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Abstract With the aim of understanding discrepancies between experimental obser-
vations and numerical simulations for a cylinder rolling down an inclined plane, this
study investigates the effect that offsetting the centre-of-mass from the cylinder
centroid has on body forces, velocity and wake structures. The numerical cases con-
sidered focus on the same parameters as the referenced experiment: cylinder-to-fluid
density ratio and wall inclination angle, for Reynolds numbers in a range around the
critical value for the transition from stationary flow to periodic vortex shedding. The
centre-of-mass is placed at a distance of up to 2 % of the diameter from the geomet-
rical centre of the cylinder. It is found that the main features of the predicted wake
flow are in good agreement with those observed experimentally. They include the
inception of small-scale shear-layer vortices in the near wake, locked to the cylinder
rotational frequency, as well as large-scale vortices further downstream. This is fur-
ther confirmed through force and velocity histories, where two oscillations are found
to operate at significantly different frequencies. While the amplitudes of the lift, drag
and cylinder velocity oscillations see an increase with offset distance, the Strouhal
numbers of the small- and large-scale structures remain unaffected and agree well
with those measured in experiments at similar Reynolds numbers.
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1 Introduction

The flow around a bluff body close to a boundary has relevance to a number of
important physical applications. Many practical situations see bluff bodies near a
wall and with rotation rates and trajectories predominantly determined by the drag
and lift forces (as well as the torques). Some examples covering a wide Reynolds
number range include biological flows such as cell-cell and cell-wall interactions,
two-phase flows found in industrial processes (e.g., coal slurries) or natural environ-
ments (e.g., sediment transport), and sports such as Association Football (soccer),
tennis, pétanque and golf that involve rotating balls translating and impacting on
surfaces. Despite its seemingly generic nature, even the closely related problem
of a cylinder rolling along a boundary under gravity has not yet been extensively
researched, perhaps due to numerical modelling complications and difficulties in
setting up controlled experiments. In fact, the majority of previous studies have
focussed on cylinders and spheres placed in a free-stream, where wall interactions
or induced rotation and vibration were neglected.

When body rotation is considered, studies by Tang and Ingham [1] showed that
imposing a rotation on the cylinder renders the wake asymmetrical and, at low
Reynolds number, the elimination of one or both of the recirculation regions in
the wake is observed. This, of course, follows a long line of previous studies on
rotating cylinders, with those of Magnus [2] and Prandtl [3] particularly notable. As
the Reynolds numbers increases, imposed rotation may also suppress the onset of
transition to unsteady flow (in comparison with a non-rotating body).

For bodies close to a wall, an early study by Taneda [4] showed that the presence
of a stationary wall near a cylinder acts to stabilise the wake flow. In such cases,
the steady flow is characterised by a single recirculation region that separates from
the body and reattaches to the wall downstream, similar to the one observed for
flow over a backward-facing step (Armaly et al. [5]). More recently, Stewart et al.
[6] investigated the case of a rotating cylinder adjacent to a moving wall at vari-
ous rotation rates. They found that prograde (normal) rolling destabilises the flow,
whereas retrograde (reverse) rotation delays the onset of unsteady flow. When the
flow becomes unsteady, the strength of the vortex shedding decreases as the cylinder
is placed closer to the wall [7], and a vortex pair with a net non-zero circulation
appears in the wake. It results from the interaction between the vortex formed from
the shear layer shed from the top of the cylinder and secondary vorticity formation
and lift-off from the wall shear layer downstream [6, 8], as illustrated in Fig. 1.

