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An optimal transient growth analysis is compared with experimental observation for
the steady flow through an abrupt, axisymmetric stenosis of varying stenosis degree.
Across the stenosis range, a localized sinuous convective shear-layer instability type
is predicted to dominate. A comparison of the shape and development of the optimal
modes is made with experimental dye visualizations. The presence of the same sinuous-
type disturbance immediately upstream of the highly chaotic region observed in the
experimental flow is consistent with the optimal growth predictions. This, together
with the fact that the flow is unstable globally only at much higher Reynolds numbers,
suggests bypass transition.

1. Introduction
The flow through a straight pipe with a contraction serves as an idealized model

of the arterial flow through an atherosclerotic stenosis; although somewhat removed
from the physiological reality of an arterial stenosis, the understanding of the flow
in the simplified model is of importance to studying further the flows in more
complicated models.

Experimental investigation (Khalifa & Giddens 1981; Ahmed & Giddens 1984;
Ohja et al. 1989; Griffith et al. 2008, 2009) has determined regions of transitional
flow in the post-stenotic region, for Reynolds numbers and blockage sizes common
to physiological arterial blockages. Via direct numerical simulation, similar behaviour
has been observed computationally (Mallinger & Drikakis 2002; Varghese, Frankel &
Fischer 2007). Linear Floquet stability and optimal transient growth analysis have
been used to identify instability modes on the axisymmetric base flow (Sherwin &
Blackburn 2005; Blackburn, Sherwin & Barkley 2008); in general, it has been
established that shear-layer convective instabilities play an important role in the
transition of such flows, appearing at Reynolds numbers much lower than those
predicted by a linear asymptotic stability analysis.

The intent of this study is to extend previous work (Griffith et al. 2008), where
the steady flow through a pipe with an abrupt, axisymmetric stenosis of varying
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Figure 1. Schematic of the geometry under investigation.

blockage size was investigated experimentally and numerically. In Griffith et al.
(2008), it was shown experimentally that the steady flow in a straight pipe with an
axisymmetric stenosis became unstable at Reynolds numbers of roughly one-half of
those predicted by the global stability analysis. The observed form of the instability
was an axisymmetric roll-up of the shear-layer immediately downstream of the
blockage; small Kelvin–Helmholtz-type vortices were observed to advect downstream
and grow before reaching an unsteady region of flow farther downstream. The analysis
focused on the near-wake region, presenting results and comparisons between the roll-
up of the shear layer and the effects of forced-frequency perturbations on axisymmetric
simulations. For the steady flow through a similar geometry, Blackburn et al. (2008)
identified optimal perturbations to the steady axisymmetric base flow for the maximal
energy growth. For steady flow, the perturbation to the field was found to be distinctly
sinuous.

In the present investigation, an optimal transient energy growth analysis is
performed on the stenosis configuration, over a range of blockage degrees, and
a comparison is made with the results of experimental observations for the same
geometry. Such a comparison was not achieved in Griffith et al. (2008), where the
global linear stability analysis used was not able to capture the convective instabilities
that appear to be responsible for the downstream turbulent transition.

Section 2 presents a precis of the problem investigated, followed by a description
of the techniques used in the study in § 3. Results and discussion are given in §§ 4 and
5, respectively.

2. Problem definition
The geometry under investigation is identical to the one used in Griffith et al. (2008)

and is reproduced in figure 1. It consists of a long straight tube with an axisymmetric
blockage described by a single parameter, the stenosis degree, representing the blocked
to unblocked area ratio, defined as b = 1 − (d/D)2, where D is the diameter of the
tube and d is the diameter at the centre of the blockage. The fluid is assumed to
be Newtonian. The Reynolds number is defined as Re = UD/ν, where U is the
sectionally averaged fluid velocity, D is the tube diameter, and ν is the kinematic
viscosity. The coordinate system is such that the origin ((r, z) = (0, 0)) is located on
the centreline of the tube at the axial mid-point of the stenosis. In this paper, we
examine Reynolds numbers between 100 and 1000, with stenosis degrees of b = 0.50,
0.60, 0.75 and 0.90. Lengths and times are non-dimensionalized by D and D/U ,
respectively.

