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Pulsatile inlet flow through a circular tube with an axisymmetric blockage of varying
size is studied both numerically and experimentally. The geometry consists of a long,
straight tube and a blockage, semicircular in cross-section, serving as a simplified
model of an arterial stenosis. The stenosis is characterized by a single parameter,
the aim being to highlight fundamental behaviours of constricted pulsatile flows. The
Reynolds number is varied between 50 and 700 and the stenosis degree by area
between 0.20 and 0.90. Numerically, a spectral element code is used to obtain the
axisymmetric base flow fields, while experimentally, results are obtained for a similar
set of geometries, using water as the working fluid. For low Reynolds numbers, the
flow is characterized by a vortex ring which forms directly downstream of the stenosis,
for which the strength and downstream propagation velocity vary with the stenosis
degree. Linear stability analysis is performed on the simulated axisymmetric base
flows, revealing a range of absolute instability modes. Comparisons are drawn between
the numerical linear stability analysis and the observed instability in the experimental
flows. The observed flows are less stable than the numerical analysis predicts, with con-
vective shear layer instability present in the experimental flows. Evidence is found of
Kelvin–Helmholtz-type shear layer roll-ups; nonetheless, the possibility of the numer-
ically predicted absolute instability modes acting in the experimental flow is left open.

1. Introduction
There are numerous instances in the cardiovascular system in which fluid mechanical

characteristics play a role in normal and pathological biological phenomena. For
example, the appearance and growth of arterial blockages, or stenoses, has been
linked to the presence of low and oscillatory wall shear stresses (Ku 1997). Such links
have motivated researchers to examine the fluid mechanics associated with stenotic
flows. A straight pipe with a partial blockage serves as a simplified model of an
arterial stenosis, from which fundamental flow behaviours can be examined.

Early experimental work on pulsatile flows sought to identify flow disturbances
which might provide indications of a stenosis (Cassanova & Giddens 1978). In
particular, the work of Khalifa & Giddens (1978, 1981) characterized the change
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in flow energy spectra with the severity of the stenosis. The work of Ahmed &
Giddens (1984) moved away from turbulent flow energy spectra to the structure
of the post-stenotic flow as a means to identify stenoses, using flow visualization
techniques and laser Doppler velocimetry to extract downstream velocity profiles.
The stenosis was modelled axisymmetrically, using a single cosine velocity wave form,
with area reductions of 25 %, 50 % and 75 %. For the 75 % reduction, during the
deceleration phase of the cycle, discrete oscillations in the near field flow and then
turbulence approximately 6 diameters downstream of the stenosis were observed. It
was concluded that the identification of flow disturbances such as those observed in
their study were better indicators of stenosis severity than turbulent energy spectra
derived from Doppler ultrasound techniques. However, no critical boundaries for the
instabilities observed in their experiment were included.

Ohja et al. (1989) investigated post-stenotic pulsatile flow through two stenosis
geometries, using a photochromatic tracer method. A single pulsatile wave form
was used, and both stenosis geometries had sharp edges. The method was effective
in delineating velocity profiles and also in indicating the breakdown of the flow
in the post-stenotic region. A turbulent phase was identified, where the flow became
turbulent around 5 diameters downstream of the stenosis, as well as a relaminarization
phase, where the turbulence was convected downstream and where the jet emanating
from the stenosis was stable and laminar. This observation of turbulence occurring
only during a portion of the velocity wave form is common to other studies on
pulsatile stenotic flow (Ahmed & Giddens 1984; Lieber & Giddens 1990; Ahmed
1998). For the turbulent phase of the 75 % area reduction, Ohja et al. (1989) divided
the post-stenotic flow into regions, classifying each zone. In the stable jet region,
three Kelvin–Helmholtz-type vortex roll-ups were observed. In the transition region,
these roll-ups lost their symmetry, leading to their breakdown in the turbulent region.
This turbulent region extended over the entire diameter of the tube and 3 diameters
axially. The relaminarization of the flow occurred beyond 7.5 diameters downstream
of the stenosis. The zone classifications give a good general characterization of an
experimental pulsatile stenotic flow and are consistent with the observations regarding
flow instability of Ahmed & Giddens (1984).

Many researchers have used computational fluid dynamics to investigate pulsatile
flows in idealized stenotic geometries (Tu et al. 1992; Deplano & Siouffi 1999; Liu
& Yamaguchi 2001; Varghese & Frankel 2003). Stroud, Berger & Saloner (2000)
studied the influence of morphology on stenotic flows; their work also featured in the
review paper of Berger & Jou (2000). The key motivation of the study seems to be to
demonstrate the inadequacy of ‘percent stenosis’ as a diagnostic measure for arterial
disease. This was achieved by investigating, independent of stenosis severity, the
importance of such factors as surface irregularity and aspect ratio on flow behaviour.
Many differences were found; however, the irregularities selected for the simulations
seem fairly arbitrary. The work identified the significance of stenosis morphology but
fell short of assessing or quantifying that significance.

More recently, the transition to turbulence observed in many stenotic flow experi-
ments (Ahmed & Giddens 1984; Ohja et al. 1989) has been examined computationally.
Simulating the pulsatile flow through an axisymmetric 75 % severity stenosis,
Mallinger & Drikakis (2002) were able to recreate the downstream transition observed
in previous experiments. Initially, the flow would remain laminar; the instability would
then progress upstream and sit at a point downstream of the stenosis. The physical
cause of this instability was not examined; however, the authors linked it to increases
in the circumferential stress on the artery and larger-than-normal fluctuations of the
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wall shear stress. A qualitatively similar instability was also recreated and analysed
by Sherwin & Blackburn (2005) in their simulations, using a geometry similar to that
of Mallinger & Drikakis (2002).

The determination of critical Reynolds numbers or area reductions for instability
is lacking from much of the work on stenotic flows; recently, the work of Sherwin &
Blackburn (2005) and Blackburn & Sherwin (2007) has featured more in-depth
stability analysis. Using Floquet stability analysis, Sherwin & Blackburn (2005)
determined critical Reynolds numbers of pulsatile flow through a smooth cosine
stenosis, similar to that used in Ahmed & Giddens (1984). For the greater part of the
pulse period range relevant to physiological flows in large arteries, the primary linear
instability in the flow was identified as a period-doubling vortex-tilting (azimuthal
wavenumber m = 1). The instability acted on the vortex ring generated each pulse
period, tilting each successive ring in opposite directions. Direct numerical simulation
of the flow with a small flow perturbation added revealed the breakdown of the vortex
rings far downstream, with an eventual relocation of this breakdown upstream, to
within 4 diameters downstream of the stenosis. This asymptotic behaviour compares
well with the instabilities described in the previous experimental work of Ohja et al.
(1989) and Ahmed & Giddens (1984). However, the exact role of linear absolute
instability modes in the stability of experimental flows is not determined, since
the numerical simulations omit experimental noise, which may trigger substantial
convective instability growth prior to criticality. In Blackburn & Sherwin (2007),
different leading linear absolute instability modes were identified for flows of shorter
pulse period, with modes of azimuthal wavenumber m =3 and 4 dominating. The
authors argued that they were Widnall instability modes (Widnall, Bliss & Tsai 1974),
manifesting as azimuthal waves growing on each vortex ring.

