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a b s t r a c t

An investigation of the flow resulting from the collision of two spheres at low Reynolds

numbers is presented. Each sphere starts from rest and traverses a distance of 5 sphere

diameters to the point of contact. Experimental and numerical results are compared for

a symmetric collision; that is, a collision between two spheres of the same diameter and

travelling with the same velocity. The flow consists of two axisymmetric recirculation

zones which become a pair of colliding vortex rings, expanding radially from the

collision point. Several examples of unbalanced collisions are also presented numeri-

cally, with one or both of the velocity and diameter of the spheres altered. These

collisions break the symmetry, altering the post-collision expansion of the vortex rings.

& 2011 Elsevier Ltd. All rights reserved.
Several studies have investigated the dynamics of particle–particle and particle–wall collisions, often presented in the
context of solid–liquid flows. In particle–particle collisions, Davis et al. (1986) investigated the elastic particle deformation
arising from fluid pressure and its effect on rebound. Similarly, Yang and Hunt (2006) characterized the post-collision
motion of two spheres by a coefficient of restitution and a friction coefficient. Joseph et al. (2001) explored the rebound
and restitution properties of particle–wall collisions for Reynolds numbers up to 3000. The resulting flow consisted of a
recirculating zone moving from behind the particle, expanding, and then sitting on the wall.

The behaviour of the post-collision flow of a particle–wall impact can cause a re-suspension of dust particles. Eames
and Dalziel (2000) experimentally explored the hydrodynamic mechanism for dust re-suspension, characterizing the
behaviour by different dust volume concentrations. Turning more to the fluid dynamical aspects of the problem, Leweke
et al. (2006, 2008) and Thompson et al. (2007) examined the behaviour of the post-collision flow. They found that
the vorticity dynamics bear much similarity to the collision of a vortex ring with a wall, an interaction which has
been investigated by a number of researchers, including Walker et al. (1987), Orlandi and Verzicco (1993) and Munro
et al. (2009).

In the present work, we focus on the post-collision fluid dynamics of sphere–sphere collisions. The focus is on a
simplified set-up consisting of an abrupt inelastic collision without rebound; this will form the basis for work on more
complex models incorporating further parameters, such as deceleration and sphere rebound. If the flow dynamics of a
sphere–wall collision bear similarity to the collision of a vortex ring with a wall, we may expect a similarity between the
flow dynamics of sphere–sphere collisions and those of the collision of two vortex rings.

The first part of the paper looks at symmetric collisions between two spheres, where the spheres are of the same size
and traveling with the same speed. The second part of the paper looks at unbalanced collisions, where one of, or both of,
the velocity and diameter of the two spheres are not matched.
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Fig. 1. Parameters and geometry of a sphere–sphere collision.

M.D. Griffith et al. / Journal of Fluids and Structures 27 (2011) 1349–13561350
1. Problem definition

We first consider symmetric collisions for which the system consists of two equal spheres of diameter D and
approaching each other with the same, but opposite, constant velocity U (see the sketch in Fig. 1). The two spheres are
initially at rest at a distance of 2L, one from the other. Both spheres are impulsively started and travel a distance L at
the velocity U, with the trajectory of the two centres on the same line. The spheres are then impulsively stopped at the
moment of contact.

The principal control parameters of the problem are the non-dimensional running distance L/D and the Reynolds
number Re ¼UD=n, where n is the kinematic viscosity of the fluid. Time, t, is non-dimensionalized using the advection
time D/U, with the impact of the spheres occurring at t¼ 0. The coordinates x and r are non-dimensionalized using D

(Fig. 1), with the origin at the contact point of the two spheres and the x axis corresponding to the sphere centre
trajectories. The second part of the study explores asymmetric collisions that require the definition of parameters for each
sphere. Thus, we define Ret as the Reynolds number based on the velocity and diameter of the upper sphere in our images,
while Reb refers to the lower. We also define velocity and diameter ratios, Ut/Ub and Dt/Db. With these definitions the
balanced symmetric collisions correspond to Ut=Ub ¼Dt=Db ¼ Ret=Reb ¼ 1. For the investigation of asymmetric collisions,
we have considered, first, cases where Ret is reduced by altering either the velocity or diameter ratios and, second, a case
where the velocity and diameter ratios are not equal to one, but are balanced such that Ret/Reb¼1. For all cases, note that
the running distance L/D for each sphere is calculated independently, based on the corresponding sphere diameter.