More recently, a two-dimensional numerical study was conducted on the flow
characteristics and aerodynamic forces associated with a cylinder rolling freely along
a solid inclined surface, i.e., with no constraints on either its velocity or rotation rate
[9]. In this case, using a specific scaling, the final average state of the flow is deter-
mined by merely two governing parameters: the density ratio, β, defined as the ratio
of the cylinder to the fluid density, and a Reynolds number, Re f , defined using a
derived velocity scale representing the mean terminal velocity of the cylinder in both
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Fig. 1 Vorticity contours in the wake of a cylinder (diameter d) rolling to the left at a constant fixed
speed U along a straight wall. The Reynolds number is Re = Ud/ν = 200 (ν kinematic viscosity).
Red and blue represent positive and negative vorticity, respectively

the steady and unsteady cases. Subsequently, experiments in a water channel were
conducted in an attempt to reproduce and validate some of these results, but the
resulting wake flow structures and body motion were somewhat different from those
observed numerically. This may be attributed to the challenging experimental setup
that is required to match the idealized two-dimensional geometry and flow condi-
tions of the numerical simulations. In fact, imperfections in experiments can lead to
perturbations of the flow, which can significantly amplify and lead to substantially
non-ideal behaviour. Similar effects have already been documented previously for
other classes of flows, e.g. in [10–13].

For the current experiments, imperfections may include small burrs or eccentricity
of the cylinder cross-section, bending in the spanwise direction, a non-planar wall,
and an offset centre-of-mass. Here, the last effect is further considered numerically. It
preserves the circular cross-section of the cylinder and represents a two-dimensional
deviation, but it typifies a perturbation at the rolling frequency. One aim of this study
is to determine the effect of such a perturbation on both the motion and wake of a low
mass-ratio cylinder, and the sensitivity of the response to the level of the perturbation.
Along the same lines, Mittal [14] carried out a numerical investigation of the flow past
an eccentrically rotating cylinder in a free-stream. He found that the flow is unsteady,
but that the mean values of the aerodynamic forces, as well as the flow structure, are
similar to the case without eccentricity. The presence of the wall in the present study
has a determining influence on the flow structure. We here seek to reproduce and
investigate numerically the wobbly body motion and associated flow characteristics
observed in the experiments. This study could then provide guidelines for future
experiments and tolerance values for the manufacturing of components required for
the study of rolling cylinder flow.

The outline of this paper is as follows. An overview of the problem under consid-
eration is given in Sect. 2. Section 3 covers the methodology, numerical methods and
experimental setup that were used. The computational and experimental results are
presented, compared and discussed in Sect. 4. A summary and conclusion are given
in Sect. 5.
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2 Problem Definition

Figure 2 illustrates the problem under consideration, a circular cylinder rolling under
gravity along a flat inclined surface, which is treated here in two dimensions. The
different body forces exerted on the the cylinder are: the normal reaction N , lift L ,
drag D, the friction force R and the weight mg. There is also a torque (T ) from
viscous stresses at the cylinder surface. Other denoted entities are: the inclination
angle θ of the wall, the velocity U of the body, its radius a and angular velocity ω.
For numerical simplicity, the origin of the frame of reference is fixed at the centre of
the cylinder and moving with it along the wall.

The offset centre-of-mass position (e) is defined by its distance b to the geometric
centre and by the initial offset angle ϕ0 measured from the vertical, as shown on the
left of Fig. 2. A non-dimensional offset parameter r is given by the ratio of the offset
distance to the radius of the cylinder: r = b/a (expressed in %). ρc and ρ f are the
densities of the cylinder and of the fluid, respectively. The Reynolds number Re is
based on the cylinder diameter and the asymptotic mean translation velocity of the
cylinder: Re = 2aU/ν.

Fig. 2 A schematic of the two-dimensional problem under consideration: on the right, at t = t0,
the cylinder of radius a is rolling along an inclined plane of slope θ , where (e) represents its centre-
of-mass. Its translational and angular velocities are U and ω, respectively. The frame-of-reference
(x, y) is attached to the centre of the body, and the different forces exerted on it are illustrated: the
aerodynamic forces (drag D and lift L), the mechanical forces (reaction of the wall on the body, N
and R) and gravity (weight mg). A viscous torque T (not shown) also acts on the cylinder. On the
left, the offset distance b from the geometric centre is defined, as well as the initial offset angle ϕ0
and the offset angle ϕ after a time interval Δt
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3 Methodology

