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For analyzing the flow field and topological structure of hemispherical parachute in
low angles of attack, a fluid-structure interaction (FSI) simulation technique is estab-
lished to decide the shape of the hemispherical parachute during terminal descent. In
the fluid simulation, the semi-implicit method for pressure-linked equations consistent
(SIMPLEC) algorithm is introduced to solve shear stress transport (SST) k–ω turbu-
lence Navier–Stokes (N–S) Equations. This method is proved to be efficient and stable
by the experiment and corresponding numerical simulation. After obtaining the stable
shape of the canopy, the parachute in different angles and velocities are considered.
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1. Introduction

The main research areas of parachute numerical simulation include flow field simu-

lation, structure simulation and fluid-structure interaction (FSI) simulation, among

which FSI simulation is the most difficult one. However, because the FSI simulation

express the parachute work process more accurately, and could get more reasonable

results, it is gradually gaining popularity.

In order to carry out the parachute numerical fluid-structure interaction sim-

ulation, much research has been done and many models have been developed re-

cently to solve the dynamics problem of parachute systems simulation. One of the

most-used models is the space-time FSI technique. It is based on the deforming-

spatial-domain/stabilized space-time (DSD/SST) method,1–3 which is a moving-

mesh technique. The earliest applications of these space-time FSI techniques in-

cluded 2D and 3D flow computations.1–5 These were followed by the first applica-
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tion of the space-time FSI techniques to parachute modeling, reported in Ref. 6 as

axisymmetric computation of the inflation of a parachute. Application to parachute

modeling with full 3D computations was first reported in Ref. 7, in the context of

a parafoil, together with a detailed description of the method and parallel imple-

mentation. The same technique was used in Ref. 8 for a detailed 3D computa-

tion of a round parachute. These early parachute applications were computed with

the block-iterative coupling technique (see Refs. 9 and 10 for the terminology and

context). More robust versions of these early block-iterative techniques were intro-

duced in Ref. 9. Also introduced in Ref. 9 were the quasi-direct and direct coupling

techniques, which yield more robust algorithms for FSI computations where the

structure is light and therefore more sensitive to the variations in the fluid dynam-

ics forces (that is what we have in parachute modeling). The SST FSI technique

was applied to a number of parachute simulations, including parachutes with fabric

porosity10 and the ringsail parachutes to be used with NASA’s new space vehicle

Orion.11–13

This paper mainly concerns the fluid-structure interaction problem of a hemi-

spherical parachute during its terminal descent. Different from the space-time FSI

technique, this paper establishes a new numerical simulation technique to deal

with the parachute FSI problem on both fluid and structure analysis. In the fluid

simulation, the semi-implicit method for pressure-linked equations consistent (SIM-

PLEC) algorithm is introduced to solve shear stress transport (SST) k–ω turbulence

Navier–Stokes (N–S) equations, and an experiment is done to justify the method

used in fluid simulation codes in water tunnel. The method is proved to be effi-

cient and stable by the experiment and corresponding numerical simulation. In the

structure simulation, the canopy gore centerline and cord line are used to decide

canopy shape variation. To couple the fluid and structure codes, the canopy pres-

sure coefficient and shape parameters can be obtained. The results show that the

technique could find the final shape of the hemispherical parachute quickly.

The contents of this paper are organized as follows. Section 2 is devoted to the

problem statement. The geometric characteristics of the hemispherical parachute

model to be simulated will be presented. In Sec. 3, the fluid numerical simulation

method and corresponding experiment will be discussed. In Sec. 4, the structure

simulation method will be introduced. In Sec. 5, the fluid and structure simula-

tion codes coupling process will be described. Finally, in Sec. 6, for analyzing the

parachute flow fields in different states, low angles of attack range of 0◦–15◦ and

different velocities are considered, and the topological structure in typical state is

analyzed. The conclusion is given in Sec. 7.

2. Modeling

The geometric parameters of the referred hemispherical parachute in the paper are

shown in Table 1, and the hemispherical parachute profile is shown in Fig. 1.
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Table 1. The primary parameters of the hemispherical parachute.