2. Method

Experimentally, the flow was examined in a 600 mm high glass tank, of 500�500 mm2 horizontal cross-section, filled
with water. Two brass spheres of diameter D¼19.02 mm were used. Each sphere was hung at the end of an inelastic
thread. The thread of the lower sphere passed through a hole drilled along the vertical diameter of the upper sphere and
was wrapped around a reel. The thread of the upper sphere was wrapped around an identical reel but in the opposite
direction. The two reels were mounted on the same horizontal axis situated above the tank parallel to the free surface. The
axis was driven in rotation by a high resolution computer-controlled stepper motor. With such a setup, the rotation of the
driven axis induced vertical translations of the two sphere centres along the same axis and at the same velocity, but in
opposite directions.

Experimental investigation was based on coloured dye visualization. The two spheres were initially coated with a
solution of fluorescent dye. They were set at their starting positions, and lowered together slowly into the water, before
running the experiment.

The dye pattern created by the flow entrainment was illuminated from the side with a vertical sheet of laser light
containing the sphere centres. A mirror was placed on the opposite side to reflect the laser sheet and illuminate the area in
the shadow of the spheres. The flow was recorded through the tank wall with a video camera operating at 25 frames
per second and placed perpendicular to the laser sheet. The CCD sensor was of 768�576 pixels, resulting, for the fields
visualized in the present study, in a space resolution of D/82¼0.23 mm/pixel.

Numerically, an in-house spectral-element solver, employing an arbitrary Lagrangian-Eulerian (ALE) method (Hirt et al.,
1974) to handle the moving boundaries, was used to numerically simulate the flow. The same solver has previously been
successful in modeling the touchdown of a sphere against a wall (Thompson et al., 2007), so only a brief summary of the
method is given here. Due to the symmetry of the problem, simulations could have been run with a free boundary at the
collision point; however, both sides of the collision have been simulated in order, first, to emphasize this symmetry with
respect to the plane x¼0 and, second, to enable the simulation of non-symmetric collisions. As each simulation progresses
and the spheres move closer to each other, the vertices of the computational mesh move at specified predetermined



Fig. 2. At left: a plot of the scaled mesh velocity, which corresponds with the zoomed in view of the mesh. At right: the mesh over the entire

computational domain is shown. Note: only macro-elements are shown.
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velocities, which maintain the volume of the domain and the shape of the spheres. On the moving mesh, the velocity field
satisfies the Navier–Stokes equations in addition to the incompressibility condition:

@u

@t
þðu�vÞ � ru ¼�rpþnr2u, ð1Þ

= � u ¼ 0, ð2Þ

where p is the kinematic pressure, u is the fluid velocity, v is the spatially varying mesh velocity and n is the kinematic
viscosity. Fig. 2 shows the computational mesh as well as a plot of the moving mesh velocity.

In the direction of the sphere translation, from one end of the domain, the mesh velocity varies linearly from zero to U

on the mesh points on or near the sphere, and then varies again linearly to zero at x¼0, the point of collision. From their
starting positions at x¼ 7L=D, to the collision, the simulation needed to be remeshed three or four times, to avoid
excessive element distortion. After each interpolation, the original simulation was run slightly longer to overlap with the
next part of the simulation, in order to check for any error caused by the re-meshing. Within the overlapped simulation
time, parameters such as the viscous and pressure force acting on the spheres on the new mesh were found to be within
one percent of those for the same time on the previous mesh.

In the numerical simulations, the spheres were stopped shortly before collision, in order to avoid a singularity of the
mesh configuration at the point of contact between the spheres. The spheres were stopped with a gap of 0.01D between.
Comparisons between experiments and numerical simulations presented below show that the small discrepancy in
contact distance is negligible with respect to the evolution of the resulting flow. The domain extends 50D axially from the
collision points, and 25D radially. Grid independence was tested by increasing the macro-element internal resolution.
The internal node points are distributed according to Gauss–Legendre–Lobatto quadrature points; the resolution of the
solution can be increased by incrementing the polynomial order of the quadrature. After running several test cases with an
increased resolution of 49 (n¼7) nodes per element (the presented results use 36 (n¼6) nodes per element), no significant
effect (greater than one percent) was observable in the behaviour of the viscous and pressure forces.