Blackburn & Sherwin (2007) also investigated further the possibility of convective
shear layer instability in pulsatile stenotic flow, adding a high-frequency, low-
amplitude oscillation to the inlet velocity condition. They suggested a possible
interaction between the convective shear layer instability and the linear Floquet
instability. This took the study a step closer to the noise-driven instabilities seen
in the experimental flows of Ahmed & Giddens (1984) and Ohja et al. (1989);
however, the question of the exact role these linear instability modes might play in
the experimental flows is still an open one.

Varghese, Frankel & Fischer (2007) have presented a detailed study of wall shear
stress and velocity profiles for direct numerical simulations of pulsatile flow in
an axisymmetric stenotic geometry of 75 % area reduction, using the same flow
parameters and geometry used in Ahmed & Giddens (1984). They also performed
simulations using the same stenosis model but with a geometric perturbation in the
form of a 5 % eccentricity of the stenosis geometry. A comparison of velocity profiles
between their simulations and the experimental measurements of Ahmed & Giddens
(1984) showed a good agreement. They observed a breakdown of the post-stenotic
flow in simulations performed with the stenosis of 5 % eccentricity, with periodic
localized transitions (4 to 6 diameters downstream of the stenosis) to turbulence
occurring during the deceleration phase of the wave form. In this way, the geometric
eccentricity acted as a tripping mechanism for instability and turbulence rather than
as an added flow perturbation (Sherwin & Blackburn 2005) or experimental noise
(Ahmed & Giddens 1984; Ohja et al. 1989).

The present work aims to build on the recent computational work on pulsatile inlet
stenotic flows, by providing experimental results for these flows as well as exploring
the effect of a change in stenosis severity on the flow and its stability. The study is
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Figure 1. Schematic of the geometry.

a continuation of the work presented in Griffith et al. (2008), which dealt with the
steady inlet flow through the same geometry.

This article is structured in the following manner: § 2 describes the problem and
outlines the numerical and experimental methods employed during the study; § 3
presents the results, beginning with a description of the base flow and continuing to
a description of the various flow instabilities investigated, while § 4 summarizes the
results and conclusions.

2. Problem definition and method
The geometry under investigation is shown in figure 1. It consists of a long, straight

tube with an axisymmetric blockage described by a single parameter, the stenosis
degree, defined as

b = 1 −
(

d

D

)2

, (2.1)

where D is the diameter of the tube and d is the diameter at the centre of the stenosis.
Figure 1 also shows the radius of the blockage, dependent on d , which is given by

rb =
D − d

2
=

D

2
(1 −

√
1 − b). (2.2)

In actual blood flow, artery walls are generally compliant and respond to the fluid
pressure and wall shear stresses. The walls of the tube of our model are considered
to be rigid. As well as greatly simplifying our problem, the effect of compliant walls
is generally considered negligible for the study of flows in larger arteries (Ku 1997;
Wootton & Ku 1999). Similarly, for larger arteries it is reasonable to assume the fluid
to be Newtonian.

The temporal and cross-sectional average of the fluid velocity, U , is defined as

U =
1

Td

∫ Td

0

u(t) dt =
8

D2Td

∫ Td

0

∫ D/2

0

u(r, t) r dr dt, (2.3)

where Td is the period (dimensional) of the pulsation.
For a given wave form, three independent dimensionless parameters are defined:

the Reynolds number, the pulse amplitude and the pulse period.
The Reynolds number is defined as

Re =
UD

ν
, (2.4)

where ν is the kinematic viscosity.
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Figure 2. The inlet velocity waveform for pulsatile flow.

A sketch of the velocity wave form is given in figure 2. The sectionally averaged
velocity oscillates sinusoidally around the temporally averaged flow velocity U , with
a period Td and an amplitude A. The inlet flow produces the same net mass flow; the
steady flow can be thought of as either a temporal average of the pulsatile flow or a
limiting case, where the pulsation amplitude approaches zero. The amplitude, A, refers
to the maximum variation of the velocity from its mean value of U . As is the case in
many other studies, the amplitude most often used in the present work is A= 0.75;
this amplitude results in a wave form which oscillates between a maximum of 1.75U

and a minimum of 0.25U . Any wave form of amplitude A> 1 has a minimum velocity
u(t) of less than 0, producing a reverse flow for a given interval of the pulse period.

The frequency parameter used is the non-dimensionalized period of the pulsation,
T = TdU/D. In their work on pulsatile flows, Sherwin & Blackburn (2005) introduced
a reduced velocity as a more suitable frequency parameter, which is in effect the same
quantity as the non-dimensionalized pulsation period used in this study. In most
previous works on pulsatile flow, the Womersley number (α =(D/2)

√
2π/νTd) is taken

as the principal frequency parameter. The Womersley number is a useful indicator of
the physiological relevance of any flow configuration one may be investigating; the
equivalent Womersley numbers are provided for the flows considered in this study.

The study employs both numerical and experimental methods.

2.1. Numerical simulations

Two-dimensional axisymmetric flow field simulations were obtained from a numerical
solution of the time-dependent Navier–Stokes equations, given here with the incom-
pressibility constraint:

∂u
∂t

+ u · ∇ u = −∇p + ν∇2u, (2.5)

∇ · u = 0, (2.6)

where u is the three-dimensional velocity vector (solved axisymmetrically) and p and
ν are the kinematic pressure and viscosity. The simulations were initialized with the
fluid at rest and run until the flow had travelled the length of the domain. The spectral
element method employed to discretize and solve the equations has been used and
validated in the prediction of wake flows past rings (Sheard, Thompson & Hourigan
2003), spheres (Thompson, Leweke & Provansal 2001), circular cylinders (Thompson,
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Hourigan & Sheridan 1996) and partial blockages in channel flow (Griffith et al.
2007). The method uses a three-step time-splitting procedure and has been verified to
give second-order time accuracy.

2.1.1. Boundary conditions

On the stenosis surface and the cylinder walls, no-slip conditions were imposed. At
the inlet and outlet boundaries, the pulsatile inlet condition is prescribed, consisting of
a linear combination of an equilibrium Poiseuille profile and a harmonic oscillation.
The solution to the harmonic component of the velocity is given in Womersley (1955).
A thorough discussion of the Womersley solution and the resulting velocity profile
behaviour can be found in Loudon & Tordesillas (1998). The Womersley solution
represents a fully developed and periodic solution for flow subject to a periodic
pressure gradient. The time-dependent complex solution to the local velocity for
pulsatile flow is given by (9) of Womersley (1955) as

u(r, t) =
A

ρ

Td

2πi

(
1 − J0(2αri3/2/D)

J0(αi3/2)

)
exp 2πit/Td, (2.7)

where A is the magnitude of the pressure gradient; i =
√

−1; and J0 represents a
complex Bessel function of order zero. The resultant harmonic component can then
be added on to the mean steady component.

2.1.2. Stability analysis

Floquet stability analysis is carried out on the numerically simulated flows. The
method analyses the linear growth, or decay, of a perturbation, u′(r, θ, z, t), on the
periodic base flow, u(r, θ, z, t). Describing the flow as the base and perturbation
components combined, this definition is substituted into the Navier–Stokes equations.
Subtracting the base flow components and removing nonlinear terms yields linear
equations describing the evolution of small disturbances, which can be solved by
the same numerical method used to solve the base flow. For a given azimuthal
wavenumber, m, a Floquet multiplier μ is determined by the power method. A
Floquet multiplier |μ| > 1 indicates an unstable flow, while |μ| < 1 indicates a stable
one. A Floquet multiplier |μ| =1 represents neutral stability; in such a case the flow
is of a critical Reynolds number Rec for perturbations of the particular wavenumber,
above which it is stable and below which it is unstable. The method is the same
one used in Griffith et al. (2007), only modified for axisymmetric configurations and
periodic base flow; hence the mathematical details are not provided here.

