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Abstract: Imaging techniques for studying the structure of opaque, 
granular and porous materials are limited by temporal resolution and 
radiation dose. We present a technique for characterising the structure of 
such materials by decoding three dimensional structural information from 
single, propagation based phase contrast X-ray images. We demonstrate the 
technique by measuring the distribution of diameters of glass microspheres 
in packed samples. We also present synthetic data, which shows that our 
inverse method is stable and that accuracy is improved by phase contrast X-
ray imaging. Compared to computed tomography, our technique has 
superior temporal resolution and lower radiation dose. 
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1. Introduction 

The study of granular and porous materials is relevant across a range of disciplines including 
material science, mechanical and chemical engineering, geophysics and biology. The 
development of cavitation bubbles in diesel injectors [1], the change in soil pore size during 
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wetting and drying [2] and the mechanics of alveoli in the breathing lung [3] are examples of 
dynamic systems, which existing imaging techniques are not well suited to studying. 

Expanding briefly on the example of the lung, despite much research, respiratory 
physiologists’ understanding of alveolar mechanics during respiration remains incomplete. 
The degree to which alveolar expansion and recruitment each contribute to inflation continues 
to be a topic of debate [3,4]. Dynamic imaging of lung alveoli is a particularly difficult 
problem because of their small size compared to that of the entire lung and the velocity at 
which they move. A free breathing mouse, for example, has millions of alveoli, each of the 
order of 100 um in diameter [5,6], packed inside a chest several centimetres wide, which 
respire 3-4 times a second. In addition to physiological studies, there is potential for disease 
detection applications using dynamic lung imaging techniques [7]. 

To non-destructively study the kinds of samples described, optical and other low energy 
imaging modalities, from visible light to terahertz frequencies [8–10], suffer from scattering 
and limited penetration depth. Ultrasound imaging has similar drawbacks [11]. 

X-ray computed tomography (CT) is a powerful and widely used technique for visualizing 
the three-dimensional structure of a sample. Despite not being inherently suited to studying 
dynamic systems because of the requirement for multiple projections at any time point, 
modern scanners are still capable of quite respectable temporal resolution. Third generation 
clinical CT scanners are capable of scanning at around 3-4 frames per second with sufficient 
spatial resolution to differentiate structures down to about half a millimetre in size [12]. 
However, this is still slower than many dynamic processes and the spatial resolution is too 
coarse for micro-imaging. Micro-tomography and even nano-tomography [13,14] are possible 
using an ultra-bright synchrotron source. A state of the art micro-tomography scanner, with 
an ultra-bright synchrotron radiation source, has been demonstrated capable of scanning an 
infant rat’s chest in half a second [15]. Another interesting example is 4D tomography of 
Xenopus gastrulation [16]. However, these scanners are incapable of the frame rates required 
to dynamically image rapidly moving systems such as breathing lungs. In addition to 
temporal resolution, a significant problem with CT is the high radiation dose, which is 
particularly relevant for biological samples. 

In lung imaging, hyperpolarized helium diffusion MRI has recently been used to try and 
measure alveolar dynamics [4]. There are a number of problems with this method, which 
include the difficulty and expense of obtaining hyperpolarized helium, the fact that diffusion 
is a relative measurement, and that airspace dimensions can only indirectly be obtained from 
these diffusion measurements [17]. 

At submicron scales, X-ray scattering techniques can be used to obtain structural 
information from single projection images [18–20]. Since scattering angles are inversely 
proportional to the size of the scattering particles, the problem of measuring increasingly 
smaller scattering angles limits the maximum feature size which can be studied. 

For studying particles tens to hundreds of microns in size, Carnibella et al. [21] presented 
a method for determining basic morphological parameters of randomly packed particles at 
low packing fractions from a single projection X-ray image. This method was based on the 
encoding of three-dimensional structural information in speckled two-dimensional X-ray 
images of the samples. Specifically, this method exploited the linearity of the spatial 
autocorrelation function (SAF) of these images. For densely packed systems of particles, the 
positions of individual particles are more strongly correlated and the SAFs are no longer 
linear. Therefore, a non-linear inverse method is necessary to decode their structure. In this 
paper, we present a technique using a genetic algorithm [22,23] (GA) to recover 
morphological parameters of randomly packed particles, without restriction on the packing 
fraction. 