The steady base flow downstream of any size of blockage consists of a jet
emanating from the constriction. The adverse pressure gradient over the stenosis
causes separation, with a long, thin recirculation zone forming immediately after the
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Figure 2. Dye visualization of the unsteady flow for b = 0.90 and Re = 190. The visible
region of the flow begins immediately downstream the stenosis at z = rb .

stenosis. A linear stability analysis shows that the flow becomes linearly unstable at
Re = 770 for b = 0.75 and at Re = 395 for b = 0.90. For both these cases, the
leading instability mode is of wavenumber k = 1, consisting of a deflection of the jet
from the centreline of the tube. For smaller stenosis degrees, b = 0.50 and b = 0.60,
the leading instability mode changes, with a k = 2 mode dominating. The mode has
a plane of symmetry, consisting of a pinching of the jet (Griffith et al. 2008).

Experimentally, the flow is far less stable. Figure 2 shows a dye visualization
for b = 0.90 and Re = 190. The instability manifests as a convective Kelvin–
Helmholtz-type instability, beginning in the shear layer downstream of the stenosis.
The Kelvin–Helmholtz-type vortices are small, yet fairly well-defined; after travelling
downstream and growing, the vortices terminate in a large area of disturbance. This
study examines in a closer detail the region immediately before this highly chaotic
region.

For the present experimental configuration, the flow becomes unstable for b = 0.50
at Rec ≈ 900, for b = 0.75 at Rec ≈ 400 and for b = 0.50 at Rec ≈ 150. We focus on
these Reynolds numbers in our optimal perturbation analysis.

3. Method
3.1. Numerical simulations

Two-dimensional axisymmetric flow simulations are obtained from a numerical
solution of the time-dependent Navier–Stokes equations using the spectral-element
method (see e.g. Thompson, Hourigan & Sheridan 1996 or Thompson et al. 2006).
On the stenosis surface and the cylinder walls, no-slip conditions are imposed. At
the inlet boundary, an equilibrium Poiseuille profile is prescribed. At the outflow
boundary far downstream, the standard zero normal velocity gradient condition is
imposed. The simulations are initialized with the fluid at rest and run until the
flow has achieved a converged and steady state. Further information on the method,
meshing and resolution testing can be found in Griffith et al. (2008).

From the two-dimensional axisymmetric simulations and computed optimal
perturbation modes (as discussed below), a three-dimensional optimally perturbed
velocity field can be constructed. This can be integrated forward in time to determine
the linear and nonlinear flow behaviour as the perturbation, which is initially localized
near the throat, is convected downstream. The same spatial discretization as the two-
dimensional simulations is employed in the three-dimensional solver, along with a
Fourier decomposition in the azimuthal direction. In these simulations, Lagrangian
particle tracking is employed. This involves the continuous feeding of particles into
the flow at carefully chosen locations; the instantaneous particle positions can then
be used to create images that are effectively simulated dye visualizations. By tracking
the development of selected numerical perturbations on the flow field, the results can
be directly compared with images from the dye-visualization experimental technique
described in § 3.3.
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Figure 3. Schematic of the experimental rig; the inlet and outlet lengths have been truncated.

3.2. Optimal transient energy growth analysis

The method used on the numerically simulated flows for the optimal transient
growth analysis is presented in detail by Schmid & Henningson (2001) and Barkley,
Blackburn & Sherwin (2008). For a given time interval τ the method determines the
linear perturbation velocity field u′(r, θ, z) of the azimuthal wavenumber k, which
produces the greatest growth G in the L2 energy norm at t = τ on the steady
axisymmetric base flow u(r, z). Stated more simply, the aim is to find the shape
of the perturbation that leads to a maximal energy amplification, G, over some
specified time, τ . The global maximum of G for a given wavenumber is denoted
by Gmax , with its corresponding τ denoted by τmax . Asymptotically, the modes are
stable. However, the transient disturbance the modes cause in the flow can be of
sufficient magnitude to cause the flow to become nonlinear. This can lead to bypass
transition at Reynolds numbers considerably lower than those predicted by the
linear absolute stability analysis. This is particularly the case for flows of long, thin
shear layers – such as for the present geometry – where convective instabilities
are able to grow for a relatively long time as they advect along separating shear
layers.