3. Results

In the present study, we focus on moderate Reynolds number, 100rRer800, and on axisymmetric flows at the time of
impact t¼ 0. To satisfy the latter condition, the running distance L/D is short enough for the wake to remain axisymmetric,
but at the same time large enough to have a well-defined recirculation region behind each sphere. It has been checked that
these two conditions are met for L/D¼5 for all the tested values of Re. Moreover, for values of Re up to 800, it was observed
that the flow after impact remains axisymmetric (three dimensional structures have been seen to develop for Re4900 in
experiments and simulations of sphere impact on a wall (Leweke et al., 2004; Thompson et al., 2007)). Hence the depiction
of only half of the experimental dye visualization in Fig. 3, which shows a sequence of images at different times of the flow



Fig. 3. Comparison of experimental dye visualizations (left) and numerical vorticity contours (right) for a sphere–sphere collision at Re¼400, L/D¼5 and

at different times t¼ 0 (a), 1 (b), 2 (c), 3 (d), 5 (e) and 10 (f) (10 contour levels �1U=Droyr1U=DÞ.
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generated by a symmetric collision for Re¼400, L/D¼5. In comparison to the dye visualization, vorticity contours for the
corresponding numerical simulation are shown.

Before the impact, the vorticity generated by the translation of the spheres rolls up in the wake of each sphere. At the
time of impact (Fig. 3(a)) the flow consists of a vortex ring attached behind each sphere. Due to the inertia of the fluid, the
two vortex rings continue to travel parallel to the x axis after the impact. As the two vortex rings pass over the spheres,
secondary vorticity of opposite sign to that of the primary vortices is induced at the surface, as seen in Fig. 3(b) and (c).
The secondary vorticity is stretched by the primary vortex (Fig. 3(d)) then quickly spreads due to the viscous diffusion, in
such a way that at the subsequent instants only remnants of the secondary vorticity are still clearly visible in Fig. 3(e) and
(f). Simultaneously, the primary vortex rings continue to travel towards each other then collide, in Fig. 3(d). As is well
known for such a situation (for a review on head-on collisions of vortex rings see Shariff and Leonard (1992)), their
interaction after collision leads to a growth of their diameter. The resulting radial motion of the vortex ring cross-sections
can be observed in Fig. 3(e) and (f).

Similar behaviour is observed in all cases across the range of Reynolds numbers investigated, 100oReo800, both
experimentally and numerically. In particular, for all cases we note an up-and-down symmetry in the different views that
is indicative of two identical vortex rings; that is, each vortex ring corresponds to the image of the other with respect to
the x¼0 plane.

Moreover, comparisons in Fig. 3 reveal a close qualitative match between numerical and experimental results. This
allows us to validate both our numerical approach and the visualization technique to mark the vorticity at least for tr10.
The suitability of the dye in representing the vorticity is limited by the difference between the diffusion coefficients of the
dye and of the vorticity; this limit has previously been estimated to be t� 20 (Thompson et al., 2007). In the present study
we have considered experimental results from visualizations only for tr10.

To discuss the effects of Reynolds number, Fig. 4 plots the trajectories of the primary vortex ring centres for various Re;
due to the symmetries of the flow, we plot only trajectories of one primary vortex center in half of a meridional plane. The
trajectories of the vortex ring centres predicted by the numerical simulations for different Reynolds numbers are plotted in
Fig. 4(a) for 2rtr46 (2rtr14 for Re¼100 because of the fast diffusion of vorticity in this case) and compared to the
trajectories obtained from following the centre of the dye spiral on visualizations for Re¼200, 400, 800 plotted for t from
�1.2 (before the impact) to 10. The centre of the vortex ring is determined by visual inspection of the image. While this
method is not entirely objective, a good match exists nonetheless between the experimental points and the numerical
trajectories. Plotting only the radial coordinate as function of time in Fig. 4(b), we note that experimental points are above
the numerical curves at low Re. Some difference in the two sets of results is to be expected: firstly, the coefficients of
diffusion of the vorticity and the dye are different; and secondly, the centre of the recirculating dye is assumed to
represent the centre of the vortex.