Bottom Vent Suspension Gore Angle of Steady
diameter, m diameter, m line, m number attack, degree velocity, m/s

2 0.2 2.8 8 0–15 6.0

Fig. 1. The hemispherical parachute profile, m.

3. Flow Field Simulation

3.1. Governing equations

During the terminal descent of the hemispherical parachute, the surrounding air-

flow is considered to be incompressible steady flow, then the Navier–Stokes (N–S)

Equations can be written in the form of the flowing two equations:

∇ · u = 0 , (1)

ρ(u · ∇ · u+ f)−∇ · σ = 0 , (2)

where u, ρ, f and σ are the velocity vector, density, external body force and stress

tensor respectively.

There are mainly three methods to solve the N–S equations, including the finite

difference method (FDM), finite element method (FEM) and finite volume method

(FVM). In the process of solving N–S equations, using the above methods will bring

new variables (turbulence viscosity coefficient µt, etc.). To overcome this problem,

the turbulence model was produced.

This paper uses the semi-implicit method for pressure-linked equations consis-

tent (SIMPLEC) algorithm to solve shear stress transport (SST) k–ω turbulence

Navier–Stokes (N–S) Equations.

There are two types of calculation grids (plotted by Gridgen software, see Fig. 2)

used in this paper. The grid of one gore (Fig. 2(a)) is used for the calculation of the

symmetrical flowfield, and the full-sized grid (Fig. 2(b)) is used for the calculation

of the non-symmetrical flowfield.

The computational domain of one gore grid is shown in Fig. 3. The inner and

outer of the canopy (curved face IJKL) are set to wall boundary conditions. Line

AE, plane AEF and plane AEG are set to symmetrical boundary conditions. Plane
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used for the calculation of the nonmetrical flowfield. 

                             
(a) One gore                                   (b) Full size 

Fig. 2. The hemispherical parachute calculation grid.

Fig. 3. The computational domain of one gore.

EFG and curved face AFG are set to velocity inlet boundary conditions because the

outer boundaries of the computational domain are not affected by the flow over the

canopy. In the full-sized grid, the canopy is set to wall boundary conditions, and all

outer boundaries of the computational domain are set to velocity inlet boundary

conditions.

The main purpose for the flow field simulation in the FSI simulation technique

is to calculate the pressure distribution ∆Cp (the pressure coefficient difference

between the inner and outer canopy) for structure simulation. ∆Cp is the pressure

coefficient Cp difference between the inner and outer surface of the canopy:

Cp =
p− p∞
1

2
ρv2

∞

, (3)

where p is static pressure, v∞ is the incoming airflow velocity in infinite far field,

and p∞ is the static pressure in infinite far field.

3.2. The SIMPLEC algorithm

The semi-implicit method for pressure-linked equations consistent (SIMPLEC)

algorithm14 was proposed by Van Doormal and Raithby in 1984. It is one of the
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improved algorithms of the Semi-Implicit Method for Pressure-Linked Equations

(SIMPLE) algorithm15 which was proposed by Patanker and Spalding in 1972.

The SIMPLEC algorithm could make the calculation convergent more easily.

In SIMPLE, the algorithm takes no account of the variance brought by velocity

correction of source item which represents the influence brought by velocity correc-

tion of neighbor points on that of solution point. Although this simplification in

SIMPLE will not change the results’ precision, it will result in the calculation to

converge slowly. In the SIMPLEC algorithm, there is no simplification, so one co-

efficient calculation formula is different from the SIMPLE algorithm in the velocity

correction equation.

The main steps of the SIMPLEC algorithm are as follows:

(1) Assume a velocity distribution, marked as u0, v0, w0. Then calculate the coef-

ficients and constant terms of the discretized momentum equations.

(2) Assume a pressure field p∗.

(3) Solve the two momentum equations in turn, obtain u∗, v∗, w∗.

(4) Solve the pressure correction equation, obtain p′.

(5) Modify the value of velocity according to p′.

(6) Use modified velocity to obtain the variable Φ that couples with velocity. If Φ

brings no influence to flow field, it should be obtained after flow field converges.

