.1063/1.4767515 
View Table of Contents: http://pof.aip.org/resource/1/PHFLE6/v24/i11 
Published by the American Institute of Physics. 
 
Related Articles
Computation of multi-region relaxed magnetohydrodynamic equilibria 
Phys. Plasmas 19, 112502 (2012) 
Controlling the column spacing in isothermal magnetic advection to enable tunable heat and mass transfer 
J. Appl. Phys. 112, 094912 (2012) 
Dispersion due to electroosmotic flow in a circular microchannel with slowly varying wall potential and
hydrodynamic slippage 
Phys. Fluids 24, 112002 (2012) 
Experimental investigations on the magneto-hydro-dynamic interaction around a blunt body in a hypersonic
unseeded air flow 
J. Appl. Phys. 112, 093304 (2012) 
Electrified free-surface flow of an inviscid liquid past topography 
Phys. Fluids 24, 102112 (2012) 
 
Additional information on Phys. Fluids
Journal Homepage: http://pof.aip.org/ 
Journal Information: http://pof.aip.org/about/about_the_journal 
Top downloads: http://pof.aip.org/features/most_downloaded 
Information for Authors: http://pof.aip.org/authors 

http://pof.aip.org/?ver=pdfcov
http://careers.physicstoday.org/post.cfm?ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Wisam K. Hussam&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Mark C. Thompson&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Gregory J. Sheard&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4767515?ver=pdfcov
http://pof.aip.org/resource/1/PHFLE6/v24/i11?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4765691?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4764308?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4766598?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4764105?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4758812?ver=pdfcov
http://pof.aip.org/?ver=pdfcov
http://pof.aip.org/about/about_the_journal?ver=pdfcov
http://pof.aip.org/features/most_downloaded?ver=pdfcov
http://pof.aip.org/authors?ver=pdfcov


PHYSICS OF FLUIDS 24, 113601 (2012)

Enhancing heat transfer in a high Hartmann number
magnetohydrodynamic channel flow via torsional
oscillation of a cylindrical obstacle

Wisam K. Hussam,1,2 Mark C. Thompson,2 and Gregory J. Sheard2,a)

1Department of Electromechanical Engineering, University of Technology, Baghdad, Iraq
2Department of Mechanical and Aerospace Engineering, Monash University,
Victoria 3800, Australia

(Received 3 June 2012; accepted 25 October 2012; published online 26 November 2012)

An approach is studied for side-wall heat transfer enhancement in the magnetohy-
drodynamic flow of fluid in a rectangular duct that is damped by a strong transverse
magnetic field. The mechanism employs the rotational oscillation of a cylinder placed
inside the duct to encourage vortex shedding, which promotes the mixing of fluid
near a hot duct wall with cooler fluid in the interior. The effectiveness of the heat
transfer enhancement is investigated over a wide range of oscillation amplitudes and
forcing frequencies. The motivation for exploring this mechanism is inspired by the
transient growth response of this flow, which indicates that the optimal disturbances
feeding the vortex shedding process are localized near the cylinder, and are char-
acterized by an asymmetrical disturbance with respect to the wake centreline. The
results show that a considerable increase in heat transfer from the heated channel
wall due to rotational oscillation of the cylinder can be achieved, with the maxi-
mum enhancement of more than 30% over a zone extending 10d downstream of the
cylinder. As the angular velocity amplitude of oscillation is increased, the range of
oscillation frequencies for effective enhancement is widened, and the frequency at
which the peak Nusselt number occurs is shifted slightly to lower frequencies. As
the amplitude is increased, the formation of strong discrete wake vortices draws fluid
from the wall boundary layers into the wake, enhancing heat transfer. The effect
of oscillation amplitude on the distribution of local Nusselt number Nuw along the
heated wall is significant. With an increase in Reynolds number, scope for addi-
tional heat transfer enhancement is possible. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4767515]

I. INTRODUCTION

Magnetohydrodynamic (MHD) flow through ducts in the presence of a transverse magnetic field
has become important due to its engineering applications such as magnetohydrodynamic generators,
pumps, metallurgical processing, and cooling of fusion reactors. Considering fusion reactors as an
example, liquid metal may be used as a coolant and as a breeder material.1 It circulates within
the blanket and is exposed to the strong magnetic field used to confine the plasma. Under these
conditions, the motion of the electrically conducting fluid induces electric currents, which interact
with the applied magnetic field and produce electromagnetic forces that exert a retarding force
on the flow. Therefore, magnetohydrodynamic duct flows can be characterized by laminar flow
structures because velocity fluctuations are suppressed. However, the strong anisotropic feature of
the electromagnetic forces leads to the formation of extended vortex tubes oriented parallel to the
magnetic field.2, 3 These vortices are suppressed only weakly and can form quasi-two-dimensional
structures in the plane perpendicular to the magnetic field. In addition to liquid-metal cooling systems
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in fusion reactors, other liquid-metal duct flow applications include the cooling of nuclear fission
reactors and high-performance computing infrastructure. Beyond MHD applications, channel flows
exhibiting quasi-two-dimensional characteristics appear in applications ranging from microfluidics
through to geophysical flows.

An avenue for exploiting quasi-two-dimensional flow structures to enhance heat transfer is to
employ turbulence promoters, such as a bluff body placed inside the duct. The disturbances resulting
from these promoters could increase the fluid mixing and disrupt the development of the thermal
boundary layer resulting in an enhancement in heat transfer. This approach has been investigated
experimentally4–7 and numerically.8, 9 For the case with an insulated duct wall, Refs. 10 and 11
demonstrated that the heat transfer rate under a strong axial magnetic field was improved by more
than twice that of the laminar flow. The heat transfer enhancement from the heated wall may be
further increased if the vortex shedding in the flow is excited by perturbing the body placed within
the flow. Consideration will now be given to cylinder oscillation as a perturbation mechanism.