2.1.3. Mesh layout and validation

Meshes were created for stenosis degrees of b =0.20, 0.40, 0.50, 0.60, 0.75 and
0.90. For the mesh constructed corresponding to a stenosis degree b = 0.90, a much
higher spatial and temporal resolution than for the steady flow case was needed
to adequately resolve the flow. Therefore, simulation of pulsatile flows at b = 0.90
required much longer computational times than those at lower stenosis degrees.
Due to the prohibitive computational time needed, only a limited number of flow
configurations were simulated at b = 0.90; these were mostly chosen to compare with
configurations tested experimentally.

Figure 3 shows three of the meshes used. The inlet length used for all meshes was
Li = 6D, while the outlet length Lo varied according to the stenosis degree. At low
stenosis degree, the outlet length used was 40D, increasing to 50D at b = 0.60, 75D
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Figure 3. Macro-elements for test sections of three of the meshes constructed. From top to
bottom, b = 0.50, 0.60 and 0.75.

b = 0.50 b = 0.60 b = 0.75
n |μ| |μ| |μ|

3 1.0835 1.2546 –
4 1.1529 1.3640 1.8777
5 1.1726 1.3763 1.4898
6 1.1725 1.3763 1.4953
7 1.1728 1.3765 1.4942
8 1.1716 1.3761 1.4940
9 1.1708 1.3761 1.4948

Table 1. Convergence of the Floquet multiplier, μ, with polynomial order, n, for the azimuthal
wavenumber m= 1 mode, across three stenosis degrees. All three tests were performed with
Re = 300 and T =2.5 and with an amplitude of pulsation exceeding the critical pulsation
amplitude (i.e. at b = 0.50, A = 1.25; at b =0.60, A =1.00; and at b =0.75, A =0.75).

at b = 0.75 and 100D at b = 0.90. These lengths were found to be sufficient to remove
any artificial boundary effects from either the inlet or the outlet.

The results of a resolution study are shown in table 1. The absolute value of the
Floquet multiplier of the leading azimuthal mode in each case was chosen as the
most convenient characteristic with which to measure the convergence. The three cases
shown were conducted for Re = 300 and T = 2.5 and then with a pulse amplitude, A,
taken from the higher end of the range of values studied. The convergence in each
case is good, each multiplier at the maximum nodal concentration being within 0.2 %
of the multiplier calculated at n= 6. All the pulsatile flows simulated in this study
were obtained using a nodal concentration of 49 (7 × 7) nodes per element, or n= 7.
For the case corresponding to b =0.75 from table 1, the effect of a variation in the
time step was tested. Simulations run at time steps of ΔtU/D = 2.5 × 10−4, 2.0 × 10−4

and 1.0 × 10−4 produced a variation in the value of |μ| of less than 0.2 %.

2.2. Experimental method

An experimental rig was constructed to test the geometry outlined in figure 1. A
schematic of the rig design is shown in figure 4. A brief description of the rig is
presented here, although a more detailed description is available in Griffith (2007).
The rig consisted of a transparent perspex tube of 20 mm diameter, with inlet and
outlet lengths of 2000 mm or 100D. This provided a fully developed Poiseuille flow
at the test section and restricted any end effects. The three removable test sections
constructed corresponded to stenosis degrees of b = 0.50, 0.75 and 0.90. The test
section and outlet length were contained in a water-filled rectangular viewing box,
allowing the flow to be viewed undistorted; however, the curvature of the tube led to
some laser reflections which interfered with the view of the flow near the sections of
the tube wall normal to the viewer (the top and bottom of the experimental section).
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Figure 4. Schematic of the experimental rig; the inlet and outlet lengths have been truncated.

A pump supplied an elevated water reservoir, thereby keeping the pressure in the
system constant. The Reynolds number was varied via a control valve located before
the entry into the inlet tube.

A piston was added at the junction immediately downstream of the control valve.
This piston allowed the investigation of flows subject to a large-amplitude periodic
pulse. At running conditions, the pressure drop across the control valve was very large,
thus ensuring that movement from the piston was translated directly downstream and
only a negligible portion lost upstream to the reservoir. Much effort was invested
in reducing the noise and vibration in the system: the water pump and piston
were isolated as much as possible with the straightness of the tube ensured and filters
placed to smooth the flow before its entry into the inlet section. A turbulence intensity
of 3.0 % in the upstream (unblocked) flow was measured. Another source of error
stems from temperature differences existing between the working fluid and fluid in
the visualization box. Large differences between these two fluids could significantly
distort the flow in the tube. To minimize this effect, the fluid of the visualization box
was incorporated into the flow circuit of the experiment, generating a gentle flow
through the box, thereby keeping the fluids at approximately the same temperature.

The flow was analysed primarily using coloured dye visualizations. Fluorescein dye
was injected into the flow – with steady inlet condition – immediately downstream
of the stenosis, allowed to settle and then illuminated by a laser sheet. Dye would
become trapped in a steady recirculation zone. At this point, the pulsation would
begin, the dye from the recirculation zone of the steady flow serving to visualize
the pulsatile flow. The exact phase of single images was not determined; however,
knowing the exact period of the flow, the phase of an image could be determined in
its relation to another. In each figure showing series of dye visualizations, the first
image is given an indeterminate time ti , which serves as a reference for later images
in the figure (ti + T/8, ti + 2T/8 and so forth).

Particle image velocimetry (PIV) was also employed to measure the mainstream
flow; a detailed description of the technique and software used can be found in
Meunier & Leweke (2003). The results presented in this paper were obtained from
ensemble averaging; interrogation windows were also given a 4:1 aspect ratio, to
reflect the generally higher streamwise velocity component of the fluid flow. It was
found that the particle density was lower in the flow close to the tube walls than in



Pulsatile flow through stenotic geometries 299

Figure 5. Contours of axial velocity of the flow through four stages of the pulse, at T = 2.5
(α = 13.73), Re = 300 and A = 0.75, across three stenosis degrees, b =0.50, 0.60 and 0.75. In
each image, 10 contours are shown, between u =0 and 5U .

the centre of the tube; this tendency of the imaging particles resulted in the technique
not being as accurate in the near-wall vicinity.

3. Results
3.1. Base flow dynamics

Figure 5 plots contours of axial velocity obtained from numerical simulations up to
an axial distance of z/D = 7 for Re = 300 and T = 2.5, across three stenosis degrees
b = 0.50, 0.60 and 0.75. The flow configuration serves here as a generic example of
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Figure 6. Axial velocity profiles in the contraction of the b = 0.75 geometry at four intervals
during the pulse period, with Re = 300, A = 0.75 and T =2.5 (α = 13.73).

the types of flow under question, and the four sets of images are ordered in such
a way as to show the development and propagation of the flow during one period.
The Womersley number in this case, α = 13.73, is in the range corresponding to large
arteries.

At t =0.25T , when the sectionally averaged velocity is at a maximum, the flow
acceleration from the velocity wave form and the stenosis combined produce a plug of
high axial velocity, issuing from the contraction. The acceleration is markedly stronger
at b = 0.75, the velocity within the contraction being 4 times greater (1/(1 − b)) than
the velocity in the unblocked tube. The corresponding ratios for b = 0.50 and 0.60
are 2 and 2.5, respectively. This bulge of high-velocity fluid continues downstream
during the period of pulsation; during the same period, the bulk fluid itself moves
2.5D downstream.