We begin by describing the theoretical and technical background of the technique. We 
demonstrate, experimentally, its application in determining the distribution of diameters in a 
packed sample of glass microspheres. Finally, we use synthetic X-ray images of microspheres 
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to characterise the performance of our GA and the efficacy of propagation based phase 
contrast. 

2. Description of technique 

When a sample of randomly packed particles is imaged using absorption or phase contrast X-
ray imaging [24,25] (PCXI), the resulting image has a speckled appearance [26]. Examples of 
these images can be found in Figs. 1 and 3. We make note that this speckle is not necessarily 
so called near field speckle [20] and that, in fact, it is also produced in absorption based 
imaging. Speckle contrast, however, is markedly improved in PCXI. Carnibella et al. [21] 
showed that at low packing fractions, the SAF of a projection image of a sample is equal to 
the sum of the SAF of the image of each particle in that sample. This implies that the 
speckled images contain information about the morphology of the particles, since the SAF of 
the image of a single particle is directly related to its morphology. In the same paper, it was 
also found that at higher packing fractions this behaviour began to break down, which 
corresponded with the development of oscillations in the previously single peaked SAFs. It 
was hypothesised that these oscillations were related to both the shape (form) and 
organisation (structure) of the particles and that it should be possible to recover details of 
these properties. 

 

Fig. 1. An overview of the complete process of solving for particle statistics. On the left, a 
single phase contrast image of the sample is taken at a propagation distance, z, and its spatial 
autocorrelation function (SAF) calculated. On the right the genetic algorithm (GA) iterates 
over simulated particle SAFs to find the particle parameters that produce the closest match 
between the two SAFs. 
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Ideally, we seek an analytical expression for the SAF as a function of some parameters 
related to the morphology and/or structure of the particles. Then, an appropriate optimisation 
method could be applied to solve for these parameters. To our knowledge, no such analytical 
expression exists describing the distribution of particles in samples approaching random close 
packing [27]. We note that for lower packing densities (suspensions), the Percus-Yevick 
approximation can be used to obtain the radial distribution function analytically [28], and that 
this could potentially be used as the basis of an inverse method. 

Our method is based on stochastic modelling of particle packing, combined with physical 
modelling of the imaging process, using an iterative approach to solve the forward imaging 
problem until simulated results match experimental data. The particles are selected randomly 
from a distribution described by some parameters, and a GA attempts to find the set of these 
parameters that produces the best match between simulated and experimental SAFs. A simple 
outline of this procedure can be found in Fig. 1. GAs are particularly suited to this task 
because they tend to locate global minima and are robust in the presence of variability related 
to the stochastic nature of the simulations [29]. 

The experimental SAF is easily obtained after imaging a sample. Propagation based phase 
contrast X-ray images can be obtained by imaging with a coherent X-ray source such as a 
synchrotron or micro-focus lab source. The images are pre-processed by applying flat and 
dark field corrections: 
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where M is the number of pixels that have a centre within a circular band defined by the radii: 
l-0.5 and l + 0.5. Ideally, the window size should be such that it can capture the full SAF. The 
point at which the SAF settles near zero depends on the size of the particles. We found 
choosing a window size that captures at least the first three peaks of the SAF to be sufficient. 
Windowing is necessary because a single autocorrelation is not a consistent estimator of the 
true SAF: that is, the variance of the autocorrelation function does not decay to zero as the 
window size is increased [30]. 

We now outline the process of obtaining a simulated SAF, produced by a given set of 
parameter estimates. In the context of a GA, a set of parameter estimates is referred to as a 
chromosome. The simulation process begins with a description of the distribution of particle 
diameters. We use a volume weighted, lognormal probability density function (PDF), which 
can be characterised by two parameters: its geometric mean (GM) and geometric standard 
deviation (GSD). Many collections of particles including alveoli are well approximated by a 
lognormal distribution [31,32], however, any other PDF could be similarly used. The pouring 
of particles is simulated using molecular dynamics software (LIGGGHTS [33]). We assume 
the particles are spherical and non-penetrating. The mean packing fraction achieved was 60.0 
per cent. 
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Next, we simulate X-ray images of these particles. We consider the case of propagation 
based PCXI, the modality used in the experiments presented later. Following the method 
outlined by Kitchen et al. [26], the sample volume is first reduced to two dimensions by 
making a projection approximation [34]. Then, assuming a plane wave source, the exit wave 
field is calculated: 