For the case without a magnetic field, a limited number of studies have investigated the vortex
dynamics of an oscillating cylinder in a straight channel, and the studies relevant to heat transfer
enhancement in a straight channel using an oscillating obstacle are very rare. To the best of the
authors’ knowledge, there is no study on the flow and heat transfer characteristics of MHD flow past
an oscillating cylinder in a channel. In the absence of both cylinder rotation and a magnetic field,
the hydrodynamic flow at the Reynolds numbers of interest in this study is highly time-dependent,
with strong vortex shedding behind the cylinder invoking strong mixing and heat transfer due to
velocity fluctuations interacting with the heated side-wall boundary layer. The damping effect of the
magnetic field decreases heat transfer and convection velocities.9, 12, 13

Yang14 investigated numerically the heat transfer enhancement in a channel under the effect
of a transversely oscillating square cylinder for a constant blockage ratio β = 0.25 and constant
Prandtl number Pr = 0.71 for Reynolds numbers varying from 100 to 800. The oscillation frequency,
oscillation amplitude, and maximum speed of the bar were examined to analyze the flow structures
and the heat transfer enhancement. A remarkable heat transfer enhancement with increasing os-
cillation amplitude was reported with overall heat transfer increment of 57%. This was due to the
formation of transverse vortices downstream of the bar, which transported the low-temperature and
high-speed flow in the center of the duct toward the heated region of the channel. Consequently, the
high-temperature fluid was convected away from the heated regions of the channel to mix with the
low temperature core flow.

Using a moving boundary formulation and the arbitrary Lagrangian method modified by Yang,14

Fu and Tong15 performed a numerical simulation to study the effect of the flow passing a transversely
oscillating circular cylinder on the heat transfer enhancement in a horizontal heated blocked channel
for a blockage ratio β = 0.25, and the Reynolds number was varied between 100 and 500. Their
results indicated that the heat transfer rate was improved substantially in the lock-in regime with
heat transfer increments in some cases of more than 100%. They also found that the influence of the
oscillation amplitude of the cylinder on the heat transfer rate was remarkable when the amplitude
was larger than 0.1.

More recently, the heat transfer enhancement in a heated slot channel due to vortices shed
from a transversely oscillating circular cylinder was investigated16 for a constant blockage ratio
β = 0.3 at Reynolds number Re = 100 in the Prandtl number range 0.1 ≤ Pr ≤ 10. The cylinder
oscillation amplitude was kept constant, while the frequency of the oscillation was varied from 0.75
to 1.25 relative to the Strouhal frequency of a fixed circular cylinder. Their results demonstrated
that the transverse oscillations of a cylinder significantly enhanced heat transfer, and the maximum
augmentation was observed to occur at the frequency fe = 0.75. They ascribed this to the presence
of high-intensity vortices near the channel walls, which have a significant effect on the heat transfer
enhancement from the walls.

In this study, the fundamental behavior of a mechanism for heat transfer enhancement in damped
quasi-two-dimensional steady-state duct flows will be examined. The perturbation method employs
the rotational oscillation of a cylinder placed in the duct, and the resulting dynamics and heat transfer
enhancement are investigated over a wide range of oscillation amplitudes and forcing frequencies.
The motivation for exploring this mechanism was inspired by a recent transient growth analysis,17
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which demonstrated that the optimal disturbances leading to the production of vortex shedding are
localized near the cylinder, and are characterized by an asymmetrical disturbance with respect to the
wake centreline.

II. PROBLEM DEFINITION

The configuration of the physical system to be considered is shown in Fig. 1. A circular cylinder
of diameter d is placed on the centreline of a duct parallel to the magnetic field and perpendicular
to the flow direction. A torsional oscillation is imposed on the cylinder about its own axis. The
out-of-plane channel depth is a, and the duct cross-section is taken to have a height to depth ratio h/a
= 2 throughout this study. The duct walls and the cylinder are assumed to be electrically insulated.
A uniform homogeneous axial magnetic field with a strength B is imposed along the cylinder axis.
One of the walls oriented parallel to the magnetic field is heated to a constant wall temperature Tw

whereas the other surfaces are kept at a constant temperature T0. The magnetic Reynolds number
Rem (which represents the ratio between the induced and the applied magnetic field) is assumed to
be very small. Hence, the induced magnetic field is negligible and spatial variation in the magnetic
field can be neglected.18 Under these conditions, the flow is quasi-two-dimensional and consists
of a core region, where the velocity is invariant along the direction of the magnetic field, and thin
high-shear Hartmann layers are located at the walls perpendicular to the magnetic field. The quasi
two-dimensional model2 is constructed by averaging the flow quantities along the magnetic field
direction.