In order to further analyse the plug-like form of the flow through the contraction,
figure 6 shows plots of the velocity profiles for the same flow configuration and
intervals in the period as in figure 5; however, only the case with b = 0.75 is considered.
Here, the axial velocity takes a local maximum near the inside walls of the stenosis.
For t = 0.25T , when the sectionally averaged velocity inside the contraction reaches
its maximum of u(t) ≈ 7U , the maximum is even more pronounced. The higher axial
velocity near the walls is caused by the rapid contraction of the flow and then
accentuated by the acceleration in the velocity wave form. The profiles of the two
other phases presented, t = 0.5T and 0.75T , occur during the diastolic portion of the
wave form, and the profiles become more rounded. In other studies that use a stenosis
length of 2D for a stenosis degree of b = 0.75 (as opposed to a length of 0.5D for
the present geometry at b = 0.75), the local maximum is either not present or not as
pronounced.

The separating shear layer can be observed in figure 7, which presents contours of
vorticity for the same flow configuration as in figure 5, with Re = 300 and T = 2.5,
across three stenosis degrees, b =0.50, 0.60 and 0.75. The strong flow acceleration
through the stenosis causes a flow separation to occur, with a separating shear layer
emanating from the blockage walls. The shear layer rolls up, forming a vortex ring
which propagates downstream and leaves a trail of positive vorticity in its wake.
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Figure 7. Contours of azimuthal vorticity of the flow through four stages of the pulse,
at T =2.5 (α =13.7), Re = 300 and A = 0.75, for three stenosis degrees, b = 0.50, 0.60 and
0.75. Dashed white lines represent the contour ωθ = 0; eight contour levels are shown, for
−20U/D � ωθ � 20U/D.

As can be seen from figures 7 and 11, the strength and extent of convection
downstream of the vortex are much greater in the case of b = 0.75. The vortex moves
at a velocity closer to the heightened mean velocity inside the stenosis rather than at
the mean velocity of the unblocked tube.

3.1.1. Vortex ring behaviour

The variation of the propagation of the vortex downstream warrants further
investigation. Figure 8 plots the axial distance covered by the vortex as a function
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Figure 8. The position downstream of a vortex, as a function of time, for T = 2.5 (α = 13.73),
Re = 300 and A =0.75, across the stenosis degree range. The solid line indicates the position
travelled by a particle should it convect with the sectionally averaged axial velocity, u(t).

of time, for each of the stenosis degrees tested; z is the distance downstream of the
stenosis, while zi is the z-position of the vortex at t = ti . In each case, the measurements
were begun at the same phase. For b = 0.20, the vortex ring follows the sectionally
averaged velocity in the tube, u(t), for the duration of its relatively short existence. A
stenosis degree of b = 0.20 corresponds to a stenosis which extends only 0.053D into
the tube, so only a relatively minor effect on the mainstream flow is to be expected.
For stenosis degrees of b = 0.40 and greater, the vortex rings travel faster than the
sectionally averaged velocity. The vortex ring velocity, excluding the effect of the
sinusoidal variation of the mean velocity in the tube, seems to be constant. While the
mean velocity in the tube obviously has an effect on the vortex position – evident in
the undulations of the curves – the difference between the downstream velocity of the
vortex ring and the mean velocity in the tube must be a result of its circulation, which
would be a function of the increased velocity through the contraction and, therefore,
of the stenosis degree.

The vortex ring axial velocity can be calculated immediately downstream of the
stenosis, independent of the oscillating mean velocity in the tube, by using the two
axial positions of the ring at t − ti = 0 and t − ti = 2.5. For the case of b = 0.40, the
position of the vortex at t − ti = 2.5 is extrapolated from the axial position at which
it dissipates and is no longer observable. Doing so, it is found that at b =0.75, the
vortex travels at a speed of approximately 3U ; this compares with a speed of ∼2U

at b =0.60 and ∼1.7U at b = 0.50. Given that the downstream velocity of the vortex
ring seems to be a function of the circulation imparted through the stenosis, the
vortex ring velocity is normalized by 1/(1−b); this quantity is the factor by which the
sectionally averaged velocity is increased inside the contraction. This rescaled value of
vortex ring axial velocity Vv is plotted in figure 9 for stenosis degrees of 0.20 to 0.90.
A small extrapolation was required for b = 0.40, while a much larger extrapolation
was required for b =0.20. The vortex ring velocity trend at b = 0.20 seems to be
markedly different than that of the other stenosis degrees. Examining again figure 8,
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Figure 9. Values of rescaled vortex ring axial velocity, Vv , against stenosis degree, for
Re = 300, T = 2.5 and A =0.75.

for b = 0.20, the vortex ring appears to travel slower than the sectionally averaged
fluid velocity and only exists for a short time. Again, the extremely small size of the
blockage may account for the weaker, slower vortex rings seen for b = 0.20. As b

approaches zero, the blockage moves deeper into the boundary layer, and the velocity
over the stenosis decreases, which would have an effect on the formation of the vortex
ring.

For b greater than 0.20, Vv decreases as b increases. This variation in Vv is the
same at pulse periods T =1.0 and 5.0. A possible explanation for this decrease is
the fact that a newly generated vortex ring in the geometry b =0.75 travels much
further downstream during the pulse period than in lower stenosis degree geometries.
In convecting downstream at a higher velocity, the vortex may be subject to a greater
viscous drag from the tube wall than a vortex generated in a geometry of lower
stenosis degree. Another explanation lies in the amount of circulation imparted to the
vortex, as compared to the acceleration through the contraction. The axial velocity,
Vv , of the vortex is due chiefly to the circulation of the vortex, which it gathers during
its formation. Examining again the vorticity contours of figure 7, it is seen that for
b = 0.75, a large trail of vorticity is left in the wake of the vortex. This trail reduces
in size at b = 0.50 and 0.60; the size of the trail in proportion to the strength of the
vortex also appears to be smaller, particularly in the fourth panel, which corresponds
to the phase interval t = 1.0T . The lower value of Vv for b = 0.75 perhaps indicates a
higher proportion of the acceleration through the contraction ending up in the wake
of the vortex ring rather than as circulation within the vortex ring.

By investigating the flow generated by the motion of a piston into an unbounded
domain, Gharib, Rambod & Shariff (1998) showed that a vortex ring can take up only
a certain quantity of circulation during its formation before it pinches off, detaching
itself from the separating shear layer feeding it. Any excess circulation generated by
the piston is left in a trail of vorticity behind the vortex. This behaviour bears some
resemblance to the behaviour of the stenotic flows under investigation here.

The chief difference is in the shape of the vortex ring; it is elongated with the axial
direction of the flow, necessarily due to the presence of the tube walls. Considering
the vortex rings used in the study of Gharib et al. (1998) – which act in an unbounded
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domain – the vortex has a greater lateral expansion than in the present work. In
the tubular geometry, the vortex is severely constricted and not able to develop
and propagate in the same manner. Qualitatively, the same physical phenomenon
is present, whereby a vortex ring, attaining a certain circulation threshold, detaches
from the separating shear layer, travels downstream and leaves a trail of vorticity
in its wake. This explanation is further supported by the drop in normalized vortex
ring axial velocity, Vv , with increasing stenosis degree, a phenomenon which can be
explained by the greater proportional quantity of circulation deposited in the vortex
trail.