3.3. Experimental method

A description of the experimental apparatus in more depth than the short summary
included here can be found in Griffith et al. (2008). A schematic of the rig
design is shown in figure 3. It consists of a transparent perspex tube of 20 mm
diameter, with inlet and outlet lengths of 2000 mm, or 100D. This ensures a fully
developed Poiseuille flow at the test section, free of any end effects. The three
removable test sections constructed correspond to stenosis degrees of b = 0.50, 0.75
and 0.90. The test section and outlet length are contained in a rectangular water-
filled viewing box. A pump supplies an elevated water reservoir, thereby keeping the
pressure in the system constant. The Reynolds number is varied via a control valve
located before the entry into the inlet tube.

The flow is analysed primarily using coloured dye visualization. Fluoroscein dye
is injected into the flow immediately downstream of the stenosis and a vertical
plane of the flow is illuminated by a laser light sheet. The technique is effective in
delineating the recirculation zone and shear layer of the separated flow. The dye
trapped in a steady recirculation zone contrasts with the dye-free fluid arriving from
upstream. The dye serves as a useful indicator for any unsteadiness present in the
flow.
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Figure 4. Log plots of transient energy growth, G, for given τ , at different blockage ratios
for azimuthal wavenumbers k = 0 to k = 4.

4. Results
4.1. Transient energy growth

Figure 4 shows log10 of the transient energy growth, G, for optimal disturbances as
functions of τ for the steady base flow for four different stenosis degrees: b = 0.50,
0.60, 0.75 and 0.90. The Reynolds number chosen for the analysis in each stenosis
degree case corresponds to the lowest Reynolds numbers at which the flow was
observed to be unstable experimentally (Griffith et al. 2008). For the b = 0.60 case,
which was not tested experimentally, the Reynolds number used has been interpolated
to Re = 700, from the other cases tested. In each case, energy growth for azimuthal
wavenumbers k = 0 to k = 4 is plotted. For all cases tested, the mode of k = 1
produces the greatest energy.

Figure 5 plots the azimuthal vorticity fields of the optimal initial perturbations for
the four cases tested. In each, the perturbation maximum is located in the vicinity of
the separation point of the blockage. Located here, the perturbation travels along the
separating shear layer as long as possible, hence providing the optimal growth. The
basic nature of the disturbance does not vary with the stenosis degree.

Note the choice of Reynolds numbers and the resulting energy growths. The
global maxima of energy vary significantly across the stenosis degree range; for
b = 0.50, it occurs for τmax = 6.21 for an energy maximum Gmax = 9.42 × 103; for
b = 0.75, the optimum occurs at τmax = 4.54 for an energy maximum of 2.18 × 105.
The Reynolds numbers were chosen according to where the flow is seen to be
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Figure 5. Plots of azimuthal vorticity of the optimal initial perturbation (all k = 1) for the
four different cases tested, at stenosis degrees b = 0.50, 0.60, 0.75 and 0.90, for the leading τ .
The separating streamline of the stable axisymmetric base flow is overlaid in each case.

unstable in the experimental flow (Griffith et al. 2008). By intentionally introducing
more noise or driven-frequency perturbations into the experimental flow, it was also
observed that the instability in the experiments was at least partially dependent on the
background noise. It is reasonable to expect that changing the blockage test section
in the experiment could change the amount of background noise in the experiment.
Furthermore, in Blackburn et al. (2008), it was shown that the global energy maxima
obtained through the transient energy growth analysis increases exponentially with
the Reynolds number; therefore, any discrepancy in the critical Reynolds number
obtained experimentally may be reflected in the varying global energy maxima seen
in figure 4. An interesting point is that for each blockage ratio, at the experimentally
observed transition Reynolds number the maximal energy amplification factor is
approximately 104–105. This appears to be reasonably consistent with a background
experimental noise level of around 1 %; i.e. a growth of velocity perturbations by

a factor
√

104 = 100 will mean that the perturbation level grows to the same order
as the velocity field, at which point the flow should become nonlinear, resulting in
transition.
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Figure 6. (a) Series of images of the azimuthal vorticity of the optimal disturbance for
b = 0.75, Re = 400, k = 1, showing the development of the perturbation. Vorticity
contours have been progressively enlarged in each image to show the features of the flow.
(b) Three-dimensional view of the perturbation at maximal energy showing two opposite sign
isosurfaces of axial vorticity. Flow is from left to right.