Under this model, the non-dimensional magnetohydrodynamic equations of continuity, momen-
tum, and energy reduce to

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇)u = −∇ p + 1

Re
∇2u − 2

Ha�

Re
u, (2)

∂T

∂t
+ (u · ∇)T = 1

Pe
∇2T, (3)

where u, p, and T are the velocity, kinematic pressure, and temperature fields, respectively, projected
onto the x-y plane. The modified Hartmann number is defined as

Ha� =
(

d

a

)2

Ha. (4)

FIG. 1. The physical model of the torsionally oscillating cylinder. The magnetic field B acts in the out-of-plane direction,
parallel to the cylinder axis. δS is the thickness of the Shercliff layer, and h and d are the duct width and cylinder diameters,
respectively. Throughout this study, the blockage ratio β = d/h = 0.303. The upstream and downstream lengths are xu = 8d
and xd = 25d, respectively.
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Here, lengths are scaled by the cylinder diameter d, pressure by ρU 2
0 , where ρ is the density and U0

is the peak inlet velocity, time by d/U0, and temperature by the imposed temperature difference
between the bottom and top walls, �T.13, 19 It is noted that the energy equation is sometimes
written to include terms describing the effects of viscous dissipation and Joule heating (e.g., see
Hossain20). However, these terms are not considered in this study (following Refs. 13, 21, and
others), as their contributions are negligible for the application considered in this study.11 Having
imposed no constraint on the orientation of the channel, and following Refs. 13, 22, and 23, the
influence of natural convection is not considered in the present study. Reference 12 provides further
guidance with respect to the effect of natural convection. They demonstrate that for MHD flow in
a vertically aligned duct, at Hartmann numbers Ha � 400 (such as those considered in this study),
natural convection is negligible for Rayleigh numbers less than Ra ≈ 104. For Ra � 104, the Nusselt
number associated with natural convection remained consistently less than that for an equivalent
channel without a magnetic field.

The dimensionless parameters, Reynolds number, Hartmann number, and Péclet number, are,
respectively, defined as

Re = U0 d

ν
, (5)

Ha = a B

√
σ

ρν
, (6)

Pe = Re Pr, (7)

where ν, σ , B, and a are the kinematic viscosity, magnetic permeability of the liquid metal, applied
magnetic field, and half the out-of-plane duct height, respectively. The Prandtl number Pr = ν/κT ,
where κT is the thermal diffusivity of the fluid.

The local Nusselt number along the lower heated wall of the channel is defined as

Nuw(x, t) = d

(Tf − Tw)

∂T

∂y

∣∣∣∣
wall

. (8)

Tf is the bulk fluid temperature, which is calculated using the velocity and temperature distribution
as

Tf (x, t) =
∫ h

0 uT dy∫ h
0 u dy

, (9)

where h is the width of the duct, and u is the streamwise component of velocity.
A time-averaged Nusselt number for heat transfer through the heated wall of the channel is

calculated by first taking the time average of the local Nusselt number (Nuw) at each x-station, and
then integrating over the length of the heated bottom wall, L, using

Nu = 1

L

∫ L

0
Nuw(x) dx . (10)

To characterize the effect on the heat transfer due to the addition of a cylinder to the channel,
the overall increment of heat transfer is defined as

H I = Nu − Nus

Nus
× 100, (11)

where Nus is a reference time-averaged Nusselt number (e.g., the heated region of the same duct
without cylinder rotation, i.e., A = 0).

The lift and moment coefficients are calculated from

CL = F ′
l

1
2 ρu2

0d
, (12)

CM = M ′
1
4 ρu2

0d2
, (13)
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where F ′
l and M ′ are the lift and moment exerted by the fluid per unit length of the cylinder. The

total force acting on the cylinder surface is due to pressure and viscous component, which can
be computed by direct integration over the surface of the cylinder.24, 25 This leads to the moment
contribution

M =
∮

r × (p n + τw) ds, (14)

where n is the unit outward vector normal of the fluid domain, r is a moment arm vector, p is the
pressure field, τw is the wall friction, and ds represents a surface increment around the cylinder.

Since the cylinder is rotated sinusoidally in time at a forcing frequency fe, the angular velocity
of the cylinder is expressed as

θ̇ cyl = A sin(2π fet), (15)

where A and θ̇ are non-dimensionlized by U0/d. The maximum tangential surface speed of the
cylinder is therefore given by A(U0/d)(d/2) = A(U0/2), and the angular amplitude of displacement of
the oscillation is given by A(U0/d)/(2π fe) = A/(2πSte), where the Strouhal number characterizing
oscillation frequencies is given by

Ste = fed

U0
. (16)

The fluid structure and heat transfer characteristics are investigated for quasi two-dimensional
channel flow for a reference case taken to have Re = 1075, Ha� = 151.5, and β = 0.303. The
angular velocity amplitude is varied over the range 0 ≤ A ≤ 3, while the forcing frequency is varied
over 0 ≤ Ste ≤ 10. However, to focus on important results, vorticity and temperature contours are
presented only for cases where the maximum heat transfer occurred. A Prandtl number Pr = 0.022
is used throughout, representative of the eutectic alloy GaInSn.

III. NUMERICAL METHODOLOGY

A nodal spectral-element method is utilized to discretize the governing flow and energy equa-
tions in space, and a third-order scheme based on backwards differentiation is employed for time
integration.26

The boundary conditions imposed on Eqs. (1)–(3) are as follows: a no-slip boundary con-
dition for velocity is imposed on all solid walls. At the channel inlet, the analytical solution to
Eqs. (1) and (2) for fully-developed flow in a channel without a cylinder is imposed, following
Ref. 9. At the exit, a constant reference pressure is imposed and a zero streamwise gradient of
velocity is weakly imposed through the Galerkin treatment of the diffusion term of the momentum
equation. A high-order Neumann condition for the pressure gradient is imposed on the Dirichlet
velocity boundaries to preserve the third-order time accuracy of the scheme.26 On the cylinder wall,
a periodic torsional oscillation is imposed. The temperature of the incoming stream and top wall is
taken as To, and at the bottom wall as Tw. The cylinder is thermally insulated (i.e., a zero normal
temperature gradient is imposed at its surface).