3.1.2. Wall shear stresses

The wall shear stress, τwall = − ρν∂u/∂r , has been established as the primary fluid
mechanical characteristic affecting biological arterial responses (Ku 1997; Wootton &
Ku 1999). Figure 10 plots profiles of wall shear stress along the tube wall, for b =0.75,
Re = 300, A= 0.75, for three different pulse periods T = 1.0, 2.5 and 4.0 (α =21.71,
13.73 and 10.85). Wall shear stress is normalized as

τ = τwall

/(
1

2
ρU

2
)

= −
(

2D

ReU

)
∂u

∂r
. (3.1)

Twenty profiles over one pulse period are shown, the intention being to delineate an
envelope within which the wall shear stress oscillates. The data sets shown begin at
the axial location z = rb or where the stenosis ends. The first case, for T =1, having
a Womersley number of 21.73, models a flow configuration similar to that of a large
artery close to the heart, while the second and third cases are still characteristic of
large arteries but further away from the heart. At smaller pulsation periods, greater
maximum shear stresses and amplitudes of oscillation are observed than for higher
pulsation periods. As the three cases involve pulsations of the same amplitude, the
rate of change of the sectionally averaged fluid velocity is necessarily greater for
shorter pulse periods, which in turn leads to increased velocity and, accordingly,
increased wall stress. In the three cases, the wall shear stress reaches a maximum
just downstream of the stenosis, with the maximum shifting downstream as the pulse
period is increased.

The wall shear stress corresponding to the steady inlet flow and the average wall
shear stress of the pulsatile flow for Re = 300 are also plotted in figure 10. For T = 2.5
and 4.0, the average wall shear stress becomes positive at approximately the same
point at which the wall shear stress switches sign in the steady inlet flow or where the
recirculation zone formed in the steady flow ends. However, in the case of T = 1.0,
the average wall shear stress exhibits a distribution different from that of the steady
flow: immediately downstream of the stenosis, the average wall shear stress is positive.
The explanation for this behaviour lies in a particular vorticity field topology which
emerges for shorter pulse periods.

Figure 11 plots vorticity contours of the flow for the same parameters as for figure 7,
only with pulse period T =1.0. In comparison with the flows of figure 7, the most
obvious difference is the shorter axial distance between each successive vortex ring.
However, observing the wake of the vortex ring just downstream of the blockage,
in each case one finds a small thread of negative vorticity which lifts away and
approaches the centreline of the tube, with a region of positive vorticity remaining
on the wall. This is in contrast to the flow for T = 2.5, where the negative vorticity
surrounding the main vortex ring remains attached to the wall. In the velocity plots
(not shown) of these flows at T = 1.0, this feature of the flow manifests as a local
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Figure 10. Variation of wall shear stress, τ , over one pulse period, for (a) T = 1.0, (b) T = 2.5
and (c) T = 4.0, with Re = 300, b =0.75 and A = 0.75. The graphs, in effect, show envelopes
of shear stresses at given axial locations. The heavy dashed line indicates the wall shear stress
averaged over one pulse period, while the solid heavy line indicates the wall shear stress
distribution for steady flow at the same Reynolds number; vertical lines indicate where the
wall shear stress changes sign. The Womersley number values are α = 21.71, 13.73 and 10.85
respectively.
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Figure 11. Contours of azimuthal vorticity of the flow through four stages of the pulse, at
T = 1.0 (α =21.7), Re = 300 and A =0.75, for three stenosis degrees, b =0.50, 0.60 and 0.75.
Dashed white lines represent the contour ωθ = 0. Contours are the same as in figure 7; that is
eight levels for −20U/D � ωθ � 20U/D.

maximum of axial velocity near the wall, just upstream of the main vortex ring.
This difference in the topology of the vorticity fields for the flows of period T = 1.0
accounts for the positive average wall shear stress distribution downstream of the
blockage in figure 10(a).

Figure 12 tracks the wall shear stress as it varies from a stenosis degree of b = 0.40
to b =0.75, for Reynolds number Re =300 and pulsation period T = 2.5. In each of
the four cases presented, the wall shear stress achieves a maximum local value, in
absolute terms, a short distance downstream of the stenosis. This maximum local
wall shear stress grows sharply with stenosis degree, reaching a value for b = 0.75
of approximately five times that for b =0.40. From figure 12(a), for b = 0.40, the
effect of the stenosis on the variation of the wall shear stress is relatively small
and extends only a short distance downstream of the stenosis. This is particularly
the case if the wall shear stress is considered in terms of the range of values it
oscillates within. Approximately 8 diameters downstream of the stenosis, the wall
shear stress oscillation has almost returned to its standard envelope of oscillation
in an unblocked tube. It is only for b = 0.75 that the effect of the stenosis begins
to substantially penetrate downstream, with the oscillation disrupted at least up to
z = 20D. In addition, the maximum value of local shear stress achieved during one
period is shifted a short distance downstream.

3.1.3. Experimental validation

For an unblocked tube – or a section upstream of the stenosis – figure 13(a) plots
a comparison over one pulse period between the analytical Womersley solution for
the velocity, u(r, t), and values measured experimentally using PIV, for Re = 190,
A= 0.75 and T = 1.75. The values are phase-averaged over 10 pulsation periods.
The agreement is good, excepting values closer to the tube walls. PIV analysis was
hampered by difficulties associated with the curvature of the tube: reflections of the
laser, particularly on the bottom half of the tube, led to a loss of information near the
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Figure 12. Variation of wall shear stress, τ , for stenosis degrees of (a) b = 0.40, (b) b = 0.50,
(c) b = 0.60 and (d ) b =0.75 over one pulse period, for T = 2.5, Re = 300 and A =0.75. The
graphs show envelopes of shear stresses at given axial locations. The Womersley number is
α = 13.73.

bottom and top edges of the flow field under investigation. Also, the particle density
of the fluid near the walls was found to be not as great as in the mainstream flow.
The same measurements are plotted in figure 13(b) as figure 13(a) but averaged over
the cross-sectional area of the tube, thus giving the sectionally averaged velocity, u(t).
The agreement of figure 13(b) is good, indicating the period and amplitude of the
created pulsation are reasonably accurate.

Comparisons of a numerical simulation with corresponding PIV-measured velocity
fields are shown in figure 14, for b =0.50, Re = 315, A= 0.75 and T = 3.92. The
PIV measurements are averaged over 10 pulse periods. The phase is determined by
integrating u(r, t) at an axial location to obtain u(t), from which the position along
the velocity wave form can be determined.

For this flow configuration, Floquet stability analysis predicts the flow to be stable,
Re =315 being approximately half the critical Reynolds number expected (figure 15a).
The experimental measurements also show the flow to be stable; the formation of
the vortex ring can be discerned, as well as its progression downstream. The vortex
can be detected until the end of the field of vision at z/D =6.0. The vorticity is well
matched between the two data sets.

3.2. Flow stability

3.2.1. Floquet stability analysis

Floquet stability analysis on the numerical simulations allows us to determine
critical Reynolds numbers for the linear stability of the flows under investigation.
Figure 15 plots a summary of critical Reynolds numbers across a range of pulse
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Figure 13. (a) Comparison of velocity profiles over one pulse period between PIV data
(circles) and numerical data (lines) in an unblocked channel and (b) comparison of the
sectionally averaged velocity, u(t), over two pulse periods, for Re =190, A = 0.75 and T = 1.75
(α = 13.06) for PIV data (dots) and numerical solution (line). PIV data are phase-averaged
over 10 pulsation cycles.

periods and three stenosis degrees, b = 0.50, 0.60 and 0.75. The figure plots the
boundaries at which the various instability modes become critical. The modes depicted
exhibit critical Floquet multipliers of both 1 and −1. A positive Floquet multiplier
indicates a perturbation which has the same period as the base flow. In contrast, a
negative Floquet multiplier indicates a period-doubling instability, where the sign of
the azimuthal vorticity of the perturbation mode changes from one period to the next.
In effect, this means that the sign of the perturbation switches from one downstream
vortex ring to the next. Period-doubling modes are indicated in the figure by hollow
symbols. Solid symbols indicate modes of real and positive Floquet multiplier.