In addition, Fig. 4(b) shows that the radial growth of the vortex ring decelerates with time. At the time of impact, the
vortex ring radius is approximately equal to the sphere radius 0.5D and extends to a limit value that depends on the
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Fig. 4. (a) Trajectories of the primary vortex ring centres as obtained from the numerical simulations (for various Re) and from the experimental
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Fig. 5. Plots of drag force on the spheres as a function of time after collision.
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Reynolds number. From the numerical results of Fig. 4(b), the vortex ring is seen to evolve from 2D for Re¼200 to 3.5D for
Re¼800. This result differs from the case of a sphere impacting a wall (Thompson et al., 2007) where the radius of the
vortex ring is always less than 1.5D for Rer800; the viscous effect on the solid wall is likely to contribute towards this
particular difference between the two cases.

From the numerical data, Fig. 5 plots the non-dimensional drag coefficient of each sphere immediately after impact. For each
case, the drag decreases quickly from its value at impact. At low Reynolds numbers, the drag converges slowly to zero as the flow
around the spheres subsides. However, at higher Reynolds numbers, an oscillation in the drag force causes a negative drag for a
short time, forcing the spheres together. In a more physically realistic simulation, this may have implications for the post-collision
velocity of the spheres rebound that would occur. The oscillation is more pronounced at higher Reynolds numbers.

We have considered, experimentally and numerically, collisions of identical spheres, approaching along the same axis
with the same (but opposite) velocity and running distance. The resulting flow consists of two identical colliding
axisymmetric vortex rings, while also retaining a symmetry around the plane x¼0. Numerical simulations have also been
performed for asymmetric cases where the velocity and diameter of one of the spheres is varied. It is then necessary to
define the velocity, the diameter and the resulting Reynolds number for the top and bottom sphere, referred to as Ut, Dt,
Ret ¼UtDt=n and Ub, Db, Reb ¼UbDb=n, respectively. For all the simulations, the running distance of each sphere is
maintained to five times its diameter (Lt=Dt ¼ Lb=Db ¼ 5Þ. Note, this normally requires one sphere to begin on its trajectory
before the other. With the fixed running distances, the parameters of the system are the Reynolds numbers Ret, Reb and the
velocity and diameter ratios Ut=Ub and Dt=Db.

We first discuss results of numerical simulations conducted for two equally sized spheres (Dt ¼DbÞ with Reb ¼ 400 and
four lower values for Ret. Fig. 6 plots vorticity contours at four time instants after collision, where the velocity of the top
sphere (i.e. the uppermost in the images) has been reduced, with Reynolds number ratios of Ret=Reb ¼Ut=Ub ¼ 0:9, 0.8, 0.7
and 0.6. The resulting flow no longer possesses the symmetry with respect to the plane x¼0 observed for the symmetric
collision in Fig. 3 (the axisymmetry around the x axis is enforced numerically for all cases). Here, we need to consider
the effect on the post-collision flow of the difference in the amount of circulation generated by each of the spheres, from
the start of their trajectory to the end. Vorticity generated by the motion of the spheres will advect into the recirculation
zone behind each sphere at the rate of 0.5U2 (Morton, 1984). Therefore, we expect that the amount of circulation in each
vortex ring at the instant of impact will scale with 0.5U2 multiplied by the running time, or 0:5U2L=U. Therefore, for the
case with Ut=Ub ¼ 0:8, the slower traveling sphere generates 0.8 of the circulation of the faster one. After the impact, the



Fig. 6. Azimuthal vorticity plots for two equally sized spheres Dt ¼Db and for Reb¼400 and four different velocity ratios Ut=Ub ¼ Ret=Reb ¼ 0:9, 0.8, 0.7

and 0.6 (left to right), at times t¼ tUb=Db ¼ 5, 10, 15 and 20 (the sphere on the top is traveling slower) (10 contour levels �1Ub=Db royr1Ub=DbÞ.
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stronger vortex ring pushes the weaker one back across the midplane. The extent of the asymmetry of the flow increases
with the difference in velocities. The stronger vortex ring strains the smaller one, elongating and pulling it around.