The computational domain is divided into a grid of elements. Elements are concentrated in
areas of the domain that experience high velocity gradients. The mesh representing the elemental
discretization of the computational domain is shown in Fig. 2.

A convergence study for spatial resolution has been performed by varying the element polyno-
mial degree from 4 to 9, while keeping the macro element distribution unchanged. The maximum
lift coefficient CL, max, maximum moment coefficient CM, max, and the time-averaged Nussult number
along the heated wall Nu were monitored. Convergence tests were performed for an oscillation
amplitude A = 3, Ste = 0.2, Re = 1075, Ha� = 151.5, and β = 0.303. The results are presented in
Table I. It is found that the results are converged to within less than 0.5% with polynomial order
Np = 7, which is hereafter used for the simulations reported in this study.
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FIG. 2. Spectral element mesh of the computational domain. The mesh extends 8d upstream and 25d downstream of the
cylinder. Within each element shown here, a grid of interpolation points resolves the high-order tenseor product of polynomial
shape functions used to describe the flow fields.

A. Validation of the numerical system

The numerical system has been validated for the flow and heat transfer of stationary cylinder
in both an open flow and confined within a channel for cases with and without a magnetic field.
The details of these may be found in Refs. 11, 27, and 28. In addition to these, the heat transfer
generated by a rotating oscillating cylinder in an open, non-MHD flow was tested. Computed average
Nusselt numbers Nu for heat transfer with Pr = 0.7 for A = 0.78 and 1.57 at Re = 100 and 200
were compared against an earlier numerical study.29 The mean percentage differences between the
Nu predicted by the present simulations and those of the previous study was less than 1%. These
studies demonstrate the reliability of the present solver.

IV. RESULTS AND DISCUSSION

A. Effects of oscillation frequency and amplitude on heat transfer

To begin, Nusselt numbers are computed for a wide range of velocity amplitudes A and forcing
frequencies Ste. The velocity amplitude is varied over the range 0 ≤ A ≤ 3, while the forcing
frequency is varied over 0 ≤ Ste ≤ 10. These ranges of parameters are consistent with the ranges
employed in previous studies in which the torsional oscillation of a cylinder in a free stream flow29

has been considered.
The time-averaged Nusselt number for a broad range of forcing frequency Ste is shown in

Fig. 3 for a selection of oscillation amplitudes. Note that without cylinder rotation, the flow remains
steady for the combination of parameters employed in this study. Incidentally, this corresponds to
Ste = 0 in this plot. For reference, the critical Reynolds number for the onset of vortex shedding
at this β and Ha is Rec = 1100. The figure shows that there is a significant enhancement in heat
transfer obtained for high amplitudes. Indeed a progressive increase in the peak Nusselt number
is generated with increasing A. It is also interesting to observe that as the oscillation amplitude
increases, the frequency producing peak heat transfer decreases, and a wider range of frequencies
produces a noticeable heat transfer enhancement. For comparison, frequencies associated with both
the dominant linear instability (StLSA) and the optimal disturbance (StTG) are each included in the
plot. It can be seen that increasing A shifts the frequency for peak heat transfer enhancement away

TABLE I. Peak lift coefficient amplitude CL ,max and average Nusselt number along the heated wall Nu with varying
polynomial order for a torsional oscillating cylinder at Ha� = 151.5, Re = 1075, A = 3, Ste = 0.2, and β = 0.303.

Np CL ,max CM,max Nu

4 4.7330 0.6693 2.5451
5 4.6408 0.6788 2.5494
6 4.6608 0.6732 2.5553
7 4.6766 0.6736 2.5617
8 4.6768 0.6738 2.5616
9 4.6768 0.6740 2.5615
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A = 0.5
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A = 3
NuA=0
StTG
StLSA

StLSA = 0.45

StTG = 0.42

FIG. 3. Time-averaged Nusselt number plotted against cylinder oscillation frequency for different oscillation amplitudes
for Re = 1075 and Ha� = 151.5. For reference, Nusselt number for the case of steady flow without oscillation (Ste = 0) is
shown by the horizontal dashed line. Vertical lines denote frequencies obtained from evolving linearized perturbations from
analysis of the fixed-cylinder case, where StTG and StLSA are seeded by the optimal perturbation from a transient growth
analysis and the leading mode from a linear stability analysis, respectively.

from these frequencies, presumably as a result of non-linearity of the imposed disturbance to the
flow imparted by the cylinder.

In Fig. 4(a), the peak heat transfer coefficient at each angular velocity amplitude, Numax, is
plotted against A. It can be observed that Numax increases significantly as A increases. This may
be attributed to the fact that stronger vortices are generated behind the cylinder when it oscillates
with larger amplitude, thanks to the higher shear between the moving cylinder surface and the flow
during the part of the cycle where the cylinder moves against the flow. It is noted that the most rapid
increases are formed for smaller A. Hence, there is a diminishing benefit in terms of further heat
transfer enhancement as the amplitude is progressively increased.

The percentage increments to the overall heat transfer are approximately 6.5%, 11.5%, 15%,
and 22% for A = 0.1, 0.5, 1.0, and 3.0, respectively, over that obtained for steady flow. The effect
of increasing the amplitude on heat transfer enhancement is further clarified in Fig. 4(b). However,
it is noted that the change in heat transfer per unit increase in A decreases with increasing A. This
indicates that there is a practical limit to the benefit of this heat transfer enhancement mechanism,
whereby the benefit of enhancing heat transfer may be outweighed by the cost of increasing A.