For the stenosis degrees tested, at the higher end of the pulse period range, a
period-doubling bifurcation of azimuthal wavenumber m =1 dominates. An example
of the mode is presented in figure 16, where the axial vorticity of the perturbation
mode for b = 0.50, Re = 500, just above the critical Reynolds number, is plotted. The
maximum perturbation is centred around the vortex ring. For the case shown for the
stenosis degree b = 0.50, the perturbation is first evident at z/D ≈ 8. At this point,
the top half of the vortex ring is subject to a tilting in one axial direction, while the
bottom half is tilted in the other. The orientation of the tilting alternates on each
vortex, which is evident by the change in sign of the perturbation vorticity on each
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Figure 14. Contours of azimuthal vorticity of a comparison of PIV (top halves) with numerical
simulations (bottom halves), over one period, for b = 0.50, Re = 315, A = 0.75 and T = 3.92
(α = 11.23). Experimental flow fields are phase-averaged over 10 pulsation periods.

successive base flow vortex ring. In each of the three cases, the m =1 mode has an
optimum period, in which the critical Reynolds number is at its lowest. This optimum
pulse period increases slightly for lower stenosis degrees.

For the other two stenosis degrees tested, in addition to the m =1 sub-harmonic
vortex-tilting perturbation mode, a number of other modes become dominant for
other pulse periods. For b = 0.50 and 0.60, a sub-harmonic mode of wavenumber
m = 2 is dominant for the pulse period ranges 1.4 � T � 2.2 and 1.1 � T � 1.6,
respectively. At still lower pulse periods, for b =0.50, a sub-harmonic mode of
wavenumber m = 3 dominates, while for b = 0.60, a harmonic mode of wavenumber
m = 6 takes over.

Figure 17 plots an example of one of these lower range pulse period modes;
contours of the axial velocity of the base flow, along with contours of the axial
vorticity of the leading perturbation mode, m =6, for b = 0.60, T = 1.0 and Reynolds
number Re = 480 – just above the critical Reynolds number, Rec = 479 – are depicted.
The perturbation grows immediately downstream of the stenosis; the vorticity appears
to grow on the vortex under formation in the throat of the contraction and interact
with the next vortex downstream, where the perturbation vorticity is at its greatest,
z/D =1.85 (and where the cross-sectional slice of figure 17c is taken). The perturbation
mode grows immediately downstream of the stenosis.

A second mode observed for pulse period T = 1.0 is that of wavenumber m =3
for b = 0.50; figure 18 shows plots of the base flow and perturbation mode for
Re =575. Although not discernible from the figure, the perturbation vorticity reaches
a maximum at z/D ≈ 7. The perturbation vortex structure becomes elongated as it
travels downstream, dissipating as the base flow vortex ring dies away. There is no
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Figure 15. Critical Reynolds numbers of the leading azimuthal modes, of wavenumber m, for
constant pulse amplitude A = 0.75 and three stenosis degrees (a) b = 0.50, (b) b =0.60 and (c)
b = 0.75, across the pulse period range. Hollow symbols indicate sub-harmonic period-doubling
bifurcations.

obvious reason why this mode should be period-doubling, while the modes for T ≈ 1
for b =0.60 and 0.75 are synchronous with the base flow. In figure 18 there does
appear to be a stronger interaction between the perturbation vorticity on successive
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Figure 16. The base flow and the leading perturbation mode (period doubling), m= 1, for
b = 0.50, Re = 500 and T =2.5 (α =17.7) at phase t = 0.0T ; (a) axial velocity contours of the
unperturbed base flow; (b) equal-magnitude positive (light) and negative (dark) isosurfaces of
axial vorticity of the perturbation mode.
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Figure 17. The base flow and the leading perturbation mode, m= 6, for b =0.60, Re = 480
and T = 1.0 (α = 27.5) at phase t = 0.0T ; (a) axial velocity contours of the unperturbed base
flow (white, positive; black, negative); (b) equal magnitude positive (light) and negative (dark)
isosurfaces of axial vorticity of the perturbation mode; and (c) contours of axial vorticity of a
cross-section of the perturbation at z/D =1.85 or the dashed line in (b).
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Figure 18. The base flow and plots of the period-doubling leading perturbation mode, m= 3,
for b = 0.50, Re =575 and T = 1.0 (α = 30.05, at phase t = 0.0T ; (a) axial velocity contours
of the unperturbed base flow; (b) positive and negative isosurfaces of axial vorticity of the
perturbation mode; and (c) positive and negative contours of axial vorticity of a cross-section
of the perturbation at z/D = 6.9 or the dashed line in (b).

base flow vortex ringthan there is in the other two modes. Also, the mode appears to
grow first around the flow in the centre of the tube and not close to the tube walls,
as is the case for the leading mode for b = 0.60.
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3.2.2. Comparison to previous numerical work

The m =1 period-doubling mode is similar to that seen in the nearest comparable
work in the literature, Sherwin & Blackburn (2005). However, for their stenotic
geometry – consisting of a stenosis of b =0.75 but with a longer length – they found a
critical Reynolds number for pulse period T = 2.5 of Rec = 389, with the perturbation
vorticity reaching a maximum at z/D ≈ 20. This is in contrast to the equivalent case for
the present geometry (that of b =0.75), where a critical Reynolds number of Rec =260
is found, with the downstream location of the maximum perturbation vorticity at
z/D ≈ 15. For shorter pulse periods, Blackburn & Sherwin (2007) also reported the
presence of ‘wavy modes’ of wavenumber m =3 and m =4, which developed on the
vortex ring, immediately downstream of the stenosis. Similar behaviour is observed
for the current geometry of stenosis degree b =0.75. In comparison to the work of
Blackburn & Sherwin (2007), the optimum pulse periods for the m =1 and the m = 3
and 4 wavy modes are much lower. In particular, for the m =4 mode the optimum
pulse period is T ≈ 0.4, compared to T = 0.875 for the similar flow in Blackburn &
Sherwin (2007). Also, the critical Reynolds number for the optimum pulse period is
relatively much lower, as compared to the same value for the m =1 period-doubling
instability. The main difference between the two geometries is the much shorter
contraction of the present geometry and the effect this has on the velocity profiles
emerging from the contraction. This has a direct effect on the nature of the separating
shear layer which forms downstream of the stenosis.

Most linear stability modes for pulsatile flow seen so far in the literature, and in
the present work, begin their growth some distance downstream of the stenosis; the
mode of figure 17 grows from the very beginning of the separating shear layer. As
can be seen in figure 17(b), at z/D ≈ 0.85, the perturbation is at its strongest on the
walls of the tube, before aligning again with the tube centreline. It is possible that
this behaviour is related to the phenomenon already observed in figure 11, where the
vorticity topology in the near-wall vicinity for flows of pulse period, T = 1.0 differs
from that of flows of longer pulse period. In figure 17(a), this behaviour can be seen
as a small local maximum of axial velocity at z/D ≈ 1, which may account for the
altered stability behaviour seen for small pulse periods.