3.1 Governing Equations

The governing equations are the two-dimensional continuity and Navier–Stokes
equations for the motion of the fluid, and Newton’s second law together with the
angular momentum balance to describe the acceleration of the cylinder in terms of
the forces acting on the centre-of-mass. In the case of an incompressible flow, the
continuity equation is

∇ · u = 0, (1)

and the general form of the Navier–Stokes equation in an accelerating frame is

∂u
∂t

+ u · ∇u = − 1

ρ f
∇ P + ν∇2u − dU

dt
. (2)

u = (u, v) and U = (U, 0) are the fluid velocity and the translation velocity of the
cylinder, respectively. The last term in the equation accounts for the acceleration
of the moving frame-of-reference and is equal to the acceleration of the cylinder
centroid. Using the notation defined in Fig. 2, the resulting equation of motion for
the cylinder with an offset centre-of-mass is

mc
[
a2ϕ̈ + 2abϕ̈ cos (ϕ + ϕ0) + b2ϕ̈ − abϕ̇2 sin (ϕ + ϕ0)

] + Icm ϕ̈

= mga sin θ + mgb sin (ϕ + ϕ0 + θ) − aD − T . (3)

Here, mc is the mass of the cylinder (per unit span), m = (ρc − ρ f )πa2 the apparent
mass and Icm = I0 − mcb2 the moment of inertia at the centre-of-mass, with I0 the
moment of inertia about the geometric centre. In the following, it is assumed that
I0 = 1

2 mca2, the moment of inertia for a uniform density disk. The drag force D, lift
force L and viscous torque T can be expressed as

D = 1

2
(2a)ρ f U 2CD = aρ f U 2CD, (4)

L = 1

2
(2a)ρ f U 2CL = aρ f U 2CL , (5)

T = 1

2
(2a)aρ f U 2CT = a2ρ f U 2CT . (6)

CD , CL and CT are the drag, lift and viscous torque (or moment) coefficients, respec-
tively. When the centre-of-mass coincides with the geometric centre of the cylinder
(b = 0), Eq. (3) reduces to
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dU

dt
= 2

3

[(
1 − 1

β

)
g sin θ − D

πa2ρc
− T

πa3ρc

]
, (7)

where β = ρc/ρ f is the density (or mass) ratio.

3.2 Non-dimensional Equations

Considering the case with no eccentricity, let G = (β − 1) g sin θ . When scaling
lengths by the radius a, velocities by V f = √

aG (which represents a qualitative esti-
mate of the mean terminal velocity of the cylinder), time by τ = √

a/G and pressure
by ρ f V 2

f , the non-dimensional forms (superscript *) of the continuity, Navier–Stokes
and acceleration equations (Eqs. (1), (2) and (7), respectively) are

∇ · u∗ = 0, (8)
∂u∗

∂t∗ + u∗ · ∇u∗ = −∇ P∗ + 1

Re f
∇2u∗ − dU∗

dt∗ , (9)

dU ∗

dt∗ = 2

3β

[
1 − U ∗2

π
(CD + CT )

]
. (10)

Re f = aV f /ν = a
√

aG/ν is a newly defined Reynolds number and U∗ the scaled
(non-dimensional) velocity of the cylinder.