To illustrate the role of oscillation and perturbation frequencies on the flow, Fig. 5(a) shows the
variation of forcing frequency for maximum heat transfer Ste,max with oscillation amplitude. The
figure suggests that as A → 0, the optimal excitation frequency approaches the frequency of the global

(a) (b)

A

N
u m

ax

0 0.5 1 1.5 2 2.5 3 3.5
2

2.2

2.4

2.6

A

%
 H

I

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

FIG. 4. The variation of (a) peak time-averaged Numax over the heated surface, and (b) the percentage increase to the heat
transfer plotted against angular velocity amplitude of the cylinder (A) for Re = 1075 and Ha� = 151.5.
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FIG. 5. (a) A plot of oscillation frequency for maximum Nusselt number (Ste,max) as a function of angular velocity amplitude
of the cylinder. (b) A plot of shedding frequency St against Re showing the natural frequency predicted by linear stability,
DNS, and transient growth analyses, as labeled. The data from (a) are included at Re = 1075 for comparison.

mode predicted from linear stability analysis. Fig. 5(b) presents the frequency predicted by linear
stability analysis (LSA), transient growth (TG) analysis, and direct numerical simulation (DNS)
of quasi-two-dimensional flow as a function of Reynolds number. Relatively higher frequencies
are observed prior to the onset of vortex shedding. The preferred wake frequency is observed to
decrease as the nonlinear regime is entered (either through increasing the Reynolds number, or by
imposing a higher-amplitude forcing through oscillation of the cylinder), which also creates large-
scale oscillations in the wake, thereby significantly altering the flow from the steady state that formed
the basis of the linear stability and transient growth analyses. In addition, it is worth mentioning
that the frequencies predicted by LSA and TG are very close, and they intersect near the unsteady
transition Reynolds number. This confirms a conclusion of Ref. 17 that the optimal perturbation
excites and feeds energy into the global wake mode.

In order to determine the range of driving frequencies where the heat transfer enhancement
is considerable, a full width at half maximum (FWHM) analysis is applied. The full width at half
maximum is a parameter usually used to describe the width of a peak of a function.30 It is given
by the frequency range at which the function reaches half its maximum value, and its application
in the present study is conveyed in Fig. 6. FWHM values obtained at different amplitudes are listed
in Table II. These are represented relative to the zero-oscillation baseline, Nus = 2.15. The results
show that FWHM almost doubles as the forcing frequency is increased from 0.1 to 3. Thus, at large
amplitudes, the range of forcing frequencies that produce significant heat transfer improvement is
higher than for small amplitudes.

Ste

N
u

0 0.5 1 1.5 2

2.2

2.4

2.6

2.8

Numax

(Numax- Nus)/2 + Nus

FWHM

Ste2

Ste1 Nus

FIG. 6. Nomenclature for calculation of the full width at half maximum (FWHM) of frequencies at A = 3 for Re = 1075
and Ha� = 151.5.
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TABLE II. Calculated full width at half maximum (FWHM) Strouhal number ranges at different oscillation amplitudes for
Re = 1075 and Ha� = 151.5.

A Half max. Numax Ste1 Ste2 FWHM

0.1 2.2171 0.3016 0.4287 0.1271
0.5 2.2702 0.2038 0.3896 0.1858
1.0 2.3044 0.1501 0.3798 0.2298
3.0 2.3747 0.0865 0.3358 0.2493

B. Flow structure and temperature fields

In this section, the effect of a torsional cylinder oscillation on the flow structure and temperature
fields are examined. Vorticity contours for different oscillation amplitudes at the frequency of
maximum heat transfer augmentation are shown in Fig. 7. For the stationary case, the flow is
characterized by a pair of a symmetric counter-rotating vortices on the either side of the wake
centerline. The temperature field is time-independent, and the thermal boundary layer is uniform
and stable.

At the lowest amplitude of oscillation (A = 0.1), a pattern of wake shedding is produced that
closely resembles natural vortex shedding in an unperturbed flow above the critical Reynolds number.
Note in particular that successive alternately shed vortices align approximately in a single row along
the wake centerline. These advecting vortices only weakly interact with the wall boundary layers
as they travel downstream (note the visible variation in wall boundary layer thickness between
approximately 1d and 5d downstream of the cylinder). As the cylinder oscillation amplitude is
increased to A = 0.5, the vortex formation length shortens and the vortices move closer to channel
side walls as they convect downstream. In addition, the intensity of vortices increases. The wall
shear layers start to entrain inwards to interact with the vortices shed from the cylinder. This effect
is further pronounced at A = 1, whereas by A = 3 the wall shear layers roll up into opposite-sign
vortices that pair with wake vortices. These counter-rotating vortex pairs then self-propel inwards
from the walls, explaining the increasing heat transfer enhancement with increasing A. It can also be
speculated that the reason for the diminishing heat transfer enhancement at larger A may be because
this mechanism for inciting advection of the fluid away from the heated wall has a limited capacity
for enhancement, and has likely been exhausted by A = 3.