The question of how the linear stability analysis relates to the stability of the
experimental results is discussed in the next section.

3.2.3. Stability of the experimental flow

While examining the experimental flows, it is useful to keep in mind the limits of
instability for the steady flow through the same geometry, as presented in Griffith
et al. (2008). For steady flow (A= 0), the limits for convective stability were found to
be Rec ≈ 900 for b = 0.50, Rec ≈ 400 for b =0.75 and Rec ≈ 150 for b = 0.90, for the
experimental apparatus described in § 2.2. The Reynolds numbers for both steady and
pulsatile flows are calculated in the same manner. However, the pulsatile flows also
have an instantaneous Reynolds number, calculated using the time-dependent cross-
sectional average velocity, u(t), rather than the temporal, cross-sectional average, U .
Therefore, the periodic Reynolds number is given by the formulation

Rep(t) =
Du(t)

ν
. (3.2)

Figure 19 shows coloured dye visualizations for two flows of stenosis degree
b =0.50. At left, the flow for Re = 328, A= 0.75 and T =3.92, a configuration similar
to that of figure 14, is presented. As before, the rolling up of the vortex ring can



Pulsatile flow through stenotic geometries 313

(a) (b)

ti

+ T
8

+ 2T
8

+ 3T
8

+ 4T
8

+ 5T
8

+ 6T
8

+ 7T
8

+T

0 1 2

z/D

3 4 5 6 0 1 2

z/D

3 4 5

Figure 19. Coloured dye visualizations of the flow over one pulse period, for b =0.50 and
(a) Re = 328, A = 0.75 and T = 3.92 (α = 11.46) and (b) Re = 686, A = 0.5 and T = 4.31
(α = 15.81). (The phases between the two cases are not matched.)

be seen immediately downstream of the stenosis, followed by the stable progression
downstream. From the earlier Floquet stability analysis, the flow is expected to be
absolutely stable; indeed, experimentally, it is stable, with the same vortex structure
of figure 19(a) repeating each pulsation period.

At right, in figure 19(b), are dye visualizations of the flow for a Reynolds number
approximately twice that of the flow of figure 19(a), with a slightly greater pulse
period; the pulse amplitude of A= 0.50 is also slightly lower. Upon considering the
maximum values of the periodic Reynolds number for the two flow configurations, for
the lower Reynolds number case R̂ep = 574, while for the higher Reynolds number

case R̂ep = 1029 – the critical Reynolds number for convective instability for the
steady flow of stenosis degree b =0.50 is Rec ≈ 900. Hence, it is not surprising that
strong unsteadiness is evident for the higher Reynolds number case.

In the first image shown, a large region of mixed dye can be seen around z/D = 4.
In the subsequent images, this region convects rapidly downstream, indicating that
the flow is in the systolic or accelerating portion of the pulse wave form. During
this same period, the shear layer emanating from the stenosis can be seen developing
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Figure 20. Coloured dye visualizations of the flow over one pulse period, for b = 0.75,
Re = 206, A = 0.75 and T = 2.43 (α = 11.54).

but not in a regular fashion. In the fourth of the series of images, at ti + (3T/8),
a series of two distinct rolled-up vortices can be seen around z/D = 2. During the
second half of the series of images, the diastole or deceleration period, the rolled-up
shear layer vortices do not convect downstream but follow the pulse wave form,
breaking down and causing a strongly mixed flow. The turbulent portion of flow then
convects downstream with the mainstream pulse velocity. The instability appears to be
strongly based on the convective shear layer roll-up. Not only does the instantaneous
periodic Reynolds number exceed the threshold found for steady flow (≈900), but the
series of discrete shear layer vortices also is consistent with a Kelvin–Helmholtz-type
instability.

Figure 20 presents dye visualizations over one pulse period of the flow of stenosis
degree b = 0.75, Reynolds number Re =206, pulse amplitude A= 0.75 and period
T = 2.43. Floquet stability analysis of the numerical simulations predicts the flow to
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Figure 21. Coloured-dye visualizations highlighting the period-doubling instability, for
b = 0.75, Re = 132, A = 1.30 and T = 0.85 (α = 15.8). At left are shown two images at t = ti
and t = ti + T/8 and at right the flow one period later.

be absolutely stable (see figure 15c ), while our maximum periodic Reynolds number
is given by R̂ep = 361, which is on the threshold for convective instability in the steady
flow in the present experimental apparatus (≈400). Some shear layer instability is
therefore to be expected.

In the first image in figure 20, the flow at the end of the vortex formation phase
is shown, with a large body of clear fluid from upstream rolling up into the main
vortex ring, which subsequently convects downstream. For this configuration the flow
is unstable but not as strongly as in the previous example; the shear layers emanating
from the stenosis are clearly discernible over a large portion of the pulsation, with
the greater part of the unsteadiness located further downstream. This will be further
discussed later in the paper.

It is in experimental flows of stenosis degree b = 0.75 and pulsation amplitudes
A> 1 that the clearest evidence of the period-doubling vortex-tilting instability reveals
itself. Figure 21 presents several images of the flow for Re =132, A= 1.30 and
T =0.85 (R̂ep = 304); to the left are images at t = ti and ti + T/8, showing the vortex
ring which forms immediately downstream of the stenosis tilting heavily from top to
bottom, and to the right are shown the corresponding images exactly one period later.
The vortex is tilting equally heavily in the opposite direction. Such configurations,
with b = 0.75 and A> 1, were the only ones in which period doubling could be clearly
detected.

In comparison with previous experimental work on single-harmonic pulsatile flows
in stenotic geometries, the results presented here agree broadly with those in the
literature (Ohja et al. 1989; Ahmed & Giddens 1983, 1984; Ahmed 1998). The flow
configurations of Ohja et al. (1989) and Ahmed (1998) both consist of Womersley
number α =7.5 and hence of longer pulse periods than most of the work presented
in this paper. Nonetheless, at high enough Reynolds number, they both observed a
stable jet region up to z/D ≈ 2.5, with a transition and then breakdown of the flow
at z/D ≈ 6.

3.2.4. Comparison to numerical stability analysis

For stenosis degree b =0.50 and A= 0.75, inspection of the flow for a range of
Reynolds numbers revealed a boundary for 2 � T � 3 of Rec ≈ 350 for stable vortex
formation and convection downstream – as in figure 19(a). This critical Reynolds
number is significantly smaller than the Floquet-predicted value for T = 2.5, of
Rec = 491 (see § 3.2.1); the mode predicted was of the period-doubling vortex-tilting
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type, although no evidence of this mode is detected for the experimental b = 0.50
flows. One possible reason for the difference between the critical Reynolds numbers
is the convective nature of the instability in the experiments. A convective shear layer
instability is not a mechanism detectable by our absolute linear Floquet stability
analysis. Although the period-doubling phenomena were sought in the b = 0.50 flows,
none was detected. In relation to the numerical stability analysis, the flows for stenosis
degree b = 0.75 proved to be more interesting.