3.3 Numerical Formulation

The time-dependent incompressible Navier–Stokes equations for the fluid are solved
in Cartesian coordinates using a spectral-element approach: the advection, pressure
and diffusion terms are discretised using a second-order fractional time-stepping
method [15, 16]. The spectral-element method is essentially a P-based high-order
finite-element method that uses Lagrangian polynomial interpolants based on Gauss-
Legendre-Lobatto integration points as internal nodes to form approximations to the
governing partial-differential equations. It has the advantage of converging much
faster than typical H-based finite-element methods, since the error decreases expo-
nentially (or spectrally) with the order of the approximating polynomial, while retain-
ing most of the flexibility of the finite elements to efficiently discretize the compu-
tational domain. The nodal-based approach adopted is given in [16]. The solver is
explained in more detail in [17]. It has widely been tested, validated and used for
studies of flows around bluff bodies such as cylinders [8, 18, 19] and spheres [17,
20, 21].
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Fig. 3 Schematic of the
macro-element mesh. The
cylinder is placed near the
wall, with a small gap of
0.005d to avoid numerical
singularities [6, 8, 22]. The
flow is from left to right, and
the resolution in the vicinity
and downstream of the
cylinder is increased, in order
to accurately capture the
flow structures in the wake

The mesh used for this study is shown in Fig. 3; it consists of 1552 nodes and 1472
elements. Typically, the results shown in this article used either 5 × 5 or 6 × 6 internal
nodes per element. The dimensions of the computational domain are Lx/d × L y/d =
50 × 50, where d = 2a is the diameter of the cylinder. Thus the blockage ratio is
2 %. The body is located at the centre near the wall. Resolution studies were carried
out on the domain size, number of nodes per element and chosen time step to ensure
the convergence of the results. These studies indicate convergence of velocity, drag
coefficient and Strouhal number to better than 1 % at the highest considered Reynolds
number.

The following boundary conditions were applied for the numerical simulations.
The cylinder rotates with no slip at the lower wall. At the top, bottom and inflow
boundaries, the velocity is set to the negative of the cylinder’s centroid velocity (in
the absolute frame). At the right boundary, the normal velocity gradient conditions is
applied and the pressure is set to zero. A higher-order pressure boundary condition
is used at all solid surfaces [16] ensuring second-order accuracy of the velocity field.

3.4 Experimental Setup

Experiments were carried out in a free-surface water tank of dimensions 150 cm
(length) × 38 cm (width) × 50 cm (depth). A 2 cm thick Plexiglas plate was placed
in the tank, which could be inclined with respect to the horizontal direction by using
various sets of supports (see Fig. 4). The plate had a length of 130 cm and a width of
37.5 cm, extending between the two lateral walls of the tank. The cylinder used for
the experiments reported here was a hollow Perspex tube of diameter 2a = 12 mm
and length 300 mm (aspect ratio 25), filled with water and sealed on both ends. Its
(average) density was ρc = 1.10 g/cm3, which at room temperature led to a density
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Fig. 4 Schematic of the experimental setup

ratio β = 1.10. Prior to an experimental run, the cylinder was placed near the upper
end of the plate and blocked by a thin metal wire. When the fluid motion in the tank
had calmed down, the wire was removed and the cylinder was free to roll down the
plate. For density ratios near 1, it reaches its terminal velocity very quickly, within
less than 10 diameters from the start.

The wake structure of the freely rolling cylinder was visualised by laser-induced
fluorescence [23]. Using a long metal cannula, an aqueous solution of fluorescein,
slightly denser than the water in the tank, was deposited on the plate near the cylinder,
where it spread along the surface. When the cylinder rolled across this dye layer, the
dye was trapped in the vortical structures, thus visualising the wake. Illumination
was achieved with a sheet of light from an argon ion laser, placed in the vertical plane
of symmetry of the set-up in the centre of the tank. Video sequences of the visualised
flow were recorded with a Nikon Coolpix P7800 digital camera, at a resolution of
1920 × 1080 pixels and a rate of 25 Hz. Quantitative information concerning the
instantaneous and average cylinder velocities was obtained from these videos using
the Open Source Physics Tracker software [24].

The results presented in the following section were obtained for a plate inclination
angle θ = 1.9◦. The mean terminal velocity of the cylinder for this case was U = 1.35
cm/s, leading to a Reynolds number Re = 160 (the rescaled Reynolds number equals
Re f = 84 for this configuration).