In order to better characterize the effect of the vortex patterns on the wall heat transfer, tempera-
ture contours are presented in Fig. 7. It is noted that due to the low Prandtl number used in this study
(Pr= 0.022), thermal diffusion occurs at a far greater rate (approximately 45 times greater) than

Vorticity fields Temperature fields

A = 0

A = 0.1

A = 0.5

A = 1

A = 3

FIG. 7. Contour plots of vorticity (left) and temperature (right) for fixed (A = 0) and torsionally oscillating cylinders
(A > 0) in a channel. Each case is depicted at the frequencies producing maximum heat transfer for Re = 1075, Ha� = 151.5,

and β = 0.303, and at the point of the maximum counter-clockwise rotation of the cylinder. Vorticity fields: light and dark
gray (red and blue online) contours show positive and negative vorticity, respectively. Temperature fields: dark and light
contours show cold and hot fluid, respectively.
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FIG. 8. Local Nusselt number over the heated surface of the side wall and as a function of x/d at different oscillation
amplitudes for maximum frequency at Re = 1075 and Ha� = 151.5.

viscous diffusion. This explains the diffused “blurry” appearance of the temperature fields. The wavy
structures observed in the thermal boundary layers are due to the cross-stream mixing induced by the
presence of advecting vortices. The net effect is for low-temperature fluid to be transported toward
the hot region of the channel and the high-temperature fluid near the heated wall to be convected
away to mix with the low-temperature fluid. This process enhances the mixing between the heated
surface and the cold fluid, and as a result the heat transfer is significantly enhanced compared to the
stationary cylinder.

Now the local Nusselt number will be considered both as a function of position along the heated
duct wall, and variation in A. Fig. 8 presents the distribution of the local Nusselt number Nuw along
the heated surface as a function of stream-wise coordinate x for different oscillation amplitudes. It is
found that the effect of oscillation amplitude on the distribution of Nusselt number along the heated
wall is significant. The figure shows that as A is increased, there is a progressive increase in Nuw

over a region extending from the cylinder to a distance downstream of the cylinder. It can also be
seen that the duct wall region over which the local Nusselt number is increased (compared to A = 0)
moves upstream. Specifically, as A is increased over 0.1, 0.5, and 1, the point of maximum increase
in local Nusselt number advances upstream from approximately x/d = 10 to 5. The large oscillation
velocity amplitude (A = 3) also produces its maximum increase in Nuw at approximately x/d = 5,
but it is also notable that unlike the lower oscillation velocity amplitudes, A = 3 shows significantly
increased local Nusselt number near to the cylinder (i.e., 1 � x/d � 2.5). An explanation for this can
be deduced from the vorticity plots shown in Fig. 7, which show that for A = 3, the wake vortices
are cast to the side walls much nearer to the cylinder than for the smaller amplitudes. As a result, the
highest local Nusselt number is observed for the A = 3 case. On the other hand, the local Nusselt
number measurements upstream of the cylinder are coincident for all velocity amplitudes, where
the flow and heat transfer characteristics are very similar. This demonstrates that the heat transfer
enhancement benefit is only felt downstream of the cylinder, and this is also reflected in Fig. 7, where
no visible differences are apparent in the vorticity and temperature fields upstream of the cylinder.

A notable observation from Fig. 8 is that the enhancement to heat transfer is higher in the near-
wake region, where the wake vortices are strongest. Further downstream these vortices decrease
in strength rapidly due to Hartmann damping, and the local Nusselt number again approaches that
for the steady-state wake case. The predicted enhancement to the time-averaged Nusselt number
reported earlier calculated using the entire computational domain length to calculate the spatial
average; however, perhaps a more physically based averaging length would be the active wake
region. In practice, there would be no reason to use only a single cylinder to enhance heat transfer.
Multiple cylinders could be positioned along the duct centreline at regular intervals to regenerate
the wake.

Fig. 7 shows that the wake vortices are clearly discernible for only approximately 10 cylin-
der diameters downstream. Reducing the spatial averaging length to just the 10d immediately
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FIG. 9. (a) A plot of Nusselt number over the heated surface against Reynolds number for an oscillating (Nu) and stationary
(Nus ) cylinder. (b) The percentage increase in heat transfer generated by cylinder oscillation over a stationary cylinder as a
function of Reynolds number. A = 3 and Ha� = 151.5.

downstream of the cylinder increases the heat transfer enhancement over the base case from 22% to
33% for A = 3. For the other rotation speeds, the enhancement is also approximately 50% more.

To further understand the dynamics of this heat transfer enhancement mechanism, the Reynolds
number dependence of the flow and heat transfer will now be considered. Reynolds number variation
for the cases of a fixed cylinder (A = 0) and at (A = 3) are considered. Fig. 9 plots the respective
Nusselt-number variation for these cases, and the heat transfer increment of the A = 3 case over
the A = 0 case. At A = 3, the variation of peak Nusselt number rises approximately linearly with
Reynolds number, though beyond Re � 2000 a reduction in the rate of increase is measured. This
high-Reynolds-number plateau is likely indicative of one of two phenomena: either the flow has
reached an inertia-dominated regime whereby there is no longer a capacity for further increases in
the vortex pairing along the heated boundary drawing heated fluid from the hot duct wall, or a drift
between the natural frequency of vortex shedding and the frequency used across these Reynolds
numbers is leading to a slightly sub-optimal Nusselt number. The latter phenomenon is consistent
with the deviation from the peak Nusselt number frequency in the context of the data displayed in
Fig. 3. For the case without cylinder rotation, again the Nu–Re data are linear at lower Reynolds
numbers (here, up to Re ≈ 1800), though both the values and gradient are lower than the A = 3
data. Interestingly, there is no perceptible change in the Nusselt number data as Reynolds number
increases through the transition to unsteady flow (see also the contour plots in Fig. 10). This reflects
the initially limited and gradually increasing flow disturbances near the heated wall as the unsteady
vortex shedding develops with increasing Reynolds number. A sharp increase in Nusselt number
occurs at Re ≈ 1830, beyond which the Nusselt number returns to a steady increase with Reynolds
number. This jump will be discussed shortly in the context of Fig. 10.