The results of figure 4(c) compare well with the analysis carried out by Blackburn
et al. (2008). In that study, a global maximum of energy growth was found for
τ = 4.40 and k = 1 of Gmax = 8.94 × 104, about 40 % of the value found here. The
difference in energy growth can be accounted for if we consider the differences in the
two problem configurations. The analysis of Blackburn et al. (2008) used the same
Reynolds number and stenosis degree, but a stenosis geometry of a co-sinusoidal
shape with an axial length twice that of the present geometry. The shorter, more
abrupt blockage of the present study results in a greater acceleration of the fluid
through the constriction, which in turn produces thinner shear layers. The optimal
initial perturbations are all located in the thinnest part of the separating shear layer;
the greater maximum energy found reflects the greater propensity for instability in
thinner shear layers.

Figure 6(a) presents the development of the k = 1 optimal perturbation field
for b = 0.75 and Re = 400, using a series of images showing the azimuthal
vorticity of the disturbance from the initial state to the state of maximal energy.
The disturbance consists of a sinuous wave packet; the maximum rate of growth
occurs at the beginning of the series (figure 4c), when the perturbation passes through
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the thinnest part of the shear layer, immediately downstream of the stenosis. As the
shear layer expands and the recirculation zone tails away, the growth slows and the
axial wavelength of the disturbance increases. The sinuous nature of the perturbation
can be seen in figure 6(b), which shows another view of the disturbance at the point
of maximal energy, τ = τmax . After this point, the energy in the disturbance passes
into a less unstable region and decays.

4.2. Experimental comparison

In the experimental observations of Griffith et al. (2008), the observable disturbances
were the focus. The small well-defined waves evident in the shear layers immediately
downstream of the blockage provided quantitative measures of the unsteadiness.
This is in contrast to the region of strong unsteadiness further downstream, from
which clear quantitative observations using the dye-visualization technique were more
difficult to obtain. However, in light of the results presented in the previous section
– in particular, the large growth in the disturbance further downstream – it is in
this region of the flow that meaningful comparison between our numerics and the
experimental results may be possible.

The experimental dye visualizations, some of which are presented by Griffith et al.
(2008), have been re-analysed with reference to the numerical results of the previous
section. A comparison of the perturbation field at the axial location of the maximum
vorticity at τ = τmax with the corresponding experimental dye visualization is not
particularly useful, because by that stage the perturbation has grown so much that
the interaction with the base flow is nonlinear. At these axial locations (e.g. z/D ≈ 12
for b = 0.75 and Re = 400), the experimental flow is highly unsteady; the dye is
mixed and does not show any meaningful structure. For this reason, comparisons of
the nearer-wake region are the focus of this study. In Griffith et al. (2008), shear-layer
waves that developed immediately downstream of the stenosis were reported. In that
analysis, those waves were observed to be axisymmetric, that is, the waves observed
on the shear layer in the top half of the laser sheet matched those observed on the
shear layer in the bottom half. However, as the waves grew and advected towards
the unsteady region downstream, there was no obvious continuous transition between
the upstream axisymmetric near-wake region and the downstream highly unsteady
region.

From the results of the optimal perturbation analysis indicating maximal growth for
sinuous (i.e. k = 1) disturbances, a re-examination of the experimental visualizations
was conducted with a focus on detecting such disturbances. In the majority of
cases, across the three stenosis degrees tested experimentally, no sinuous disturbance
was detectable. For the b = 0.50 case, no cases were found exhibiting the sinuous
behaviour. However, for the b = 0.75 and b = 0.90 cases, several cases were found
exhibiting the sinuous behaviour. Comparison was made in the near-wake region with
the developing perturbation fields at τ < τmax , that is, at axial locations upstream of
where the maximal energy occurs in the numerics.