4 Results

4.1 Wake Structure

In the computations, offsetting the centre-of-mass from the cylinder centroid results
in a non-constant rolling velocity, varying over one rolling cycle. When the centre-
of-mass is trailing the centroid and rising, the cylinder slows down. Conversely, when
the centre-of-mass is preceding the centroid and falling, the cylinder accelerates. This
forcing perturbation acts at the frequency of the rolling cycle and leads to periodic
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vorticity concentrations forming in the upper separating shear-layer, which strongly
resemble the structures observed experimentally.

Figure 5 shows the typical wake structures observed in experiments, and the one
obtained by numerical simulation with a centre-of-mass offset of r = 3.8 %. The
Reynolds number (Re = 160) is above the critical value for the transition to unsteady
flow (Rec � 89 [9]), so there is periodic shedding of large-scale vortices into the
wake, as is seen in both images. The numerical result on the right shows that the
shear layer separating from the top of the cylinder feeds these large vortex structures
in the near wake prior to their release into the far wake. However, the shear layer
clearly also contains smaller-scale vortices triggered by the oscillatory component of
the cylinder velocity. Thus the roll-up into larger-scale structures is complex. These
smaller-scale shear layer vortices are also present in the experimental visualisation on
the left of Fig. 5. There are a number of differences and possible deviations between
the experimental and computational setups, including the fact that the experimental
cylinder is not homogeneous in density, a non-uniformity in the cylinder geometry
and/or the plate surface, an eccentricity of the cylinder surface, or three-dimensional
and end effects. Some differences between the simulations and experiments should
therefore be expected. However, importantly the oscillatory nature of the cylinder
motion is observed in both cases and strongly affects the wake development.

A more detailed indication of the effect of a centre-of-mass offset on the near wake
structure is shown in Fig. 6. This figure compares the wake vorticity distribution for
the cases without perturbation and with an offset of r = 3 % at Re = 115. In the
latter, the strong shear-layer vortices associated with the induced oscillating cylinder
velocity are clearly seen, together with their influence on both the near and far wake
structure.

Fig. 5 Typical wake flow structures from experiments and computations showing some of the
main flow features of the wake. Left Experimental dye visualisation. Right Numerical simulations
showing the wake visualised by passive tracer particles released from upstream and near the rear
of the cylinder. In both cases, Re = 160, θ = 1.9◦ and β = 1.10. For the numerical simulation
r = 3.8 %

Fig. 6 Coloured vorticity contour showing the effect of an offset centre-of-mass on the wake flow.
Left Unperturbed flow. Right Perturbed flow for r = 3 %. Re = 115, β = 1.10 and θ = 1.9◦
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Fig. 7 Numerical flow visualisation of the shear-layer vortices in the wake of the cylinder at
Re = 88, θ = 1.9◦, β = 1.10 and r = 2 %. The image on the left shows vorticity contours and the
one on the right shows a visualisation of the wake using passive tracer particles released near the
rear surface of the cylinder

Figure 7 shows the flow structure predicted from numerical simulation for Re =
88, just below the transition to two-dimensional vortex shedding [6, 9], and r =
2 %. As before, the shear-layer vortices dominate the separating shear layer and
again match well with the experimental visualisations of the near wake at the higher
Reynolds number shown previously. However, there is no large-scale shedding of
vortices in this case. The smaller-scale shear layer vortices sufficiently cross-diffuse
as they advect downstream so that large-scale shedding does not occur.

As indicated above, for the simulations reported here, the inclination angle of the
wall and the density ratio are set to θ = 1.9◦ and β = 1.10, respectively, correspond-
ing to the experimental case at Re = 160. Interestingly, at this low slope angle, Eq. 3
is in its most downstream position, the loss of gravitational energy as the cylinder
moves down the slope is exactly balanced by the gain in potential energy due to
lifting the cylinder centre-of-mass vertically, when the offset has the particular value
r = sin θ = 0.033. For significantly larger offset values, the cylinder may stop, or
not even start, rolling. In the numerical simulations, this situation was observed for
r = 0.04, i.e., for an offset of just 2 % of the diameter, when the initial offset angle
was ϕ0 = −90◦.