 ,t ik t
exitU e eμ δ− −=  (5) 

where µ is the linear attenuation coefficient, δ is the refractive index decrement and t is the 
projected thickness of the sample. This wave field is then propagated a distance, z, to the 
plane of the detector using the angular spectrum method [35]. The intensity function of this 
wave field is convolved with a Gaussian kernel, described by a single parameter: its standard 
deviation, σblur, which accounts for the combined effects of partial coherence, the point spread 
function of the detector and penumbral blurring: 

 
2

sim propagated blur(0, ),I U N σ= ∗  (6) 

where N(µ,σ) is a normal distribution with mean, µ and standard deviation, σ. This last 
operation is simply the application of a Gaussian low pass spatial filter. The resulting image is 
binned to match the effective pixel size of the actual detector. The normalised two 
dimensional SAFs of smaller sample windows within the image are calculated. The SAF of 
multiple windows are averaged and that result radially averaged to produce the final 
simulated SAF. 

The GA requires an initial randomly generated population of Npop chromosomes. Each 
chromosome consists of the following parameters: the GM and the GSD of the distribution of 
particle diameters and the standard deviation of the Gaussian low pass filter kernel. Before 
running the algorithm it is necessary to set upper and lower limits for each parameter. 
Choosing limits which bracket smaller ranges will decrease convergence time. However, care 
must be taken to ensure that the range of each parameter encompasses the true, but unknown 
value. The cost of each chromosome is determined by calculating the sum of squared errors 
between the experimental SAF and a simulated SAF generated from each chromosome’s 
parameters. 

The Npop/2 chromosomes with the highest costs are discarded. Pairs of chromosomes are 
randomly selected, from a rank weighted population [23], to be parents. Uniform crossover 
using the BLX-0.5 operator [36] is performed to produce two offspring from each pair of 
parents. At the end of this process the population size remains unchanged. Mutations, 
according to a Gaussian distribution (standard deviation, σmutation) are randomly applied to a 
fraction, fmutation, of the parameters from any chromosomes other than that with the lowest cost 
(elitism): 

 mutated mutation lo hi( ) min(max( ( , ), x ), x ),x x N x σ=  (7) 

where x is the value of the parameter being mutated, N is a normal distribution and xlo and xhi 
are the lower and upper limits of that parameter. 

This process is repeated until the cost function shows no signs of improvement, at which 
point we assume the algorithm has reached the vicinity of the global minimum. Mutations are 
then disabled and the algorithm is allowed to continue until all the parameters have 
converged. The specific stopping criteria used in the following sections are described in each 
section. 

3. Application to experiments 

To test our technique, we conducted experiments on beamline BL20B2 at the Spring-8 
synchrotron, Japan [37]. A detuned Si(111) double crystal monochromator was used to 
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generate a monochromatic beam, with an energy of 34 keV to image solid glass microspheres. 
The sieved microspheres were nominally of 4 different ranges of diameters (63-75 µm, 75-90 
µm, 90-106 µm, 106-125 µm). Plastic cuvettes (10 × 50 × 10 mm3) filled with these 
microspheres were placed at a propagation distance of 0.5 m from the detector. The detector 
was a Hamamatsu C4880-41S, with an effective pixel size of 5.9 um. Exposure times were 2 
seconds. The SAF was averaged over approximately 200 windows (96 × 96 pixels, 1132.8 × 
1132.8 µm2). 

To simulate SAFs for the GA, the sample volume had the imaging area of a single 
experimental window and was 1 mm deep (1132.8 × 1132.8 × 1000 µm3). Spheres were 
modelled as soda lime glass, which when imaged at 34 keV have a linear absorption 
coefficient of 198.0 m−1 and a refractive index decrement of 4.67 × 10−7 [38]. The SAF was 
averaged over 16 windows (chosen as an acceptable balance between accuracy and 
computational effort). Other relevant parameters were the same as for the experimental setup. 