Figure 7 shows two such cases, where comparison is possible with the optimal
transient energy growth analysis of § 4.1. Figure 7(a) shows a dye visualization of
the flow for b = 0.75 and Re = 457. For this case, the transient growth analysis
finds a maximal energy growth for the k = 1 mode, for τmax = 5.15. Directly beneath
this image is a simulated dye-visualization image obtained from Lagrangian particle
tracking on the evolving flow, initially consisting of the optimal perturbation mode at
a low amplitude, plus the three-dimensional axisymmetric base flow. To produce this
image, the particles are released at a constant rate on the surface of the stenosis; in this
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Figure 7. (a) For stenosis degree b = 0.75, Reynolds number Re = 457; at the top is
plotted an experimental dye visualization of the flow; in the middle, Lagrangian particle traces
(shown in a single meridional plane) from a perturbed three-dimensional simulation of the
same flow. Below that, for reference, the azimuthal vorticity of the developing perturbation
is shown at τ = 1.9. Similarly, in (b), for b = 0.90 and Re = 215, the maximal energy is
reached at τmax = 1.38, but for comparison between the experimental dye visualization and
the perturbation azimuthal vorticity, the field is plotted at τ = 0.6. The black lines indicate
where the comparison in the axial wavelength of the disturbance may be made.

way, the particles aggregate along the separating shear layer. This is in contrast to the
experiment, where the dye is heavily mixed in the recirculation zone. However, both
techniques achieve the same end, in which the dye/particles highlight disturbances
growing along the shear layer. For reference, the third subfigure shows contours of
azimuthal vorticity of the perturbation field for optimal growth (k = 1, τmax = 5.15)
at τ = 1.90. Similar sinuous-type structures can be observed in the experimental and
numerical ‘dye’ visualizations. The axial wavelength of this disturbance is of a similar
magnitude to that of the growing perturbation field. A similar comparison is made in
figure 7(b), this time for b = 0.90 and Re = 215 (τmax = 1.38); the perturbation field is
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plotted at τ = 0.60. Again, the same axial wavelength is observed in the perturbation
field, as in the disturbance of the experimental and numerical ‘dye’ visualizations.

The comparisons shown in figure 7 are good, with both numerical and experimental
results exhibiting the same sinuous-type behaviour; however, as pointed out previously
the sinuous motion is clearly observable experimentally only in limited cases and even
then only intermittently. There are several possible explanations for this. The optimal
perturbations plotted in figures 5 and 6 possess a plane of symmetry. While the sinuous
perturbation of our numerics always acts in line with the page, in the experiment,
the disturbance may act in any direction. While there is evidence that buoyancy can
affect some form of instability (Griffith et al. 2009), we are unaware of the extent
to which the sinuous disturbance may act out of the plane of the vertical laser light
sheet. Also note that figure 4 shows that the ‘initial’ growth rates of modes with
different azimuthal dependence are similar. Thus, the near wake will be dominated
by the combination of modes with the highest initial amplitude. This is a function of
the spatial and temporal distribution of experimental noise or other perturbations to
the flow/rig. Thus, it is not surprising that the very near wake does not necessarily
show dominance of the k = 1 mode. However, further downstream, figure 4 shows
that the k = 1 mode should dominate provided the growth of other modes has not
already caused the flow to become nonlinear. Finally, figure 4 shows that there is a
much greater difference in the growth of the k = 1 mode compared with other modes
for larger τ , for the two higher blockage ratios. This indicates that it may be easier
to find experimental evidence of the k = 1 mode for b = 0.75 and b = 0.90 than for
b = 0.50, and indeed this is the case.

As well as possibly accounting for the seemingly axisymmetric disturbances observed
experimentally by Griffith et al. (2008), these factors indicate the operation of a bypass
transition. These factors include the large growths found by the optimal transient
growth analysis and the presence of the same (asymptotically stable) modes in the
regions of sustained unsteadiness in the experimental flow.

5. Conclusions
An optimal transient energy growth analysis of the steady base flow through an

axisymmetric stenosis has been presented, for a number of different stenosis degrees,
at approximate Reynolds numbers where unsteadiness is expected experimentally. The
modes achieving the greatest energy growth consist of optimal initial disturbances
located in the separation points on the stenoses, which then advect downstream,
growing into longer wavelength sinuous disturbances. Limited though strong
comparisons were made with experimental observations, indicating the action of
bypass transition.
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