(7) Use modified velocity to recalculate the coefficients and constant terms of the

discretized momentum equations. Use modified pressure field as initial value of

the next step of iterative computation.

The main steps of SIMPLEC and SIMPLE16 algorithms are similar. Detail

information can be found in Refs. 14, 15 and other related references.

3.3. Justifying the flow field simulation method

For justifying the flow field simulation method, an experiment was done in a water

tunnel at Monash University. As compared with the experiment and the numerical

simulation results, the method is proved to be efficient and stable by the experiment

and corresponding numerical simulation. The following two figures is one compari-

son between the experimental (see Fig. 4) and the numerical (see Fig. 5) simulation

results. The comparison shows the similarity between the experiment and numerical

simulation results, which means that the flow field simulation method is valid and

feasible.

4. The Structure Simulation

The structure simulation method is mainly based on the method used in Ref. 17,

and one similar method can also be found in Ref. 18.

The basic assumptions are:

(1) There are no rigidities in both the canopy cloth and cord line.

(2) There are same strains and stresses in all of the canopy gore and cord line.
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Fig. 4. (Color online) The streamlines and X-velocity contours, u∞ = 0.13 m/s, 14 Hz.

Fig. 5. (Color online) The streamlines and X-velocity contours, u∞ = 0.13 m/s.

(3) The curve of the intersection boundary between the plane E and canopy gore

is one part of a circle.

(4) The descending velocity is stable.

For the symmetrical characteristic of the hemispherical parachute, one gore of

the canopy is used for the structure simulation. Two of the structure model pictures

are shown in Fig. 6.

According to the geometrical and physical conditions, the main equations can be

obtained, such as the following six differential equations and six algebraic equations:

dϕ

dR∗

f

=
1

σ∗

m

(

1 +
σ∗

m −Kσ∗

u

E∗

b

)[

∆Cp −
σ∗

u

r∗
cos(ε− ϕ)

]

, (4)
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(a) (b)

Fig. 6. (Color online) The inflated canopy.

dσ∗

m

dR∗

f

=
σ∗

u

r∗

(

1 +
σ∗

m −Kσ∗

u

E∗

b

)

sin(ε− ϕ) , (5)

dυ

dR∗

f

=
2σ∗

u

T ∗

(

1 +
T ∗

E∗

f

)

sin(θ − λ) , (6)

dT ∗

dR∗

f

= 2σ∗

u

(

1 +
T ∗

E∗

f

)

cos(θ − λ) cosω , (7)

dx∗

f

dR∗

f

=

(

1 +
T ∗

Ef
∗

)

cosυ , (8)

dz∗f
dR∗

f

=

(

1 +
T ∗

Ef
∗

)

sin υ , (9)

r∗ sin θ = x∗

f sin
π

N
, (10)

θr∗ =

(

1 +
σ∗

u −Kσ∗

m

E∗

b

)

π

N
sinR∗

f , (11)

σ∗

u =
∆Cpr

∗T ∗

2σ∗

mr∗ sin(θ − λ) + T ∗ cos(ε− ϕ)
, (12)

sinλ = sin
π

N
sin υ , (13)
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Fig. 7. The FSI simulation technique algorithmic strategy.

sin ε =
sin υ

cosλ
cos

π

N
, (14)

sinω =
cos(π/N)

cosλ
. (15)

Most of the above equations for hemispherical parachute are similar to the

equations in Ref. 17, except for Eqs. (4), (5) and (11), which could be derived from

the geometry characteristic of hemispherical parachute.

For more details of the basic structure simulation method, it refer to Refs. 17

and 18.

From the structure simulation codes, the new canopy cord line and gore center-

line shape will be obtained, and the new gore of canopy can be plotted out.

5. The Fluid-Structure Interaction Simulation

5.1. The fluid-structure interaction simulation technique

The FSI simulation technique algorithmic strategy for the hemispherical parachute

during terminal descent are expressed in Fig. 7.

In the flow field simulation, the canopy shape is supposed to be unchanged. In

the structure simulation, the pressure distributions from the flow field simulation are

assumed to be unchanged. Actually, both the canopy shape and its surrounding flow

have a tiny change during terminal descent. From this sense, there is a simplification

for this simulation technique.