The GA was run with a population size of 12 and with the following limits on each 
parameter’s range: 20 µm to 120 µm for the GM, 1.01 to 1.3 for the GSD and 6 µm to 30 µm 
for the standard deviation of the Gaussian kernel. These limits were chosen to encompass all 
reasonable solutions, given we had prior information on the microspheres’ diameters. The 
mutation distribution, σmutation, was 0.2 of each parameter range and fmutation was 0.2. The GA 
was deemed to have reached the global minimum when the mean slope of the cost function 
for the last 10 iterations was equal to or greater than zero. With mutations disabled, the 
algorithm was allowed to continue until the difference between parameters across the 
population was less than 1 per cent. At this point the chromosome with the lowest cost was 
chosen as the solution. 

 

Fig. 2. The distributions of microsphere sizes obtained from experimental images. Nominal 
sieve sizes were (a) 63-75 µm, (b) 75-90 µm, (c) 90-106 µm and (d) 106-125 µm. These sizes 
are depicted by the light grey top hat functions. The darker grey curve is the distribution 
measured by a commercial particle sizer (Mastersizer 2000). The darkest/blue curve is the 
distribution measured by our method. 
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Table 1. Comparison of nominal microsphere sizes with geometric mean, geometric 
standard deviation and interquartile range (IQR) measured by a commercial particle size 

analyzer and phase contrast X-ray speckle analysis 

Nominal 
Range (µm) 

GM (µm)  GSD  IQR (µm) 
Mastersizer Speckle  Mastersizer Speckle  Mastersizer Speckle 

63-75 71.4 73.0  1.27 1.12  60.9-83.8 67.7-78.8 
75-90 85.8 86.8  1.27 1.17  72.9-101.0 77.9-96.7 
90-106 98.6 99.2  1.27 1.11  84.0-115.7 92.5-106.3 
106-116 113.4 115.3  1.27 1.13  96.4-133.4 106.5-124.9 

Computational effort is almost solely attributable to the simulation of pouring spheres. 
Running on a single 3 GHz processor core, for the window size described, the pouring 
simulations took on average around 5 minutes. For a population size of 12, when averaging 
over 16 windows, this means 192 pouring simulations per iteration of the GA. Fortunately, 
since every simulation window is completely independent, if enough cores are available, an 
entire iteration could be completed in a few minutes. Typically, less than 40 iterations were 
required for the GA to converge. 

Our results are displayed in Fig. 2 and quantified in Table 1. As can be seen, the mean 
microsphere diameters agree well with both the nominal particle sizes and those obtained by a 
commercial measurement system (Mastersizer 2000). Interestingly, the spread of diameters is 
less than that measured by the commercial system, and more closely agrees with the nominal 
sieve limits. 

Two second exposure times were used to obtain a high signal to noise ratio for testing this 
technique on a strongly attenuating sample and does not represent the best temporal 
resolution of the technique. For example, at this beamline much shorter exposure times (tens 
of milliseconds) are possible within the lungs [7,39,40], with frame rates as high as three 
hundred frames per second even achievable [41]. In comparison to the technique presented 
here, a high resolution CT scan may require of the order of 1000 projections. Hence we could 
obtain the same morphological information at 1000 times the frame rate and with 1/1000 the 
radiation dose of CT. 

4. Synthetic studies 

To characterise the performance of our solver and study the efficacy of X-ray phase contrast 
for sizing particles, we applied the technique to measure the distribution of sphere diameters 
from synthetically generated X-ray images. The synthetic images were generated using the 
same method as previously described. The distribution of sphere diameters had a GM of 56.7 
µm and a GSD of 1.14. These parameters are those of the largest sieved microspheres (106-
125 µm), which we had previously measured (Fig. 2). The width of the Gaussian kernel was 
also obtained from the previous experiment, having imaged samples at a number of 
propagation distances. Photon and readout noise were added according to the camera’s 
specifications and assuming photon counts similar to those recorded experimentally. The 
synthetic images were scaled to match the mean intensity and contrast of the 10 mm deep 
samples we measured experimentally (in our simulations other speckle characteristics were 
independent of sample depth). Synthetic images were generated at propagation distances 
between zero and three metres. Figure 3 shows that, to the eye, these synthetic speckle images 
closely match the corresponding experimental images. Synthetic experimental SAFs were 
produced by averaging 400 windows and radially averaging. 
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Fig. 3. The upper row is a series of experimental phase contrast X-ray images, of nominally 
106-125 µm glass microspheres, recorded at propagation distances of 0.01 m, 0.4 m, 1 m, 2 m 
and 3 m. For comparison, the lower row shows simulated images at the same propagation 
distances. The latter is based on solutions for the distribution of sphere sizes in the 
experimental images. Each image is 1132.8 × 1132.8 µm2. 