4.2 Body Forces and Velocity

A more detailed numerical exploration of the centre-of-mass offset was carried out
for two different Reynolds numbers, Re = 88 and Re = 130, including 11 offset
values ranging from r = 0 (no offset) to r = 2 %. As the centre-of-mass is placed
further away from the geometric centre, the time-mean values of the velocity, drag
force and lift force increase in comparison with the no-offset case. At the maximum
offset distance tested here (r = 2 %), an increase of the order of 10 % was obtained
for the lift force, which is significantly higher than the 2 % increase in the velocity
and drag force.

Time histories of the drag and lift coefficients, and of the non-dimensional cylinder
velocity, are shown in Fig. 8 for Re = 88 and in Fig. 9 for Re = 130, for three offset
values (r = 0, 1 and 2 %). Velocity and time are scaled as specified in Sect. 3.2. These
plots, along with Fig. 10, show that the amplitude of the velocity oscillations increases
almost linearly with the offset distance. The velocity and lift coefficient variations
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Fig. 8 Lift and drag coefficients and cylinder velocity as function of time, at Re = 88 and r = 0 %
(first column), r = 1 % (second column) and r = 2 % (third column)

Fig. 9 Lift and drag coefficients and cylinder velocity as function of time, at Re = 130 and r = 0 %
(first column), r = 1 % (second column) and r = 2 % (third column)
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Fig. 10 Plot of the mean
velocity amplitude versus the
offset ratio at Re = 88 and
Re = 130. The amplitude is
scaled by the mean terminal
velocity of the cylinder

at the higher Reynolds number (Fig. 9) conform with the observations of the flow
structure in the experiments: the rolling cylinder exhibits a wobble that perturbs
the flow as it rolls down the slope. As a result, two superimposed oscillations can
be observed that have significantly different periods, associated with the small-scale
shear-layer vortices and the large-scale shedding. Furthermore, the Strouhal numbers
calculated for these flows were found to be constant for all offset values (r > 0)
tested here, and they are in good agreement with the ones found in the experiment of
Sect. 4.1. These Strouhal numbers can be determined from the relations St (1) = 2a/λ

and St (2) = 2a f/U , where λ is the streamwise separation distance between large-
scale vortices and f the shedding frequency of the smaller shear-layer vortices.
Numerically one obtains St (1)

num = 0.0603 and St (2)
num = 0.315, versus St (1)

exp = 0.067
and St (2)

exp = 0.32 found experimentally. The higher Strouhal number is essentially
the rolling frequency of the cylinder (given by St = 1/π ), i.e., the period of the
perturbation is imposed by the offset centre-of-mass.

5 Conclusions

The present investigation was motivated by an observed qualitative discrepancy
between earlier numerical predictions of the flow around cylinders rolling freely
down an inclined flat surface and recent experimental observations concerning the
same geometry. Among the numerous possible imperfections that may affect the
structure of the flow in the experiment, the focus here is on an offset of the centre-of-
mass of the cylinder, allowing investigation within a two-dimensional framework.
One consequence of increasing the offset distance is that the amplitude of the cylin-
der velocity oscillations grows, causing the development of increasingly large shear-
layer vortices. The main characteristics of the wake predicted numerically are in good
agreement with those observed in experiment, showing vortex formation in the top
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separating shear layer at the cylinder rotational frequency. This adds considerably
to the complexity of the formation of large-scale vortices in the near wake, which
in turn are shed downstream at a frequency that is approximately one fifth of the
shear-layer frequency. The two predicted Strouhal numbers are in good agreement
with those measured experimentally. Although the match between experiment and
simulation is not perfect, the present results highlight the strong effect that seemingly
small perturbations can have on the overall large-scale flow around the freely rolling
cylinder, and they underline the difficulties and the special care that is required when
comparing and interpreting experimental and numerical results for certain sensitive
flow configurations.
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