A = 0: Vorticity fields Temperature fields

Re = 800

Re = 1200

Re = 1800

Re = 1900

Re = 2200

FIG. 10. Vorticity and temperature plots for fixed (A = 0) cylinder in a channel at Reynolds numbers as indicated, Ha� = 151.5
and β = 0.303. Contours and orientation are as per Fig. 7.
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A = 3: Vorticity fields Temperature fields

Re = 800

Re = 1200

Re = 1800

Re = 1900

Re = 2200

FIG. 11. Vorticity and temperature plots for cylinders rotating with A = 3 in a channel at Reynolds numbers as indicated,
Ha� = 151.5 and β = 0.303. Contours, orientation, and phase of cylinder oscillation are as per Fig. 7.

The implications of these Nusselt-number/Reynolds-number trends on the increment of heat
transfer invoked by cylinder rotation with A = 3 is revealed in Fig. 9(b). The heat transfer increment
rises sharply from approximately 12% at Re = 800 to approximately 26% at Re = 1200, before
gradually cresting to a peak of above 32% at Re ≈ 1800. However, beyond this Reynolds number
a sharp drop in %HI to approximately 20% occurs, corresponding to the increase in Nus at these
Reynolds numbers in Fig. 9(a).

Contour plots of the vorticity and temperature fields at several Reynolds numbers for the A = 0
case are plotted in Fig. 10. These show that the flow is initially steady-state (Re = 800), and from
Re = 1200 and upwards the flow is unsteady, with progressively increasing wake vortex strength
with increasing Reynolds number. This is complemented by a progressive increase in the degree of
cross-stream mixing of the temperature fields downstream of the cylinder. Comparing with the Nus

jump at Re ≈ 1830, this figure demonstrates that this jump is associated with a topological change in
the near-wake structure; at Re = 1800 the formation length extends approximately 2d downstream
of the cylinder (and at lower Reynolds numbers longer formation lengths are observed). However,
at higher Reynolds numbers, the formation length is very short, with wake vortices developing and
shedding from within 1d of the rear of the cylinder. Across the Reynolds number range considered
here, the continuously increasing Nusselt number for the A = 0 case is reflected by a monotonic
increase in the evidence of heated wall vorticity (and hot fluid) entrainment into the interior of the
channel.

Contour plots of the A = 3 cases are plotted in Fig. 11. These frames are consistently displayed
at the point of maximum counter-clockwise rotation of the cylinder. At this phase, a positive vortex is
developing behind the bottom of the cylinder, and in each frame approximately 3d downstream of the
cylinder, a negative-signed vortex has paired with a counter-rotating eddy of vorticity drawn from the
top wall. From this instant in time, the orientation of this vortex pair will see it convect downwards
and to the right, thus carrying fluid from the Shercliff layer into the wake. As the Reynolds number
increases, the decay of vortices downstream becomes slower. Particularly evident in the Re = 1800
frame and higher, vortex pairs that develop aft of the cylinder at the channel side walls survive
long enough to traverse the entire width of the channel, thus demonstrating more effective fluid
mixing at higher Reynolds number. This is reflected in the temperature field plots, where again the
cross-channel mixing of hot and cold fluid increases with Reynolds number. Notably though, the
differences between frames are less pronounced between the Re = 1900 and 2200 frames, consistent
with the observed high-Reynolds-number plateau in the Nusselt number data for A = 3 in Fig. 9(a).
Finally, when comparing the same Reynolds numbers between Figs. 10 and 11, consistently the
addition of cylinder rotation is seen to enhance the cross-stream mixing, the casting of wake vortices
to the side-walls, and the subsequent development of self-propelling counter-rotating vortex pairs.
An extension of this observation is that the distance between the cylinder and the hot channel wall is
an important feature of this mechanism: channels with smaller blockage ratios may indeed require
the cylinder to be offset from the channel centerline nearer to the hot channel wall, though further
investigation of this point is beyond the scope of the present paper.
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In this paper, a mechanical perturbation of the flow has been explored, but by no means is a
mechanical solution the only possibility in MHD duct flows such as these. Numerous studies3, 22, 31, 32

have perturbed MHD flows using electromagnetic mechanisms by a way of imparting fluctuating
currents on the duct flow. An interesting avenue for future exploration would be to combine a fixed
turbulence promoter (such as the cylindrical obstacle in the present study) with an electromag-
netic perturbation mechanism tuned to the optimal disturbance frequencies17 to provoke the vortex
shedding and enhancement of heat transfer without introducing the complexities of a mechanical
oscillation mechanism.

C. Power requirements

Consideration is now given to the mechanical power required to oscillate the cylinder about its
axis. The moment of inertia of the cylinder, friction in bearings, and other mechanical losses are not
considered. Only the power required to overcome the moment exerted by the flow on the cylinder is
considered. Mathematically, this can be determined from the dot product of the moment exerted by
the fluid on the cylinder and its angular velocity vector as

P(t) = −M(t) · θ̇ cyl(t), (17)

where the negative sign appearing in Eq. (17) indicates that the power is added to the system to drive
the cylinder. Here, both M and θ̇ cyl are defined as counterclockwise positive. The time-averaged
power is obtained by integrating the instantaneous power over a time interval using

Pavg = −1

t

∫ t

0
M · θ̇ cyl dt. (18)

The time variation of the moment and mechanical power required to drive the cylinder for different
velocity amplitudes at peak heat transfer frequencies are presented in Fig. 12 for different velocity
amplitudes at the maximum frequency. From Fig. 12(a), a significant phase-shift in the moment is
observed as A increases. Therefore, it is expected that the power required to oscillate the cylinder
grows significantly as A increases. The time variation of power in Fig. 12(b) indicates that of the
cases inspected here, the minimal power requirement occurs for A = 0.5. This is likely related to
the fact that the forcing frequency at small amplitude approaches the frequency of the global mode
(see Fig. 5), resulting in the flow resembling that of stationary confined cylinder above the shedding
transition.
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FIG. 12. Time variation of (a) the moment and (b) the power required to drive the cylinder for A = 0.5, 1, and 3 at the optimal
frequency.
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FIG. 13. (a) The root mean square of the moment MRMS, (b) time-averaged and maximum power required to drive the
cylinder, both plotted on logarithmic scales against A.