The GA was run with the following limits on each parameter’s range: 48 µm to 68 µm for 
the GM, 1.05 to 1.2 for the GSD and 6 µm to 35 µm for the standard deviation of the 
Gaussian kernel. To produce an estimate of uncertainty in the solution, upon convergence the 
algorithm was restarted (by keeping the best and randomly generating 11 new chromosomes) 
and run until the variables converged again. In this way the solver was allowed to converge a 
total of 10 times, which produced 10 solutions. In Figs. 4(a) and 4(b) the parameters 
belonging to each of these solutions is plotted. 

 

Fig. 4. (a) The geometric mean (GM) and (b) geometric standard deviation (GSD) of the 
distribution of microsphere diameters measured from synthetic phase contrast X-ray images at 
several propagation distances, z. In these two sub-figures, individual solutions are plotted as 
points, the parameters of the best solution are linked by a solid line, and the true solution is 
denoted by a horizontal dashed line. (c) The probability density functions (PDF) of 
microsphere diameters, measured at propagation distances of 0 m and 1 m. (d) The sum of 
absolute errors between the true and measured PDF at several propagation distances. The 
points at 0 m and 1 m correspond with the shaded area between the PDFs in (c). (e) Speckle 
contrast, measured as the standard deviation of image pixel intensities, as a function of 
propagation distance. 
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The spread of the GAs solutions (the points in 4(a) and (b)) at each propagation distance 
isn’t obviously correlated with the propagation distance or image contrast (Fig. 4(e)). This is 
consistent with this variability being the result of the stochastic nature of the simulations. 
Therefore, we expect that this variance can be reduced by averaging the SAF over more 
windows, at the expense of increased computation time. 

Overall, the best solutions are quite close to the true distributions of the microspheres’ 
diameters. Comparing the extremes of these solutions (at z = 0 m and z = 1 m) in Fig. 4(c) 
highlights that even in the worst case (z = 0 m), the solution is still quite accurate: the GM 
and GSD are in error by 1.5% and 2.9%, respectively. In Fig. 4(d) it can be seen that accuracy 
is worst at very short propagation distances, where phase contrast is weak, and at the largest 
propagation distances, where the size of the Gaussian kernel is greatest (not shown). The 
inverse relationship between the solution error and the speckle contrast is illustrated by 
comparing Figs. 4(d) and 4(e). Since speckle contrast is proportional to the signal to noise 
ratio, this relationship is not surprising. We note that our experimental images were of static 
samples, with a high intensity synchrotron source and significant exposure times. We expect 
that the benefit afforded by phase contrast would be of greater significance when imaging 
conditions are less ideal. 

We encountered an unexpected result in the behaviour of the Gaussian low pass filter 
kernel over the range of propagation distances. We found that this parameter increased almost 
linearly over the range of propagation distances, at a rate greater than expected by penumbral 
blurring for the known source size of 150 µm (horizontal) by 10 µm (vertical). As mentioned, 
this accounts for the decrease in contrast at the largest propagation distances. Our hypothesis 
is that this may be the result of scattering/refraction within the volume of the sample, which 
we assume is negligible when we make the projection approximation. Alternatively, or 
additionally, it may be the result of scattering by optical elements and/or air along the beam 
path which hasn’t been accounted for in our model. These hypotheses warrant further 
investigation. 

5. Conclusions 

In this paper we have outlined a new technique for the quantification of useful parameters 
related to random granular and porous systems without restriction on the mode of packing. 
The basis of the technique lies in retrieving structural information encoded in speckled phase 
contrast X-ray images of such systems. The experimental and synthetic results presented 
demonstrate the accuracy and robustness of this technique and that propagation based phase 
contrast significantly improves the accuracy. We have also shown that there is a limit to the 
gains that can be obtained by increasing the propagation distance due to an increase in 
blurring. The advantages of our technique are high temporal resolution and low radiation 
dose, which suggest potential applications for imaging dynamic and biological systems. 
Specifically, we envisage the technique being applied to the measurement of dynamic lung 
morphology, for physiological studies or disease detection. 
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