The main idea of the fluid-structure interaction simulation technique is to get

the canopy pressure distribution ∆Cp (the pressure coefficient difference between

the inner and outer canopy) from the flow field simulation codes, then use ∆Cp to

calculate the new cord line and gore centerline shape parameters in the structure
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(plotted by Gridgen software. The canopy thickness is not considered. 

Fig. 8.  canopy 

Fig. 8. One gore of the canopy.

Fig. 9. The carouncanopy 

Fig. 9. The calculation grid around the canopy.

simulation codes. If the two lines are convergent, the final canopy shape is obtained.

Otherwise, the fluid-structure interaction simulation calculation should be contin-

uously made through using the new canopy shape so as to get the new pressure

distribution.

In order to get the stable canopy shape quickly, the FSI simulation technique

for the hemispherical parachute during terminal descent takes the axisymmetrical

hemispherical canopy shape as the initial shape, because its pressure distribution

is more likely to the stable canopy pressure distribution.

5.2. The coupling process and results

In the process of whole fluid-structure interaction simulation, the zero degree angle

of attack for the incoming airflow is the basic assumption. Because of the symmetry

characteristic of the hemispherical parachute, one gore of the canopy is used for both

the flow field simulation and the structure simulation.

The initial one gore canopy shape and its calculation grid around the canopy

are shown in Figs. 8 and 9 (plotted by Gridgen software). The canopy thickness is

not considered.

Through the flow field simulation, the pressure difference distribution of the

gore centerline can be calculated from its inner and outer pressure coefficients. At

the beginning and end of the gore centerline, the pressure coefficients equal each

other, because the canopy thickness is not considered.
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(a) The first step                              (b) The fourth step 

Fig. 10. The inner and outer pressure coefficient along the gore centerline.

Fig. 11. The variation of gore centerline.

Using the pressure distribution of the gore centerline obtained from the flow field

simulation, the structure simulation codes will calculate the new gore centerline and

cord line, which could match a new gore shape of the canopy. Likewise, the new

gore shape of the canopy could provide a new group of gore centerline pressure

distribution for the structure simulation. When the gore centerlines and cord lines

calculated from the structure simulation almost do not change any more, the canopy

shape is considered to be convergent, and the shape is deemed to be the stable shape

of the hemispherical parachute.

After four steps of calculations, the inner and outer pressure coefficients along

the gore centerline in the first step and fourth step are shown in Fig. 10. The gore

centerline and cord line shape variation are shown in Figs. 11 and 12.

Figures 11 and 12 show that the variation of the gore centerlines and cord lines

in steps 2, 3 and 4 are very tiny, so the gore shape is considered to be convergent.

Therefore, the variation of canopy shape during coupling process and the con-

vergent hemispherical parachute structure shape can be drawn in Figs. 13 and 14

(plotted by Rhinoceros software), respectively.
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Fig. 12. The variation of cord line.

Fig. 13. The variation of canopy shape during coupling process.

Fig. 14. The convergent hemispherical parachute structure shape.

6. Flow Field and Topological Analysis

Considering the above fluid-structure interaction simulation for zero degree angle

of attack at the velocity of 6 m/s during the terminal descent, it is necessary

to analyze the flow fields of the hemispherical parachute in other conditions with

different angles of attack and velocities. And through the analysis of the topological

structure in typical state, the parachute, which is not in an absolutely real stable

state during terminal descent, is proved.
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6.1. Different angles of attack

To analyze the impact of different angles of attack (0◦, 5◦, 8◦, 10◦ and 15◦) on flow

pattern in flow field simulation, the streamlines, velocity magnitude and pressure

distribution are discussed through using the convergent canopy shape gained from

the FSI simulation at 6 m/s velocity. The following figures (Figs. 15–24) are the

streamlines, velocity magnitude, and pressure contours in the gore centerline plane

at different angles of attack. Among the figures, Figs. 15 and 16 are calculated from

one gore of the canopy model; the others are calculated from the full-sized model.

Besides, in all the pressure contours figures, the pressures are the relative value

referring to 101325 Pa.

