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The physical characteristics of bifurcated states in systems with inherent symmetry are constrained
in ways that those in systems with broken symmetry are not. Here we examine the issue of
quasiperiodic versus subharmonic instability modes of time-periodic laminar wakes, and how the
relationship between them is influenced by weak symmetry breaking. The examples used are the
vortex street wake of a circular cylinder, where symmetry is broken by distorting the cylinder into
a ring, and the wake of a square cylinder, where symmetry is broken by a small fixed rotation of the
cylinder about its axis. In both cases the symmetric wakes exhibit a quasiperiodic instability mode,
with a pair of complex-conjugate Floquet multipliers and which manifests as a traveling wave. As
symmetry is broken these multipliers migrate continuously to the real axis, coalesce, and split into
a pair of subharmonic multipliers that move apart along the negative real axis. This behavior
resolves an apparent dichotomy between the previously established theoretical results and numerical
predictions for the symmetric wake systems, and the predictions and experimental observations for
systems with weakly broken symmetry. © 2010 American Institute of Physics.
�doi:10.1063/1.3368106�

The study of three dimensionality of bluff body wakes
has a long history, with concentrated theoretical attention
following detailed experimental examinations of the circular
cylinder wake at Reynolds numbers near the onset of second-
ary instability, as summarized by Williamson.1 Numerical
methods were brought to bear in predicting the primary and
secondary �Floquet� instabilities of the circular cylinder
wake, as exemplified by the works of Jackson2 and Barkley
and Henderson.3 The Floquet analysis generally agreed well
with the experimental observations of two distinct secondary
instability modes �the long wavelength mode A and the
shorter wavelength mode B� in showing that these bifurcate
successively from the two-dimensional base states as Rey-
nolds number Re=U�d /� is increased; the predicted critical
Reynolds numbers, spanwise wavelengths, and mode shapes
were close to the experimental observations.

In related theoretical developments, attention was paid to
the underlying symmetries of the two-dimensional base
states in these problems, and the implications this held for
the ways in which symmetry could be broken in secondary
instabilities of the vortex street wakes. The two-dimensional
time-periodic wake of a circular cylinder, or any two-
dimensional geometry with a reflection symmetry with re-
spect to the incident flow direction, such as a square, a dia-
mond, a symmetrical airfoil, or a flat plate normal to or
aligned with the flow, has the property that its shape remains
the same under temporal evolution by a half-period, com-
bined with a reflection about a body axis aligned with the
flow direction. This symmetry is illustrated for the wake of a
square cylinder in Figs. 1�a� and 1�b�. Such a spatiotemporal
symmetry is a member of the Z2 symmetry group, i.e., a
generalized reflection.

Evolution of the wake by a full period T in time corre-
sponds to two of these operations, and this squaring has im-
portant implications for possible ways in which symmetries
can be broken through bifurcations, as first pointed out by
Swift and Wiesenfeld:4 period-doubling bifurcations are sup-
pressed as generic events. This suppression may be readily
understood by considering the loci of Floquet multipliers in
the complex plane, where a bifurcation corresponds to either
a single real multiplier or a complex-conjugate pair emerging
from the unit circle. The generic ways this may occur are �i�
along the positive real axis as a synchronous bifurcation; �ii�
along the negative real axis as a period-doubling or subhar-
monic bifurcation; �iii� a complex-conjugate pair evolving
along a generically curved pair of paths that have reflection
symmetry about the real axis as a Neimark–Sacker bifurca-
tion, i.e., the generalization of a Hopf bifurcation to a limit
cycle base state.5 The operation of squaring removes the sub-
harmonic bifurcation as a generic possibility on the full pe-
riod, since period doubling on the T /2 mapping is synchro-
nous when taken on period T.

When considering the secondary bifurcations of wakes
the translation/reflection symmetry of the wake along the
span must be considered too. For bifurcated states that have
a spanwise waviness, this is an O�2� symmetry group, mean-
ing that the complete symmetry group of the two-
dimensional wakes �and related systems6� is Z2�O�2�. The
theoretical development of the possible symmetry breaking
bifurcations for this symmetry group has been previously
pursued7 and applied to the study of the circular cylinder
wake and the square cylinder wake.8 Generically there are
two types of T-synchronous secondary instabilities in these
systems; ones that preserve and others that break the under-
lying symmetry group �in the cylinder wake these corre-
spond, respectively, to modes A and B�, as well as two types
of quasiperiodic instabilities, one of which manifests as
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modulated traveling waves and the other which manifests as
standing waves. Under weakly nonlinear evolution, only one
of the possible pair of quasiperiodic modes will be
observed,9 and in the systems thus far considered this has
been the traveling wave state.