To quantify the magnitude of oscillations in the moment time history, which are not necessarily
perfectly sinusoidal, a root mean square (RMS) measure of the moment is employed, defined as

MRMS =
√

1

t

∫ t

0
[M(t)]2 dt . (19)

It is found that MRMS increases almost 321%, 682%, and 1986% as A changes from 0.1 to 0.5, 1,
and 3, respectively. The variation of MRMS with A is shown in Fig. 13(a), which follows a power law
relationship that is given by

MRMS ≈ 0.045 A0.89. (20)

The variation in the time-averaged and maximum power are provided in Fig. 13. The linear
profiles on the log-log scale used in the figure reveals that the average and maximum powers increase
significantly with increasing A, and they scale with approximately the 1.9th power of A. The relations
between the power and amplitude are found to be

Pmax ≈ 0.055 A1.88, (21)

Pavg ≈ 0.023 A1.89. (22)

Interestingly, here P ∝ A1.9, while Eq. (20) gives M ∝ A0.9. These combine to give P ∝ M × A, which
follows from Eq. (15), as A is a measure of the angular velocity appearing in Eq. (17).

To quantify the power required to torsionally oscillate the cylinder against the flow, a comparison
is made to the power required to pump the fluid through the channel. The time-averaged pumping
power is calculated using the pressure drop across the channel for the fixed and torsionally oscillated
cylinder. The pumping power P�p, listed in Table III, increases with increasing velocity amplitude
of the cylinder. Not surprisingly, the larger velocity amplitude (A = 3) results in only 3.5% increase

TABLE III. Pumping power required to drive fluid in the channel (P�P) and the time-averaged power required to oscillate
the cylinder, for Re = 1075 and Ha� = 151.5.

A P�p Pavg

0.0 1.93 0.0
0.1 1.94 2.99 × 10−4

0.5 1.96 6.60 × 10−3

1.0 1.97 2.28 × 10−2

3.0 2.01 1.91 × 10−1
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in the pumping power compared to that for a stationary cylinder, and the power required to oscillate
the cylinder is about two order of magnitudes lower than for the pumping power. Using the data
given in Table III, the increases in power compared with the stationary case are approximately 3%
and 13% for A = 1 and 3, respectively. For A ≤ 0.5, the increase is almost negligible.

V. CONCLUSIONS

In this study, a mechanism for heat transfer enhancement in the steady flow regime due to
damping at high Hartmann number involving the rotational oscillation of a cylinder placed in a duct
is proposed and investigated over a wide range of oscillation amplitudes and forcing frequencies.
The motivation for exploring this mechanism was inspired by a recent transient growth analysis,17

which indicated that the optimal disturbances are localized near the cylinder and are characterized
by an asymmetrical disturbance with respect to the wake centreline.

It is found that heat transfer is enhanced by increasing one or both of the amplitude of torsional
oscillation and the Reynolds number, and carefully tuning the oscillation frequency to optimize the
heat transfer.

The results show that there is a considerable increase in heat transfer from the heated channel
wall due to rotational oscillation of the cylinder, with maximum enhancement of almost 22%
observed for the highest amplitude case examined over steady flow, increasing to more than 30% in
a zone extending 10d downstream of the cylinder. The range of Ste for effective enhancement was
widened, and the frequency at which the peak Nusselt number occurred was shifted slightly to the
lower frequency, as A was increased. It was found that as the amplitude was reduced, the optimal
forcing frequency approached the frequency of the global mode. A FWHM analysis showed that for
the largest amplitude case the range of forcing frequencies that produced higher augmentation in
heat transfer was approximately 100% larger than for the smallest amplitude case.

The wake vorticity and temperature contours were found to be closely related. As the amplitude
was increased, the formation of strong discrete wake vortices induced the wall boundary layers to
be drawn away from the walls enhancing heat transfer. The effect of oscillation amplitude on the
distribution of local Nusselt number Nuw along the heated wall was significant. For small A, the
distribution was found to be similar to that for a fixed cylinder (i.e., A = 0). However, for large
A, significant enhancement occurred in the cylinder near the wake before dropping away further
downstream.

Calculations of the power required to oscillate the cylinder indicated that the demands of
time-averaged and maximum power significantly increased as the velocity amplitude of oscillation
increased from A = 0.1 to 3, scaling with approximately the 1.9th power of A. For the largest
amplitude, a modest increase in the pumping power of 3.5% was predicted compared to that for the
stationary cylinder. The power required to oscillate the cylinder was about two order of magnitudes
lower than that for the pumping power.

Given that the improvement in heat transfer enhancement asymptotes with increasing A, and
that the power requirement increases more steeply with increasing A, it is apparent that there will
certainly be a practical limit to the available benefit obtained by implementing a mechanism such as
that proposed here.
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