From Figs. 15 through 24 it shows that the obvious change is the entire canopy

wake zone deviating to the right direction with the increasing of the angle of attack.

There are two big vortexes in the wake flow at zero angle of attack. With the

increasing of the angle of attack, the right one becomes smaller and smaller. Al-

though the variation of the left one is not so regular, with the change of its vortex

position and size, the maximum minus pressure zone becomes closer to the left

outer canopy.

Besides, the change of velocity magnitude in the flow field can be also found

in the figures; the maximum velocity magnitude at beyond 10◦ angle of attack

especially becomes higher.

6.2. Different velocities

To analyze the different angles of attack, to discuss the impact of different veloc-

ities (2 m/s, 4 m/s, 6 m/s, 8 m/s and 10 m/s) on flow pattern, the streamlines,

velocity magnitude, and pressure distribution are also discussed, using the conver-

gent canopy shape obtained from the FSI simulation at zero angle of attack in flow

field simulation. Figures 25 through 32 are the streamlines, velocity magnitude, and

pressure contours in the gore centerline plane at different incoming velocities. The

6 m/s condition figures can be seen in Figs. 15 and 16. All the figures are calculated

from the one gore canopy model in flow field simulation. In all the pressure contour

figures, the pressures are the relative value referring to 101325 Pa.

From Figs. 15, 16 and 25 through 32, the obvious variation of the velocity

magnitude and pressure can be seen with the change of incoming velocity.

There is no vortex in the inner side of the canopy at 2 m/s, but when the

velocity is beyond 4 m/s, two small vortexes appear, and the streamline and pressure

patterns are almost unchanged.

The above analysis indicates that the topological structure of the canopy in

the gore centerline plane is almost unchanged when the velocity is beyond 4 m/s,

and it can help the topological analysis for the hemispherical parachute in terminal

descent.
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Fig. 15. (Color online) The streamlines
and velocity magnitude contours, α = 0◦.

Fig. 16. (Color online) Pressure contours,
α = 0◦.

Fig. 17. (Color online) The streamlines
and velocity magnitude contours, α = 5◦.

α = °

Fig. 18. (Color online) Pressure contours,
α = 5◦.

Fig. 19. (Color online) The streamlines and
velocity magnitude contours, α = 8◦.

Fig. 20. (Color online) Pressure contours,
α = 8◦.
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Fig. 21. (Color online) The streamlines
and velocity magnitude contours, α = 10◦.

Fig. 22. (Color online) Pressure contours,
α = 10◦.

Fig. 23. (Color online) The streamlines
and velocity magnitude contours, α = 15◦.

Fig. 24. (Color online) Pressure contours,
α = 15◦.

y 

Fig. 25. (Color online) The streamlines and
velocity magnitude contours, u∞ = 2 m/s.

Fig. 26. (Color online) Pressure contours,
u∞ = 2 m/s.
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Fig. 27. (Color online) The streamlines
and velocity magnitude contours, u∞ =
4 m/s.

Fig. 28. (Color online) Pressure contours,
u∞ = 4 m/s.

Fig. 29. (Color online) The streamlines
and velocity magnitude contours, u∞ =
8 m/s.

Fig. 30. (Color online) Pressure contours,
u∞ = 8 m/s.

Fig. 31. (Color online) The streamlines and

velocity magnitude contours, u∞ = 10 m/s.

Fig. 32. (Color online) Pressure contours,

u∞ = 10 m/s.
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Fig. 33. Topological structure of the stable canopy in gore centerline plane, u∞ = 6 m/s, α = 0◦.

6.3. Topological analysis

The topological theory provides a general tool to rationally analyze the overall

qualitative structure of a separated vortex flow, in terms of critical points and their

connections on body surface and inside the fluid. It has mainly been applied to

steady flow.19 Therefore, using topological theory to analyze the flow field of the

hemispherical parachute in terminal descent, can be an effective method.

According to topological theory, assuming a plane cuts one or more solid bodies

in the flow field, the sectional flow on the plane has m isolated finite section planes.