Fig. 7 plots vortex ring trajectories for various combinations of the parameters for the purpose of comparison. Fig. 7(a)
compares two asymmetric cases, where the respective Reynolds numbers of each sphere differ, with Ret¼320 and Reb¼400.



Fig. 8. Azimuthal vorticity contours of the flow after collision, with the upper sphere traveling at 0.8 of the velocity of the lower (Reb ¼ 400,Ut ¼Ub ,

Dt=Db ¼ Ret=Reb ¼ 0:8Þ. The case corresponds to the dotted line case in Fig. 7(a).
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In the first case, this difference results from different velocities, with Ut=Ub ¼ 0:8 and Dt=Db ¼ 1 (also shown in Fig. 6), while
in the second one it is due to different diameters, with Dt=Db ¼ 0:8 and Ut=Ub ¼ 1. Therefore, considering our scaling equation
for circulation, across both cases, the same difference in circulation generated exists, with the differences being in the
geometries and the topology of the colliding vortex rings. In the case where the ratio of 0.8 pertains to the velocities, the
resultant vortex rings emanate along, but just off, the midplane. Where the ratio pertains to the diameters, the vortex rings
travel at a much greater angle from the midplane. Fig. 8 plots vorticity contours of the post-collision flow, corresponding to
the Dt=Db ¼ 0:8 case of Fig. 7(a). One possible explanation of the difference in vortex ring trajectories is the effect of the
secondary vorticity generated once the spheres are stopped. At times 2:5oto4:0, we observe that due to the imbalance of
the collision, the secondary vorticity from the bottom sphere connects up with the primary vorticity ring from the top
sphere. Another possible cause of the different trajectory may be the positioning of the vortices at the instant of collision. The
vortex generated by the smaller sphere is of smaller radius than the vortex ring generated by the greater sphere. This results
in the vortex expansion beginning at an angle towards the smaller sphere. The effect can be seen at t¼ 2:0 in Fig. 8. This
dependence on the particular vorticity topology after collision may explain why the two cases of Fig. 7(a) do not exhibit the
same vortex ring trajectories, even though the same relative difference in generated circulation exists in both cases.

Similarly, Fig. 7(b) plots two ostensibly similar cases where Ret ¼ Reb ¼ 400. The first is the symmetric case with
Ut=Ub ¼Dt=Db ¼ 1 as discussed in the first part of this paper; while in the second ‘‘skewed’’ case, the velocity of the top
sphere (in the plot) is increased to Ut ¼ 5=4Ub and, in order to get the same Reynolds number, the diameter decreased to
Dt ¼ 4=5Db. Therefore, the two cases generate the same amount of circulation. However, from the vortex ring trajectories
we see that the geometric effect of the smaller diameter causes the vortex rings to emanate at a large angle to the
midplane.
4. Conclusions

Numerical simulations of symmetric collisions between two spheres have been compared to experimental visualiza-
tions, with good agreement achieved between the two sets of results. The post-collision flow consists of a pair of
symmetric expanding vortex rings, which bears much similarity to and is consistent with the behaviour of colliding vortex
rings. Numerical results have also been presented for unbalanced collisions. For this purpose, one sphere has been altered
to have either a smaller diameter or a slower collision speed, both cases resulting in a lower Reynolds number. Also shown
was the case of spheres having different velocities and diameters, but with equivalent products of velocity and diameter
UD. These cases show that similarities in the circulation generated by each sphere from one case to the next do not
necessarily result in the same post-collision flow. Cases where one sphere generated greater circulation than the other did
not always result in the stronger vortex ring pulling the weaker around. In cases where one sphere was smaller, the
expansion of the vortex rings begins in a trajectory angled away from the impact plane. Furthermore, the vorticity
dynamics of an unbalanced collision can result in the sharing of primary and secondary vorticity between the two spheres,
leading to a variety of post-collision vortex trajectories. The presence of the secondary vorticity and the initial angle of
expansion appear to be points of difference when comparing to the vorticity dynamics resulting from the collision of two
vortex rings, particularly in unbalanced collisions.
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