Quasiperiodic three-dimensional instabilities of the cir-
cular cylinder wake were first predicted by Barkley and
Henderson.3 Subsequent study8 showed these to be the third
state to bifurcate from two-dimensional base states with in-
creasing Reynolds number, with Rec=377, and to manifest as
traveling waves in the weakly nonlinear case. Much the same
behavior was demonstrated for the wake of the square
cylinder,8,10 while for a related problem with the same sym-
metry group but two control parameters,6 again two synchro-
nous modes and a traveling wave mode were predicted as
three-dimensional bifurcations from two-dimensional
T-periodic states. All these findings were in full accord with
the theoretical development.7

In the meantime, studies of cases which were apparently
related but which broke perfect Z2 symmetry had been initi-
ated, originally for ring wakes as a model for the circular
cylinder wake but without experimentally problematic end
effects.11 These led into numerical Floquet analysis12,13 of

ring wakes of moderate to low aspect ratio A=D /d, where D
is the mean ring diameter and d the diameter of its cross
section. The three-dimensional instabilities of ring wakes
again were found to provide two synchronous modes of dif-
fering wavelength, related to the cylinder wake A and B
modes. However, instead of a quasiperiodic mode, these
analyses also predicted a third mode �“mode C”� of subhar-
monic type,14 and this was verified to occur experimentally.15

More recently, Floquet analysis of the wake of a square
cylinder was revisited, focusing on the effect of angle of
incidence variation on secondary instabilities.16 When the
angle of incidence �=0 �i.e., the leading face of the square is
normal to the incident flow direction�, this study found two
synchronous modes and a quasiperiodic mode, the third to
bifurcate from two-dimensional base states with increasing
Re, in agreement with previous work.8,10 At �=7.5°, the first
nonzero value studied, this quasiperiodic mode is replaced
by a subharmonic one. At moderate angles of incidence, �
=12° –26°, the subharmonic mode is the first to bifurcate
from the two-dimensional base state as Reynolds number is
increased. Figures 1�c� and 1�d� illustrate the breakage of
perfect spatiotemporal symmetry for the two-dimensional
wake of a square cylinder at Re=225, �=7.5°.

The two-dimensional wakes of the ring and the rotated
square section are examples where the Z2 spatiotemporal
symmetry of the wakes of the circular and square cylinders is
broken, albeit via different physical mechanisms, apparently
with the same outcome: the replacement of a quasiperiodic
instability mode with a subharmonic mode. This result serves
as the motivation for the present work, which is to examine
how transition occurs as symmetry is broken. We use the two
examples already introduced, the ring and the rotated square.
These are good examples in part precisely because the physi-
cal mechanism is distinct in the two cases: introduction of
curvature in the first and a simple rotation that leaves a Car-
tesian geometry in the second. However, in theoretical terms,
they have commonality, in that these distortions each break
the Z2 spatiotemporal symmetry of the original problem, and
introduce a single control parameter as a measure of broken
symmetry, aspect ratio A in the case of the ring and angle of
incidence � in the case of the rotated square.

The codes used to carry out Floquet analysis for these
problems are two independent implementations of Krylov-
type timestepper-based eigensystem methods,17,18 where the
underlying discretization is nodal Galerkin spectral elements
on mapped quadrilateral elements, combined with time-split
integration based on backward differencing.19 The
cylindrical-coordinate technique used to compute ring wakes
has been described in detail elsewhere;20 the Cartesian-
coordinate version used to compute cylinder wakes is a
straightforward simplification. The same codes were used in
the two studies8,16 that formed the starting points for the
present work, as well as many others. We have checked that
the codes return identical results, and we have retained the
mesh geometries employed in the two earlier studies.

Starting with the circular cylinder wake, the quasiperi-
odic mode is the third to bifurcate from the base state8 with
Rec=377 and a spanwise wavenumber �c=2�d /�=3.5. In
the present study, the Reynolds number was held fixed at

FIG. 1. Computed locations of marker particles for a two-dimensional
square cylinder wake at Re=U�d /�=225. ��a� and �b�� With the square
aligned to the coordinate axes the wake has a spatiotemporal symmetry such
that it is identical after a temporal evolution by T /2 and a reflection about
the x axis. ��c� and �d�� With the square rotated about its axis through angle
� �here �=7.5°� this spatiotemporal symmetry is lost. When t= t0 �i.e., for
�a� and �c��, lift force is maximum.
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Re=380. The computations were carried out on a mesh with
cross-flow dimensions �10d, meaning that the minimum as-
pect ratio attempted is A=20 �when one edge of the domain
touches the axis of the cylindrical coordinate system� with no
required upper limit �A=� corresponding to the Cartesian
infinite cylinder�. Also fixed in the present study was the
spanwise/circumferential wavelength � /d=2� /�c=1.7952,
and the aspect ratio was adjusted such that an integer number
of waves with this length fit around the circumference of the
ring, giving A=2� /�c, where � here is an integer and �c