The topological rule has the form in Eq. (16):
(

∑

N

+
1

2

∑

N ′

)

−

(

∑

S

+
1

2

∑

S′

)

= 1− n , (16)

whereN,N ′, S and S′ are the node, semi-node, saddle, and semisaddle, respectively;

n = m+ 1.

The topological structure of the stable canopy in gore centerline plane in the

typical condition (u∞ = 6 m/s, α = 0◦) is shown in Fig. 33. It contains 4 saddles,

6 nodes, 8 semisaddles, 0 seminodes, and 2 isolate finite section planes. So the

topological structure obeys the topological rule in Eq. (16).

The flow field topological structure has strong connection with the flow field.

For example, the variation of the Z-velocity along the Z axis in the gore centerline

plane (u∞ = 6 m/s, α = 0◦) is shown in Fig. 34. There are two zero Z-velocity

points along the Z axis, and thus there are two saddles on the Z axis in the flow

field topological structure correspondingly.

In Fig. 33, there are 4 spiral source nodes at the outer side of the canopy and

2 spiral sink nodes at the inner side of the canopy. Reference 18 indicates that if

the flow is incompressible, then the structure is unsteady with alternative periodic

spiral sink and source, associated with a fluctuating velocity component along the

third dimension. So the topological structure in Fig. 33 is unsteady.
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Fig. 34. The variation of the Z-velocity along the Z axis in the gore centerline plane, u∞ = 6 m/s,
α = 0◦.

Therefore, although a theoretical stable canopy can be calculated, the canopy

shape will be changed even under a tiny interference. This phenomenon can be used

to explain that the parachute during terminal descent is not in an absolutely real

stable state, but in a mean stable state.

7. Conclusion

This paper establishes a fluid-structure interaction simulation technique for hemi-

spherical parachute during the terminal descent. In order to analyze the hemispher-

ical parachute flow field more integrally, canopy in different conditions is considered

in the flow field analysis. For further understanding, the flow field the topological

structure in typical state is analyzed.

The important work of this paper is the introduction of the SIMPLEC algorithm

and k–ω SST turbulence model into the flow field simulation, the accomplishment

of the hemispherical parachute structure simulation, the more integrally flow field

analysis for fluid-structure interaction (FSI) simulation, and the topological analysis

for the flow field of the hemispherical parachute in terminal descent.

Although this FSI simulation technique succeeds in applying for the hemispher-

ical parachute simulation during the terminal descent, there are many extension

works needed, such as, considering more influence factors, especially, establishing a

new FSI simulation technique which suits the parachute simulation and for analyz-

ing the flow field in the inflation stage, and so on.
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Nomenclature

v∞ = incoming airflow velocity in infinite far field

α = angle of attack

u = velocity vector

ρ = density

f = external body force

σ = stress tensor

Cp = pressure coefficient

∆Cp = pressure coefficient difference between the inner and outer canopies

p = static pressure

p∞ = the static pressure in infinite far field

Plane E = a plane (see Fig. 6)

ϕ = an angle between the canopy axis and the normal line of gore centerline

R∗

f = dimensionless length of apex point of the cord line to the point on itself

in unstretched gore state

σ∗

m, σ∗

u = dimensionless stress in canopy fabric in the longitudinal and latitudinal

directions

K = shrink factor of canopy material

r∗ = dimensionless bulge radius of the canopy

T ∗ = dimensionless force in cord line

x∗

f , z
∗

f = dimensionless x and z coordinates of cord line in cylindrical coordinates

Eb, Ef = dimensionless elasticity modulus of canopy fabric and cord line

υ, θ, λ, ε = angles (see Fig. 6)

N = number of gores

ω = the half angle between two contiguous plane E

N,N ′ = node and seminode

S, S′ = saddle and semisaddle
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Rundkappen-Fallschirms im gefüllten Zustand, DLR(FB) Q(W) 0860, pp. 71–98.
18. H. G. Heinrich and L. R. Jamison, Parachute Stress Analysis During Inflation and at

Steady State, AIAA Entry Technology, AIAA-1964-1306.
19. J. Z. Wu, H. Y. Ma and M. D. Zhou, Vorticity and Vortex Dynamics (Springer, Berlin,

2006), pp. 323–382.