For the flow of figure 20 (b = 0.75, Re = 206, A= 0.75, T =2.43), the flow breaks
down approximately 4 to 5 diameters downstream of the stenosis. However, the
shear layer roll-up of a Kelvin–Helmholtz-type instability is not as evident as in
the previous example with b = 0.50. Indeed, any wave in the separating shear layer
seems relatively gentle in comparison with the breakdown which occurs further
downstream. Shear layer roll-up in the wake of the main vortex ring does not appear
to be the main flow breakdown mechanism. In the downstream section of the first
image in the series exists a substantial region of unsteadiness. It may be that the
stability of the vortex ring formed during the following pulse period is affected by
this and that the unsteadiness is self-sustaining from one period to the next rather
than fed from shear layer vortices formed slightly upstream.

The clearest evidence of period doubling was seen in flows of pulse amplitude A> 1
and b =0.75 (e.g. figure 21). Special note needs to be made here of the conditions
under which this particular behaviour is observed. Firstly, Floquet stability analysis of
a numerical simulation of this flow predicts it would be stable. Secondly, the position
and growth of the instability is not consistent with the period-doubling vortex-tilting
mode predicted earlier in this paper or with the mode predicted in Sherwin &
Blackburn (2005) for a similar geometry of b = 0.75. Numerically, the mode growth
occurs far downstream. Direct numerical simulations of the three-dimensional flow in
Sherwin & Blackburn (2005) showed the instability slowly progresses upstream, with
a flow breakdown settling 4–5 diameters downstream of the stenosis. However, this
‘settling in’ of the unsteadiness occurred over very long time scales. In the case of
figure 21, the instability is apparent directly downstream of the stenosis and appears
within two periods of the pulsation beginning – there is no slow upstream progression.
Therefore, the initial vortex tilting may be dependent on the pulsation initialization
or simply grow quickly.

In every observed instance of the phenomenon, the instability acted in the vertical
plane. The instability aligns with a preferred direction; it is probable that in the
experiment the choice of plane is influenced by the direction of the gravitational
force. As mentioned in § 2.2, temperature differences between the fluid in the tube and
the fluid in the visualization box can have an effect on flows. The heating or cooling of
fluid through the tube walls can lead to convection in the tube, causing asymmetries
in the flow. This source of error is minimized as far as possible; yet it still remains, if
only at a low level. Even at this scale, the bias direction may be enough to influence
the direction of the vortex tilting, once the flow has become critical and the instability
appears. A similar phenomenon – where the orientation of an asymmetric instability
on an axisymmetric base flow fixes at a certain angle on a given experimental rig –
has been observed previously in work on the wake flows of spheres (Leweke et al.
1999).

A possible clue to the presence of the phenomenon can be found in Blackburn
& Sherwin (2007), where the interaction between convective shear layer instability
and the absolute period-doubling vortex-tilting instability was investigated. Floquet
stability analysis was performed on a base pulsatile flow already perturbed by a
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Figure 22. Coloured dye visualizations of the flow over six pulse periods, with each image at
the same phase, for b =0.75, Re = 206, A = 0.75 and T = 2.43 (α =11.54).

low-amplitude, high-frequency forcing. At large pulse periods, they found Floquet
multipliers much greater than those found performing the stability analysis on
unperturbed flows. Furthermore, the peak strengths of the perturbation modes moved
far upstream. Direct numerical simulation of the perturbed flow, at Re = 600, A= 0.75
and T = 10, revealed a response strong enough that the period-doubling nature of the
instability was no longer detectable. They did not calculate critical stability boundaries
for these perturbed flows.

Therefore, we return to the flow of figure 20 (b = 0.75, Re =206, A= 0.75, T = 2.43),
in order to verify if any evidence of period doubling can be detected, even though our
Floquet analysis of the numerical simulation predicts the flow to be absolutely stable.
Figure 22 replots the flow, this time at the same phase over six consecutive periods.
The flow is unsteady, but there are indications of tilting in the flow breakdown which
occurs at 4 <z/D < 6. Perhaps the clearest indication is in the first and third images,
where the flow breakdown appears to have a similar upward-tilting bias (z/D ≈ 5).
The indications of period doubling in the flow are tenuous; however, it is not expected
that there should necessarily be a strong indication in the asymptotic flow.

4. Conclusions
This paper has presented investigations of various aspects of pulsatile flow through

axisymmetric stenotic geometries. In particular, it has focused on the wake behaviour
and stability of the flow for different stenosis degrees. The dye visualizations constitute
a technique which has so far not been used extensively in experimental work on the
subject.
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The velocity of the vortex ring which forms downstream of the stenosis each period
of a pulsatile flow has been analysed. Driven by the circulation generated through the
stenosis, the vortex rings travel downstream, faster at higher stenosis degrees than at
lower ones. For a pulse period T = 2.5, it was found that the normalized vortex ring
velocity, Vv , increases for lower stenosis degrees, for b � 0.4. This is possibly due to a
higher proportion of the generated circulation collecting in the trail of the vortex or
due to the higher axial velocities of the vortex ring for higher stenosis degrees, which
may induce a stronger viscous drag via the tube walls.

The variation of the wall shear stress for several flow configurations was described,
with a higher maximum wall shear stress observed for cases at lower pulse periods
and higher stenosis degrees. It was found that the time-averaged wall shear stress
distribution for pulsatile flow matches closely with that of the corresponding steady
flow. It is only for lower pulse periods of T ≈ 1 that the two distributions begin to
significantly diverge. For the cases considered, for pulse periods greater than one,
flows exhibit low average wall shear stresses (where the average wall shear stress
changes sign) in the range 4 � z/D � 6.

Across the three stenosis degrees tested, Floquet stability analysis with a constant
pulse amplitude A= 0.75 shows a period-doubling vortex-tilting perturbation mode of
wavenumber m = 1 dominating for pulse periods T > 1.2 for b = 0.75 and T > 2.2 for
b =0.50, while for lower pulse periods, higher wavenumber modes dominate. For the
higher Womersley number (lower pulse period) range, the vortex-tilting mechanism
is overtaken by higher wavenumber modes, including m =3 and m =4 bifurcations
for b = 0.75. In the cases of b = 0.50 and 0.60, the stability behaviour was similar to
that observed in Griffith et al. (2008) for steady flow, with the m = 2 mode overtaking
the m =1 sub-harmonic bifurcation. For still higher Womersley numbers, an m = 6
real bifurcation was observed for b = 0.60 and an m =3 sub-harmonic bifurcation for
b =0.50.

The initial growth of the m = 1 period-doubling mechanism begins far downstream
of the stenosis. Its axial location of maximum strength varies with the stenosis
degree but appears to be dependent on the different vortex ring velocities. The only
firm evidence of any period-doubling instability in the experimental flow occurred
for a stenosis degree of b = 0.75 but only for pulse amplitudes of A> 1. For these
flows, vortex rings tilt in opposite radial directions each pulse period. However, this
particular form of tilting only occurs on the vertical plane and is generated as soon as
the pulsation is begun rather than progressing slowly upstream from a downstream
location. Instabilities for flow configurations just below the critical boundary predicted
by the numerical analysis did not exhibit obvious evidence of period doubling, but
their nature is at least consistent with the action of a linear instability mode.

For the stenosis degree b = 0.50, convective instability seems to be the major cause
of instability. A number of unstable flows were observed where the formation of
discrete vortices in the separating shear layer could be discerned every pulse period;
this bears the hallmark of a Kelvin–Helmholtz-type instability. Evidence could not
be found of the linear instability modes predicted by the Floquet stability analysis
for b = 0.50. Using the concept of an instantaneous Reynolds number Rep(t), it was
found that the stability of the flow depended roughly on the maximum value of
this periodic Reynolds number remaining below the critical Reynolds number for
convective instability in the steady flow.
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