=3.5, the Cartesian-coordinate value.
Figure 2 shows the detail of resulting Floquet multiplier

locus. At A=� �a straight circular cylinder� the quasiperiodic
multipliers lie outside the unit circle as a complex-conjugate
pair, i.e., 	= ��	� , � �
� with �	��1, and where the second-
ary period of the quasiperiodic state is given by Ts /T
=2� /
�2. As A is decreased and Z2 symmetry of the base
state is broken, the multipliers migrate toward the negative
real axis with very slightly increasing moduli, and the asso-
ciated secondary periods Ts of the quasiperiodic states de-
crease. The complex-conjugate pair meets and coalesces on
the negative real axis when A=30. At this stage the second-
ary period Ts=2T, i.e., the bifurcated solutions are period
doubled or subharmonic. With further decrease in A, the two
multipliers split and migrate in opposite directions along the
real axis, one receding inside the unit circle and the other
moving increasingly rapidly away from the origin. Thus, the
initial effect of symmetry breaking is to decrease the second-
ary period but without suppressing quasiperiodicity, while
the ultimate effect is to destabilize one of the associated
modes once period doubling has been achieved, following a
finite degradation of symmetry.

The secondary instability behavior of the square cylinder
wake in the symmetric �=0 case is broadly similar to that of
the circular cylinder: the quasiperiodic mode is the third to
bifurcate from the basic state and this occurs at Rec=215
with a spanwise wavelength � /d=2.65.16 As for the study of
the ring wake, we focus on the behavior of this mode. The
Reynolds number and spanwise wavelength are held fixed �at

Re=225, � /d=2.4166�, and the symmetry control parameter,
here �, is varied. We note that as the square is rotated, the
Reynolds number based on the projected cross-flow dimen-
sion would increase by a factor up to 21/2 at �=� /4; how-
ever, this variation is not accounted for Re=U�d /�=const,
where d is the length of a side.

Figure 3 shows the multiplier locus associated with the
quasiperiodic/subharmonic mode for the rotated square cyl-
inder. At �=0, the quasiperiodic mode is slightly unstable.
As symmetry is broken for ��0, the associated mode be-
comes more stable initially, as the complex-conjugate multi-
plier pair recedes inside the unit circle and migrates toward
the negative real axis, and the associated secondary period of
the quasiperiodic mode reduces toward 2T. At �=5.85°, the
multipliers coalesce on the negative real axis, while for
larger � the pair splits and each moves in opposite directions
along the negative real axis. Eventually at ��7.5°, one of
this pair of subharmonic modes bifurcates from the two-
dimensional state when �	��1.

We note that in the analysis above we have kept the
spanwise wavelengths of the three-dimensional instabilities
constant. The most-amplified wavelength for quasiperiodic/
subharmonic instability will vary slightly as symmetry is
broken, but this effect is comparatively weak for the small
variations considered, and the wavelengths employed fall
near the center of the range for these modes across the pa-
rameter regimes considered.8,12,16 Thus we are confident that
our findings may principally be attributed to Z2-symmetry
breaking of the base flows.

This study has concentrated on the issue of how quasip-
eriodic secondary instabilities in two wake flows with spa-
tiotemporal symmetry group Z2�O�2� are affected by sym-
metry breaking. The behavior is very similar in the two
cases: breaking symmetry produces a migration of a
complex-conjugate pair of multipliers toward the negative
real axis, where at some finite value of symmetry-breaking
control parameter they coalesce on the real axis and split to
produce a pair of subharmonic modes. One of these new
modes is destabilized by further symmetry breaking, while
the other moves toward the origin and becomes more stable.

FIG. 2. Floquet multiplier locus with variation in ring aspect ratio A=D /d
shown with a portion of the unit circle in the complex plane for the circular
cylinder/ring wake at Re=380, illustrating the evolution of a quasiperiodic
mode into a pair of subharmonic modes.

FIG. 3. Floquet multiplier locus with variation in angle of attack � for the
rotated square cylinder wake at Re=225, � /d=2.4166, compared with a
portion of the unit circle in the complex plane.
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The observed behavior is in agreement with the theoret-
ical results for bifurcations in symmetric systems:4,7 Z2 spa-
tiotemporal symmetry of the two-dimensional wakes of the
circular and the unrotated square cylinder acts to suppress
subharmonic Floquet modes, leaving quasiperiodic modes as
an alternative to synchronous modes. We have shown that as
symmetry is broken, there is no discontinuous change to sub-
harmonic states, but rather a finite amount of distortion
brings the multipliers for these modes to the negative real
axis where they coalesce to form a pair of subharmonic
modes. Further distortion away from the symmetric base
state acts to destabilize one of these two subharmonic modes.
However, we note that another route for production of sub-
harmonic modes could be genesis at the origin as soon as
symmetry is broken, followed by a locus straight along the
negative real axis, leaving quasiperiodic modes in existence
even as a subharmonic mode bifurcates from the two-
dimensional basic state.

Our findings resolve an apparent dichotomy between
quasiperiodic versus subharmonic wake instability modes:
subharmonic modes do not generically arise if the two-
dimensional state has Z2 spatiotemporal symmetry, as illus-
trated in Figs. 1�a� and 1�b�. We have demonstrated one pos-
sible route to subharmonic instability as symmetry is broken
�as shown in Figs. 1�c� and 1�d�� and also that in this sce-
nario, breakage of symmetry is ultimately destabilizing.
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